Science.gov

Sample records for isotope separation factor

  1. Isotopic separation

    SciTech Connect

    Chen, C.

    1981-03-10

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential.

  2. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  3. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  4. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  5. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  6. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  7. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  8. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  9. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  10. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  11. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  12. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  13. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  14. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  15. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  16. High Atomic Weight Isotope Separator.

    DTIC Science & Technology

    This patent discusses a method of separating one isotopic species of a given element from a mixture. Collisionless plasma instabilities slow down the ions and oppositely charged electrodes separate the isotopes.

  17. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  18. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  19. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  20. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  1. Hydrograph separation using stable isotopes: Review and evaluation

    NASA Astrophysics Data System (ADS)

    Klaus, J.; McDonnell, J. J.

    2013-11-01

    We reviewed isotope hydrograph separation studies.We examine methods, applications, and limitations.We summarize factors that control the event/pre-event water contributions.We outline new possible research avenues in isotope hydrograph separation.

  2. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  3. Isotope separation by laser technology

    NASA Astrophysics Data System (ADS)

    Stoll, Wolfgang

    2002-03-01

    Isotope separation processes operate on very small differences, given either by the Quotient of masses with the same number of electrons or by their mass difference. When separating isotopes of light elements in mass quantities, thermodynamic processes accounting for the quotient, either in diffusion, chemical reactivity or distillation are used. For heavy elements those quotients are very small. Therefore they need a large number of separation steps. Large plants with high energy consumption result from that. As uranium isotope separation is the most important industrial field, alternatives, taking account for the mass difference, as e.g. gas centrifuges, have been developed. They use only a fraction of the energy input, but need a very large number of machines, as the individual throughput is small. Since it was discovered, that molecules of high symmetry like Uranium-Hexafluoride as a deep-cooled gas stream can be ionized by multiple photon excitation, this process was studied in detail and in competition to the selective ionization of metal vapors, as already demonstrated with uranium. The paper reports about the principles of the laser excitation for both processes, the different laboratory scale and prototypical plants built, the difficulties with materials, as far as the metal vapor laser separation is concerned, and the difficulties experienced in the similarity in molecular spectra. An overview of the relative economic merits of the different processes and the auspices in a saturated market for uranium isotope separation, together with other potential markets for molecular laser separation, is contained in the conclusions.

  4. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  5. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  6. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  7. Isotope separation using metallic vapor lasers

    NASA Technical Reports Server (NTRS)

    Russell, G. R.; Chen, C. J.; Harstad, K. G. (Inventor)

    1977-01-01

    The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation.

  8. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  9. Separation factors for hydrogen isotopes on nickel and platinum during electrolysis

    SciTech Connect

    Boucher, G.R.; Collins, F.E.; Matlock, R.L.

    1995-03-01

    When a nickel cathode is used during electrolysis, the separation factor {gamma} of D{sub 2}O/T{sub 2}O is measured and found to be 2. When a platinum cathode is used, the value of {gamma} is found to also be 2. This value is the same as the value that was measured and reported in an earlier paper that dealt with the use of a palladium cathode. A mathematical model that predicts the tritium concentration in the electrolysis cell finds the predictions to be in agreement with the measured values of tritium concentration in the cell. Excess tritium concentration is observed in the recombined off-gases in the case of the nickel cathode. 3 refs., 2 figs., 2 tabs.

  10. Beam delivery for stable isotope separation

    NASA Astrophysics Data System (ADS)

    Forbes, Andrew; Strydom, Hendrick J.; Botha, Lourens R.; Ronander, Einar

    2002-10-01

    In the multi-photon dissociation process of Carbon isotope enrichment, IR photons are used to selectively excite a molecule with the given isotopic base element. This enrichment process is very sensitive to the beam's intensity and wavelength. Because the intensity is determined by the propagation of the field, the enrichment factors are also very dependent on the field propagation. In this paper, the influence of the wavelength and intensity of the beam, on the isotope selective dissociation of a CFC compound is investigated both experimentally and theoretically. Consideration is also given to some of the factors that influence the delivery of various beams to the reactor chamber, and their subsequent propagation through the reactor. The results show that suitable beam forming can lead to an improved isotope separation process.

  11. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  12. Atomic vapor laser isotope separation

    SciTech Connect

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  13. The separation of stable isotopes of carbon

    NASA Astrophysics Data System (ADS)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  14. Laser system for isotope separation

    NASA Astrophysics Data System (ADS)

    Shirayama, Shimpey; Mikatsura, Takefumi; Ueda, Hiroaki; Konagai, Chikara

    1990-06-01

    Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J), a joint Japanese utility companies research organization, was founded in April, 1987, to push a development program for laser uranium enrichment. Based on research results obtained from Japanese National Labs, and Universities , Laser-J is now constructing an AVLIS experimental facility at Tokai-mura. It is planned to have a 1-ton swu capacity per year in 1991. Previous to the experimental facility construction , Toshiba proceeded with the preliminary testing of an isotope separation system, under contract with Laser-J. Since the copper vapor laser (CVL) and the dye laser (DL) form a good combination , which can obtain high power tunable visible lights ,it is suitable to resonate uranium atoms. The laser system was built and was successfully operated in Toshiba for two years. The system consist of three copper vapor lasers , three dye lasers and appropriate o Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J) , a joint Japanese utility companies research organization , was founded in April, 1987, to push a development program for laser uranium enrichment

  15. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  16. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  17. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  18. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  19. Method of separating boron isotopes

    SciTech Connect

    Jensen, R.J.; Cluff, C.L.; Hayes, J.K.; Thorne, J.M.

    1984-05-08

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  20. Hydrogen isotope separation installation for tritium facility

    SciTech Connect

    Andreev, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.; Tenyaev, B.N.; Vedeneev, A.I.; Golubkov, A.N.

    1995-10-01

    The separation of hydrogen isotopes in the hydrogen-palladium system in sectioned separation columns with the simulation of counter-current isotopic exchange is described. The separation efficiency of sectioned columns is investigated with the experimental installation as a function of various parameters. The separation of deuterium-tritium mixtures with high tritium concentrations is tested with the pilot installation operating at room temperature and atmospheric hydrogen pressure. Due to very high separation efficiency, flexibility and simplicity of operation separation installations with sectioned columns are ideally suitable for tritium laboratories and facilities dealing with separation of hydrogen isotopes. Estimation of applicability of sectioned columns for regeneration of exhaust gas in a fuel cycle of thermonuclear reactors, such as JET and ITER, shows the number of advantages of separation installations with sectioned columns. 12 refs., 3 figs., 2 tabs.

  1. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  2. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  3. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  4. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  5. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  6. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  7. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  8. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  9. Dye laser chain for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  10. METHOD OF SEPARATING HYDROGEN ISOTOPES

    DOEpatents

    Salmon, O.N.

    1958-12-01

    The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.

  11. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  12. Novel PEFC Application for Deuterium Isotope Separation.

    PubMed

    Matsushima, Hisayoshi; Ogawa, Ryota; Shibuya, Shota; Ueda, Mikito

    2017-03-16

    The use of a polymer electrolyte fuel cell (PEFC) with a Nafion membrane for isotopic separation of deuterium (D) was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H) in H₂O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  13. Novel PEFC Application for Deuterium Isotope Separation

    PubMed Central

    Matsushima, Hisayoshi; Ogawa, Ryota; Shibuya, Shota; Ueda, Mikito

    2017-01-01

    The use of a polymer electrolyte fuel cell (PEFC) with a Nafion membrane for isotopic separation of deuterium (D) was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H) in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased. PMID:28772661

  14. Apparatus for separating and recovering hydrogen isotopes

    DOEpatents

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  15. Apparatus for separating and recovering hydrogen isotopes

    SciTech Connect

    Heung, L.K.

    1994-05-17

    An apparatus is described for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing with at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other. 2 figures.

  16. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  17. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  18. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  19. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  20. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  1. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  2. Hydrogen isotope separation utilizing bulk getters

    SciTech Connect

    Knize, R.J.; Cecchi, J.L.

    1990-12-11

    This patent describes hydrogen isotope separation utilizing bulk getters. Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  3. Production of stable isotopes utilizing the plasma separation process

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  4. Separation of isotopes by cyclical processes

    DOEpatents

    Hamrin, Jr., Charles E.; Weaver, Kenny

    1976-11-02

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.

  5. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  6. Separation of uranium isotopes by chemical exchange

    DOEpatents

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  7. Laser-assisted isotope separation of tritium

    DOEpatents

    Herman, Irving P.; Marling, Jack B.

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  8. On laser rare-isotope separation

    SciTech Connect

    Tkachev, Aleksei N; Yakovlenko, Sergei I

    2003-07-31

    A brief review on laser separation of rare ytterbium and palladium isotopes by selective photoionisation is presented. The {sup 168}Yb isotope enrichment is performed using the optical scheme proposed by A.M. Prokhorov and co-workers in 1991. The kinetic model of selective photoionisation is described in detail and the production of highly enriched {sup 168}Yb isotopes in weight quantities is reported (up to 90 % - 95 % in a plasma, up to 62 % on a collector, and up to 45 % in a wash solution). The rate of production of enriched ytterbium achieves 5 - 10 mg h{sup -1} (more that 1 g per month). The results of theoretical and experimental studies of selective photoionisation of palladium are also presented. A substantial enrichment of different palladium isotopes is achieved: {sup 102}Pd - up to 18 % (the natural content is 1 %), {sup 104}Pd - up to 70 % (11.4 %), and {sup 105}Pd - up to 60 % (22.33 %). The kinetics of selective ionisation of palladium is analysed using new experimental data on the fine structure and hyperfine splitting of the terms. (special issue devoted to the memory of academician a m prokhorov)

  9. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  10. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  11. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  12. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  13. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  14. Hydrogen isotope separation by bipolar electrolysis with countercurrent electrolyte flow

    SciTech Connect

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Fisher, P.W.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1980-04-01

    Separation of hydrogen isotopes has been successfully demonstrated using bipolar electrolysis combined with electrolyte flow countercurrent to the transport of hydrogen isotope species. Use of multibipolar electrode cells in a squared-off cascade is shown theoretically to be capable of efficient tritium separation. Experimental operation of multibipolar cells and analysis of their operation by McCabe-Thiele techniques is described. Palladium-25% silver alloy was found to be suitable as a material for bipolar electrodes permitting high hydrogen throughput with chemical and mechanical stability. Bipolar separation factors, at high current density, using NaOH (NaOD) as the electrolyte, are large (..cap alpha../sub DT/ = 2.0, ..cap alpha../sub HT/ = 11 at 90/sup 0/C). Calculated mass transfer, as determined using a squared-off cascade model, together with observed electrical power consumption suggest that about 21 percent less power will be required for bipolar electrolytic separation as compared with normal electrolysis. This estimate only represents the present level of development. Separation of tritium from light and heavy water using the bipolar electrolysis process appears to offer significant advantages as compared with direct electrolysis. The simplicity and efficiency of the multibipolar cell offer great potential for designing a very compact separation facility which, in turn, will minimize containment cost when high tritium concentrations are encountered.

  15. An isotope separator for small noble gas samples

    NASA Astrophysics Data System (ADS)

    Lehmann, B. E.; Rauber, D. F.; Thonnard, N.; Willis, R. D.

    1987-11-01

    A Wien filter isotope enrichment system has been combined with a small turbomolecular pump to form a closed isotope separator for small noble gas samples. Atoms which leave the exit aperture of the plasma discharge ion source without being ionized are circulated back into the source through a feedback line. The system can be operated for several hours in a closed mode to collect up to 50% of the total number of atoms of a selected isotope (e.g. 81Kr) out of a small gas sample of only 2 × 10 -3 cm 3 STP. Ions are implanted at 10 kV into an aluminized Kapton foil after a flight distance of 150 cm. A beam stabilization system centers the ion beam in two perpendicular directions onto a target aperture to maintain a high enrichment factor of at least 10 3 over extended periods of time. Calibration of the enrichment process is achieved by isotope dilution. The system is a key part of the sample processing for 81Kr and 85Kr analysis by laser resonance ionization spectroscopy for applications in isotope geophysics.

  16. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  17. Development toward a double focusing isotopic separator for noble gas isotope enrichment.

    PubMed

    Lavielle, Bernard; Thomas, Bertrand; Gilabert, Eric; Canchel, Gregory; Horlait, Denis; Topin, Sylvain; Pointurier, Fabien; Moulin, Christophe

    2016-10-01

    A double focusing sector field mass filter used in Nier-Johnson geometry has been built in order to perform Kr isotope enrichment for (81) Kr and (85) Kr isotopes. The principle consists in implanting Kr(+) ions accelerated at 7 keV in Al foils after separation using the magnetic sector. A specific ion source has been designed capable of generating high Kr(+) ion beams (>0.5 μA) to transfer into the collecting Al foils in 3 to 5 h significant fractions of large Kr samples (10(15) to 10(16) atoms) initially introduced in the instrument. Implanted Kr isotopes can be further selectively released from the Al foil by surface ablation using an infrared laser beam. Implantation yields and enrichment factors are measured using a conventional mass spectrometer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  19. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu

    1997-10-01

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  20. Isotope separation by selective photodissociation of glyoxal

    DOEpatents

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  1. A LINEAR PROGRAMMING MODEL OF THE GASEOUSDIFFUSION ISOTOPE-SEPARATION PROCESS,

    DTIC Science & Technology

    ISOTOPE SEPARATION, LINEAR PROGRAMMING ), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), NUCLEAR REACTORS, REACTOR FUELS, URANIUM, PURIFICATION

  2. Cost Estimate for Laser Isotope Separation for RIA

    SciTech Connect

    Scheibner, K

    2004-11-01

    Isotope enrichment of some elements is required in support of the Rare Isotope Accelerator (RIA) in order to obtain the beam intensities, source efficiencies and/or source lifetime required by RIA. The economics of using Atomic Vapor Laser Isotope Separation (AVLIS) technology as well as ElectroMagnetic (EM) separation technology has been evaluated. It is concluded that such an AVLIS would be about 10 times less expensive than a facility based on electromagnetic separation - $17 M versus $170 M. In addition, the AVLIS facility footprint would be about 10 times smaller, and operations would require about 4 years (including 2 years of startup) versus about 11 years for an EM facility.

  3. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  4. Review of the magnetic isotope method for isotopic separation and enrichment

    SciTech Connect

    Turro, N.J.

    1985-01-01

    In the Progress Report of November 19, 1985 a detailed review of the theory of the magnetic isotope method for isotope separation and enrichment was presented. Here we present only the major qualitative features of the theory of the magnetic isotope effect, and we indicate how these aspects can be exploited to design experiments which demonstrate the feasibility and practicability of the magnetic isotope method.

  5. Efficient isotope separation by single-photon atomic sorting

    SciTech Connect

    Jerkins, M.; Chavez, I.; Raizen, M. G.; Even, U.

    2010-09-15

    We propose a general and scalable approach to isotope separation. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. The underlying mechanism is a reduction of the entropy of the beam by the information of a single scattered photon for each atom that is separated. We numerically simulate isotope separation for a range of examples, which demonstrate this technique's general applicability to almost the entire periodic table. The practical importance of the proposed method is that large-scale isotope separation should be possible, using ordinary inexpensive magnets and the existing technologies of supersonic beams and lasers.

  6. Stable isotope separation in calutrons: Forty years of production and distribution

    SciTech Connect

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest (/sup 205/Tl to /sup 46/Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels.

  7. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOEpatents

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  8. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  9. tritium isotope separation by CO 2 laser-induced multiphoton dissociation of CTF 3

    NASA Astrophysics Data System (ADS)

    Makide, Yoshihiro; Hagiwara, Satoru; Tominaga, Takeshi; Takeuchi, Kazuo; Nakane, Ryohei

    1981-08-01

    Isotope separation of tritium at ppm concentration level was achieved by CO 2 laser-induced multiphoton dissociation of CTF 3 in CHF 3 with single-step separation factors exceeding 500. The effects of laser frequency, pulse energy, pulse duration, irradiation geometry, tritium concentration, sample pressure, and buffer gas were investigated.

  10. Electromagnetic separation of stable isotopes at China Institute of Atomic Energy

    NASA Astrophysics Data System (ADS)

    Meiqin, Xiao; Hongyou, Lu; Shijun, Su; Zhizhou, Lin

    1993-09-01

    Electromagnetic separation of stable isotopes at CIAE is described. The separators, the ion sources used, the isotopes separated and their applications are introduced. The improvement of a 180° production separator is also described.

  11. Tritium Isotope Separation Using Adsorption-Distillation Column

    SciTech Connect

    Fukada, Satoshi

    2005-07-15

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, {alpha}{sub H-T}{sup equi}. The adsorption action improved not only HETP but also {alpha}{sub H-T}{sup equi}. Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors.

  12. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  13. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  14. Atomic vapor laser isotope separation of lead-210 isotope

    SciTech Connect

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  15. Nitrogen isotopes of the mantle: Insights from mineral separates

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Takahata, Naoto; Sano, Yuji; Sumino, Hirochika; Hilton, David R.

    2005-06-01

    We present the first nitrogen (N) isotope measurements determined by in-vacuo crushing of mineral separates from arc lavas, OIBs (Ocean Island Basalts), and mantle xenoliths. Measured OIB δ15N values range from ~-8‰ for the northern rift zone in Iceland to +3.1‰ for a dunite nodule from Hawaii. Most arc-related olivines show distinctly positive values - up to +6.2‰ (Cerro Negro, Nicaragua). The measured N isotope values in olivine separates are similar to gas samples collected at the same localities, suggesting that both media (olivines and gases) sample volatiles primarily derived from the magma. This observation also implies that N isotope fractionation does not occur during magma degassing, a notion supported by 4He/40Ar* data. Our results indicate a heterogeneous mantle source region, in terms of N isotopic composition, that may have resulted from surface recycling of N at some localities.

  16. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  17. Investigation of the Photochemical Method for Uranium Isotope Separation

    DOE R&D Accomplishments Database

    Urey, H. C.

    1943-07-10

    To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.

  18. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  19. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  20. Status of stable isotopes separation at the Electromagnetic Plants of the Russian Research Center, ``Kurchatov Institute''

    NASA Astrophysics Data System (ADS)

    Kouzmine, R. N.; Bondarenko, V. G.; Pigarov, Ju. D.; Staroverov, L. I.; Tchesnokov, V. M.

    1999-12-01

    The four chamber electromagnetic isotope separator was constructed at the Russian Research Center (RRC) "Kurchatov Institute" more than 50 years ago. During this period, the plant was used for the development of ion sources and separation technologies. Isotopes of over 40 different elements have been separated. About 20 years ago, the reconstruction of two chambers was completed. The homogeneous magnetic field in these chambers was replaced with a field which falls-off on the radius ( r) as 1/ r. After reconstruction, the dispersion was increased by a factor of four and the enrichment of the isotopes was increased considerably. Ion beam collection was also facilitated. Many highly enriched isotopes were produced in the new chambers, including Gd, Yb, Zn, Tl, Pd, and others. One of the important problems now, is the reduction of all aspects of production costs for isotopes. A project to perfect the ion-optic scheme (IOS) for two chambers was carried out with the expected result of a dispersion of 44 mm at 1% relative mass difference. As a result of the modified ion source, increased productivity of the separators is expected. Other areas of ion source development in progress include: development of "standard" ion sources for the separators with inhomogeneous fields, development of high-temperature sources for Pd isotopes, and development of an ion source with sputtering supply for Ir, Pt, and other elements.

  1. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  2. Chromatographic separation of neodymium isotopes by using chemical exchange process.

    PubMed

    Ismail, I M; Ibrahim, M; Aly, H F; Nomura, M; Fujii, Y

    2011-05-20

    The neodymium isotope effects were investigated in Nd-malate ligand exchange system using the highly porous cation exchange resin SQS-6. The temperature of the chromatographic columns was kept constant at 50°C by temperature controlled water passed through the columns jackets. The separation coefficient of neodymium isotopes, ɛ's, was calculated from the isotopic ratios precisely measured by means of an ICP mass spectrometer equipped with nine collectors as ion detectors. The separation coefficient, ɛ×10(5), were calculated and found to be 1.4, 4.8, 5.4, 10.6, 16.8 and 20.2 for (143)Nd, (144)Nd, (145)Nd, (146)Nd, (148)Nd and (150)Nd, respectively.

  3. Production of rare isotope beams with the NSCL fragment separator

    NASA Astrophysics Data System (ADS)

    Stolz, A.; Baumann, T.; Ginter, T. N.; Morrissey, D. J.; Portillo, M.; Sherrill, B. M.; Steiner, M.; Stetson, J. W.

    2005-12-01

    Rare isotope beams at the National Superconducting Cyclotron Laboratory are produced by projectile fragmentation of medium energy primary beams on beryllium targets. The fragments of interest are selected by the A1900 high-acceptance fragment separator. The A1900 consists of superconducting magnets: four 45° dipoles and eight quadrupole triplets with a maximum magnetic rigidity of 6 Tm. A momentum acceptance of Δp/p = 5% with a solid angle acceptance of ΔΩ = 8 msr makes the A1900 one of the highest-acceptance separators in the world. Detector systems installed within the device allow tracking and unambiguous identification of individual isotopes. During the first three years of operation of the A1900, more than 200 different rare isotope beams approaching both the neutron and proton driplines have been delivered to experiments.

  4. THE SEPARATION OF URANIUM ISOTOPES BY GASEOUS DIFFUSION: A LINEAR PROGRAMMING MODEL,

    DTIC Science & Technology

    URANIUM, ISOTOPE SEPARATION), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), MATHEMATICAL MODELS, GAS FLOW, NUCLEAR REACTORS, OPERATIONS RESEARCH

  5. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  6. Rotation and instabilities for isotope and mass separation

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Gueroult, R.

    2016-10-01

    Rotating plasmas have the potential to offer unique capabilities for isotope and mass separation. Among the various electric and magnetic field configurations offering mass separation capabilities, rotating plasmas produced through static or oscillating fields are shown to be a leading candidate for tackling the unsolved problem of large-scale plasma separation. The successful development and deployment of industrial-scale plasma separation technologies could, among many other applications, provide an innovative path towards advanced sustainable nuclear energy. In this context, the potential and versatility of plasma rotation induced by rotating magnetic fields is uncovered and analysed. Analytical stability diagrams are derived from rotating ion orbits as a function of ion mass. Based on these findings, the basic principles of a rotating field plasma separator are then introduced. In light of these results, challenges associated with this original separation process are underlined, and the main directions for a future research program aimed at this important unsolved problem of applied plasma physics are identified.

  7. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  8. Biomedical research applications of electromagnetically separated enriched stable isotopes

    NASA Astrophysics Data System (ADS)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  9. Advancement of isotope separation for the production of reference standards

    SciTech Connect

    Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

    2012-03-01

    Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

  10. Laser isotope separation of lithium by two-step photoionization

    SciTech Connect

    Saleem, M.; Hussain, Shahid; Rafiq, M.; Baig, M. A.

    2006-09-01

    Lithium isotope separation has been achieved employing the two-step photoionization technique along with a narrow band dye laser in conjunction with a time of flight mass spectrometer. The demonstrated method yields a high degree of selectivity by tuning the dye laser at the resonance levels of Li{sup 6} and Li{sup 7}. It is inferred that the concentration of the natural abundance of the Li{sup 6} isotope gets enhanced up to over 47% as the exciter dye laser is tuned to the {sup 2}P{sub 1/2} of Li{sup 6} even if the linewidth of the exciter laser is not sufficiently narrow to excite the isotopic level. It is also noticed that the much higher energy density of the exciter laser limits the resolution of the fine structure levels of the lithium isotopes that leads to a loss in the enrichment of Li{sup 6} due to the power-broadening effect. Measurements of the photoionization cross section of the lithium isotopes from the 2p {sup 2}P{sub 1/2,3/2}, excited states for Li{sup 6} and Li{sup 7} and the corresponding number densities are reported.

  11. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Martin, Leigh R.; Johnson, Aaron T.; Pfeiffer, Jana; Finck, Martha R.

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  12. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  13. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  14. Isotopic separation of lithium ions by capillary zone electrophoresis.

    PubMed

    Kamencev, Mikhail; Yakimova, Nina; Moskvin, Leonid; Kuchumova, Irina; Tkach, Kirill; Malinina, Yulia; Tungusov, Oleg

    2015-12-01

    Separation of (6)Li and (7)Li isotopes by CZE was demonstrated. The BGE contained 5 mM 4-aminopyridine, 0.9 mM oxalic acid, 0.25 mM CTAB, and 0.25% w/v Tween 20 (рН = 9.2). The running conditions were +25 kV at 30°C with indirect photometric detection at 261 nm. Under optimal experimental conditions, the analysis time was less than 21 min. Separation of Li preparations with mole fraction of (6)Li ranging from 3.44 up to 90.38% was demonstrated.

  15. Bayesian attribution of uncertainty in isotope hydrograph separation

    NASA Astrophysics Data System (ADS)

    Larsen, Joshua; Tran, Maria; Andersen, Martin; Hartland, Adam; Baker, Andy; Mariethoz, Gregoire

    2014-05-01

    The stable isotopes of water can provide useful insights into catchment water sources and flow paths. As such, they are commonly used to separate hydrographs into (at least) two components: 1) stored catchment water which is mobilised during an event (pre-event water), and 2) Water derived directly from the event precipitation without significant storage delays (event water). This method of hydrograph separation typically employs a linear mixing model to partition the hydrograph components using end member source contributions or simple transfer functions. Whichever the case, the resulting components are usually defined with precise boundaries, with no attribution of uncertainty derived from the end members, the model, or other sources. Here, we use a Bayesian mixture model to prescribe the pre-event and event hydrograph components, and their uncertainty, from stable isotope samples collected during a large flood event in eastern Australia. Given the spatial and temporal variability of any rainfall and storage inputs during an event, the prior distribution for the hydrograph components is necessarily poorly defined, leaving the uncertainty estimates to be 'data driven' by the isotope samples throughout the event. When the model is constructed this way, the uncertainties become very large (up to 100%) and the hydrograph components are unconstrained. This is because a single isotope sample in time does not provide sufficient information on component partitioning given the poorly defined prior distribution. As a conceptual exercise, we artificially generated large populations within the range of neighbouring isotope samples, and then sub sampled from this range at different sampling densities. Interestingly, we find that 5 - 10 samples collected within a very short time frame are sufficient to considerably reduce the hydrograph component uncertainty so that each is now realistically constrained. These results demonstrate that the lack of uncertainty provided by

  16. Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation.

    PubMed

    Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri

    2017-09-29

    Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D2 through direct selective separation studies using 1:1 D2/H2 mixtures.

  17. CO2-laser isotope separation of tritium with pentafluoroethane-T (C2TF5)

    NASA Astrophysics Data System (ADS)

    Makide, Y.; Kato, S.; Tominaga, T.; Takeuchi, K.

    1982-08-01

    Isotope separation of tritium by CO2 laser-induced multiphoton dissociation (MPD) of C2TF5 is reported for the first time. The MPD spectrum obtained for C2TF5 comprised a broad peak at about 940 cm-1 where C2HF5 was nearly transparent. The unimolecular dissociation of C2TF5 was induced with much lower laser fluence than that for CTF3, another working molecule we proposed for laser isotope separation of tritium. The mechanisms and kinetics of the dissociation of C2TF5 and C2HF5 were investigated under various experimental conditions: laser frequency, pulse energy, pulse duration, tritium concentration, sample pressure, buffer gas pressure and irradiation geometry. Single-step separation factors exceeding 500 were achieved with the most efficient P(20) line in 00o 10o0 transition at 944.2 cm-1.

  18. Stable isotope enrichment techniques and ORNL separation status

    NASA Astrophysics Data System (ADS)

    Tracy, J. G.; Bell, W. A.; Veach, A. M.; Caudill, H. H.; Milton, H. T.

    1987-05-01

    The isotope separation program is described, emphasizing present state-of-the-art techniques utilized to achieve specific isotopic requirements. An interesting problem addressed here is the calutron enrichment of rare-earth isotopes where small quantities of feed (< 5 g) are available, and the unresolved feed is to be recovered and recycled. Conventional ion-source units using graphite and stainless steel deteriorate in the halogenating atmosphere or are permeable to rare-earth compounds, reducing the process efficiency. An ion source has been developed using boron nitride for containing the halogenating agent and rare-earth compounds. Tests have been successfully conducted using Lu 2O 3 and the in situ chlorinating technique with CCl 4. Collectively, 166 mg of 176Lu were recovered from two runs using 2.95 and 1.10 g of 44.5% 176Lu. Process efficiency of 10.5% was achieved, and 1.2 g of the unresolved feed were recovered. Material compatibility of the boron nitride, carbon tetrachloride, and lutetium compounds has been established.

  19. The Separation and Isotopic Analysis Seawater Cu and Zn

    NASA Astrophysics Data System (ADS)

    Bermin, J.; Vance, D.; Archer, C.; Statham, P. J.

    2004-12-01

    Many transition metals are key micronutrients and their concentration profiles in the oceans often show nutrient-like patterns, with strong surface depletions and deep enrichments1. In addition, their biological usage has been shown to induce isotopic fractionations2 so that the precise and accurate analysis of their isotope systems in seawater has potential applications in tracing metal micronutrient usage in the past ocean. The analytical challenges involved in realising this goal are, however, considerable, given the low concentrations of transition metals in seawater and the requirement to extract small amounts from large samples at low blank and with no artificial isotopic fractionation. Here we present a method for the separation an analysis of Cu and Zn isotopes that is applicable to 0.1-5 L samples of seawater. Trace metals were concentrated from seawater using a Chelex-100 ion-exchange column3 and further purified and separated from each other using a small anion column4,5. All isotopic analyses were performed on a ThermoFinnigan Neptune instrument at the University of Bristol. The main requirements for precise and accurate isotopic analyses are a low contribution from analytical blank and the robust correction for analytical mass discrimination. Our blanks allow the analysis of seawater samples of 50-250 mL for Cu, samples of about 100 mL for Zn in the deep oceans and for Zn-depleted open ocean surface water samples of around 5L. The correction for mass discrimination is most readily considered as two components - that occurring during the chemical separation procedure in response to non-100% yields and that occurring in the mass spectrometer. Correction of all mass discrimination throughout the procedure is most robustly done for Zn and Fe using a double-spike that is added prior to any chemical treatment. This approach has been tested using standard-doped seawater samples that had previously been stripped of their metal contents using the Chelex column

  20. University Isotope Separator at Oak Ridge: The UNISOR Consortium.

    PubMed

    Hamilton, J H

    1974-09-06

    The UNISOR cooperative project, envisioned more than 3 years ago, is now successfully working. Research problems that involve a full range of experiments on nuclei far from beta stability are being investigated jointly by groups of scientists from several institutions. Some of the first work reported (16) included the identification, half-lives, and decay schemes of three new isotopes, (186)T1, (188)T1, and (116)I; the first or new decay schemes of (189)T1, (190)T1, (117)Xe, and (117)I; and the results of the perturbed gamma-gamma directional correlation work in (126)Xe. UNISOR is already stimulating international interest. A report (1) on the new research being planned with an isotope separator on-line to ORIC was presented at a Soviet Academy of Sciences meeting on nuclear structure in 1971. At an international nuclear physics conference in Munich in August 1973, Academician G. N. Flerov, director of the heavy-ion laboratory in Dubna, said the UNISOR project had inspired his laboratory to secure funds for a new, much improved isotope separator which is now installed on-line to their heavy-ion cyclotron to be used for detailed studies of nuclei far from stability. The UNISOR model for research has inspired a second such project, the Atomic Physics Consortium at Oak Ridge (APCOR). After an exploratory conference at Oak Ridge, scientists from ten institutions met in November 1973 to form an organizing committee for APCOR. As with UNISOR, the universities and the AEC will each provide a significant portion of the capital and operating costs. Heavy ions have opened up much new research in atomic physics, but such accelerator-based research represents a real "shift from traditional approaches concerning how, where, and on what time scale atomic physics experiments should be done" (17).

  1. Isotope Separation and Decay Energy Calculation for LISA Commissioning Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Nathaniel; Barker, Alyson; Garrett, Sierra; Rogers, Warren F.; MoNA Collaboration

    2013-10-01

    The commissioning experiment for the Large multi-Institutional Scintillator Array (LISA) was designed to investigate properties of neutron-unstable excited states of the 24O. The array is located at the NSCL, MSU and is used in conjunction with the Modular Neutron Array (MoNA) and the Sweeper Magnet. Oxygen fragments produced by the 26F secondary beam incident on a Be target are directed through the Sweeper Chamber which includes two tracking CRDC detectors, an ion chamber, and a thin and thick scintillator. Plotting the fragment's trajectory position vs. angle vs. time of flight allows for separation of the individual 22 , 23 , and 24 O isotopes, necessary for the calculation of the decay properties of individual states. Anomalous features in the fragments' emittance distribution, believed to result from little understood issues with the tracking detectors, required that we adopt a slightly different approach than that developed recently by the collaboration. Once the isotopes are successfully separated, decay energies are calculated by applying mass-invariant decay spectroscopy by associating the fragment's precise trajectory (determined by inverse-tracking through the Sweeper Magnet) and energy with those of the emitted neutron. Work supported by NSF grant PHY-1101745.

  2. Laser photochemical lead isotopes separation for harmless nuclear power engineering

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.

    2016-09-01

    The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.

  3. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  4. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  5. Separated isotopes: vital tools for science and medicine

    SciTech Connect

    Not Available

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  6. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    NASA Astrophysics Data System (ADS)

    Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.

    2017-05-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.

  7. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    SciTech Connect

    Kotoh, K.; Kimura, K.; Nakamura, Y.; Kudo, K.

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appear at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)

  8. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  9. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  10. Hydrogen isotope separation installation for the regeneration of tritium from gas mixtures in tritium facilities

    SciTech Connect

    Andrew, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.

    1994-12-31

    The advantages and disadvantages of different methods for hydrogen isotope separation are considered in terms of their applicability for tritium regeneration in a tritium facility. Due to low inventory, simplicity of operation, flexibility, and safety the methods of separation using solid phases are preferable for tritium facility. The detail consideration of the separation processes with a solid phase reveals that highest efficiency of separation should be achieved in a counter-current separation column, which allow multiplying the thermodynamic isotopic effect. Because of difficulties of the organization of a solid phase motion in a separation column this method did not found practical application for separation of hydrogen isotopic mixtures. The main efforts of a few researches groups were devoted to improve the chromatographic separation process and equipment. The detail comparison of the separation in sectioned column with that in chromatographic as well as in cryodistillation columns show that counter-current separation in a sectioned column is more effective and has other advantages when middle throughput is required. Complete regeneration of an isotopic mixture with separation into three practically pure isotopes independently from isotopic composition of feed can be provided using two sectioned separation columns. Separation installation can operate continuously as well as periodically.

  11. Optical spectroscopy using mass-separated beams: Nuclear properties of unstable indium and tin isotopes

    NASA Astrophysics Data System (ADS)

    Kuehl, T.; Kirchner, R.; Klepper, O.; Marx, D.; Dinger, U.; Eberz, J.; Huber, G.; Lochmann, H.; Menges, R.; Ulm, G.

    1987-05-01

    Collinear fast-beam laser-spectroscopy has been used to measure the hyperfine structure and isotope shift of several indium and tin isotopes. The related experimental techniques are described, including the preparation of mass-separated beams of neutron-deficient indium and tin isotopes at the GSI on-line mass separator following fusion-evaporation reactions. The deviation of the observed dependence of the charge radii upon the neutron number from the expected behaviour is briefly discussed.

  12. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  13. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  14. Method for separating different isotopes in compounds by means of laser radiation

    SciTech Connect

    Meyer-Kretschmer, G.; Jetter, H.; Toennies, P.

    1984-05-29

    A method is claimed for separating isotopes of a compound having molecules in the gaseous state which comprises exciting the gas with laser radiation having a frequency capable of exciting a selected isotope thereof, interacting the excited gas with electrons having an energy sufficient to form position ions therein and separating the ionized molecules from the other molecules in the gas.

  15. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  16. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  17. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-27

    Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as (3)He/(4)He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high (3)He/(4)He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  18. Iron isotopic fractionation factor between magnetite and hydrous silicic melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; Lundstrom, C. C.

    2006-12-01

    analysis of pure melt and the magnetite-melt mush with knowledge of the modes providing the ability to back out the fractionation factor. If we can prove attainment of equilibrium, this technique will bypass the difficulty of making pure separates of magnetite and melt. Fe isotopic composition of the melt and melt-magnetite layers will be measured by MC-ICP-MS.

  19. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  20. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  1. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  2. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  3. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2017-03-01

    We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.

  4. Gravitational separation of gases and isotopes in polar ice caps.

    PubMed

    Craig, H; Horibe, Y; Sowers, T

    1988-12-23

    Atmospheric gases trapped in polar ice at the firn to ice transition layer are enriched in heavy isotopes (nitrogen-15 and oxygen-18) and in heavy gases (O(2)/N(2) and Ar/N(2) ratios) relative to the free atmosphere. The maximum enrichments observed follow patterns predicted for gravitational equilibrium at the base of the firn layer, as calculated from the depth to the transition layer and the temperature in the firn. Gas ratios exhibit both positive and negative enrichments relative to air: the negative enrichments of heavy gases are consistent with observed artifacts of vacuum stripping of gases from fractured ice and with the relative values of molecular diameters that govern capillary transport. These two models for isotopic and elemental fractionation provide a basis for understanding the initial enrichments of carbon-13 and oxygen-18 in trapped CO(2), CH(4), and O(2) in ice cores, which must be known in order to decipher ancient atmospheric isotopic ratios.

  5. Laser isotope separation: Uranium. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning the technology and assessment of laser separation of uranium isotopes, compounds, oxides, and alloys. Topics include uranium enrichment plants, isotope enriched materials, gaseous diffusion, centrifuge enrichment, reliability and safety, and atomic vapor separation. Citations also discuss commercial enrichment, market trends, licensing, international competition, and waste management. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Membrane distillation employed for separation of water isotopic compounds

    SciTech Connect

    Chmielewski, A.G.; Zakrzewska-Trznadel, G.

    1995-04-01

    An attempt to apply membrane distillation (MD) for the enrichment of waste isotopic compounds was made. The process was conducted as a direct-contact MD with flat-sheet microporous, hydrophobic polytetrafluorethylene (PTFE) membranes in the temperature range 323-353K. The distillate condensation was carried out directly into a stream of cooling water. The comparison between calculated Rayleigh distillation curves and the results of permeation experiments demonstrated the MD process to be more efficient than simple distillation for enrichment of the heavy isotopes in water.

  7. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    SciTech Connect

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-09-02

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge.

  8. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship

  9. Stable isotope production in the former USSR by electromagnetic separation techniques

    NASA Astrophysics Data System (ADS)

    Kaschejev, N. A.; Polyakov, L. A.; Tunin, V. V.

    1993-09-01

    The present paper gives a brief review of the status of electromagnetic isotope separation techniques in the former USSR. It describes the basic specifications of the equipment as well as the general scheme of the production process, and considers questions relating to the chemical processing of isotopic material and analytical control techniques. Finally, a summary is given of the main separation data obtained during the last ten years, and the prospects of future development and of enhancing the economical effectiveness of isotope production are discussed.

  10. Pooled versus separate measurements of tree-ring stable isotopes.

    PubMed

    Dorado Liñán, Isabel; Gutiérrez, Emilia; Helle, Gerhard; Heinrich, Ingo; Andreu-Hayles, Laia; Planells, Octavi; Leuenberger, Markus; Bürger, Carmen; Schleser, Gerhard

    2011-05-01

    δ(13)C and δ(18)O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the δ(13)C and the δ(18)O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing δ(18)O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences.

  11. Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Clemmer, David E.; Smith, Richard D.

    2010-10-01

    Since early 1900-s, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS).1,2 Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston,3 and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence’s Calutron was the first industrial application of MS,4 and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

  12. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  13. Crystal-melt separation and the development of isotopic heterogeneities in hybrid magmas.

    NASA Astrophysics Data System (ADS)

    Beard, J. S.

    2007-12-01

    If a magma is a hybrid of two (or more) isotopically distinct end-members, at least one of which is partially crystalline, separation of melt and crystals after hybridization and homogenization will lead to the development of isotopic heterogeneities in the magma as long as some of the pre-existing crystalline material (antecrysts) retains any of its original isotopic composition. This holds true whether the hybridization event is magma mixing as traditionally construed, bulk assimilation, or melt assimilation. Once a magma-scale isotopic heterogeneity is formed by crystal-melt separation, it is essentially permanent, persisting regardless of subsequent crystallization, mixing, or equilibration events. The magnitude of the isotopic variability resulting from crystal-melt separation can be as large as that resulting from differential contamination/magma mixing or the presence of multiple isotopically distinct sources. In one model, a redistribution of one-third of the antecryst cargo yielded a crystal-enriched sample with 87Sr/86Sr of 0.7058, while the complementary crystal-poor sample has 87Sr/86Sr of 0.7068. In other models, crystal-rich samples are enriched in radiogenic Sr. Isotopic heterogeneities can be either continuous - controlled by the modal distribution of relict antecrysts - or discontinuous - when antecrysts are preserved as cores in isotopically zoned crystals. The first case may be exemplified by some isotopically zoned large volume rhyolites, formed by the eruptive inversion of an isotopically zoned magma chamber. In the latter case, the isotopic composition of the bulk crystal fraction will be distinct from that of any remnant or interstitial liquid. This may, for example, explain the presence of isotopically distinct late stage aplites in plutons. Crystal-melt separation provides an additional option for the interpretation of isotopically zoned/heterogeneous magmas. This option is particularly attractive for systems whose chemical variation is

  14. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    SciTech Connect

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  15. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    NASA Astrophysics Data System (ADS)

    Zisman, M. S.

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences were surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. Demand for separated isotopes is expected to remain roughly at present levels, although a shift toward more requests for highly enriched rare isotopes is predicted. Use of neutron rich nuclides below A = 100 for producing exotic ion beams at various accelerators and use of transition metal nuclei for nuclear magnetic resonance spectroscopy are expected to expand. An increase in the need for calibration standards for techniques of radiological dating, such as Sm/Nd and Lu/Hf is predicted, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  16. Electromagnetic separation of stable isotopes at the Institute of Atomic Energy, Academia Sinica

    NASA Astrophysics Data System (ADS)

    Ming-da, Hua; Gong-pan, Li; Shi-jun, Su; Nai-feng, Mao; Hung-yung, Lu

    1981-07-01

    For almost 20 years the Institute of Atomic Energy, Academia Sinica has been separating stable isotopes of the elements by electromagnetic separators and supplying these materials to research work in many fields of our country. In this article we shall attempt to outline the growth of the effort and describe the present situation.

  17. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  18. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  19. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    NASA Astrophysics Data System (ADS)

    Rutherford, W. M.; Jepson, B. E.; Michaels, E. D.

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating S34, CL35, and CL37 in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and BR79 is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid.

  20. Isotopic effect on ion mobility and separation of isotopomers by high-field ion mobility spectrometry.

    PubMed

    Shvartsburg, Alexandre A; Clemmer, David E; Smith, Richard D

    2010-10-01

    Distinguishing and separating isotopic molecular variants is important across many scientific fields. However, discerning such variants, especially those producing no net mass difference, has been challenging. For example, single-stage mass spectrometry is broadly employed to analyze isotopes but is blind to isotopic isomers (isotopomers) and, except at very high resolution, species of the same nominal mass (isobars). Here, we report separation of isotopic ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field asymmetric waveform IMS (FAIMS). The effect is not based on the different reduced masses of ion-gas molecule pairs previously theorized to cause isotopic separations in conventional IMS, but appears related to the details of energetic ion-molecule collisions in strong electric fields. The observed separation qualitatively depends on the gas composition and may be improved using gas mixtures. Isotopic shifts depend on the position of the labeled site, which allows its localization and contains information about the ion geometry, potentially enabling a new approach to molecular structure characterization.

  1. Anisotropic alpha emission from on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Vanneste, L.

    1986-05-05

    A systematic on-line nuclear-orientation study of heavy isotopes using anisotropic ..cap alpha.. emission is reported for the first time. The anisotrophies recorded for /sup 199/At, /sup 201/At, and /sup 203/At are remarkably pronounced and strongly varying. At lower neutron number the ..cap alpha.. particles are more preferentially emitted perpendicularly to the nuclear-spin direction. This may be interpreted in terms of the high sensitivity of the ..cap alpha..-emission probability to changes in the nuclear shape.

  2. Photo-induced cataphoretic isotope separation. Final report, June 15, 1976-June 15, 1981

    SciTech Connect

    Carruthers, J A

    1981-03-01

    The original studies were undertaken to study the feasibility of radiation-induced cataphoretic separation. This part of the work is concerned with laser-induced cataphoretic separation in neon using a He-Ne 6328A laser. The basic concept of radiation-induced caphoretic isotope separation is based on the preferential excitation of one isotope with the result that one isotope is more readily ionized, and relatively more of its ions move toward the cathode in the dc discharge. For the later part of the work a second radiation source was added, a helical Ne/sup 20/ radiation lamp. Radiation-induced cataphoretic isotope separation has not been observed. Selective excitation has been achieved by both the He-Ne/sup 20/ 6328A laser and the Ne/sup 20/ helical radiation lamp in spite of the fact that the isotope shift is comprable with Doppler-broadened linewidths. Collisional excitation exchange between the Ne/sup 20/ and Ne/sup 22/ atoms does not appear to be a problem for the neon partial pressure range involved. The population of the 3S/sub 2/ and 2p/sub 4/ laser levels (6328A) are apparently too low to offer reasonable expectation of inducing observable cataphoretic isotope separation by means of the 6328A laser radiation, even with the high detection sensitivity of the scanning Fabry-Perot spectrometer sytem. The use of the additional radiation source in the form of a helical Ne/sup 20/ radiation lamp has not improved the effectiveness of the laser 6328A laser. It has become clear from these experiments, however, that for isotope separation in neon it is well to concentrate on using radiation sources that interact mainly with the ls population.

  3. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  4. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  5. Separation of an isotope as a precursor of a gamma-raylaser medium

    NASA Astrophysics Data System (ADS)

    Arisawa, T.; Miyabe, M.; Sugiyama, A.; Yamazaki, K.; Ohzu, A.; Suzuki, Y.; Akaoka, K.; Wakaida, I.; Maruyama, Y.

    1997-05-01

    The nuclear isomer 178Hfm2, expected to be the most promising candidate for the gamma-ray medium, is rather difficult to produce in large quantities. There are a few ways to create this isomer, such as the irradiation of 179Hf with high-energy neutrons through the (n,2n) reaction, the irradiation of 176Yb with high-energy α particles through the (α,2n) reaction, the irradiation of 181Ta with protons through the (p,2p2n) reaction. In some of these reaction schemes the isotopically pure target works better than the natural one from the viewpoint of spectroscopic purity, handling of radioactive materials and productivity. However, isotope separation of heavy elements for producing a precursor as a target material is difficult in terms of cost/effectiveness. The atomic vapor laser isotope separation (AVLIS) method is expected as the most efficient way compared with the normal electromagnetic separation method.

  6. Development of the detector system for β -decay spectroscopy at the KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Ishiyama, H.; Miyatake, H.; Hirayama, Y.; Watanabe, Y. X.; Jung, H. S.; Oyaizu, M.; Mukai, M.; Jeong, S. C.; Ozawa, A.

    2016-06-01

    The KEK Isotope Separation System has been developed to study the β -decay properties of the neutron-rich nuclei around the neutron magic number N = 126. These properties are essential for understanding the origin of the third peak in the r-process element abundance pattern. The detector system for β -decay spectroscopy at the KEK Isotope Separation System should have high detection efficiency for low-energy β -rays, and should be operated under a low-background environment. The detector system of the KEK Isotope Separation System consists of β -ray telescopes and a tape transport system. The solid angle covered by the β -ray telescopes is as large as 75% of 4 π in total. The Qβ -value dependence of the detection efficiency was estimated by Geant4 simulation. The background rate was 0.09 cps using a veto counter system and Pb shields. This background rate allows us to measure the lifetime of 202Os.

  7. Electromagnetic Separation of Isotopes at Oak Ridge: An informal account of history, techniques, and accomplishments.

    PubMed

    Love, L O

    1973-10-26

    In 1960 I attended a European conference on isotope separation, after which I visited the Niels Bohr Institute in Copenhagen. A staff member there ventured the opinion that the separation of isotopes will be first on the list of important contributions to the peaceful uses of the atom when the Atomic Energy Commission's memoirs are written in the year 2000. In 1968 the AEC Division of Research contracted with the National Research Council of the National Academy of Sciences to conduct a review of the AEC program for the separation of stable isotopes by electromagnetic and thermal diffusion methods. This ad hoc panel comprised seven scientists from the fields of chemistry, classical physics, geochemistry, geophysics, medicine, and physics. In their final report on national uses and needs for separated stable isotopes (9), they referred to the store of separated isotopes as a "real national asset that attains increasing value as science and technology develop" and recommended "continuation of the program as a national resource of great value to the United States." Later, in a discussion of this report with A. M. Weinberg, J. Koch, himself a pioneer in electromagnetic isotope separation and member of the Danish Atomic Energy Program, said he would correct the statement that the Oak Ridge electromagnetic facility is a "national asset" to read "international asset." From my narrow viewpoint after an extended and complete engrossment with this program for so many years, it is gratifying to learn that such men as those mentioned above share my belief that the work has indeed been worthwhile.

  8. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    SciTech Connect

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  9. High efficiency noble gas electron impact ion source for isotope separation

    SciTech Connect

    Appelhans, A. D.; Olson, J. E.; Dahl, D. A.; Ward, M. B.

    2016-07-01

    An electron impact ion source has been designed for generation of noble gas ions in a compact isotope separator. The source utilizes a circular filament that surrounds an ionization chamber, enabling multiple passes of electrons through the ionization chamber. This report presents ion optical design and the results of efficiency and sensitivity measurements performed in an ion source test chamber and in the compact isotope separator. The cylindrical design produced xenon ions at an efficiency of 0.37% with a sensitivity of ~24 µA /Pa at 300 µA of electron current.

  10. A Model of Isotope Separation in Cells at the Early Stages of Evolution.

    PubMed

    Melkikh, A V; Bokunyaeva, A O

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  11. Multi-purpose hydrogen isotopes separation plant design

    SciTech Connect

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  12. Anisotropic. cap alpha. -emission of on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Van Haverbeke, J.; Vanneste, L.

    1987-12-10

    The technical realization of particle detection at very low temperatures (4K) has made it possible to study for the first time the anisotropic ..cap alpha..-decay of oriented nuclei which have been produced, separated and implanted on line. The measured ..cap alpha..-angular distributions reveal surprising new results on nuclear aspects as well as in solid state physics. The nuclear structure information from these data questions the older ..cap alpha..-decay theoretical interpretation and urges for a reaxamination of the earliest work on anisotropic ..cap alpha..-decay.

  13. Investigation related to hydrogen isotopes separation by cryogenic distillation

    SciTech Connect

    Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I.

    2008-07-15

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

  14. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    NASA Astrophysics Data System (ADS)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron Sn or two-neutron S2n separation energy of neutron-rich isotopes. Relationships between Sn (S2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. Sn, S2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between Sn, S2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  15. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  16. Nitrogen Isotopic Composition of Metal and Graphite Separates from the EL Taco (IAB) Iron Meteorite

    NASA Astrophysics Data System (ADS)

    Zipfel, J.; Mathew, K. J.; Marti, K.

    1996-03-01

    Nitrogen isotopic compositions of iron meteorites were studied by several authors to address the question of the origin of iron meteorites and their genetic relationships. It was concluded that parent body processes have only a slight effect on the primary signatures. All these results are only based on the N composition of the matrix metal. No systematic study has been performed to determine effects of parent body processes on the N isotopes in the presence of silicate inclusions. Nitrogen signatures, reflecting isotopic disequilibrium, were previously observed in Acapulco. We report first results of a detailed study of the N isotopic composition in silicate and metal phases of the IAB iron El Taco. Metal and graphite separates were analyzed by stepwise pyrolysis followed by several combustion steps using a static mass spectrometer. The new data reveal a large scale disequilibrium among the investigated phases.

  17. Methods and devices for the separation of radioactive rare earth metal isotopes from their alkaline earth metal precursors

    SciTech Connect

    Wai, Chein M.

    1993-07-06

    A method is described for the separation of a radioactive rare earth metal isotope or a radioactive isotope of yttrium or scandium from its alkaline earth metal precursor comprising contacting a sample containing at least one of said isotopes and said precursor with an ionizable dibenzo ether derivative.

  18. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    SciTech Connect

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  19. A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes

    SciTech Connect

    Embury, Michael, C.; Watkins, Reed A.; Hinckley, Richard; Post, Jr., Arthur H.

    1985-04-30

    A low temperature (24 K) distillation system for separating mixtures of hydrogen isotopes has been designed, fabricated, and delivered for use as the main component of the Hydrogen Isotope Separation System (HISS) at Mound. The HISS will handle feed mixtures of all six isotopic species of hydrogen (H2, HD, HT, D2, DT, T2) and will enrich the tritium while producing a stackable raffinate. Arther D. Little, Inc. (ADL) was the prime contractor for the distillation system. The design and fabrication techniques used for the HISS distillation system are similar to those used for previous stills which were also designed and built by ADL. The distillation system was tested with mixtures of protium and deuterium at the ADL shop. This system, as well as the feed, product, and raffinate handling systems are presently being installed at Mound where integrated testing is scheduled next calendar year.

  20. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  1. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  2. Laser separation of hydrogen isotopes: Tritium-from-deuterium recovery

    SciTech Connect

    Magnotta, F.; Herman, I.P.; Aldridge, F.T.; Maienschein, J.L.

    1984-02-01

    Single-step enrichment factors exceeding 15,000 have been observed in the removal of tritium-from-deuterium by 12 ..mu..m laser multiple-photon dissociation of chloroform. The photochemistry and photophysics of this process is discussed along with prospects for implementation of this method in practical heavy water reactor detritiation. 7 refs., 7 figs., 1 tab.

  3. Experimental Confirmation of Isotope Fractionation in Thiomolybdates Using Ion Chromatographic Separation and Detection by Multicollector ICPMS.

    PubMed

    Kerl, Carolin F; Lohmayer, Regina; Bura-Nakić, Elvira; Vance, Derek; Planer-Friedrich, Britta

    2017-03-07

    Molybdenum (98)Mo/(95)Mo isotope ratios are a sediment paleo proxy for the redox state of the ancient ocean. Under sulfidic conditions, no fractionation between seawater and sediment should be observed if molybdate (MoO4(2-)) is quantitatively transformed to tetrathiomolybdate (MoS4(2-)) and precipitated. However, quantum mechanical calculations previously suggested that incomplete sulfidation could be associated with substantial fractionation. To experimentally confirm isotope fractionation in thiomolybdates, a new approach for determination of isotope ratios of individual thiomolybdate species was developed that uses chromatography (HPLC-UV) to separate individual thiomolybdates, collecting each peak and analyzing isotope ratios with multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Using commercially available MoO4(2-) and MoS4(2-) standards, the method was evaluated and excellent reproducibility and accuracy were obtained. For species with longer retention times, complete chromatographic peaks had to be collected to avoid isotope fractionation within peaks. Isotope fractionation during formation of thiomolybdates could be experimentally proven for the first time in the reaction of MoO4(2-) with 20-fold or 50-fold excess of sulfide. The previously calculated isotope fractionation for MoS4(2-) was confirmed, and the result for MoO2S2(2-) was in the predicted range. Isotopic fractionation during MoS4(2-) transformation with pressurized air was dominated by kinetic fractionation. Further optimization and online-coupling of the HPLC-MC-ICPMS approach for determination of low concentrations in natural samples will greatly help to obtain more accurate species-selective isotope information.

  4. Installations for separation of hydrogen isotopes by the method of chemical isotopic exchange in the `water-hydrogen` system

    SciTech Connect

    Andreev, B.M.; Sakharovsky, Y.A.; Rozenkevich, M.B.; Magomedbekov, E.P.; Park, Y.S.; Uborskiy, V.V.; Trenin, V.D.; Alekseev, I.A.; Fedorchenko, O.A.; Karpov, S.P.; Konoplev, K.A.

    1995-10-01

    The paper presents the results of more than a year of running a pilot setup for separation of hydrogen isotopes using catalytic isotopic exchange between hydrogen and liquid water. The setup is 5 m high, has the inner diameter of 28 mm, and is equipped with upper and lower reflux devices. The experimental values of HETP vary from 15 cm at T=333 K to 38 cm at T=293 K. The setup is capable of upgrading diluted heavy water with 85-90% deuterium content up to [D{sub 2}O] > 99.95 at.%, yielding daily 4 kg of the product. We also report on the progress in constructing a similar setup for eliminating tritium and an industrial setup, for which the one reported is a prototype. 10 refs., 1 fig., 3 tabs.

  5. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  6. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  7. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    SciTech Connect

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  8. Macrocyclic ligand decorated ordered mesoporous silica with large-pore and short-channel characteristics for effective separation of lithium isotopes: synthesis, adsorptive behavior study and DFT modeling.

    PubMed

    Liu, Yuekun; Liu, Fei; Ye, Gang; Pu, Ning; Wu, Fengcheng; Wang, Zhe; Huo, Xiaomei; Xu, Jian; Chen, Jing

    2016-10-18

    Effective separation of lithium isotopes is of strategic value which attracts growing attention worldwide. This study reports a new class of macrocyclic ligand decorated ordered mesoporous silica (OMS) with large-pore and short-channel characteristics, which holds the potential to effectively separate lithium isotopes in aqueous solutions. Initially, a series of benzo-15-crown-5 (B15C5) derivatives containing different electron-donating or -withdrawing substituents were synthesized. Extractive separation of lithium isotopes in a liquid-liquid system was comparatively studied, highlighting the effect of the substituent, solvent, counter anion and temperature. The optimal NH2-B15C5 ligands were then covalently anchored to a short-channel SBA-15 OMS precursor bearing alkyl halides via a post-modification protocol. Adsorptive separation of the lithium isotopes was fully investigated, combined with kinetics and thermodynamics analysis, and simulation by using classic adsorption isotherm models. The NH2-B15C5 ligand functionalized OMSs exhibited selectivity to lithium ions against other alkali metal ions including K(i). Additionally, a more efficient separation of lithium isotopes could be obtained at a lower temperature in systems with softer counter anions and solvents with a lower dielectric constant. The highest value separation factor (α = 1.049 ± 0.002) was obtained in CF3COOLi aqueous solution at 288.15 K. Moreover, theoretical computation based on the density functional theory (DFT) was performed to elucidate the complexation interactions between the macrocyclic ligands and lithium ions. A suggested mechanism involving an isotopic exchange equilibrium was proposed to describe the lithium isotope separation by the functionalized OMSs.

  9. Comparison of traditional and oxygen-isotope methods of storm hydrograph separation in two watersheds

    SciTech Connect

    Robinson, W.H.; Krothe, N.C.

    1985-01-01

    Two watershed in Indiana were chosen for the application and comparison of hydrometric and oxygen-isotope storm hydrograph analyses. One watershed is on urban/karst terrain in south-central Indiana and the other is on thick glacial drift in west-central Indiana. Traditional hydrometric methods of hydrograph analysis rely on qualitative assumptions regarding the nature of the interaction between surface and ground-water. Oxygen isotopes can serve as environmental traces that allow accurate quantification of storm-water (water derived from the rain event) and prestorm-water (water that was in storage in the ground-water zone prior to the rain event) contributions to stream flow. Results from storm events in the two study areas show differences between the contributions by stream flow components as determined by traditional and oxygen-isotope methods. For the glaciated basin, the oxygen-isotope separation technique shows a 70% prestorm-water component of the peak stream discharge. The Barnes separation technique indicates only a 10% base flow contribution to the peak. In the urban/karst watershed, oxygen isotopes indicate that peak flow consists almost entirely of storm-water, while traditional methods include the possibility of a significant base flow contribution.

  10. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  11. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  12. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  13. CO-laser-induced photochemical reaction of UF6 with HCl for the isotope separation of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Ding, Hong-Bin; Shen, Z. Y.; Zhang, Cun H.

    1993-05-01

    In this paper, we report the results of CO-laser induced photochemical reaction of UF6 with HCl for the isotope separation of uranium hexafluoride, we also discussed that the molecular collision inducing V-T, V-V relaxation process affects on the selectivity of the isotope separation. The obtained quantum coefficiency of the reaction is about 0.34.

  14. Validation of a simple isotopic technique for the measurement of global and separated renal function

    SciTech Connect

    Chachati, A.; Meyers, A.; Rigo, P.; Godon, J.P.

    1986-01-01

    Schlegel and Gates described an isotopic method for the measurement of global and separated glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) based on the determination by scintillation camera of the fraction of the injected dose (99mTc-DTPA-(/sup 131/I)hippuran) present in the kidneys 1-3 min after its administration. This method requires counting of the injected dose and attenuation correction, but no blood or urine sampling. We validated this technique by the simultaneous infusion of inulin and para-amino hippuric acid (PAH) in patients with various levels of renal function (anuric to normal). To better define individual renal function we studied 9 kidneys in patients either nephrectomized or with a nephrostomy enabling separated function measurement. A good correlation between inulin, PAH clearance, and isotopic GFR-ERPF measurement for both global and separate renal function was observed.

  15. Tritium isotope separation from light and heavy water by bipolar electrolysis

    SciTech Connect

    Petek, M.; Ramey, D.W.; Taylor, R.D.; Kobisk, E.H.

    1980-01-01

    A process for separating tritium from light and heavy water is described. Hydrogen is transferred at and through bipolar electrodes at rates H > D > T. In a cell containing several bipolar electrodes placed in series between two terminal electrodes, a flow of hydrogen is established from the terminal anode compartment toward the terminal cathode. An electrolyte feed containing tritium is continuously added to the system and is subsequently transported countercurrent to the hydrogen mass transfer. A cascaded system is established, in which effluent streams enriched and depleted in tritium can be withdrawn. The voltage drop is smaller at any bipolar electrode as compared to the voltage for normal electrolysis. Cell design is compact because isotope separation occurs at bipolar electrodes without evolution of gas. Isotope separation was demonstrated in laboratory cells where a steady-state tritium concentration gradient was attained. This gradient was in agreement with concentrations calculated from a derived mathematical model.

  16. Development of special rotor for centrifugal separation of isotopes in solid pure metals.

    PubMed

    Ono, Masao; Sueyoshi, Masanori; Okayasu, Satoru; Hao, Ting; Esaka, Fumitaka; Osawa, Takahito; Iguchi, Yusuke; Mashimo, Tsutomu

    2009-08-01

    A prototype rotor with two grooves for the multistage centrifugal isotope separation in solid state was developed to test a new idea. This idea is based on the sedimentation of constitutional atoms in solid. In the performance test using indium specimen, it is verified that the developed rotor can receive all injected molten-indium droplets from an automatic raw-material feeding system even at the high rotational speed of 97,000 rpm without the loss of rotational stability, and the received indium specimens can be transferred in/between two grooves through the plastic flow under the influence of strong centrifugal force even in the solid state. The isotope ratio of centrifuged indium specimens was analyzed employing the secondary ion mass spectrometry, and it is confirmed that intended isotope separation by the centrifugation is realized in the solid state. The developed rotor can be used to perform the isotope separation on at least solid metals under the conditions of up to 400 degrees C in specimen temperature and 0.4x10(6)g in centrifugal force field.

  17. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Savage, Paul S.; Moynier, Frédéric

    2014-10-01

    due to intensive impact-induced shearing stress, or the ultimate destruction of the Shallowater parent body. Analysis of separated enstatite meteorite mineral phases show that the magnetic phase (Fe metal) is systematically enriched in the heavier Fe isotopes when compared to non-magnetic phases (Fe hosted in troilite), which agrees with previous experimental observations and theoretical calculations. The difference between magnetic and non-magnetic phases from enstatite achondrites provides an equilibrium metal-sulfide Fe isotopic fractionation factor of Δ56Femetal-troilite = δ56Femetal - δ56Fetroilite of 0.129 ± 0.060‰ (2 SE) at 1060 ± 80 K, which confirms the predictions of previous theoretical calculations.

  18. First experiments and future prospects at the Daresbury On-Line Isotope Separator

    NASA Astrophysics Data System (ADS)

    Walker, P. M.

    1985-03-01

    The Daresbury On-Line Isotope Separator (DOLIS) has recently been commissioned, in conjunction with the Nuclear Structure Facility (NSF) 20 MV tandem accelerator, and a3He-4He dilution refrigerator. First experiments are concentrating on a study of the decay of the neutron deficient iodine isotopes, extracted from a FEBIAD ion source and implanted at 60 keV into an iron host at 15 mK. As well as measuring iodine magnetic moments, the role of proton excitations across the Z=50 shell gap is being investigated in the even-even tellurium daughter nuclei. An on-line laser facility is also being developed, and first measurements have been made for unstable samarium isotopes

  19. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  20. IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Block, M.; Düllmann, Ch. E.; Heinz, S.; Herzberg, R.-D.; Schädel, M.

    2011-10-01

    A dedicated Inelastic Reaction Isotope Separator (IRiS) for multi-nucleon transfer products will be designed and installed at GSI. Research at IRiS will focus on the investigation of new neutron-rich isotopes of the heaviest elements, study of which will advance various research fields, such as nuclear chemistry, nuclear and atomic physics, as well as nuclear astrophysics. The scientific motivation for this project and the alternative design options for the separator and its main components are discussed.

  1. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect

    Forsberg, C.

    2013-07-01

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  2. In-gas-cell laser ion source for KEK isotope separation system

    NASA Astrophysics Data System (ADS)

    Mukai, M.; Hirayama, Y.; Jeong, S. C.; Imai, N.; Ishiyama, H.; Miyatake, H.; Oyaizu, M.; Watanabe, Y. X.; Kim, Y. H.

    2014-02-01

    The KEK isotope separation system (KISS) is an element-selective isotope separator under development at RIKEN. The in-gas-cell laser ion source is a critical component of the KISS, a gas cell filled with argon gas of 50 kPa enclosed in a vacuum chamber. In the gas cell, nuclear reaction products are stopped (i.e., thermalized and neutralized) and transported by a laminar flow of argon to the ionization region just upstream of the gas outlet, and thereby an element of interest among those reaction products is selectively ionized by two-color resonant laser irradiation. Recently, we succeeded to extract laser-ionized Fe ions by injecting an energetic Fe beam into the gas cell. Recent off- and on-line test results were presented and discussed.

  3. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  4. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  5. Separation of calcium-48 isotope by crown ether chromatography using ethanol/hydrochloric acid mixed solvent.

    PubMed

    Okumura, Shin; Umehara, Saori; Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Toshitaka; Ozawa, Masaki; Kishimoto, Tadafumi

    2015-10-09

    Benzo-18-crown-6 ether resin embedded in porous silica beads was synthesized and used as the packing material for chromatographic separation of (48)Ca isotope. The aim of the present work is to develop efficient isotope enrichment process for double β decay nuclide (48)Ca. To this end, ethanol/HCl mixed solvent was selected as the medium for the chromatographic separation. Adsorption of calcium on the resin was studied at different HCl concentrations and different ethanol mixing ratios in batch-wise experiments. A very interesting phenomenon was observed; Ca adsorption is controlled not by the overall HCl concentration of the mixed solvent, but by the initial concentration of added HCl solution. Calcium break-through chromatography experiments were conducted by using 75v/v% ethanol/25v/v% 8M HCl mixed solvent at different flow rates. The isotope separation coefficient between (48)Ca and (40)Ca was determined as 3.8×10(-3), which is larger than that of pure HCl solution system. Discussion is extended to the chromatographic HETP, height equivalent to a theoretical plate. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen.

    PubMed

    Tripp, Jennifer A; McCullagh, James S O; Hedges, Robert E M

    2006-01-01

    Analysis of stable and radioactive isotopes from bone collagen provides useful information to archaeologists about the origin and age of bone artifacts. Isolation and analysis of single amino acids from the proteins can provide additional and more accurate information by removing contamination and separating a bulk isotope signal into its constituent parts. In this paper, we report a new method for the separation and isolation of underivatized amino acids from bone collagen, and their analysis by isotope ratio MS and accelerator MS. RP chromatography is used to separate the amino acids with nonpolar side chains, followed by an ion pair separation to isolate the remaining amino acids. The method produces single amino acids with little or no contamination from the separation process and allows for the measurement of accurate stable isotope ratios and pure samples for radiocarbon dating.

  7. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  8. Separation as a suicide risk factor.

    PubMed

    Wyder, Marianne; Ward, Patrick; De Leo, Diego

    2009-08-01

    Marital separation (as distinct from divorce) is rarely researched in the suicidological literature. Studies usually report on the statuses of 'separated' and 'divorced' as a combined category, possibly because demographic registries are not able to identify separation reliably. However, in most countries divorce only happens once the process of separation has settled which, in most cases, occurs a long time after the initial break-up. It has been hypothesised that separation might carry a far greater risk of suicide than divorce. The present study investigates the impact of separation on suicide risk by taking into account the effects of age and gender. The incidence of suicide associated with marital status, age and gender was determined by comparing the Queensland Suicide Register (a large dataset of all suicides in Queensland from 1994 to 2004) with the QLD population through two different census datasets: the Registered Marital Status and the Social Marital Status. These two registries permit the isolation of the variable 'separated' with great reliability. During the examined period, 6062 persons died by suicide in QLD (an average of 551 cases per year), with males outnumbering females by four to one. For both males and females separation created a risk of suicide at least 4 times higher than any other marital status. The risk was particularly high for males aged 15 to 24 (RR 91.62). This study highlights a great variation in the incidence of suicide by marital status, age and gender, which suggests that these variables should not be studied in isolation. Furthermore, particularly in younger males, separation appears to be strongly associated with the risk of suicide.

  9. Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.

  10. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  11. Isotope analysis of hydrocarbons: trapping, recovering and archiving hydrocarbons and halocarbons separated from ambient air.

    PubMed

    Pupek, M; Assonov, S S; Mühle, J; Rhee, T S; Oram, D; Koeppel, C; Slemr, F; Brenninkmeijer, C A M

    2005-01-01

    It is argued that isotope analysis of atmospheric non-methane hydrocarbons (NMHCs) and, in particular, the analysis of the deuterium/hydrogen (D/H) ratio is valuable because the dominant self-cleansing property of the troposphere is based on the OH radical which removes, e.g., CH4 and other alkanes by H-atom abstraction, which induces large kinetic isotope effects. The major obstacle in applying D/H isotope analysis to atmospheric NMHCs is not only the low abundance of D itself but, in particular, the low concentrations of NMHCs in the parts per trillion range. We show how a selection of NMHCs can be quantitatively separated from 300 L air samples together with CO2 as carrier gas matrix, by using high efficiency cryogenic traps. After diluting the extracted NMHC mixtures with hydrocarbon free air, and determining the mixing ratios, good agreement with original whole air sample analysis exists for alkanes and several halocarbons. For unsaturated hydrocarbons and some other halocarbons the extraction and recovery yield under the given conditions fell considerably, as a function of boiling point. Furthermore, the mixture of NMHCs in the CO2 matrix is proven to remain unchanged over several years when conveniently stored in glass ampoules. The 'extracts' or 'concentrates' of condensables extracted from larger air samples will enable the D/H isotope analysis of ultra trace gases in the atmosphere. Copyright 2005 John Wiley & Sons, Ltd.

  12. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  13. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  14. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans.

    PubMed

    deVries, Maya S; Del Rio, Carlos Martínez; Tunstall, Tate S; Dawson, Todd E

    2015-01-01

    Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0-1 ‰ and 3-4 ‰, respectively). Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days) was over 8 times longer than that of carbon (3.4 ± 1.4 days). In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively). We compared the mantis shrimps' incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals.

  15. Isotopic Incorporation Rates and Discrimination Factors in Mantis Shrimp Crustaceans

    PubMed Central

    deVries, Maya S.; del Rio, Carlos Martínez; Tunstall, Tate S.; Dawson, Todd E.

    2015-01-01

    Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0–1 ‰ and 3–4 ‰, respectively). Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days) was over 8 times longer than that of carbon (3.4 ± 1.4 days). In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively). We compared the mantis shrimps’ incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals. PMID:25835953

  16. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  17. Hydrogen isotope separation by catalyzed exchange between hydrogen and liquid water

    SciTech Connect

    Butler, J.P.

    1980-04-01

    The discovery, at Chalk River Nuclear Laboratories, of a simple method of wetproofing platinum catalysts so that they retain their activity in liquid water stimulated a concentrated research program for the development of catalysts for the hydrogen-water isotopic exchange reaction. This paper reviews 10 years of study which have resulted in the development of highly active platinum catalysts which remain effective in water for periods greater than a year. The most efficient way to use these catalysts for the separation of hydrogen isotopes is in a trickle bed reactor which effects a continuous separation. The catalyst is packed in a column with hydrogen and water flowing countercurrently through the bed. The overall isotope transfer rate measured for the exchange reaction is influenced by various parameters, such as hydrogen and water flow rates, temperature, hydrogen pressure, and platinum metal loading. The effect of these parameters as well as the improved performance obtained by diluting the hydrophobic catalyst with inert hydrophilic packing are discussed. The hydrophobic catalysts can be effectively used in a variety of applications of particular interest in the nuclear industry. A Combined Electrolysis Catalytic Exchange - Heavy Water Process (CECE-HWP) is being developed at Chalk River with the ultimate aim of producing parasitic heavy water from electrolytic hydrogen streams. Other more immediate applications include the final enrichment of heavy water and the extraction of tritium from light and heavy water. Pilot plant studies on these latter processes are currently in progress.

  18. Extraction, separation, and intramolecular carbon isotope characterization of athabasca oil sands acids in environmental samples.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Simard, Marie-Christine; Smirnoff, Anna

    2012-12-04

    Here we report a novel approach to extract, isolate, and characterize high molecular weight organic acids found in the Athabasca oil sands region using preparative capillary gas chromatography (PCGC) followed by thermal conversion/elemental analysis-isotope ratio mass spectrometry (TC/EA-IRMS). A number of different "naphthenic acids" surrogate standards were analyzed as were samples from the bitumen-rich unprocessed McMurray Formation, oil sands process water, groundwater from monitoring wells, and surface water from the Athabasca River. The intramolecular carbon isotope signature generated by online pyrolysis (δ(13)C(pyr)) showed little variation (±0.6‰) within any given sample across a large range of mass fractions separated by PCGC. Oil sand, tailings ponds, and deep McMurray Formation groundwater were significantly heavier (up to ∼9‰) compared to surface water and shallow groundwater samples, demonstrating the potential use of this technique in source apportionment studies.

  19. Separation of rare earth isotopes using resonance ionization time-of-flight mass spectrometry

    SciTech Connect

    Armstrong, D.P.; McCulla, W.H.; Schweitzer, G.K.

    1985-01-01

    Stable isotopes comprise a very large portion of the periodic table. They find a wide variety of applications, which include serving as precursors for radioisotopes and radiopharmaceuticals and as accelerated particle targets. Isotopes of the lanthanides, with very high boiling points and low natural abundances, are often difficult to separate by conventional electromagnetic techniques. Photoionization is a potential alternative method. We have devised a system in which an atomic beam of the rare earth metal is admitted to the ionization region of a time-of-flight mass spectrometer. Photoionization is achieved using a pulsed, two-photon laser scheme. Preliminary results from the photoionization of samarium are discussed. 5 refs., 3 figs., 1 tab.

  20. Photon Scattering from the Stable Even-Mass Mo Isotopes Below the Neutron-Separation Energy

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Hutcheson, A.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C.; Hammond, S.; Karwowski, H. J.; Kelley, J. H.; Schwengner, R.; Dönau, F.; Wagner, A.

    2008-10-01

    We present results from photon-scattering experiments on the stable even-mass molybdenum isotopes below the neutron-separation energy carried out with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf in Germany, and with monoenergetic photon beams at the HIγS facility at TUNL. We applied statistical methods in order to correct for the branching and cascade transitions and to determine the photoabsorption cross section. The obtained results allowed us to extend the tail of the Giant Dipole Resonance below the (,) threshold down to 4 MeV. The photoabsorption cross sections deduced from the present experiments show that the dipole strength increases with the neutron number of the Mo isotopes. The experimental results are discussed in the frame of Quasiparticle-Random-Phase-Approximation in a deformed basis which describe the increasing strength as a result of the deformation.

  1. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Lee, J.; Tsang, M. B.; Lynch, W. G.; Barney, J.; Estee, J.; Sweany, S.; Brown, K. W.; Cerizza, G.; Anderson, C.; Setiawan, H.; Loelius, C.; Xu, Z.; Rogers, A. M.; Pruitt, C.; Sobotka, L. G.; Elson, J. M.; Langer, C.; Chajecki, Z.; Chen, G.; Jones, K. L.; Smith, K.; Xiao, Z.; Li, Z.; Winkelbauer, J. R.

    2017-01-01

    A spectroscopic factor (SF) quantifies the single particle occupancy of a given state in a nucleus. For the argon isotopes, there is a discrepancy of the SF between studies that use transfer reactions and knockout reactions. Understanding the SFs of these isotopes, and in particular how the SF changes across the isotopic chain, is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory (NSCL) using the same beam energy (70 MeV/u) as from the previous knockout measurement. Spectroscopic factors were extracted from measured angular distributions via ADWA calculations. Preliminary findings will be presented. The National Superconducting Cyclotron Laboratory is supported by the NSF (PHY 1102511), and Juan Manfredi is supported by the DOE NNSA Stewardship Science Graduate Fellowship.

  2. Mathematical Modeling of Non-Stationary Hydraulic Process Occurring in the Gas Centrifuge Cascade During the Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2016-08-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  3. Nitrogen Isotopes in Olivine Separates from Volcanic Arcs, Hot Spots and Continental Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Takahata, N.; Sano, Y.; Hilton, D. R.

    2004-12-01

    We report the first nitrogen isotopic data of olivine separates from volcanic arcs (Cerro Negro, Nicaragua; Izalco, El Salvador; Turrialba, Costa Rica; Ichinomegata, Japan). In addition, we report nitrogen isotopic data of olivine separates from ocean islands (Hawaii, Reunion, Iceland) and continental mantle xenoliths (San Carlos, Arizona). Samples were processed by crushing and analyzed using a modified noble gas mass spectrometer (VG3400). N concentrations range from 0.6 to 22 micro ccSTP/g olivine. The 15N/14N ratios (expressed in the δ 15N notation where δ 15N sample = {[(15N/14N)sample/(15N/14N)Air]-1} X 1000) of olivine separates are distinctly different from air (0.0‰ ) and range from lower than mean MORB (- 5 ‰ ) to values characteristic of (subducted) oceanic sediments (+ 7 ‰ ). Positive δ 15N values are found in olivines from volcanic arcs: Cerro Negro 1992 ash (+ 6.2 ± 1.6‰ ), Izalco lava flow (+ 5.1 ± 0.7‰ ), Ichinomengata spinel lherzolite (+ 1.1 ± 0.5 ‰ ) with the exception of Turrialba lava (- 1.7 ± 2.5‰ ). Olivines from hot spots have both positive and negative δ 15N signatures: Iceland, Theistareykir - northern rift zone (- 8± 1.6 ‰ ), Hawaii, dunite from 1801 Kaupulehu flow of Hualuai volcano (+ 3.1 ± 0.3 ‰ ) and Reunion dunite (+ 0.2 ± 0.5‰ ). The San Carlos mantle xenolith has a value of - 1.5 ± 2.5‰ . 40Ar/36Ar ratios of the samples as determined in this study or reported in the literature are significantly higher than air (295.5) in olivines from Ichinomegata, San Carlos, Iceland, Reunion and Hawaii. The olivines from Cerro Negro have a 40Ar/36Ar ratio of 306, close to that of air. The 3He/4He ratios of the samples are higher than the MORB value of 8.0 RA (RA is the 3He/4He of air), the exception being Cerro Negro (6.1 RA). Hawaii, Reunion and Iceland have 3He/4He of 10.3, 12.9 and 12.3 RA, respectively. δ 15N signatures of fumarole gas samples collected at Cerro Negro (+ 4.9 ±0.1 ‰ ), Turrialba (- 1.0 ±0

  4. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis.

    PubMed

    Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael

    2014-01-28

    Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.

  5. Enhanced Method for Molybdenum Separation and Isotopic Determination in Geological Samples and Uranium-Rich Materials

    NASA Astrophysics Data System (ADS)

    Migeon, V.; Bourdon, B.; Pili, E.

    2014-12-01

    Molybdenum (Mo) shares analogous geochemical properties with uranium. Mo ispresent as a minor or a trace element in uranium ores under two main oxidation states: +IVand +VI. Mo has seven stable isotopes (92, 94, 95, 96, 97, 98 and 100). In natural systems,Mo and Mo isotopes were shown to fractionate during redox reactions. Because Morepresents an impurity difficult to separate in the nuclear fuel cycle, it has the potential to beused as an indicator of the origins of uranium concentrates, in the framework of nuclearforensics. This work focuses on developing an enhanced separation method for Mo from auranium-rich matrix (uranium ore, uranium concentrate) in order to analyze the massfractionation induced by processes typical of the nuclear fuel cycle. Purification of Mo forisotope ratio measurements is performed with a three-step separation on ion-exchange resins,with yields between 45 and 82%. Matrix and isobaric interferences (Zr, Ru) were reduced ingeological and uranium standards, such as U/Mo ≤ 2*10-4, Zr/Mo ≤ 1*10-3, Ru/Mo ≤ 6*10-4and Fe/Mo ≤ 4*10-3. Mo isotopic compositions were measured on a Neptune Plus MC-ICPMSequipped with Jet cones, for a concentration of 30 ng/ml. The achieved sensitivity is~1200-1800 V/ppm with interferences below 10 mV and an overall reproducibility of 0.02 ‰on the δ98Mo values. A double spike, with 97Mo and 100Mo, was added to the samples beforethe purification. It allows for correction of the chemical and instrumental mass fractionations,without requiring a quantitative yield. For igneous rocks, δ98Mo values range between -0.55and -0.03 ‰, relative to the NIST-SRM 3134 molybdenum standard. Fractionation amonguranium ore concentrates is higher, with δ98Mo ranging between 0.02 and -2.84 ‰.

  6. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGES

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  7. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    SciTech Connect

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  8. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  9. Theoretical prediction for several important equilibrium Ge isotope fractionation factors

    NASA Astrophysics Data System (ADS)

    Tang, M.; Li, X.; Liu, Y.

    2008-12-01

    As a newly emerging field, the stable isotope geochemistry of germanium (Ge) needs basic equilibrium fractionation factors to explore its unknown world. In this study, the Ge isotope fractionations between systems including the aqueous Ge(OH)4 and GeO(OH)3- which are the dominant Ge species in seawater, the Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), the quartz- (or opal- ), albite-, K-feldspar- and olivine- like mineral structures are studied. It is the first time that some geologically important equilibrium Ge isotope fractionation factors are reported. Surprisingly, up to 5 per mil large isotopic fractionations between these Ge isotope systems are found at 25 degree. These results suggest a potentially broad application for the Ge isotope geochemistry. Our theoretical calculations are based on the Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. The B3LYP/6-311+G(d,p) level quantum chemistry method and the explicit solvent model ("water droplet" method) are used. Many different conformers are also used for the aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The accuracy of our calculation of the Ge isotopic fractionations is estimated about 0.2 per mil. Our results show quartz-like or opal-like structure can enrich most heavy Ge isotopes. Relative to quartz (or opal), some Ge isotopic fractionations are (at 25 C): quartz-organic Ge = 4-5,quartz-Ge(OH)4 =0.9,quartz-GeO(OH)3- =1.5,quartz-albite=0.6,quartz-K-feldspar=0.4 and quartz-olivine=3.9 per mil. The large fractionations between inorganic Ge complexes and organic Ge ones could be used to distinguish the possible bio-involving processes. Our results suggest a good explanation to the experimental observations of Siebert et al. (2006) and Rouxel et al. (2006) and provide important constraints to the study of Ge cycle in ocean.

  10. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Tsang, Betty; Lynch, Bill; Barney, Jon; Estee, Justin; Sweany, Sean; Cerizza, Giordano; Iwasaki, Hironori; Loelius, Charles; Ayyad, Yassid; Anderson, Corinne; Xiao, Zhigang; Li, Zihuang; Lee, Jenny; Xu, Zhengyu; Rogers, Andrew; Brown, Kyle; Pruitt, Cole; Sobotka, Lee; Charity, Robert; Langer, Christoph; Chajecki, Zbigniew; Jones, Kate; Smith, Karl; Winkelbauer, Jack

    2016-09-01

    There is a discrepancy of spectroscopic factors (SFs) of argon isotopes depending on the use of transfer reactions or knockout reactions. Understanding how the SFs of these isotopes change across the isotopic chain is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory using the High Resolution Array (HiRA) to detect the outgoing deuterons and the S800 Spectrometer to detect the heavy recoil. SFs can be extracted from these angular distributions via DWBA calculations. Preliminary findings on the data will be presented. National Nuclear Security Administration Stewardship Science Graduate Fellowship.

  11. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  12. Laser enhanced microwave plasma isotope separation. Final report, September 30, 1992--September 29, 1995

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1996-06-01

    The experimental research was to focus on laser excitation of a low abundance isotope and then ionize and separate the isotope of low abundance using a microwave/ECR discharge at 2.45 GHz. A small compact electron cyclotron resonance ion source, which uses permanent magnets, was constructed during this project. The dye laser was purchased and later an excimer laser had to also be purchased because it turned out that the dye laser could not be pumped by our copper laser. It was intended that the dye laser be tuned to a wavelength of 670.8 nm, which would excite {sup 6}Li which would then be preferentially ionized by the ECR source and collected with a charged grid. The degree of enrichment was to be determined using thermal ionization mass spectrometry. The final objective of this project was to assess the feasibility of this system to large-scale production of stable isotopes. However the funding of this project was interrupted and we were not able to achieve all of our goals.

  13. Rapid U separation and its precise isotopic measurements using ICP-QMS

    NASA Astrophysics Data System (ADS)

    Douville, E.; Salle, E.; Gourgiotis, A.; Ayrault, S.; Frank, N.

    2007-12-01

    Here we present a largely simplified analytical separation technique for U from marin carbonates and sediments and U isotopic measurements obtained by inductively coupled plasma-source quadrupole mass spectrometer (ICP-QMS) Xseries II - Thermo Scientific. The separation of U is done from dissolved carbonates and sediments using a single ion exchange column packed with ~500 μg of UTEVA resin from EICHROM industries. The column is pre-cleaned and loaded by several rinses of MilliQ water and 3N HNO3. Then earth alkali, transition metals and lanthanides are eluted quantitatively using 3N HNO3. Pure Th and U solutions are then successively extracted from the column using 3N HCl and 1N HCl at ~100% yield. U solutions at ~25-50 ppb were injected into the ICP-QMS at conventional sample flow rates of approximately 1ml/minute, without particular injection systems such as a desolvator or μ - nebuliser. 30 scans with 180 sweeps and a dwell time of 50 ms per isotope were used to collect 233U, 234U, 235U and 236U on an electron multiplier. Baseline sensitivity was followed on mass 228 with <1cps at ~ 1000cps on mass 234. Then, mass discrimination was corrected using the 233U/236U spike of known isotopic ratio and HU1 reference solutions were used to test the reproducibility and to correct drifts using standard - sample bracketing. Overall ICPMS analyses yield a stunning reproducibility of <0.4 % at 2 σ, which is close to the one obtained by conventional TIMS instruments ~0.2-0.4 %. We have applied this technique to organic rich sediments and marine carbonate samples previously measured by TIMS and found a perfect agreement for both U concentration and its isotopic composition. This rapid and effective chemical purification and isotopic measurement of U allows to process more than 20 samples a day allowing to investigate large numbers of natural samples for weathering, tracer and geochronological studies.

  14. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  15. Fast isotopic separation of (10) B and (11) B boric acid by capillary zone electrophoresis.

    PubMed

    Kamencev, Mikhail; Yakimova, Nina; Moskvin, Leonid; Kuchumova, Irina; Tkach, Kirill; Malinina, Yulia

    2016-11-01

    Fast isotopic separation of (10) B and (11) B boric acid by CZE was demonstrated. The BGE contained 25 mM phenylalanine and 5 mM putrescine (рН 8.95). The running conditions were +25 kV at 20°C with indirect photometric detection at 210 nm. Baseline separation was achieved in less than 9 min. RSD of migration times and corrected peak areas were less than 0.5 and 3%, respectively (n = 5). Linearity was demonstrated in the range 0.2-2 mM for (11) B and 0.2-0.5 mM for (10) B. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  17. Recent great impact by an Isotope Separator On-Line (ISOL) in nuclear and radiochemistry.

    PubMed

    Sakama, Minoru

    2016-01-01

    On April 9 2015, the Letter article titled "Measurement of the first ionization potential of lawrencium, element 103" is now published at News and Views on Nature (2015) which has been performed by our remarkably Japanese colleagues of nuclear and radiochemistry at JAEA (Japan Atomic Energy Agency). In this review, the author will state that the isotope separator on-line (ISOL) our regularly used, one of mass separation techniques, with a thermal surface ionization makes possible for determining the ionization potential of lawrencium based on the fruitful fundations of developing the ISOL system until now and also ever studying searches for unknown nuclei and these nuclear decay properties around actinide region in the past 20 years.

  18. Stable hydrogen isotopic analysis of nanomolar molecular hydrogen by automatic multi-step gas chromatographic separation.

    PubMed

    Komatsu, Daisuke D; Tsunogai, Urumu; Kamimura, Kanae; Konno, Uta; Ishimura, Toyoho; Nakagawa, Fumiko

    2011-11-15

    We have developed a new automated analytical system that employs a continuous flow isotope ratio mass spectrometer to determine the stable hydrogen isotopic composition (δD) of nanomolar quantities of molecular hydrogen (H(2)) in an air sample. This method improves previous methods to attain simpler and lower-cost analyses, especially by avoiding the use of expensive or special devices, such as a Toepler pump, a cryogenic refrigerator, and a special evacuation system to keep the temperature of a coolant under reduced pressure. Instead, the system allows H(2) purification from the air matrix via automatic multi-step gas chromatographic separation using the coolants of both liquid nitrogen (77 K) and liquid nitrogen + ethanol (158 K) under 1 atm pressure. The analytical precision of the δD determination using the developed method was better than 4‰ for >5 nmol injections (250 mL STP for 500 ppbv air sample) and better than 15‰ for 1 nmol injections, regardless of the δD value, within 1 h for one sample analysis. Using the developed system, the δD values of H(2) can be quantified for atmospheric samples as well as samples of representative sources and sinks including those containing small quantities of H(2) , such as H(2) in soil pores or aqueous environments, for which there is currently little δD data available. As an example of such trace H(2) analyses, we report here the isotope fractionations during H(2) uptake by soils in a static chamber. The δD values of H(2) in these H(2)-depleted environments can be useful in constraining the budgets of atmospheric H(2) by applying an isotope mass balance model.

  19. Innovative lasers for uranium isotope separation. Final report, September 1, 1989--April 1, 1993

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed.

  20. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  1. Isotopic separation of He-3/He-4 from solar wind gases evolved from the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wilkes, William R.; Wittenberg, Layton J.

    The potential benefits of He-3 when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world's inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of He-3, perhaps a million tons, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably He-4, H, C, and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. He-3 constitutes only 400 at. ppm of lunar He, too dilute to separate economically by distillation alone. A 'superfluid' separator is being considered to preconcentrate the He-3. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the He-4, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10 percent in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9 percent enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  2. When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Kujawinski, Dorothea M; Zhang, Lijun; Schmidt, Torsten C; Jochmann, Maik A

    2012-09-18

    Compound-specific isotope analysis (CISA) of nonvolatile analytes has been enabled by the introduction of the first commercial interface to hyphenate liquid chromatography with an isotope ratio mass spectrometer (LC-IRMS) in 2004, yet carbon isotope analysis of unpolar and moderately polar compounds is still a challenging task since only water as the eluent and no organic modifiers can be used to drive the separation in LC. The only way to increase the elution strength of aqueous eluents in reversed phase LC is the application of high temperatures to the mobile and stationary phases (HT-LC-IRMS). In this context we present the first method to determine carbon isotope ratios of pharmaceuticals that cannot be separated by already existing separation techniques for LC-IRMS, such as reversed phase chromatography at normal temperatures, ion-chromatography, and mixed mode chomatography. The pharmaceutical group of sulfonamides, which is generally mixed with trimethoprim in pharmaceutical products, has been chosen as probe compounds. Substance amounts as low as 0.3 μg are sufficient to perform a precise analysis. The successful applicability and reproducibility of this method is shown by the analysis of real pharmaceutical samples. The method provides the first tool to study the pharmaceutical authenticity as well as degradation and mobility of such substances in the environment by using the stable isotopic signature of these compounds.

  3. Factor Structure of the Hansburg Separation Anxiety Test

    ERIC Educational Resources Information Center

    Kroger, Jane

    1986-01-01

    Examines to what extent Hansburg's Separation Anxiety Test matrix of correlations between theoretical factors can be replicated in an independent sample and how closely empirically derived factors from a factor analysis of test scales resemble the composition of Hansburg's theoretically based factors. Results provide minimal empirical support for…

  4. Risk factors and behaviors associated with separation anxiety in dogs.

    PubMed

    Flannigan, G; Dodman, N H

    2001-08-15

    To determine potential risk factors and behaviors associated with separation anxiety and develop a practical index to help in the diagnosis of separation anxiety in dogs. Case-control study. 200 dogs with separation anxiety and 200 control dogs with other behavior problems. Medical records were reviewed for signalment, history of behavior problems, home environment, management, potentially associated behaviors, and concurrent problems. Dogs from a home with a single adult human were approximately 2.5 times as likely to have separation anxiety as dogs from multiple owner homes, and sexually intact dogs were a third as likely to have separation anxiety as neutered dogs. Several factors associated with hyperattachment to the owner were significantly associated with separation anxiety. Spoiling activities, sex of the dog, and the presence of other pets in the home were not associated with separation anxiety. Results do not support the theory that early separation from the dam leads to future development of separation anxiety. Hyperattachment to the owner was significantly associated with separation anxiety; extreme following of the owner, departure cue anxiety, and excessive greeting may help clinicians distinguish between canine separation anxiety and other separation-related problems.

  5. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    SciTech Connect

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q{sub 2}) must be separated from an inert gas such as He, Ar and N{sub 2}. Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q{sub 2} from N{sub 2}. Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q{sub 2} pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies.

  6. Breakthrough curve analysis of pressure swing adsorption for hydrogen isotope separation

    SciTech Connect

    Kotoh, K.; Tanaka, M.; Sakamoto, T.; Nakamura, Y.; Asakura, Y.; Uda, T.; Sugiyama, T.

    2008-07-15

    For the purpose of developing an effective system for hydrogen isotope separation, we have been studying the adsorption-desorption dynamic behavior of hydrogen and deuterium in a packed-bed column with synthetic zeolites, aimed at applying the pressure swing adsorption process. The adsorption behavior of molecules in the packed-bed is reflected in the breakthrough curves. To understand the characteristic behaviors of hydrogen isotopes in the packed-bed, we carried out breakthrough experiments in a conventional adsorption process and in a practical process following sequential processes alternating between adsorption and desorption. From the former experiments, the results were obtained that the overall mass transfer was influenced by longitudinal dispersion relating to the superficial velocity and that the process governing the mass transfer within adsorbents was diffusion in the macro-pores of pellets. In the latter experiments, unique profile breakthrough curves were observed. These curves can be described with the numerical simulation assuming the initial distributions in a packed-bed. (authors)

  7. Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.

    2008-12-01

    In a semi-arid to arid country like Israel, all freshwater resources are under (over-) utilization. Particularly, the Golan Heights rank as one of the most important extraction areas of groundwater of good quality and quantity. Additionally the mountain range feed to a high degree the most important freshwater reservoir of Israel, the Sea of Galilee. Hence, knowing the sources and characters of the Golan Heights groundwater systems is an instantaneous demand regarding sustainable management and protection. Within the "German-Israeli-Jordanian-Palestinian Joint Research Program for the Sustainable Utilisation of Aquifer Systems", hundreds of water samples were taken from all over the Jordan-Dead Sea rift-system to understand groundwater flow-systems and salinisation. For that purpose, each sample was analysed for major and minor ions, rare earth elements including yttrium (REY) and stable isotopes of water (d18O, d2H). The REY distribution in groundwater is established during infiltration by the first water-rock interaction and consequently reflects the leachable components of sediments and rocks of the recharge area. In well- developed flow-systems, REY are adsorbed onto pore surfaces are in equilibrium with the percolating groundwater, even if the lithology changes (e.g. inter-aquifer flow). Thus, groundwater sampled from wells and springs still show the REY distribution pattern established in the recharge area. Since high temperatures do not occur in Golan Heights, d2H and d18O are less controlled by water-rock interaction than by climatic and geomorphological factors at the time of replenishment. Applying the REY signature as a grouping criterion of groundwaters, d18O vs. d2H plots yield a new dimension in interpreting isotope data. The combined use of hydrochemical and isotopic methods enabled us to contain the areas of replenishment and the flow-paths of all investigated groundwater in the Golan Heights. Despite location, salinity or temperature of spring or

  8. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  9. Identification of new astatine isotopes using the gas-filled magnetic separator, SASSY

    SciTech Connect

    Yashita, S.

    1984-02-01

    A He-filled on-line mass separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two- neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +- 0.02 MeV and 180 +- 80 msec for /sup 194/At, and 7.12 +- 0.02 MeV and 200 +- 100 msec for /sup 195/At. 66 references.

  10. Identification of new astatine isotopes using the gas-filled magnetic separator, Sassy

    SciTech Connect

    Yashita, S.

    1983-01-01

    A He-filled on-line separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two-neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +/- 0.02 MeV and 180 +/- 80 msec for /sup 194/At, and 7.12 +/- 0.02 MeV and 200 +/- 100 msec for /sup 195/At.

  11. New Half-lives of r-process Zn and Ga Isotopes Measured with Electromagnetic Separation

    SciTech Connect

    Madurga, M; Surman, Rebecca; Borzov, Ivan N; Grzywacz, R.; Rykaczewski, Krzysztof Piotr; Gross, Carl J; Miller, D; Stracener, Daniel W; Batchelder, Jon Charles; Brewer, N.T.; Cartegni, L.; Hamilton, J. H.; Hwang, J. K.; Liu, S. H.; Ilyushkin, S.; Karny, M.; Korgul, A.; Krolas, W.; Kuzniak, A.; Mazzocchi, C.; Mendez, II, Anthony J; Miernik, K.; Padgett, Stephen; Paulauskas, S.; Ramayya, A. V.; Winger, J. A.; Wolinska-Cichocka, Marzena; Zganjar, E. F.

    2012-01-01

    The {beta} decays of neutron-rich nuclei near the doubly magic {sup 78}Ni were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of {sup 82}Zn (228 {+-} 10 ms), {sup 83}Zn (117 {+-} 20 ms), and {sup 85}Ga (93 {+-} 7 ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the {sup 78}Ni region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A > 140 nuclei.

  12. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  13. Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry.

    PubMed

    Dong, Meirong; Mao, Xianglei; Gonzalez, Jhanis J; Lu, Jidong; Russo, Richard E

    2013-03-05

    Laser ablation molecular isotopic spectrometry (LAMIS) recently was reported for rapid isotopic analysis by measuring molecular emission from laser-induced plasmas at atmospheric pressure. This research utilized the LAMIS approach to study C2 molecular formation from laser ablation of carbon isotopic samples in a neon gas environment at 0.1 MPa. The isotopic shift for the Swan system of the C2 Δν = 1 band was chosen for carbon isotope analysis. Temporal and spatial resolved measurements of (12)C2, (12)C(13)C, and (13)C2 show that C2 forms from recombination reactions in the plasma. A theoretical simulation was used to determine the temperature from the molecular bands and to extract the isotopic ratio of (12)C/(13)C derived from (12)C2, (12)C(13)C, and (13)C2. Our data show that the ratio of (12)C/(13)C varies with time after the laser pulse and with distance above the sample. (12)C/(13)C deviates from the nominal ratio (2:1) at early times and closest to the sample surface. These measurements provide understanding of the chemical processes in the laser plasma and analytical improvement using LAMIS.

  14. Theoretical evaluation of isotopic fractionation factors in oxidation reactions of benzene, phenol and chlorophenols.

    PubMed

    Adamczyk, Paweł; Paneth, Piotr

    2011-09-01

    We have studied theoretically the rate determining steps of reactions of benzene with permanganate, perchlorate, ozone and dioxygen in the gas phase and aqueous solution as well as phenol and dichlorophenol in protonated and unprotonated forms in aqueous solution. Kinetic isotope effects were then calculated for all carbon atoms and based on their values isotopic fractionation factors corresponding to compound specific isotopic analysis have been evaluated. The influence of the oxidant, substituents, environment and protonation on the isotopic fractionation factors has been analyzed.

  15. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    SciTech Connect

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-06-08

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  16. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-06-01

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  17. Isotopic separation of snowmelt runoff during an artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav

    2013-04-01

    Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The

  18. Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin M. C.; van Meerveld, H. J. (Ilja); Seibert, Jan

    2017-04-01

    Isotope hydrograph separation (IHS) is a valuable tool to study runoff generation processes. To perform an IHS, samples of baseflow (pre-event water) and streamflow are taken at the catchment outlet. For rainfall (event water) either a bulk sample is collected or it is sampled sequentially during the event. For small headwater catchment studies, event water samples are usually taken at only one sampling location in or near the catchment because the spatial variability in the isotopic composition of rainfall is assumed to be small. However, few studies have tested this assumption. In this study, we investigated the spatiotemporal variability in the isotopic composition of rainfall and its effects on IHS results using detailed measurements from a small pre-alpine headwater catchment in Switzerland. Rainfall was sampled sequentially at eight locations across the 4.3 km2 Zwäckentobel catchment and stream water was collected in three subcatchments (0.15, 0.23, and 0.70 km2) during ten events. The spatial variability in rainfall amount, average and maximum rainfall intensity and the isotopic composition of rainfall was different for each event. There was no significant relation between the isotopic composition of rainfall and total rainfall amount, rainfall intensity or elevation. For eight of the ten studied events the temporal variability in the isotopic composition of rainfall was larger than the spatial variability in the rainfall isotopic composition. The isotope hydrograph separation results, using only one rain sampler, varied considerably depending on which rain sampler was used to represent the isotopic composition of event water. The calculated minimum pre-event water contributions differed up to 60%. The differences were particularly large for events with a large spatial variability in the isotopic composition of rainfall and a small difference between the event and pre-event water isotopic composition. Our results demonstrate that even in small catchments

  19. A modified lead-matrix separation procedure shown for lead isotope analysis in Trojan silver artefacts as an example.

    PubMed

    Vogl, Jochen; Paz, Boaz; Koenig, Maren; Pritzkow, Wolfgang

    2013-03-01

    A modified Pb-matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pg mL(-1)) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k = 2) <0.09 %.

  20. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    before chemical purification. Initial results provide an equilibrium 98Mo/95Mo isotope fractionation factor between metal and silicate liquids of -0.18±0.10% (2σ) at 1400°C and 1 GPa. Although the relative mass difference of these Mo isotopes is smaller than for Fe isotopes, this result implies that metal-silicate segregation may have led to mass-dependent stable Mo isotope fractionation, as opposed to Fe isotopes. A possible explanation is that the bonding environment of Mo may counterbalance its relatively small mass separation. At reducing conditions, Mo occurs in 4+ valence state in silicates [4] and thus its bond strength difference between metal and silicate may be more similar to that of Si than Fe. Stable Mo isotopes may thus become an important tool for constraining the conditions of core formation in asteroids and terrestrial planets. [1] Rubie et al. (2011) EPSL 301, 31-42. [2] Shahar et al. (2009) EPSL 288, 228-234. [3] Poitrasson et al. (2009) EPSL 278, 376-385. [4] Farges et al. (2006) Can. Min. 44, 731-753.

  1. Chromatographic Separation of Cd from Plants via Anion-Exchange Resin for an Isotope Determination by Multiple Collector ICP-MS.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun

    2017-01-01

    In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the (114/110)Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.

  2. Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials.

    PubMed

    Yeh, H W; Wang, W M

    2001-07-01

    The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.

  3. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  4. The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment

    NASA Astrophysics Data System (ADS)

    Schmieder, Jan; Hanzer, Florian; Marke, Thomas; Garvelmann, Jakob; Warscher, Michael; Kunstmann, Harald; Strasser, Ulrich

    2016-12-01

    Seasonal snow cover is an important temporary water storage in high-elevation regions. Especially in remote areas, the available data are often insufficient to accurately quantify snowmelt contributions to streamflow. The limited knowledge about the spatiotemporal variability of the snowmelt isotopic composition, as well as pronounced spatial variation in snowmelt rates, leads to high uncertainties in applying the isotope-based hydrograph separation method. The stable isotopic signatures of snowmelt water samples collected during two spring 2014 snowmelt events at a north- and a south-facing slope were volume weighted with snowmelt rates derived from a distributed physics-based snow model in order to transfer the measured plot-scale isotopic composition of snowmelt to the catchment scale. The observed δ18O values and modeled snowmelt rates showed distinct inter- and intra-event variations, as well as marked differences between north- and south-facing slopes. Accounting for these differences, two-component isotopic hydrograph separation revealed snowmelt contributions to streamflow of 35 ± 3 and 75 ± 14 % for the early and peak melt season, respectively. These values differed from those determined by formerly used weighting methods (e.g., using observed plot-scale melt rates) or considering either the north- or south-facing slope by up to 5 and 15 %, respectively.

  5. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    SciTech Connect

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.; Duckworth, Douglas C.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast, and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.

  6. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991--September 14, 1995

    SciTech Connect

    Guss, W.

    1996-09-05

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as {sup 13}C, {sup 17}O, {sup 18}O, and {sup 203}Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes ({le} 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of {sup 26}Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation.

  7. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  8. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    PubMed Central

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-01-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  9. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2015-07-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  10. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  11. Preparative separation of arsenate from phosphate by IRA-400 (OH) for oxygen isotopic work.

    PubMed

    Tang, Xiaohui; Berner, Zsolt; Khelashvilli, Pirimze; Norra, Stefan

    2013-02-15

    The paper reports about a series of tests carried out to find out the optimal conditions for the preparative separation of arsenate and phosphate from natural waters, using the anion exchange resin Amberlite IRA-400 (OH). Freundlich isotherms have been constructed on basis of data obtained by stirring different amounts of resin (0.05-1.00 g) with solutions containing 1mg/L As and 10mg/L P in form of arsenate and phosphate and the effect of pH and P/As ratio on adsorption was investigated. It was found that at these concentrations 0.5 g of IRA-400 (OH) can adsorb quantitatively arsenate and phosphate within 1h. In a range of 3.6-11.1, pH seems to have no influence on the adsorption behavior of the resin, but at pH 1.5 the adsorption of both arsenate and phosphate drops to values close to zero. Experiments with solutions with P/As ratios in a range between 1 and 30 have shown that the concentration ratios have also little effect on adsorption. An efficient selective desorption of the anions could be achieved with 2 mol/L HNO3 or HCl, but the use of HCl is impracticable if the separation aims at precipitating arsenate for oxygen isotopic work. The reported adsorption/ desorption properties of the resin are supported also by data obtained by investigating the resin particles with a scanning electron microscope equipped with a fluorescence detection device.

  12. Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example

    NASA Astrophysics Data System (ADS)

    Laudon, Hjalmar; Slaymaker, Olav

    1997-12-01

    Hydrograph separation of runoff events in two nested alpine/subalpine basins in the Coast Mountains of British Columbia was carried out using electrical conductivity, specific concentration of silica and the stable isotopes oxygen-18 and deuterium as hydrological tracers. The methods predicted consistent high pre-storm water contribution for the subalpine site (60-90%) but more variable contribution at the alpine basin outlet (25-90%). The pre-storm water contribution is much larger than had previously been expected. Precipitation is believed to run off as overland flow due to the steep slopes in combination with the hydrophobic soils until it can enter the subsurface environment. The rapid influx of stored water is possibly caused by pressure propagation in the macropore system which could be enhanced by the heavily fractured bedrock and permeable landslide debris acting as efficient hydrological conduits. The study suggests that alternative hydrological tracers such as electrical conductivity and silica concentration can be used under certain hydrological and lithological conditions. These alternative tracers should, however, be verified against more conventional tracers before use, as the behaviour depends on specific characteristics of each basin. At the upper basin outlet, both electrical conductivity (EC) and silica underestimated the pre-storm contribution. At the lower station, silica and EC showed a similar pattern to deuterium and oxygen-18 tracers. The calculated pre-storm component using EC was, however, 10-20% lower than the calculated values from the other three tracers. The advantage of using these alternative tracers is that hydrograph separation results can, a priori, be anticipated.

  13. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  14. Multikilowatt TEA-CO2 laser system for molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Ronander, Einar; Rohwer, Erich G.

    1993-05-01

    Laser-induced chemistry has received much attention in the past few years. The economics of such applications are dominated by the costs of photons and the quantum yield of the specific reaction. For a typical multiple-IR-photon process the quantum yield can be as low as 10-4 which emphasizes the importance of reducing the cost of laser photons. Based on 1982 technology, CO2 TEA laser operating costs were approximately $100/watt per year for a laser with an electrical efficiency of 6% and an average power of more than 100 kW. Capital costs dominated the energy cost as well as the maintenance and labor costs. At the South African Atomic Energy Corp. we have been involved in the development of high pulse frequency, high average power TEA-CO2 lasers for the application in the field of laser-induced chemistry. Much of the attention, however, has been focused on the application to separate the isotopes of uranium via a multiwavelength infrared irradiation scheme. The progress that has been made towards the establishment of CO2-lasers and laser chains for industrial use has been quite outstanding.

  15. Rapid sample digestion by fusion and chemical separation of Hf for isotopic analysis by MC-ICPMS.

    PubMed

    Ulfbeck, David; Baker, Joel; Waight, Tod; Krogstad, Eirik

    2003-02-06

    A new method for rapid sample digestion and efficient chemical separation of Hf and REE from rock samples for precise isotopic analysis is presented. Samples are digested by fusion in the presence of a lithium borate flux at 1100 degrees C and dissolved whilst molten in dilute nitric or hydrochloric acid. Prior to chemical separation using ion exchange techniques, Li and B from the flux material and Si from the sample are separated from the remaining major elements, REE and high field strength elements (HFSE) in the sample by Fe-hydroxide co-precipitation. The chemical separation of Hf is a two-stage procedure designed to first remove the remaining matrix elements (e.g. Fe, Ba) in the sample using standard cation exchange techniques, followed by separation of Hf from the REE and HFSE on TEVA extraction chromatographic resin. Hf yields are >90% and total procedural blanks are ca. 50 pg. Hf isotope ratios of a synthetic standard solution and replicate digestions of international rock standards BHVO-1 and BCR-1 measured on multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) reproduce similarly to separating Nd from the REE fraction for isotopic analysis and, potentially, may be adapted for measurement of Lu/Hf ratios by isotope dilution techniques.

  16. First Principles Calculation on Equilibrium Si Isotope Fractionation Factors and its Implementation on Si Isotope Distributions in Earth Surface Environments

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H. T.; Zhu, C.

    2014-12-01

    Several important equilibrium Si isotope fractionation factors are calculated here. We use a so-called volume-variable-cluster-model (VVCM) method for solids and the "water-droplet" method for aqueous species for isotope fractionation calculation at the same quantum chemistry level. The calculation results show that several silicate minerals, such as quartz, feldspar, kaolinite, etc., all enrich heavy Si isotopes relative to aqueous H4SiO4 and can be up to 3.3‰ at 25°C, different from most field observations. Meanwhile stable organosilicon complexes can enrich even lighter Si isotopes than aqueous H4SiO4. For explaining the difference between the calculation results and field observations, we calculate the kinetic isotope effect (KIE) associated with the formation of amorphous silica, and find that amorphous silica will enrich extremely light Si isotopes. From amorphous silica to crystalline quartz, the structural adjustment & transition needs getting rid of small amount of Si to re-organize the structure. Light Si isotopes will be preferentially lost and let the final crystalline quartz with a little bit more heavy Si isotopes. However, such late-stage Si heavy isotope enrichment cannot erase the total isotopic signal, crystalline quartz still inherit much light Si isotopic composition from amorphous quartz. That is the reason for the discrepancy between the calculation results and the field observations, because the formation of amorphous quartz is under a non-equilibrium process but theoretical calculations are for equilibrium isotope fractionations. With accurate equilibrium fractionation factors provided here, Si isotope distributions in earth surface environments including soil, groundwater and plants can be further interpreted. We find that δ30Si variations in soil are mainly driven by secondary minerals precipitation and adsorption. Also, bulk soil δ30Si maybe have a parabolic distribution with soil age, with a minimum value at where allophane is

  17. Factors influencing adoption of manure separation technology in The Netherlands.

    PubMed

    Gebrezgabher, Solomie A; Meuwissen, Miranda P M; Kruseman, Gideon; Lakner, Dora; Oude Lansink, Alfons G J M

    2015-03-01

    Manure separation technologies are essential for sustainable livestock operations in areas with high livestock density as these technologies result in better utilization of manure and reduced environmental impact. Technologies for manure separation have been well researched and are ready for use. Their use, however, has been limited to the Netherlands. This paper investigates the role of farm and farmer characteristics and farmers' attitudes toward technology-specific attributes in influencing the likelihood of the adoption of mechanical manure separation technology. The analysis used survey data collected from 111 Dutch dairy farmers in 2009. The results showed that the age and education level of the farmer and farm size are important variables explaining the likelihood of adoption. In addition to farm and farmer characteristics, farmers' attitudes toward the different attributes of manure separation technology significantly affect the likelihood of adoption. The study generates useful information for policy makers, technology developers and distributors in identifying the factors that impact decision-making behaviors of farmers.

  18. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  19. The direct determination of the masses of unstable atoms with the chalk river on-line isotope separator

    NASA Astrophysics Data System (ADS)

    Sharma, K. S.; Schmeing, H.; Evans, H. C.; Hagberg, E.; Hardy, J. C.; Koslowsky, V. T.

    1989-02-01

    A new technique has been developed to measure the spacing of atomic mass doublets of radioactive isotopes directly with an on-line isotope separator. It relies not on ion detection but on observation of the specific radioactive signature of the isotopes under study. Consequently, line shapes and centroids can be determined, free of interference and with great accuracy, even if the corresponding beams strongly overlap or if they are contaminated by unwanted isobars or isomers. In particular, it is of no consequence if one or both members of the doublet are masked by stable background peaks. Doublets are peak matched as in a conventional mass spectrometer. The technique has been evaluated with beams of radioactive nuclides whose masses are known independently. Based on careful calibrations, two new mass values have been obtained: 72Br, 71 936 340 ± 430 μu and 63Ga, 62 939 570 ± 150 μu.

  20. Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation

    SciTech Connect

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

  1. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  2. Well-defined functional mesoporous silica/polymer hybrids prepared by an ICAR ATRP technique integrated with bio-inspired polydopamine chemistry for lithium isotope separation.

    PubMed

    Liu, Yuekun; Liu, Xuegang; Ye, Gang; Song, Yang; Liu, Fei; Huo, Xiaomei; Chen, Jing

    2017-05-09

    Mesoporous silica/polymer hybrids with well-preserved mesoporosity were prepared by integrating the initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) technique with the bio-inspired polydopamine (PDA) chemistry. By manipulating the auto-oxidative polymerization of dopamine, uniform PDA layers were deposited on the surfaces and pore walls of ordered mesoporous silicas (OMSs), thereby promoting the immobilization of ATRP initiators. Poly(glycidyl methacrylate) (PGMA) brushes were then grown from the OMSs by using the ICAR ATRP technique. The evolution of the mesoporous silica/polymer hybrids during synthesis, in terms of morphology, structure, surface and porous properties, was detailed. And, parameters influencing the controlled growth of polymer chains in the ICAR ATRP system were studied. Taking advantage of the abundant epoxy groups in the PGMA platform, post-functionalization of the mesoporous silica/polymer hybrids by the covalent attachment of macrocyclic ligands for the adsorptive separation of lithium isotopes was realized. Adsorption behavior of the functionalized hybrids toward lithium ions was fully investigated, highlighting the good selectivity, and effects of temperature, solvent and counter ions. The ability for lithium isotope separation was evaluated. A higher separation factor could be obtained in systems with softer counter anions and lower polarity solvents. More importantly, due to the versatility of the ICAR ATRP technique, combined with the non-surface specific PDA chemistry, the methodology established in this work would provide new opportunities for the preparation of advanced organic-inorganic porous hybrids for broadened applications.

  3. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials.

    PubMed

    Basu, Anirban; Johnson, Thomas M

    2012-05-15

    Cr stable isotope measurements can provide improved estimates of the extent of Cr(VI) reduction to less toxic Cr(III). The relationship between observed (53)Cr/(52)Cr ratio shifts and the extent of reduction can be calibrated by determining the isotopic fractionation factor for relevant reactions. Permeable reactive barriers (PRB) made of Fe(0) and in situ redox manipulation (ISRM) zones effectively remediate Cr-contaminated aquifers. Here, we determine the isotopic fractionations for dominant reductants in reactive barriers and reduced sediments obtained from an ISRM zone at the US DOE's Hanford site. In all cases, significant isotopic fractionation was observed; fractionation (expressed as ε) was -3.91‰ for Fe(II)-doped goethite, -2.11‰ for FeS, -2.65‰ for green rust, -2.67‰ for FeCO(3), and -3.18‰ for ISRM zone sediments. These results provide a better calibration of the relationship between Cr isotope ratios and the extent of Cr(VI) reduction and aid in interpretation of Cr isotope data from systems with reactive barriers.

  4. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    NASA Astrophysics Data System (ADS)

    Willms, R. S.; Taylor, D. J.; Enoeda, Mikio; Okuno, Kenji

    1994-04-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H2, and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is a practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  5. Beta-Decay Spectroscopy of r-Process Nuclei with N = 126 at KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Mukai, M.; Kimura, S.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ˜ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and to study their β-decay properties, which are also of interest for astrophysics. We successfully extracted the stable 56Fe and 198Pt beam from KISS at the commissioning on-line experiments. The extraction efficiency was 0.25 and 0.15% for 56Fe and 198Pt, respectively. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.

  6. Separating the contributions of vegetation and soil to evapotranspiration using stable isotopes

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Dubbert, Maren; Piayda, Arndt; Correia, Alexandra; Silva, Filipe Costa e.; Kolle, Olaf; Maguás, Cristina; Mosena, Alexander; Pereira, João S.; Rebmann, Corinna; Werner, Christiane

    2015-04-01

    Semi-arid ecosystems contribute about 40% to global net primary productivity, although water-availability limits carbon uptake. Precipitation shows periodical summer droughts and evapotranspiration accounts for up to 95% of water loss of the ecosystem. Thus functional understanding of evapotranspiration and the contributions of evaporation and transpiration from over- and understorey vegetation to water cycling in semi-arid regions is key knowledge in forest management under future climate change. Water isotopes trace water through the compartments of an ecosystem from soil and the vegetation to the atmosphere. They are used to partition evapotranspiration ET into its components evaporation E and transpiration T . The method is, however, sensitive to the knowledge of the isotopic composition of water at the evaporating sites. This led to a discussion recently about the dominance of transpiration in water loss from the terrestrial biosphere, and also how methodological problems could bias these results. Here we present observations from a Portuguese cork-oak woodland. It is a bi-layered system of widely spaced cork-oak trees and a herbaceous layer dominated by native annual forbs and grasses. Water fluxes and their isotopic compositions were measured on bare soil and vegetated plots with a transparent through-flow chamber and a water isotope laser. Soil moisture and temperature were measured in several depths and soil samples were taken for soil water isotope analysis. Based on these observations, we review current strategies of ET partitioning. We highlight pitfalls in the presented strategies and show uncertainty analyses for the different approaches. We show that the isotopic composition of evaporation is very sensitive to the sampling strategy but is described well by a steady-state formulation (Dubbert et al., J Hydrolo 2013). The isotopic composition of transpiration, on the other hand, is not in steady state, most of the time (Dubbert et al., New Phytolo 2014

  7. Separating Terrestrial, Oceanic and Stratospheric Signals in Atmospheric N2O: Seasonal Cycles and Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2004-12-01

    Seasonal cycles in atmospheric N2O provide potentially important information about surface source distributions. Previous attempts to reproduce observed N2O seasonal cycles in atmospheric transport models (ATMs) were largely unsuccessful, for reasons that may include the following: 1) The observed cycles are very small. 2) The influence of the backflux of N2O-depleted air from the stratosphere was neglected. Here, an interpretation of the observed atmospheric N2O seasonal cycle at Cape Grim, Tasmania is presented and successfully compared to the results of an ATM run with prescribed surface sources. The exercise suggests that the observed N2O seasonal cycle can be partitioned into distinct oceanic and stratospheric components, and offers a model for future exercises at northern hemisphere monitoring stations, where terrestrial sources are also likely to influence observed seasonal cycles. Like seasonal cycles, the observed isotopic signature of tropospheric N2O represents a combination of terrestrial, oceanic, and stratospheric influences, all of which have distinct isotopic characteristics. A simple box model is used to predict the effect of seasonality on the isotopic signature of tropospheric N2O and to examine how isotopic data might complement mixing ratio measurements. Some speculations on the oceanic influence on the isotopic signature of tropospheric N2O will also be presented.

  8. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    PubMed

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column.

  9. Isotopic anomalies of Ne, Xe, and C in meteorites. I - Separation of carriers by density and chemical resistance

    NASA Technical Reports Server (NTRS)

    Ming, Tang; Lewis, Roy S.; Anders, Edward; Grady, M. M.; Wright, I. P.

    1988-01-01

    The carriers of presolar noble gases were studied by isotopically analyzing 19 separates from the Murray and Murchison C2 chondrites for Ne, Xe, C, and N. It is found that the carriers of Ne-E(H) and Xe-S are resistant to HCl, HF, boiling HClO4, and CrO3-H2SO4, and thus must be either diamond or some resistant carbide or oxide. The carrier of Ne-E(L) may be some form of amorphous carbon with delta C13 of about +340 percent. A new carbon component, C theta, found as 0.2-2-micron inclusions in Murchison spinel, is amorphous and contains little or no noble gas. A new heavy nitrogen component is found which has an abundance of about 1 ppm in the bulk meteorite, combusts at 450-500 C, and may be associated wtih isotopically normal carbon or with C-alpha.

  10. Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization.

    PubMed

    Gillis, Nicolas; Vavasis, Stephen A

    2014-04-01

    In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We present a family of fast recursive algorithms and prove they are robust under any small perturbations of the input data matrix. This family generalizes several existing hyperspectral unmixing algorithms and hence provides for the first time a theoretical justification of their better practical performance.

  11. SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA

    PubMed Central

    Fosdick, Bailey K.; Hoff, Peter D.

    2014-01-01

    Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353

  12. Inherent variation in stable isotope values and discrimination factors in two life stages of green turtles.

    PubMed

    Vander Zanden, Hannah B; Bjorndal, Karen A; Mustin, Walter; Ponciano, José Miguel; Bolten, Alan B

    2012-01-01

    We examine inherent variation in carbon and nitrogen stable isotope values of multiple soft tissues from a population of captive green turtles Chelonia mydas to determine the extent of isotopic variation due to individual differences in physiology. We compare the measured inherent variation in the captive population with the isotopic variation observed in a wild population of juvenile green turtles. Additionally, we measure diet-tissue discrimination factors to determine the offset that occurs between isotope values of the food source and four green turtle tissues. Tissue samples (epidermis, dermis, serum, and red blood cells) were collected from captive green turtles in two life stages (40 large juveniles and 30 adults) at the Cayman Turtle Farm, Grand Cayman, and analyzed for carbon and nitrogen stable isotopes. Multivariate normal models were fit to the isotope data, and the Bayesian Information Criterion was used for model selection. Inherent variation and discrimination factors differed among tissues and life stages. Inherent variation was found to make up a small portion of the isotopic variation measured in a wild population. Discrimination factors not only are tissue and life stage dependent but also appear to vary with diet and sea turtle species, thus highlighting the need for appropriate discrimination factors in dietary reconstructions and trophic-level estimations. Our measures of inherent variation will also be informative in field studies employing stable isotope analysis so that differences in diet or habitat are more accurately identified.

  13. Plasma centrifuge with vacuum arc discharge applied to the separation of stable isotopes

    NASA Astrophysics Data System (ADS)

    Delbosco, Edson

    1989-09-01

    The results of a vacuum-arc plasma centrifuge experiment are described. A plasma centrifuge is an apparatus where a plasma column is produced due to the interaction of an electric current with an externally applied magnetic field, vector J x vector B. Among the applications of a rotating plasma, this work deals particularly with its utilization in an isotope enrichment device. The main characteristics of the plasma produced in this experiment are presented, with special attention to the plasma column rotation and the isotope enrichment. The analysis of the results is performed using a fluid model for a completely ionized rigid body rotating plasma column in steady state equilibrium. The main results are: (1) rotation frequency of the plasma column in the range 2 x (exp 4) to 3 x 10 (exp 5) rad/s; (2) enrichment of 10 to 30 pct for the magnesium isotopes, and 290 to 490 pct for the carbon-13 isotope; (3) rigid body rotation of the plasma column only for radii smaller than the characteristic radius of the plasma column, r(sub e); (4) linear dependence of the rotation frequency upon the magnetic field strength only for r is less than r(sub e); (5) existence of an optimum value of the magnetic field for maximum enrichment; and (6) dependence of the rotation frequency upon the inverse of the atomic mass.

  14. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    SciTech Connect

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B; Farmer, Orville T; Duckworth, Douglas C

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by the applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.

  15. Helium and Carbon Isotope Systematics of Springs in the Separation Creek Drainage System, Three Sisters area, Central Oregon Cascades.

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Kennedy, B.; Evans, W. C.; Mariner, R. H.; Schmidt, M. E.

    2002-12-01

    In response to recent and on-going uplift in the Separation Creek drainage system, 5 km west of South Sister volcano in the central Oregon Cascades (e.g. Wicks et al., 2001), a hydrogeochemical monitoring project was initiated by the U.S. Geological Survey in the summer of 2001. When compared to existing literature data, we found no significant changes in the helium isotope composition of hot springs located in the vicinity of South Sister volcano, but outside the area of uplift. Nor were there significant changes in fluid chemistry or conductivity of cold springs within the area of uplift. For the latter group, there are no pre-uplift helium or carbon isotope data. Therefore, the implications of the strong magmatic helium and carbon isotope signals measured in two of these samples and their possible relationship to the recent uplift could not be evaluated (Van Soest et al., 2001; Evans et al., 2002). Within the scope of the hydrogeochemical monitoring project, a detailed survey of cold springs in the Separation Creek drainage area was planned for the spring, summer and fall of 2002. Preliminary results for spring 2002 samples suggest a relationship between helium isotope composition and distance from South Sister volcano, but not the center of uplift: 8.6RA at 3 km (from a sample nearest the youngest erupted volcanics), 7.4RA at 5 km (near the center of uplift), 7.0RA at 10 km, 6.8RA at 18 km, and 5.2RA at 25 km from South Sister volcano. The last value is from the hot spring closest to the area of uplift for which there is pre-uplift data and it suggests a constant helium isotope ratio over time (1982-present). The new carbon isotope results confirm the existence of a mixing relationship between deep abiogenic (magmatic) carbon and shallow biogenic carbon that was apparent in the 2001 samples. The carbon isotope results appear to correlate with the Cl and conductivity anomalies in the springs. At this time, whether a similar correlation exists for the helium

  16. Limiting factors in acoustic separation of carbon particles in air.

    PubMed

    Karpul, David; Tapson, Jonathan; Rapson, Michael; Jongens, Adrian; Cohen, Gregory

    2010-04-01

    Particles suspended in a fluid that is exposed to an acoustic standing wave experience a time-averaged force that drives them to either the pressure nodes or anti-nodes of the wave. Several filter designs have been successfully implemented using this force to filter small particles in liquids with low flow rates and small cross-sectional areas. It has been suggested that the filtration of small solid particles out of a gas, such as carbon in air (smoke), would be a possible application of acoustic standing wave based particle separation. This study shows the limiting factors, in both power requirements and design factors, of an acoustic filter designed for filtering smoke particles across large cross-sectional areas. It is shown that while filtration is possible, the power needed is impractical. It is also shown that operating the filter within certain settling time parameters optimizes the energy usage of the filter.

  17. Isotopic cataphoresis in a crossed-field plasma centrifuge

    SciTech Connect

    Zhdanov, V.M.; Karchevskii, A.I.; Lukovnikov, A.I.; Potanin, E.P.

    1983-09-01

    The enrichment factor of an isotope mixture achievable by exploiting differences in the ionization of the isotopes is calculated. It is shown that cataphoretic separation becomes more important at low gas pressures and high electron temperatures.

  18. Factors influencing yield of plateletpheresis using intermittent flow cell separator.

    PubMed

    DAS, S S; Chaudhary, R K; Shukla, J S

    2005-10-01

    Platelet recovery in the recipient is influenced by the transfused dose of platelets, which in turn is dependent on the quality of single donor platelets (SDPs) in terms of platelet yield. Various donor factors such as predonation platelet count and Hemoglobin (Hb) concentration affect the platelet yield. A total of 61 plateletpheresis procedures performed on intermittent flow cell separator (MCS3p, Hemonetics) were evaluated for platelet yield. A relationship between predonation platelet count and Hb concentration with yield of platelets was studied using Pearson Correlation. The mean platelet yield was 2.9 +/- 0.64 x 10(11). While a direct relationship was observed between predonation platelet count and yield (r = 0.51, P < 0.001), no such correlation was noticed with donor Hb concentration (r = -0.05, P > 0.005). The yield was > or =3 x 10(11) in >80% of procedures when the predonation platelet count was > or =250 x 10(3)/mm. Optimization of platelet yield, which is influenced by predonation platelet count, is an emerging issue in blood transfusion services. However, further studies in this regard are needed using more advanced cell separators.

  19. Stable isotope analysis of diet confirms niche separation of two sympatric species of Namib Desert lizard.

    PubMed

    Murray, Ian W; Lease, Hilary M; Hetem, Robyn S; Mitchell, Duncan; Fuller, Andrea; Woodborne, Stephan

    2016-01-01

    We used stable isotopes of carbon and nitrogen to study the trophic niche of two species of insectivorous lizards, the Husab sand lizard Pedioplanis husabensis and Bradfield's Namib day gecko living sympatrically in the Namib Desert. We measured the δ(13) C and δ(15) N ratios in lizard blood tissues with different turnover times (whole blood, red blood cells and plasma) to investigate lizard diet in different seasons. We also measured the δ(13) C and δ(15) N ratios in available arthropod prey and plant tissues on the site, to identify the avenues of nutrient movement between lizards and their prey. Through the use of stable isotope mixing models, we found that the two lizard species relied on a largely non-overlapping but seasonally variable array of arthropods: P. husabensis primarily fed on termites, beetles and wasps, while R. bradfieldi fed mainly on ants, wasps and hemipterans. Nutrients originating from C3 plants were proportionally higher for R. bradfieldi than for P. husabensis during autumn and late autumn/early winter, although not summer. Contrary to the few available data estimating the trophic transfer of nutrients in ectotherms in mixed C3 and C4 /crassulacean acid metabolism (CAM) plant landscapes, we found that our lizard species primarily acquired nutrients that originated from C4 /CAM plants. This work adds an important dimension to the general lack of studies using stable isotope analyses to estimate lizard niche partitioning and resource use. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Lead isotope systematics of some Apollo 17 soils and some separated components from 76501

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.

    1974-01-01

    Isotopic lead data from bulk samples of Apollo 17 soils were analyzed, and they define a chord in a concordia diagram, showing the presence of a component or components containing excess radiogenic lead with Pb-207/Pb-206 equal to about 1.32. The chord is distinctly different from the cataclysm chord, for which Pb-207/Pb-206 is approximately 1.45. Nitric acid analysis of plagioclase indicates lead ages of around 4.35 AE, in agreement with previous findings. Agglutinates from soil 76501,34 show loss of approximately 15% of lead.

  1. Lead isotope systematics of some Apollo 17 soils and some separated components from 76501

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.

    1974-01-01

    Isotopic lead data from bulk samples of Apollo 17 soils were analyzed, and they define a chord in a concordia diagram, showing the presence of a component or components containing excess radiogenic lead with Pb-207/Pb-206 equal to about 1.32. The chord is distinctly different from the cataclysm chord, for which Pb-207/Pb-206 is approximately 1.45. Nitric acid analysis of plagioclase indicates lead ages of around 4.35 AE, in agreement with previous findings. Agglutinates from soil 76501,34 show loss of approximately 15% of lead.

  2. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors.

    PubMed

    Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air.

  3. On isotopic realizability of maps factored through a hyperplane

    NASA Astrophysics Data System (ADS)

    Melikhov, Sergey A.

    2004-08-01

    In this paper we study the isotopic realization problem, which is the question of isotopic realizability of a given (continuous) map f, that is, the possibility of a uniform approximation of f by a continuous family of embeddings g_t, t\\in \\lbrack 0,\\infty), under the condition that f is discretely realizable, that is, that there exists a uniform approximation of f by a sequence of embeddings h_n, n\\in\\mathbb N.For each n\\geqslant3 a map f\\colon S^n\\to\\mathbb R^{2n} is constructed that is discretely but not isotopically realizable and which, unlike all such previously known examples, is a locally flat topological immersion. For each n\\geqslant4 a map f\\colon S^n\\to\\mathbb R^{2n-1}\\subset\\mathbb R^{2n} is constructed that is discretely but not isotopically realizable. It is shown that for n\\equiv0,\\,1\\pmod4 any map f\\colon S^n\\to\\mathbb R^{2n-2}\\subset\\mathbb R^{2n} is isotopically realizable, and for n\\equiv2\\pmod4, so also is every map f\\colon S^n\\to\\mathbb R^{2n-3}\\subset\\mathbb R^{2n}. If n\\geqslant13 and n+1 is not a power of 2, an arbitrary map f\\colon S^n\\to\\mathbb R^{5 \\lbrack n/3 \\rbrack +3}\\subset\\mathbb R^{2n} is isotopically realizable.The main results are devoted to the isotopic realization problem for maps f of the form S^n\\stackrel{f}\\to S^n\\subset\\mathbb R^{2n}, n=2^l-1. It is established that if it has a negative solution, then the inverse images of points under the map f have a certain homology property connected with actions of the group of p-adic integers. The solution is affirmative if f is Lipschitzian and its van Kampen-Skopenkov thread has finite order. In connection with the proof the functors \\operatorname{Ext}_{\\square} and \\operatorname{Ext}_{\\bowtie} in the relative homology algebra of inverse spectra are introduced.

  4. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  5. Hydrogen isotope separation in carbon nanotubes: calculation of coupled rotational and translational States at high densities.

    PubMed

    Garberoglio, Giovanni; Johnson, J Karl

    2010-03-23

    The effect of the quantized rotational degrees of freedom of hydrogen on the adsorption and sieving properties in carbon nanotubes is studied using computer simulations. We have developed a highly efficient multiple timestep algorithm for hybrid Monte Carlo sampling of quantized rotor configurations and extended the grand canonical Boltzmann bias method to rigid linear molecules. These new computational tools allow us to calculate accurately the quantum sieving selectivities for cases of extreme two-dimensional confinement as a function of pressure. The para-T2/para-H2 selectivity at 20 K is analyzed as a function of the tube diameter and the density of adsorbed hydrogen. Extraordinarily high selectivities, up to 2.6 x 10(8), are observed in the narrowest nanotube. The quantized nature of the rotational degrees of freedom is found to dramatically affect adsorption and selectivity for hydrogen isotopes adsorbed in very narrow nanotubes. The T2/H2 zero-pressure selectivity increases from 2.4 x 10(4) to 1.7 x 10(8) in the (3,6) nanotube at 20 K when quantum rotations are accounted for. The isotopic selectivity is found to increase with pressure, tending to a constant value at saturation. A simplified mean-field model is used to discuss the origin of this behavior.

  6. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  7. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter.

    PubMed

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-09

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to (12)C to enrich in the released CO2 while (13)C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  8. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    PubMed Central

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-01-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance. PMID:26056012

  9. Development of a fully automated open-column chemical-separation system—COLUMNSPIDER—and its application to Sr-Nd-Pb isotope analyses of igneous rock samples

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takashi; Vaglarov, Bogdan Stefanov; Takei, Masakazu; Suzuki, Masahiro; Suzuki, Hiroaki; Ohsawa, Kouzou; Chang, Qing; Takahashi, Toshiro; Hirahara, Yuka; Hanyu, Takeshi; Kimura, Jun-Ichi; Tatsumi, Yoshiyuki

    A fully automated open-column resin-bed chemical-separation system, named COLUMNSPIDER, has been developed. The system consists of a programmable micropipetting robot that dispenses chemical reagents and sample solutions into an open-column resin bed for elemental separation. After the initial set up of resin columns, chemical reagents, and beakers for the separated chemical components, all separation procedures are automated. As many as ten samples can be eluted in parallel in a single automated run. Many separation procedures, such as radiogenic isotope ratio analyses for Sr and Nd, involve the use of multiple column separations with different resin columns, chemical reagents, and beakers of various volumes. COLUMNSPIDER completes these separations using multiple runs. Programmable functions, including the positioning of the micropipetter, reagent volume, and elution time, enable flexible operation. Optimized movements for solution take-up and high-efficiency column flushing allow the system to perform as precisely as when carried out manually by a skilled operator. Procedural blanks, examined for COLUMNSPIDER separations of Sr, Nd, and Pb, are low and negligible. The measured Sr, Nd, and Pb isotope ratios for JB-2 and Nd isotope ratios for JB-3 and BCR-2 rock standards all fall within the ranges reported previously in high-accuracy analyses. COLUMNSPIDER is a versatile tool for the efficient elemental separation of igneous rock samples, a process that is both labor intensive and time consuming.

  10. Production, chemical and isotopic separation of the178m2Hf high-spin isomer

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Hussonnois, M.; Brianôcon, Ch.; Karamian, S. A.; Szeglowski, Z.; Ledu, D.; Meunier, R.; Constantinescu, M.; Kim, J. B.; Constantinescu, O.

    1997-05-01

    The 178m2Hf with its long-lived (T1/2=31 y), high-spin Iπ = 16+, isomeric state, is a challenge for new and exotic nuclear physics studies. The 178m2Hf isomer has been produced in microweight quantities using the 176Yb(α,2n) nuclear reaction, by irradiation with a high-intensity beam using the U-200 cyclotron in Dubna. Radiochemistry and mass separation methods have been developed, with the aim to separate and purify the produced Hf material. Thin targets of isomeric hafnium-178 on carbon backings have been prepared and used in experiments with neutron, proton and deuteron beams.

  11. Separating temperature from other factors in phenological measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang

    2014-09-01

    Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.

  12. Factors influencing stable isotopes and growth of algae in oil sands aquatic reclamation.

    PubMed

    Boutsivongsakd, Monique; Farwell, Andrea J; Chen, Hao; Dixon, D George

    2015-01-01

    Previous studies reported (15)N enrichment of biota in reclamation wetlands that contain oil sands processed material (e.g., processed water and tailings); however, there is little information on the factors controlling (15)N enrichment in these systems. In this microcosm study, the aim was to examine stable C and N isotopes and growth (chlorophyll a [chl a] and dry weight) of algae as a function of exposure to different sources and concentrations of water-soluble fractions (WSF) derived from tailings. Two sources of tailings including mature fine tailings (MFT) and consolidated tailings (CT) and peat-mineral overburden were utilized to generate separate WSF that differed in water quality. In general, there was (15)N enrichment of filamentous algae along the increasing gradient of WSF/nutrient concentrations in both CT and peat microcosms, and among the different sources, algae were more (15)N enriched in CT WSF than in peat WSF. Growth of filamentous algae was inhibited at higher WSF concentrations, possibly due to reduced light availability at elevated levels of fine clay particles in MFT microcosms and colored dissolved organic carbon (DOC) in peat microcosms. Filamentous algae displayed lower biomass and (15)N depletion in 100% peat WSF. This study indicated that both the quality (source) and quantity of WSF affected algal growth and directly and/or indirectly influenced δ(15)N of algae. The distinct (15)N enrichment of primary producers derived from tailings suggest that stable N isotopes might be useful to trace exposure to oil sands processed material in biota that utilize these resources in reclaimed systems constructed with tailings or natural systems that receive tailings dyke seepage.

  13. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  14. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  15. Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility.

    PubMed

    Bricault, P G; Ames, F; Dombsky, M; Labrecque, F; Lassen, J; Mjos, A; Minor, G; Tigelhoefer, A

    2012-02-01

    This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

  16. Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility

    SciTech Connect

    Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G.; Tigelhoefer, A.

    2012-02-15

    This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

  17. Innovative lasers for uranium isotope separation. Progress report for the period September 1, 1989--May 31, 1990

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1990-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first year of the project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. Highlights of some of the first year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, both pulsed (5 kW, 5kHz) and CW (0--500 Watts) have been investigated using heated copper chloride as the copper source. The visible emitted light has been observed and intense lines at 510.6 nm and 578.2 nm have been observed. Initial measurements of the electric field strengths have been taken with probes, the plasma volume has been measured with optical techniques, and the power has been measured with power meters. A self-consistent electromagnetic model of the cavity/plasma system which uses the above data as input shows that the copper plasma has skin depths around 100 cm, densities around 10{sup 12} {number_sign}/cc, collisional frequencies around 10{sup 11}/sec., conductivities around 0.15 (Ohm-meter){sup {minus}1}. A simple model of the heat transfer predicts temperatures of {approximately}900 K. All of these parameters indicate that microwave discharges may be well suited as a pump source for copper lasers. These preliminary studies will be continued during the second year with additional diagnostics added to the system to verify the model results. Chemical kinetics of the system will also be added to the model.

  18. Baseflow separation in a premontane transitional rainforest using stable isotope techniques

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; DuMont, A.; Roark, E.; Cahill, A. T.; Brumbelow, J. K.

    2013-12-01

    Hydrologic, geologic, and biologic processes are critical to understanding the ecosystem in the tropical premontane transitional forests of Costa Rica. Precipitation is significantly lower during the dry season, and incoming rainfall can be completely intercepted and re-evaporated by the canopy during light events. These canopy processes can affect the rates of runoff and infiltration by changing the quantity and timing of rainfall reaching the ground surface. However, the resulting partitioning of stream water sources between event-water and baseflow from groundwater is not well quantified due to limited accessibility and complex subsurface conditions. This study focuses on research conducted at the Texas A&M Soltis Center for Education and Research, near San Ramón, Costa Rica. We have monitored a 2.2 ha watershed there, measuring precipitation and transpiration rates for over two years, and groundwater levels and stream flow rates for nearly one year. Precipitation rates for the watershed averaged 4.4 m/yr since 2010. Stream flow (runoff, spring flow, and baseflow) averaged 0.09 m^3/sec during the 2012-2013 wet seasons. At 1.2 mm/day, transpiration was a relatively minor component of the water budget. Over a 40-day span during summer 2013, we collected a combination of daily and rain-event based samples from locations throughout the watershed. Sources included: the main stream and two small tributaries, groundwater from piezometers, pore water from suction lysimeters, throughfall and stemflow from under canopy collection systems, and xylem water from 8 tree species across the watershed. We then measured stable isotope fractions (δ18O and δD) in the water using a Picarro L2120i CRDS. Isotope ratios for all surface water averaged -5.50‰ for δ18O and -28.00‰ for δD, while that measured under baseflow conditions were -5.45‰ for δ18O and -29.18‰ for δD. These results indicate that baseflow is the dominate source of stream water even in the wet season

  19. Separating Continental Mineral Dust from Cosmic Dust using Platinum Group Element Concentrations and Osmium Isotopes in Ancient Polar Ice

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Jackson, B.; Osterberg, E. C.; Sharma, M.

    2015-12-01

    The platinum group element (PGEs: Pt, Pd, Rh, Ir, Os, and Ru) accumulation in ancient polar archives have been argued to trace cosmic dust and "smoke" from larger meteors but the PGE concentration data lack specificity. For example, the extent to which the terrestrial volcanism/dust has contributed to the PGE inventory of polar ice cannot be readily evaluated. Since the Os isotope compositions (187Os/188Os ratio) of the terrestrial and extraterrestrial sources are distinctly different from each other, the PGE concentrations when combined with Os isotope composition have the potential to untangle contributions from these sources. Platinum group element concentration determinations in polar ice cores are highly challenging due to their extremely low concentrations (down to 10-15 g/g or fg/g). Here, a new procedure is presented that allows PGEs and Os isotope compositions to be determined from a ~50 g sample of polar ice. Decontaminated ice-melt is spiked with 101Ru, 106Pd, 190Os, 191Ir, and 198Pt and frozen at -20 °C in quartz-glass ampoules. A mixture of purified HNO3 and H2O2 is then added and the sample is heated to 300 °C at 128bar using a High Pressure Asher. This allows all spikes to be equilibrated with the sample PGEs and all Os species are oxidized to OsO4. The resulting OsO4 is extracted using distillation, purified, and measured using negative thermal ionization mass spectrometry. PGEs are then separated and purified using two stage column chromatography and their concentrations determined by isotope dilution using a triple quadruople inductively coupled plasma mass spectrometer coupled to an Apex de-solvation nebulizer. The developed method was applied to modern Greenland firn and snow. The PGE concentrations of the firn are 4.0 fg/g for Ir, 20 fg/g for Ru, 590 fg/g for Pt, 38 fg/g for Pd, and 1.3 fg/g for Os, while those of the snow are 3.0 fg/g for Ir, 53 fg/g for Ru, 360 fg/g for Pt, 32 fg/g for Pd, and 0.4 fg/g for Os, respectively. A comparison

  20. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  1. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  2. Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces.

    PubMed

    Montanari, Shaena

    2017-01-01

    Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals' diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta), a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ(13)Cfeces) is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ(15)Nfeces) is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals.

  3. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Blair, N. E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1992-09-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from "noncompetitive" substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94‰. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in 13C, reaching a maximum δ13C value of -42‰. Third, the acetate pool experienced a precipitous decline from >5 mM to <20 μM and methane production was again dominated by CO2 reduction. The δ13C of methane produced during this final phase ranged from -46 to -58‰. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8% of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment.

  4. Trophic discrimination factors of stable carbon and nitrogen isotopes in hair of corn fed wild boar.

    PubMed

    Holá, Michaela; Ježek, Miloš; Kušta, Tomáš; Košatová, Michaela

    2015-01-01

    Stable isotope measurements are increasingly being used to gain insights into the nutritional ecology of many wildlife species and their role in ecosystem structure and function. Such studies require estimations of trophic discrimination factors (i.e. differences in the isotopic ratio between the consumer and its diet). Although trophic discrimination factors are tissue- and species-specific, researchers often rely on generalized, and fixed trophic discrimination factors that have not been experimentally derived. In this experimental study, captive wild boar (Sus scrofa) were fed a controlled diet of corn (Zea mays), a popular and increasingly dominant food source for wild boar in the Czech Republic and elsewhere in Europe, and trophic discrimination factors for stable carbon (Δ13C) and nitrogen (Δ15N) isotopes were determined from hair samples. The mean Δ13C and Δ15N in wild boar hair were -2.3‰ and +3.5‰, respectively. Also, in order to facilitate future derivations of isotopic measurements along wild boar hair, we calculated the average hair growth rate to be 1.1 mm d(-1). Our results serve as a baseline for interpreting isotopic patterns of free-ranging wild boar in current European agricultural landscapes. However, future research is needed in order to provide a broader understanding of the processes underlying the variation in trophic discrimination factors of carbon and nitrogen across of variety of diet types.

  5. Trophic Discrimination Factors of Stable Carbon and Nitrogen Isotopes in Hair of Corn Fed Wild Boar

    PubMed Central

    Holá, Michaela; Ježek, Miloš; Kušta, Tomáš; Košatová, Michaela

    2015-01-01

    Stable isotope measurements are increasingly being used to gain insights into the nutritional ecology of many wildlife species and their role in ecosystem structure and function. Such studies require estimations of trophic discrimination factors (i.e. differences in the isotopic ratio between the consumer and its diet). Although trophic discrimination factors are tissue- and species- specific, researchers often rely on generalized, and fixed trophic discrimination factors that have not been experimentally derived. In this experimental study, captive wild boar (Sus scrofa) were fed a controlled diet of corn (Zea mays), a popular and increasingly dominant food source for wild boar in the Czech Republic and elsewhere in Europe, and trophic discrimination factors for stable carbon (Δ13C) and nitrogen (Δ15N) isotopes were determined from hair samples. The mean Δ13C and Δ15N in wild boar hair were –2.3 ‰ and +3.5 ‰, respectively. Also, in order to facilitate future derivations of isotopic measurements along wild boar hair, we calculated the average hair growth rate to be 1.1 mm d-1. Our results serve as a baseline for interpreting isotopic patterns of free-ranging wild boar in current European agricultural landscapes. However, future research is needed in order to provide a broader understanding of the processes underlying the variation in trophic discrimination factors of carbon and nitrogen across of variety of diet types. PMID:25915400

  6. [Meta-analysis of stable carbon and nitrogen isotopic enrichment factors for aquatic animals].

    PubMed

    Guo, Liang; Sun, Cui-ping; Ren, Wei-zheng; Zhang, Jian; Tang, Jian-iun; Hu, Liana-liang; Chen, Xin

    2016-02-01

    Isotopic enrichment factor (Δ, the difference between the δ value of food and a consumer tissue) is an important parameter in using stable isotope analysis (SIA) to reconstruct diets, characterize trophic relationships, elucidate patterns of resource allocation, and construct food webs. Isotopic enrichment factor has been considered as a constancy value across a broad range of animals. However, recent studies showed that the isotopic enrichment factor differed among various types of animals although the magnitude of variation was not clear. Here, we conducted a meta-analysis to synthesize and compare Δ13C and Δ15N among four types of aquatic animals (teleosts, crustaceans, reptiles and molluscs). We searched for papers published before 2014 on Web of Science and CNKI using the key words "stable isotope or isotopic fractionation or fractionation factor or isotopic enrichment or trophic enrichment". Forty-two publications that contain 140 studies on Δ13C and 159 studies on Δ15N were obtained. We conducted three parallel meta-analyses by using three types of weights (the reciprocal of variance as weights, the sample size as weights, and equal weights). The results showed that no significant difference in Δ13C among different animal types (teleosts 1.0 per thousand, crustaceans 1.3 per thousand, reptiles 0.5 per thousand, and molluscs 1.5 per thousand), while Δ15N values were significantly different (teleosts 2.4 per thousand, crustaceans 3.6 per thousand, reptiles 1.0 per thousand and molluscs 2.5 per thousand). Our results suggested that the overall mean of Δ13C could be used as a general enrichment factor, but Δ15N should be chosen according to the type of aquatic animals in using SIA to analyze trophic relationships, patterns of resource allocation and food webs.

  7. Compositional and isotopic diversity in MORB crystal cargoes: the differing influence of crustal and mantle processes on separate phase populations

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2010-12-01

    trace elements and Sr and O isotope ratios in compositionally zoned crystals. By comparing the known liquid compositions of Krafla and Borgarhraun with feldspar trace element and isotopic data, we aim to determine whether the plagioclase crystals are of a) magmatic or b) hydrothermal origin, and if magmatic, whether the crystals are cognate to the carrier melt or of xenocrystic origin. Preliminary O and Sr isotope data suggest that a sub-population of plagioclase crystals from both flows has undergone direct hydrothermal interaction, with others having crystallised from melts contaminated by altered crustal material. Additionally, some of the aspects of the current plagioclase dataset can be explained by concurrent mixing and crystallisation of variable primary mantle melt compositions, in sympathy with the clinopyroxene and olivine data. The contrasting and possibly diverse origins for the chemical and isotopic heterogeneity in separate crystal phase populations in these basaltic flows highlight the need for careful characterisation of individual crystal phases when making inferences from bulk isotopic or chemical analyses on MORB phenocrysts.

  8. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    SciTech Connect

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.; Shenoy, K. T.; Ghosh, S. K.

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  9. Pygmy dipole strength close to particle-separation energies --The case of the Mo isotopes

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Grosse, E.; Erhard, M.; Junghans, A.; Kosev, K.; Schilling, K.-D.; Schwengner, R.; Wagner, A.

    2006-03-01

    The distribution of electromagnetic dipole strength in 92, 98, 100Mo has been investigated by photon scattering using bremsstrahlung from the new ELBE facility. The experimental data for well-separated nuclear resonances indicate a transition from a regular to a chaotic behaviour above 4MeV of excitation energy. As the strength distributions follow a Porter-Thomas distribution much of the dipole strength is found in weak and in unresolved resonances appearing as fluctuating cross section. An analysis of this quasi-continuum --here applied to nuclear resonance fluorescence in a novel way-- delivers dipole strength functions, which are combining smoothly to those obtained from (γ, n) data. Enhancements at 6.5MeV and at ˜ 9MeV are linked to the pygmy dipole resonances postulated to occur in heavy nuclei.

  10. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix.

    PubMed

    Mastren, Tara; Radchenko, Valery; Owens, Allison; Copping, Roy; Boll, Rose; Griswold, Justin R; Mirzadeh, Saed; Wyant, Lance E; Brugh, Mark; Engle, Jonathan W; Nortier, Francois M; Birnbaum, Eva R; John, Kevin D; Fassbender, Michael E

    2017-08-15

    A new method has been developed for the isolation of (223,224,225)Ra, in high yield and purity, from a proton irradiated (232)Th matrix. Herein we report an all-aqueous process using multiple solid-supported adsorption steps including a citrate chelation method developed to remove >99.9% of the barium contaminants by activity from the final radium product. A procedure involving the use of three columns in succession was developed, and the separation of (223,224,225)Ra from the thorium matrix was obtained with an overall recovery yield of 91 ± 3%, average radiochemical purity of 99.9%, and production yields that correspond to physical yields based on previously measured excitation functions.

  11. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix

    DOE PAGES

    Mastren, Tara; Radchenko, Valery; Owens, Allison; ...

    2017-08-15

    A new method has been developed for the isolation of 223,224,225Ra, in high yield and purity, from a proton irradiated 232Th matrix. We report an all-aqueous process using multiple solid-supported adsorption steps including a citrate chelation method developed to remove >99.9% of the barium contaminants by activity from the final radium product. Moreover, we developed a procedure involving the use of three columns in succession, and the separation of 223,224,225Ra from the thorium matrix was obtained with an overall recovery yield of 91 ± 3%, average radiochemical purity of 99.9%, and production yields that correspond to physical yields based onmore » previously measured excitation functions.« less

  12. Chemical and isotopic fractionation by grain size separates. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1980-01-01

    Fractionation of refractory elements according to grain size is argued to occur during their growth. Two major modes should exist: (1) during thermal condensation sequences whenever the condensing phase (e.g. Mg2SiO4) does not alloy with the precondensed phase (e.g. MgAl2O4); (2) during accretion of gaseous atoms in the nonequilibrated interstellar medium. Processes dynamically sorting grains according to size (e.g. sedimentation) therefore are potentially capable of achieving fractionations normally attributed to separations of dust and gas. This paper considers the first mode during supernova condensation; however, it also can occur in an equilibrium solar condensation sequence owing to an overlooked freedom in that simplified description.

  13. Diffusion as a Rate Limiting Factor on the Evolution of Strontium Isotope Ratios in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Johnson, E. G.; Holt, R. M.; McLing, T. L.

    2002-12-01

    In recent years, several approaches have been developed to model the evolution of strontium isotope ratios (87Sr/86Sr) in porous media. In fractured rock, however, diffusion limits the rates of reaction between mobile water and mineral surfaces inside fracture-bounded blocks. Diffusion can limit transfer of fluids with differing isotopic ratios between the mobile and immobile zones leading to longer equilibration times. We develop a diffusion-based mathematical approach for modeling the evolution of ratios that includes sorption, ion exchange, and dissolution in fracture bounded blocks of multiple sizes. Traditional models employing isotopic ratios with the advection-dispersion equation are unable to incorporate diffusion because they are limited by the structure of their equation. Modeling the individual isotopic species separately accounts for the effects of diffusion. The general governing equation is robust in that it does not assume chemical equilibrium reactions. Special cases show the importance of diffusion-limited mass transfer on the evolution of isotopes ratios in fractured rock.

  14. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  15. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015

    NASA Astrophysics Data System (ADS)

    Bollen, Georg; Mittig, Wolfgang; Morrissey, Dave; Schwarz, Stefan; Villari, Antonio

    2016-06-01

    The 17th International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS-2015) was held in Grand Rapids, Michigan, in the United States, from May 11th to 15th, 2015. The EMIS-2015 conference was hosted by Michigan State University. The present volume contains the proceedings of the event.

  16. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    SciTech Connect

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    1999-03-01

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting. The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.

  17. Distinctive diet-tissue isotopic discrimination factors derived from the exclusive bamboo-eating giant panda.

    PubMed

    Han, Han; Wei, Wei; Nie, Yonggang; Zhou, Wenliang; Hu, Yibo; Wu, Qi; Wei, Fuwen

    2016-11-01

    Stable isotope analysis is very useful in animal ecology, especially in diet reconstruction and trophic studies. Differences in isotope ratios between consumers and their diet, termed discrimination factors, are essential for studies of stable isotope ecology and are species-specific and tissue-specific. Given the specialized bamboo diet and clear foraging behavior, here, we calculated discrimination factors for carbon and nitrogen isotopes from diet to tissues (tooth enamel, hair keratin and bone collagen) for the giant panda (Ailuropoda melanoleuca), a species derived from meat-eating ancestors. Our results showed that carbon discrimination factor obtained from giant panda tooth enamel (ε (13) Cdiet-enamel = 10.0‰) and nitrogen discrimination factors from hair keratin (Δ(15) Ndiet-hair = 2.2‰) and bone collagen (Δ(15) Ndiet-collagen = 2.3‰) were lower, and carbon discrimination factors from hair keratin (Δ(13) Cdiet-hair = 5.0‰) and bone collagen (Δ(13) Cdiet-collagen = 6.1‰) were higher than those of other mammalian carnivores, omnivores and herbivores. Such distinctive values are likely the result of a low-nutrient and specialized bamboo diet, carnivore-like digestive system and exceptionally low metabolism in giant pandas.

  18. Evaluation of isotopic enrichment factors for the biodegradation of chlorinated ethenes using a parameter estimation model: toward an improved quantification of biodegradation.

    PubMed

    Morrill, Penny L; Sleep, Brent E; Slater, Gregory F; Edwards, Elizabeth A; Lollar, Barbara Sherwood

    2006-06-15

    A model was developed to predict the concentrations of chlorinated ethenes and ethene during sequential reductive dechlorination of tetrachloroethene (PCE) from stable carbon isotope values using Rayleigh model principles and specified isotopic enrichment factors for each step of dechlorination. The model was tested using three separate datasets of concentration and isotope values measured during three experiments involving the degradation of PCE to vinyl chloride (VC), trichloroethene (TCE) to ethene, and cis-1,2-dichloroethene (cDCE) to ethene. The model was then coupled to a parameter estimation method to estimate values for the isotopic enrichment factors of TCE, cDCE, and VC when they are intermediates in the dechlorination to ethene. The enrichment factors estimated for TCE and cDCE when they were intermediates in biodegradation experiments were close to or within the published range of enrichment factors determined from experiments where TCE or cDCE were the initial substrates. In contrast, the enrichment factors determined by parameter estimation for experiments in which VC was an intermediate in biodegradation experiments were consistently more negative (by approximately 10 per thousandth) than the most negative published enrichment factor determined from experiments where VC was the initial substrate. This finding suggests that the range of enrichment factors for VC dechlorination may not be as narrow as previously suggested (-21.5 per thousandth to -26.6 per thousandth) and that fractionation during VC dechlorination when VC is an intermediate compound may be significantly larger than when VC is the initial substrate. These findings have important implications both for the current practice of extrapolating laboratory-derived isotopic enrichment factors to quantify biodegradation of chlorinated ethenes in the field and for understanding the details of enzymatic reductive dechlorination.

  19. Team resource management trainer's manual for the atomic vapor laser isotope separation program

    SciTech Connect

    Bennett, Tom

    1998-03-13

    High reliability organizations do exist. They have been defined as those organizations that conduct thousands of high-consequence operations a year, essentially error-free. Naval air carriers, air traffic control, and commercial aviation are some of these kinds of organizations. How did they get that way? What kinds of people staff them? Can we become a high reliability organization? This workshop will look at these questions. When we are done, it will be up to you to determine whether we have the right stuff. There are six goals for this workshop: Describe Team Resource Management and its purpose; Describe Performance Shaping Factors (PSFs) and their role in predicting and managing team performance and errors; Describe the principles for managing human error; Describe TRM's 12 rules-of-thumb (the "Dirty Dozen") and use of safety nets; Conduct Operational Risk Management (ORM); Demonstrate ways to keep TRM working.

  20. The science of human factors: separating fact from fiction

    PubMed Central

    Russ, Alissa L; Fairbanks, Rollin J; Karsh, Ben-Tzion; Militello, Laura G; Saleem, Jason J; Wears, Robert L

    2013-01-01

    Background Interest in human factors has increased across healthcare communities and institutions as the value of human centred design in healthcare becomes increasingly clear. However, as human factors is becoming more prominent, there is growing evidence of confusion about human factors science, both anecdotally and in scientific literature. Some of the misconceptions about human factors may inadvertently create missed opportunities for healthcare improvement. Methods The objective of this article is to describe the scientific discipline of human factors and provide common ground for partnerships between healthcare and human factors communities. Results The primary goal of human factors science is to promote efficiency, safety and effectiveness by improving the design of technologies, processes and work systems. As described in this article, human factors also provides insight on when training is likely (or unlikely) to be effective for improving patient safety. Finally, we outline human factors specialty areas that may be particularly relevant for improving healthcare delivery and provide examples to demonstrate their value. Conclusions The human factors concepts presented in this article may foster interdisciplinary collaborations to yield new, sustainable solutions for healthcare quality and patient safety. PMID:23592760

  1. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both δ13C and δD values for the n-alkanes were then determined by CSIA in each sample. Plots of δD versus δ13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ13C, δD, or combined δ13C and δD data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the δ13C and δD values.

  2. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    PubMed Central

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C. PMID:26750143

  3. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    NASA Astrophysics Data System (ADS)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  4. Team resource management participant's handbook for the atomic vapor laser isotope separation program

    SciTech Connect

    Bennett, Tom

    1998-05-01

    The goal of any operation is to complete tasks efficiently and effectively. Working safely is completely consistent with efficient, reliable operations. Working in an unsafe manner is not effective or ultimately efficient. If someone is hurt, work stops. Following the steps advocated by Team Resource Management (TRM) leads to more safe, efficient, effective work habits. TRM is a method used by teams (i.e., leaders and workers) to conduct technical business. It is used by the aviation industry to improve reliability and safety through formalizing the way it does business. High reliability organizations do exist. They conduct thousands of high-consequence operations a year, essentially error-free. Naval air carriers, air traffic control, and commercial aviation are some of these kinds of organizations. How did they get that way? What kinds of people staff them? Can we become a high reliability organization? This workshop will look at these questions. When we are done, it will be up to you to determine if we have the right stuff. The goals of this workshop are to: Describe Team Resource Management and its purpose; Describe Performance Shaping Factors (PSFs) and their role in predicting and managing team performance and errors; Describe the principles for managing human error; Describe TRM's 12 rules-of-thumb (the "Dirty Dozen") and use of safety nets; Conduct Operational Risk Management (ORM); Demonstrate ways to keep TRM working.

  5. Towards high precision measurements of nuclear g-factors for the Be isotopes

    NASA Astrophysics Data System (ADS)

    Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  6. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  7. Variable results in hydrograph separation using geochemical and isotopic chemistry data from a glacierized mountain watershed in Nepal

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Williams, M. W.; Racoviteanu, A.; Pellicciotti, F.; Juszak, I.; Immerzeel, W.; Kayastha, R. B.

    2013-12-01

    Mountains play an invaluable role in regulating hydrologic resources that downstream communities depend on. As our climate changes, it is essential to evaluate the vulnerability of the high-elevation water cycle. An improved understanding of where the water in our rivers comes from is required, before we can anticipate changes and devise adaptation measures. In the context of climate change, hydrograph separation methods may provide ways to determine how much streamflow comes from snow and glacier melt versus groundwater and direct precipitation in poorly sampled glacierized catchments in the Himalaya. Understanding hydrograph separation in high-elevation catchments provides insight into how the timing and volume of discharge may change over time. This work uses geochemical and isotopic data from surface water and precipitation samples collected in the Langtang Valley of Nepal in November/December 2008, and between May and September of 2012. Results presented include a simple two-component mixing model using δ18O values as a tracer to attribute streamwater either to glacier/snow melt or to groundwater. Additionally, a sensitivity analysis was performed for multiple-component (3+) End Member Mixing Analyses (EMMA) to test the plausibility of results using both various numbers of End Members and various combinations of geochemical tracers. We found that the multiple-component EMMA indicates a higher percentage of glacier and snow melt in the river water than does a simple two-component mixing model using δ18O values, and the more robust nature of EMMA suggests this is a more accurate assessment of the catchment. At Syabrubesi, the lowest elevation sampling site (1460m), the two-component model using δ18O as a tracer indicates that 27% of river discharge was meltwater in November 2008, and 38% was a combination of snow and ice meltwater in May 2012. Using a three-component EMMA, the high-end estimate of glacier melt at Syabrubesi during May 2012 was 52% with snow

  8. 47 CFR 36.3 - Freezing of jurisdictional separations category relationships and/or allocation factors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Freezing of jurisdictional separations category relationships and/or allocation factors. 36.3 Section 36.3 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 36.3 Freezing of jurisdictional separations category relationships and/or allocation factors. (a...

  9. 47 CFR 36.3 - Freezing of jurisdictional separations category relationships and/or allocation factors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Freezing of jurisdictional separations category relationships and/or allocation factors. 36.3 Section 36.3 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 36.3 Freezing of jurisdictional separations category relationships and/or allocation factors. (a...

  10. Problem of soot aggregates separation and purification for Carbon isotopic composition analyses - burning experiment and real black layers from speleothems examples

    NASA Astrophysics Data System (ADS)

    Hercman, Helena; Zawidzki, Pawel; Majewska, Agata

    2015-04-01

    Burning products are often used as an indicator of fire or prehistoric men activities. When it consists of macroscopically visible black layer it may be studied by different methods. When it is dispersed within sediment it is necessary to apply method for burning product separation. Soot aggregates as a result of incomplete combustion of organic materials are most reliable indication of burning. Size of soot particles is too small to observe by optical microscopy. There are two main advantages of application of transmission electron microscopy (TEM) for investigations of samples formed as a result of organic materials (like wood) combustion. First, it makes possible to investigate not only morphology but also its interior structure. The carbon layers arrangement is characteristic for particles obtained from combustion processes, and it directly confirm that these particles were formed that way. And second, analysis of chemical composition using of EDS spectroscopy in transmission microscope are precise and it spatial resolution is about a few nanometers. Burning chamber for wood burning experiments was constructed. It allows wood burning with controlling of burning temperature, carbon isotopic composition in carbon dioxide of burning atmosphere and carbon dioxide originated during burning. Burning products are collected on the plates with controlling of plates material, temperature and distance from flame. Two types of samples were studied. The first type of samples consisted the products of recent wood burning. The second type of samples consisted of black layers collected from speleothems. Soot aggregates were chemically separated from other burning products collected on plates. Process of chemical separation and purity of soot material were tested by TEM observations. Isotopic carbon composition at each step of soot separation as well as original wood fragments was analysed at the Isotopic Laboratory for Dating and Palaeoenvironment Studies, Polish Academy of

  11. ELECTROMAGNETIC SEPARATION OF ISOTOPES

    DOEpatents

    Barnes, S.W.; Centrell, C.M.

    1960-02-01

    An improved calutron receiver is described having two entrance slots leading to two electrically isolated pockets. A wall of the pocket intended to receive the heavier ions defines one side of the entrance slot to the other pocket and it is so constructed and arranged that the two sides of the wall are substantially equally exposed to the respective ion beams. Thus the per cent rejection of material entering the two entrance slots is the same for each slot.

  12. Physiological and environmental factors related to carbon isotopic variations in mollusc shell carbonate

    SciTech Connect

    Krantz, D.E.; Williams, D.F.; Jones, D.S.

    1985-01-01

    The carbon isotopic composition of mollusc shell carbonate has been used as a general environmental indicator in numerous studies, but relatively little is known of the factors which affect within-shell variation. Primary control of delta/sup 13/C values in shell carbonate comes from the dissolved bicarbonate source, particularly as related to marine versus fresh water. Present models explain cyclic variations in the delta/sup 13/C profiles of mollusc shells due to upwelling, phytoplankton productivity and stratification, disequilibrium with rapid shell growth, and infaunal versus epifaunal habitat. Carbon and oxygen isotopic profiles in this study were obtained from specimens of Spisula solidissima (surf clam) and Placopecten magellanicus (sea scallop) collected alive from 14 to 57 m water depths off the Virginia coast. Three main factors appear to affect the delta/sup 13/C profiles in these specimens. Isotopically light values commonly associated with the spring and occasionally the fall correspond with seasonal phytoplankton productivity. A significant negative delta/sup 13/C offset of the infaunal Spisula relative to the epifaunal Placopecten probably relates to the inclusion of isotopically more negative pore-water bicarbonate by Spisula. Additionally, occasional transient spikes in both the delta/sup 18/O and delta/sup 13/C profiles correspond to intrusion of reduced-salinity water.

  13. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    SciTech Connect

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent.

  14. Key factors of eddy current separation for recovering aluminum from crushed e-waste.

    PubMed

    Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming

    2017-02-01

    Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and Sp. There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. Sp/Sm of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of Sp/Sm. This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater Sp of aluminum particles brought positive impact on separation efficiency. Greater Sp could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Upgrade of the resonance ionization laser ion source at ISOLDE on-line isotope separation facility: New lasers and new ion beamsa)

    NASA Astrophysics Data System (ADS)

    Fedosseev, V. N.; Berg, L.-E.; Fedorov, D. V.; Fink, D.; Launila, O. J.; Losito, R.; Marsh, B. A.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sjödin, A. M.; Wendt, K. D. A.

    2012-02-01

    The resonance ionization laser ion source (RILIS) produces beams for the majority of experiments at the ISOLDE on-line isotope separator. A substantial improvement in RILIS performance has been achieved through a series of upgrade steps: replacement of the copper vapor lasers by a Nd:YAG laser; replacement of the old homemade dye lasers by new commercial dye lasers; installation of a complementary Ti:Sapphire laser system. The combined dye and Ti:Sapphire laser system with harmonics is capable of generating beams at any wavelength in the range of 210-950 nm. In total, isotopes of 31 different elements have been selectively laser-ionized and separated at ISOLDE, including recently developed beams of samarium, praseodymium, polonium, and astatine.

  16. Love of life and death distress: two separate factors.

    PubMed

    Abdel-Khalek, Ahmed M

    2007-01-01

    The objectives of the current investigation were threefold: a) to explore the gender differences on love of life (a new construct in the well-being domain) and death distress (death anxiety, death depression, and death obsession); b) to explore the relationship between the scales of these constructs; and c) to examine the factorial structure of these scales. The sample was 245 volunteer Kuwaiti college students (53.5% women). Their mean age was 21.9 (SD = 2.3). They responded to the Love of Life Scale, the Death Anxiety Scale, the Arabic Scale of Death Anxiety, the Death Depression Scale-Revised, and the Death Obsession Scale. Gender differences on love of life were not significant. However, women had significantly higher mean scores for the four death distress scales than did their male counterparts. All the correlations between love of life and the death distress scales were not significant except one pertaining to love of life and death depression (negative) in women. Two oblique factors were extracted: death distress and love of life. It was concluded that these constructs represent two distinct and independent factors. Counselors and clinicians dealing with death distress would find that it is not associated with love of life.

  17. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2015-09-01

    The nitrogen stable isotope ratio (15N/14N) of nitrogen oxides (NOx = NO + NO2) and its oxidation products (NOy = NOx + PAN (peroxyacetyl nitrate = C2H3NO5) + HNO3 + NO3 + HONO + N2O5 + ⋯ + particulate nitrates) has been suggested as a tool for partitioning NOx sources; however, the impact of nitrogen (N) equilibrium isotopic fractionation on 15N/14N ratios during the conversion of NOx to NOy must also be considered, but few fractionation factors for these processes have been determined. To address this limitation, computational quantum chemistry calculations of harmonic frequencies, reduced partition function ratios (15β), and N equilibrium isotope exchange fractionation factors (αA/B) were performed for various gaseous and aqueous NOy molecules in the rigid rotor and harmonic oscillator approximations using the B3LYP and EDF2 density functional methods for the mono-substitution of 15N. The calculated harmonic frequencies, 15β, and αA/B are in good agreement with available experimental measurements, suggesting the potential to use computational methods to calculate αA/B values for N isotope exchange processes that are difficult to measure experimentally. Additionally, the effects of solvation (water) on 15β and αA/B were evaluated using the IEF-PCM model, and resulted in lower 15β and αA/B values likely due to the stabilization of the NOy molecules from dispersion interactions with water. Overall, our calculated 15β and αA/B values are accurate in the rigid rotor and harmonic oscillator approximations and will allow for the estimation of αA/B involving various NOy molecules. These calculated αA/B values may help to explain the trends observed in the N stable isotope ratio of NOy molecules in the atmosphere.

  18. Neutron-Proton Asymmetry Dependence of Spectroscopic Factors in Ar Isotopes

    SciTech Connect

    Lee, Jenny; Tsang, Betty; Shapira, Dan

    2010-01-01

    Spectroscopic factors have been extracted for proton-rich 34Ar and neutron-rich 46Ar using the (p, d) neutron transfer reaction. The experimental results show little reduction of the ground state neutron spectroscopic factor of the proton-rich nucleus 34Ar compared to that of 46Ar. The results suggest that correlations, which generally reduce such spectroscopic factors, do not depend strongly on the neutron-proton asymmetry of the nucleus in this isotopic region as was reported in knockout reactions. The present results are consistent with results from systematic studies of transfer reactions but inconsistent with the trends observed in knockout reaction measurements.

  19. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments.

    PubMed

    Retzmann, A; Zimmermann, T; Pröfrock, D; Prohaska, T; Irrgeher, J

    2017-07-04

    A novel, fast and reliable sample preparation procedure for the simultaneous separation of Sr, Pb, and Nd has been developed for subsequent isotope ratio analysis of sediment digests. The method applying a fully automated, low-pressure chromatographic system separates all three analytes in a single-stage extraction step using self-packed columns filled with DGA Resin. The fully automated set-up allows the unattended processing of three isotopic systems from one sediment digest every 2 h, offering high sample throughput of up to 12 samples per day and reducing substantially laboratory manpower as compared to conventional manual methods. The developed separation method was validated using the marine sediment GBW-07313 as matrix-matched certified reference material and combines quantitative recoveries (>90% for Sr, >93% for Pb, and >91% for Nd) with low procedural blank levels following the sample separation (0.07 μg L(-1) Sr, 0.03 μg L(-1) Pb, and 0.57 μg L(-1) Nd). The average δ values for Sr, Pb, and Nd of the separated reference standards were within the certified ranges (δ ((87)Sr/(86)Sr)NIST SRM 987 of -0.05(28) ‰, δ((208)Pb/(206)Pb)NIST SRM 981 of -0.21(14) ‰, and δ((143)Nd/(144)Nd)JNdi-1 of 0.00(7) ‰). The DGA Resin proved to be reusable for the separation of >10 sediment digests with no significant carry-over or memory effects, as well as no significant on-column fractionation of Sr, Pb, and Nd isotope ratios. Additional spike experiments of NIST SRM 987 with Pb, NIST SRM 981 with Sr, and JNdi-1 with Ce revealed no significant impact on the measured isotopic ratios, caused by potential small analyte peak overlaps during the separation of Sr and Pb, as well as Ce and Nd.

  20. Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications

    NASA Astrophysics Data System (ADS)

    Li, Xuefang; Zhao, Hui; Tang, Mao; Liu, Yun

    2009-09-01

    This study estimates equilibrium fractionation factors in the Ge isotope system, including the dominant aqueous Ge(OH) 4 and GeO(OH) 3- species in seawater, Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), and Ge in quartz- (or opal-), albite-, K-feldspar-, olivine- and sphalerite-like structures. Estimations are based on Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. All calculations are made at B3LYP/6-311 + G(d,p) theory level. Solvation effects are treated by explicit solvent model ("water-droplet" method), and mineral structures are simulated using cluster models, in which the clusters are cut from the X-ray structures of those minerals. In addition, a number of different conformers are used for aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The "salt effect" on GeO(OH) 3-(aq) species is also carefully evaluated. We estimate the accuracy of these fractionation calculations at about ± 0.3‰. Excitedly, very large isotope fractionations are found between many Ge isotope systems. The Ge-containing sulfides (e.g. sphalerite) can extremely enrich light Ge isotopes (more than 10‰) compared with 4-coordinated Ge-O compounds (e.g. Ge(OH) 4(aq) or quartz). The fractionations between Ge(OH) 4(aq) and 6-coordinated Ge-bearing organic complexes can be also up to 4‰ at 25 °C. These results give a good explanation for the experimental observations of Rouxel et al. (2006). It also suggests a great potential for broad application of Ge isotope method in various geological systems.

  1. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  2. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  3. 47 CFR 36.3 - Freezing of jurisdictional separations category relationships and/or allocation factors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... relationships and/or allocation factors. 36.3 Section 36.3 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 36.3 Freezing of jurisdictional separations category relationships and/or allocation factors. (a... allocation factors calculated during the twelve month period ending December 31, 2000, for each of the...

  4. Factors Moderating Children's Adjustment to Parental Separation: Findings from a Community Study in England

    ERIC Educational Resources Information Center

    Cheng, Helen; Dunn, Judy; O'Connor, Thomas G.; Golding, Jean

    2006-01-01

    Research findings show that there is marked variability in children's response to parental separation, but few studies identify the sources of this variation. This prospective longitudinal study examines the factors modifying children's adjustment to parental separation in a community sample of 5,635 families in England. Children's…

  5. Shell closures in Fl superheavy isotopes via determination of alpha decay preformation factor

    NASA Astrophysics Data System (ADS)

    Alsaif, Norah A. M.; Radiman, Shahidan; Saleh Ahmed, Saad M.

    2017-10-01

    Based on the hypothesized cluster-formation model (CFM), the α-decay preformation factors of superheavy isotopes of Flerovium (Fl) with atomic number Z = 114 and neutron numbers 150 ≤ N ≤ 196 were determined. The formula from the CFM used depends on the eigenvalues of the cluster-formation energy of the α particles and the total energy values of the parent nuclei. The binding energy difference was used to determine these values. The results from the calculations for these isotopes reflect some properties of their nuclear structure. Within the CFM, the prediction of the magic nucleus occurs at N = 172 and Z = 114. Our results indicate towards the existence of shell closure of the stabilization superheavy nuclei.

  6. Effective Boson Number- A New Approach for Predicting Separation Energies with the IBM1, Applied to Zr, Kr, Sr isotopes near A = 100

    NASA Astrophysics Data System (ADS)

    Paul, Nancy; van Isacker, Pieter; García Ramos, José Enrique; Aprahamian, Ani

    2011-10-01

    This work uses effective boson numbers in the Interacting Boson Model (IBM1) to predict two neutron separation energies for neutron-rich zirconium, strontium, and krypton isotopes., We determine the functional forms of binding energy and excitation energies as a function of boson number for a given choice of IBM parameters that give a good overall description of the experimental spectra of the isotopic chain. The energy of the first excited 2+ level is then used to extract an effective boson number for a given nucleus, that is in turn used to calculate the separation energies. This method accounts for complex interactions among valence nucleons around magic and semi- magic nuclei and successfully predicts the phase transitional signature in separation energies around A=100 for 92-108Zr, 90-104Sr, and 86-96Kr Supported by the NSF under contract PHY0758100, the Joint Institute for Nuclear Astrophysics grant PHY0822648, University of Notre Dame Nanovic Institute, Glynn Family Honors Program, Center for Undergraduate Scholarly Engagement.

  7. Preliminary results from a microvolume, dynamically heated analytical column for preconcentration and separation of simple gases prior to stable isotopic analysis

    NASA Astrophysics Data System (ADS)

    Panetta, Robert James; Seed, Mike

    2016-04-01

    Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.

  8. A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis.

    PubMed

    Wang, Fangjun; Chen, Rui; Zhu, Jun; Sun, Deguang; Song, Chunxia; Wu, Yifeng; Ye, Mingliang; Wang, Liming; Zou, Hanfa

    2010-04-01

    Multidimensional separation is often applied for large-scale qualitative and quantitative proteome analysis. A fully automated system with integration of a reversed phase-strong cation exchange (RP-SCX) biphasic trap column into vented sample injection system was developed to realize online sample loading, isotope dimethyl labeling and online multidimensional separation of the proteome samples. Comparing to conventionally manual isotope labeling and off-line fractionation technologies, this system is fully automated and time-saving, which is benefit for improving the quantification reproducibility and accuracy. As phosphate SCX monolith was integrated into the biphasic trap column, high sample injection flow rate and high-resolution stepwise fractionation could be easily achieved. Approximately 1000 proteins could be quantified in approximately 30 h proteome analysis, and the proteome coverage of quantitative analysis can be further greatly improved by prolong the multidimensional separation time. This system was applied to analyze the different protein expression level of HCC and normal human liver tissues. After three times replicated analysis, finally 94 up-regulated and 249 down-regulated (HCC/Normal) proteins were successfully obtained. These significantly regulated proteins are widely validated by both gene and proteins expression studies previously. Such as some enzymes involved in urea cycle, methylation cycle and fatty acids catabolism in liver were all observed down-regulated.

  9. Factors moderating children's adjustment to parental separation: findings from a community study in England.

    PubMed

    Cheng, Helen; Dunn, Judy; O'connor, Thomas G; Golding, Jean

    2006-04-01

    Research findings show that there is marked variability in children's response to parental separation, but few studies identify the sources of this variation. This prospective longitudinal study examines the factors modifying children's adjustment to parental separation in a community sample of 5,635 families in England. Children's behavioral/emotional problems were assessed when children were aged 47 and 81 months; marital quality, maternal depression, socioeconomic circumstances, and demographic variables were assessed prior to the separation from maternal report. Results indicated that 346 mothers separated from their partners in the 3-year period. Preseparation differences were found for measures of family process and parent risk factors, with effect sizes ranging from small to trivial. Parental separation was associated with a significant but modest increase in behavioral/emotional problems, independent of marital quality, maternal depression, socioeconomic circumstances, and demographic variables. Moderation analyses showed that children of cohabiting parents had a greater increase in adjustment problems following parental separation than children of married parents. Further research elucidating the factors that moderate children's adjustment to parental separation is needed to improve our understanding of who may most likely benefit from preventive interventions.

  10. Stable isotope discrimination factors and between-tissue isotope comparisons for bone and skin from captive and wild green sea turtles (Chelonia mydas).

    PubMed

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Price, Mike; Kurle, Carolyn M

    2017-08-31

    The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ(13) C) and nitrogen (Δ(15) N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. We overcame these constraints and determined the Δ(13) C and Δ(15) N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ(13) C values) and nitrogen (δ(15) N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI among studies using multiple tissues. The mean (±SD) Δ(13) C and Δ(15) N values (‰) between skin and bone from captive turtles and their diet (non-lipid extracted) were 2.3±0.3 and 4.1±0.4 and 2.1±0.6 and 5.1±1.1, respectively. The mathematically predicted Δ(13) C and Δ(15) N values were similar (within 1‰) to the experimentally derived values. The mean δ(15) N values from bone were higher than those from skin for captive (+1.0±0.9‰) and wild (+0.8±1.0‰) turtles; the mean δ(13) C values from bone were lower than those from skin for wild turtles (-0.6±0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. For sea turtles, we provide the first a) bone-diet SI discrimination factors, b) comparison of SI ratios from individual-specific bone and skin, and c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach opens the door

  11. Variability in Isotope Discrimination Factors in Coral Reef Fishes: Implications for Diet and Food Web Reconstruction

    PubMed Central

    Wyatt, Alex S. J.; Waite, Anya M.; Humphries, Stuart

    2010-01-01

    Interpretation of stable isotope ratios of carbon and nitrogen (δ13C and δ15N) is generally based on the assumption that with each trophic level there is a constant enrichment in the heavier isotope, leading to diet-tissue discrimination factors of 3.4‰ for 15N (ΔN) and ∼0.5‰ for 13C (ΔC). Diet-tissue discrimination factors determined from paired tissue and gut samples taken from 152 individuals from 26 fish species at Ningaloo Reef, Western Australia demonstrate a large amount of variability around constant values. While caution is necessary in using gut contents to represent diet due to the potential for high temporal variability, there were significant effects of trophic position and season that may also lead to variability in ΔN under natural conditions. Nitrogen enrichment increased significantly at higher trophic levels (higher tissue δ15N), with significantly higher ΔN in carnivorous species. Changes in diet led to significant changes in ΔN, but not tissue δ15N, between seasons for several species: Acanthurus triostegus, Chromis viridis, Parupeneus signatus and Pomacentrus moluccensis. These results confirm that the use of meta-analysis averages for ΔN is likely to be inappropriate for accurately determining diets and trophic relationships using tissue stable isotope ratios. Where feasible, discrimination factors should be directly quantified for each species and trophic link in question, acknowledging the potential for significant variation away from meta-analysis averages and, perhaps, controlled laboratory diets and conditions. PMID:21060681

  12. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    PubMed

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of (89)Sr, (90)Y, (125)I and (131)I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of several variable factors on the isotope ratio by HRGC-MS.

    PubMed

    Sawamura, Masayoshi; Satake, Atsushi; Ueno, Takao; Une, Akitoshi; Ukeda, Hiroyuki

    2004-01-01

    In the isotope ratio (Ir) analysis using GC-MS, several variable factors in sampling incidental to any food analysis were investigated for yuzu fruit. The Irs of ten monoterpene hydrocarbons in yuzu essential oils from each of six fruiting positions of three trees were measured. The sign test following t-test of all the Ir values demonstrated that there was no significant difference between both sampling years of 2001 and 2002. There was also no significant variation in the Ir values among the three trees and six fruiting positions in the individual two years.

  14. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  15. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Petin, A. N.

    2016-03-01

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF6 and CF3I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF6 molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation.

  16. Factors controlling the temporal variability of ecosystem respiration and its carbon isotope composition

    NASA Astrophysics Data System (ADS)

    Fassbinder, J.; Griffis, T. J.; Baker, J. M.; Erickson, M.; Billmark, K.; Smith, J.

    2009-12-01

    Ecosystem respiration (FR ) is the major pathway for carbon loss from terrestrial ecosystems. Stable carbon isotope analyses have been used to improve our understanding of the processes controlling ecosystem respiration. In particular, 13CO2 has been used to partition the autotrophic (Fa) and heterotrophic (Fh) contributions to FR. Further, there has been some concern in the literature regarding the temporal variability of the isotopic composition of ecosystem respiration (δR) and its potential influence on ecosystem flux partitioning based on isotope methods. In this study, we used an automated chamber and tunable diode laser system to measure soil respiration (FRs) and its isotopic composition (δRs) in an agricultural ecosystem under a C3/C4 crop rotation. Further, we used the same chamber-TDL system in a climate controlled greenhouse facility with C3/C4 treatments to examine the main factors causing variability in δRs and δR. The chamber data revealed strong diurnal patterns in the isotopic composition of Fh in the agricultural soil plots before crop emergence and in the greenhouse experiments involving bare soils. The diurnal pattern consisted of a sharp enrichment of up to 6‰ from 0700 to 1200 hr followed by a gradual depletion throughout the afternoon and evening. The diurnal signals of FR and soil temperature closely resembled the diurnal signal of δh, but consistently lagged δh by 3 to 4 hours. During peak corn growth, diurnal variation in δRs was strongly influenced by the isotopic composition of root respiration (δas), which enriched nighttime δRs by as much as 7‰ and daytime δRs by as much as 3‰. Chamber and flux-gradient data also indicated considerable seasonal variation in δR during corn growing seasons, ranging from -25‰ at the time of planting to -11‰ during peak growth. Less variation in δR was observed during soybean seasons, with values ranging from -26 to -21‰. Major shifts in δR during corn seasons were consistently

  17. A First Look at Graphite Grains from Orgueil: Morphology, Carbon, Nitrogen and Neon Isotopic Compositions of Individual, Chemically Separated Grains

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, O.; Zinner, E.; Meshik, A. P.; Hohenberg, C. M.; Walker, R. W.

    2004-01-01

    Presolar graphite in Murchison has been extensively studied. It is characterized by a unique Ne isotopic composition, known as the Ne-E(L) component. According to studies by Huss and Lewis, the concentration of Ne-E(L) in Orgueil is about one order of magnitude higher than in Murchison, when normalized to the matrix. This could be due to a higher presolar graphite abundance in Orgueil, or due to a higher Ne-E concentrations per grain. The Ne isotopic compositions in individual presolar graphite grains from Murchison have been measured before. It was shown, that a third of the grains have detectable excesses in 22Ne, characteristic of the Ne-E(L) component. One grain in a hundred had a Ne-22 concentration two orders of magnitude higher than blank.

  18. A First Look at Graphite Grains from Orgueil: Morphology, Carbon, Nitrogen and Neon Isotopic Compositions of Individual, Chemically Separated Grains

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, O.; Zinner, E.; Meshik, A. P.; Hohenberg, C. M.; Walker, R. W.

    2004-01-01

    Presolar graphite in Murchison has been extensively studied. It is characterized by a unique Ne isotopic composition, known as the Ne-E(L) component. According to studies by Huss and Lewis, the concentration of Ne-E(L) in Orgueil is about one order of magnitude higher than in Murchison, when normalized to the matrix. This could be due to a higher presolar graphite abundance in Orgueil, or due to a higher Ne-E concentrations per grain. The Ne isotopic compositions in individual presolar graphite grains from Murchison have been measured before. It was shown, that a third of the grains have detectable excesses in 22Ne, characteristic of the Ne-E(L) component. One grain in a hundred had a Ne-22 concentration two orders of magnitude higher than blank.

  19. Large volume injection in ion chromatography Separation of rubidium and strontium for on-line inductively coupled plasma mass spectrometry determination of strontium isotope ratios.

    PubMed

    García-Ruiz, Silvia; Moldovan, Mariella; García Alonso, J Ignacio

    2007-05-18

    Large volume injection, up to 5 mL, was evaluated and optimised for the on-line ion chromatographic separation of Rb and Sr before ICP-MS measurement of Sr isotope ratios. Flat-topped chromatographic peaks, ideally suited for multicollector ICP-MS isotope ratio measurements, could be obtained when the composition of the mobile phase (nitric acid and 18-crown-6 ether) was identical to the matrix of the sample. Under those conditions rubidium eluted at the dead volume of the column while strontium produced a flat-topped transient signal with several minutes of stable plateau. On-line data acquisition during several minutes at the plateau of Sr signal allowed high precision Sr isotope ratio measurement. The developed procedure was evaluated for Sr isotope ratio measurements on different types of samples, including cider, apples, apple leaves, and soil extracts, in the frame of a long-term project aiming at origin authentication using strontium isotope ratio measurements. It was observed that sample matrix caused broadening of the strontium chromatographic peak and loss of flat-topped peak profile. Under those circumstances the addition of the complexing crown-ether 18-crown-6 both to samples and chromatographic eluent provided two distinct advantages. First, a drastic increase in the retention of strontium was observed which could be modulated by increasing the concentration of nitric acid in the eluent up to 900 mM. This increase in the eluent HNO(3) concentration allowed the application of the method to acid soil digests and other high acidity samples. Second, the matrix of the sample did not affect any more the chromatographic peak profile and similar chromatographic separations could be obtained for samples and standards maintaining the flat-topped Sr peak profile. Sample preparation consisted of a simple 1:10 dilution of the cider or pre-treated solid samples by adding HNO(3) (900 mM) and 18-crown-6 ether (5mM) to obtain similar composition in the sample solution

  20. Parental Separation and Cardiometabolic Risk Factors in Late Adolescence: A Cross-Cohort Comparison.

    PubMed

    Soares, Ana Luiza Gonçalves; Gonçalves, Helen; Matijasevich, Alicia; Sequeira, Maija; Smith, George Davey; Menezes, Ana M B; Assunção, Maria Cecília; Wehrmeister, Fernando C; Fraser, Abigail; Howe, Laura D

    2017-05-15

    The aim of this study was to explore the association between parental separation during childhood (up to 18 years of age) and cardiometabolic risk factors (body mass index, fat mass index, blood pressure, physical activity, smoking, and alcohol consumption) in late adolescence using a cross-cohort comparison and to explore whether associations differ according to the age at which the parental separation occurred and the presence or absence of parental conflict prior to separation. Data from the Avon Longitudinal Study of Parents and Children (ALSPAC, United Kingdom) (1991-2011) and the 1993 Pelotas Birth Cohort (Brazil) (1993-2011) were used. The associations of parental separation with children's cardiometabolic risk factors were largely null. Higher odds of daily smoking were observed in both cohorts for those adolescents whose parents separated (for ALSPAC, odds ratio = 1.46; for Pelotas Birth Cohort, odds ratio = 1.98). Some additional associations were observed in the Pelotas Birth Cohort but were generally in the opposite direction to our a priori hypothesis: Parental separation was associated with lower blood pressure and fat mass index, and with more physical activity. No consistent differences were observed when analyses were stratified by child's age at parental separation or parental conflict. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  1. Parental Separation and Cardiometabolic Risk Factors in Late Adolescence: A Cross-Cohort Comparison

    PubMed Central

    Gonçalves, Helen; Matijasevich, Alicia; Sequeira, Maija; Smith, George Davey; Menezes, Ana M. B.; Assunção, Maria Cecília; Wehrmeister, Fernando C.; Fraser, Abigail; Howe, Laura D.

    2017-01-01

    Abstract The aim of this study was to explore the association between parental separation during childhood (up to 18 years of age) and cardiometabolic risk factors (body mass index, fat mass index, blood pressure, physical activity, smoking, and alcohol consumption) in late adolescence using a cross-cohort comparison and to explore whether associations differ according to the age at which the parental separation occurred and the presence or absence of parental conflict prior to separation. Data from the Avon Longitudinal Study of Parents and Children (ALSPAC, United Kingdom) (1991–2011) and the 1993 Pelotas Birth Cohort (Brazil) (1993–2011) were used. The associations of parental separation with children's cardiometabolic risk factors were largely null. Higher odds of daily smoking were observed in both cohorts for those adolescents whose parents separated (for ALSPAC, odds ratio = 1.46; for Pelotas Birth Cohort, odds ratio = 1.98). Some additional associations were observed in the Pelotas Birth Cohort but were generally in the opposite direction to our a priori hypothesis: Parental separation was associated with lower blood pressure and fat mass index, and with more physical activity. No consistent differences were observed when analyses were stratified by child's age at parental separation or parental conflict. PMID:28444145

  2. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    SciTech Connect

    Redondo, L. M.; Canacsinh, H.; Ferrao, N.; Mendes, C.; Silva, J. Fernando; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-15

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  3. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    PubMed

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  4. Using isotopes of dissolved inorganic carbon species and water to separate sources of recharge in a cave spring, northwestern Arkansas, USA Blowing Spring Cave

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.

    2013-01-01

    Blowing Spring Cave in northwestern Arkansas is representative of cave systems in the karst of the Ozark Plateaus, and stable isotopes of water (δ18O and δ2H) and inorganic carbon (δ13C) were used to quantify soil-water, bedrock-matrix water, and precipitation contributions to cave-spring flow during storm events to understand controls on cave water quality. Water samples from recharge-zone soils and the cave were collected from March to May 2012 to implement a multicomponent hydrograph separation approach using δ18O and δ2H of water and dissolved inorganic carbon (δ13C–DIC). During baseflow, median δ2H and δ18O compositions were –41.6‰ and –6.2‰ for soil water and were –37.2‰ and –5.9‰ for cave water, respectively. Median DIC concentrations for soil and cave waters were 1.8 mg/L and 25.0 mg/L, respectively, and median δ13C–DIC compositions were –19.9‰ and –14.3‰, respectively. During a March storm event, 12.2 cm of precipitation fell over 82 h and discharge increased from 0.01 to 0.59 m3/s. The isotopic composition of precipitation varied throughout the storm event because of rainout, a change of 50‰ and 10‰ for δ2H and δ18O was observed, respectively. Although, at the spring, δ2H and δ18O only changed by approximately 3‰ and 1‰, respectively. The isotopic compositions of precipitation and pre-event (i.e., soil and bedrock matrix) water were isotopically similar and the two-component hydrograph separation was inaccurate, either overestimating (>100%) or underestimating (<0%) the precipitation contribution to the spring. During the storm event, spring DIC and δ13C–DIC decreased to a minimum of 8.6 mg/L and –16.2‰, respectively. If the contribution from precipitation was assumed to be zero, soil water was found to contribute between 23 to 72% of the total volume of discharge. Although the assumption of negligible contributions from precipitation is unrealistic, especially in karst systems where rapid flow

  5. Mantle Helium and Carbon Isotopes in Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon: Evidence for Renewed Volcanic Activity or a Long Term Steady State System?

    USGS Publications Warehouse

    Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.

    2002-01-01

    Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.

  6. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  7. Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Uesugi, Kenji; Motodate, Yusuke; Ohmiya, Isao; Komiya, Hiroyuki; Masuda, Harue; Kusakabe, Minoru

    2007-09-01

    Stable isotopes of oxygen and hydrogen have the potential to serve as tracers for both source and flow paths in a groundwater system. The ratios of stable isotopes of oxygen (δ18O) and hydrogen (δD) can be used as natural tracer parameters to separate multiflow groundwater paths by applying a simple inversion analysis method to determine the differences between observed and calculated δ18O and δD data in a simple mixing model. The model presented here assumes that the distribution of natural tracers in the steady state is governed by simple mixing between flow paths with a normal distribution of flow rate. When the inversion analysis and simple mixing model were applied to the multiflow system of the Matsumoto Basin, which is surrounded by Japanese alpine ranges, the end-members of the relationship between observed δ18O and δD could be separated spatially into specific groundwater flow paths in the multiflow system of shallow and deep groundwater flow paths.

  8. Growth variability and stable isotope composition of two larval carangid fishes in the East Australian Current: The role of upwelling in the separation zone

    NASA Astrophysics Data System (ADS)

    Syahailatua, Augy; Taylor, Matthew D.; Suthers, Iain M.

    2011-03-01

    The larvae of two carangid fishes, silver trevally ( Pseudocaranx dentex) and yellowtail scad ( Trachurus novaezelandiae), were compared among coastal water masses and the East Australian Current (EAC). Samples followed a north to south gradient including a southern region of upwelling, generated as the EAC separated from the coast. Mean larval carangid densities were greater in the mixed layer (10-30 m) than the surface, but there was no difference between inshore and offshore stations or along latitudinal gradients. Overall, P. dentex recent larval growth over two days pre-capture was faster than T. novaezelandiae, and faster at inshore, coastal stations than in the EAC. Integrated larval growth rate (mm d -1) was usually faster at inshore stations for both species. T. novaezelandiae were enriched in both nitrogen (δ 15N) and carbon (δ 13C) stable isotopes relative to P. dentex. Larvae of both species captured within the upwelling region were enriched in δ 15N and depleted in δ 13C relative to other sites. Recent larval growth had a significant positive relationship with fluorescence (as a proxy of chlorophyll a biomass), and integrated larval growth rate had a significant positive relationship with fluorescence and larval isotope (δ 15N) composition. Recent and integrated growth of larval T. novaezelandiae and P. dentex was enhanced by EAC separation and upwelling, and also in coastal water; stimulated by food availability, and potentially through exploitation of a different trophic niche.

  9. Tissue Turnover Rates and Isotopic Trophic Discrimination Factors in the Endothermic Teleost, Pacific Bluefin Tuna (Thunnus orientalis)

    PubMed Central

    Madigan, Daniel J.; Litvin, Steven Y.; Popp, Brian N.; Carlisle, Aaron B.; Farwell, Charles J.; Block, Barbara A.

    2012-01-01

    Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ15N and 1.8 and 1.2‰ for δ13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology. PMID:23145128

  10. Amino Acid Isotope Incorporation and Enrichment Factors in Pacific Bluefin Tuna, Thunnus orientalis

    PubMed Central

    Bradley, Christina J.; Madigan, Daniel J.; Block, Barbara A.; Popp, Brian N.

    2014-01-01

    Compound specific isotopic analysis (CSIA) of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs) are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days) laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT), a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ15N∼11.5‰) were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC) where they were fed a controlled diet with high δ15N values relative to PBFT white muscle (diet δ15N∼13.9‰). Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ15N values of amino acids across trophic levels are the underlying drivers of the trophic 15N enrichment. Nearly all amino acid δ15N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of 15N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies. PMID:24465724

  11. Amino acid isotope incorporation and enrichment factors in Pacific bluefin tuna, Thunnus orientalis.

    PubMed

    Bradley, Christina J; Madigan, Daniel J; Block, Barbara A; Popp, Brian N

    2014-01-01

    Compound specific isotopic analysis (CSIA) of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs) are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days) laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT), a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ(15)N∼11.5‰) were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC) where they were fed a controlled diet with high δ(15)N values relative to PBFT white muscle (diet δ(15)N∼13.9‰). Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ(15)N values of amino acids across trophic levels are the underlying drivers of the trophic (15)N enrichment. Nearly all amino acid δ(15)N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of (15)N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies.

  12. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  13. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  14. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  15. Factor Study for the Separator Plate of Mcfc Having Uniform Stiffness at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Wook; Kim, Jung-Hyun; Jun, Joong-Hwan

    A molten carbonate fuel cell (MCFC) is composed of several stacks of unit cells. A unit cell is composed of two electrodes and a matrix that is inserted between separator plates. Separator plates should properly contact the electrodes to reduce the electricity loss arising from contact resistance. To this end, a pressure of about 2 kgf/cm2 is usually applied on the top of the stack, which results in the separator plates being somewhat compacted. Furthermore, the stiffness of the separator plates becomes degraded at elevated temperatures due to softening of the plate materials. Therefore, a nonuniform temperature distribution across the separator plates induced by exothermic reactions of the oxidant and reactant gases leads to a non-uniform plate stiffness. This study has firstly evaluated the change in separator plate stiffness as temperature changes by applying pressure to the plates. Secondly, using the Taguchi method, several design factors that affect stiffness have been investigated to determine which has the most influence. Based on these results, a new design for the separators, which allows for uniform stiffness at elevated temperatures, has been proposed.

  16. Online blind source separation using incremental nonnegative matrix factorization with volume constraint.

    PubMed

    Zhou, Guoxu; Yang, Zuyuan; Xie, Shengli; Yang, Jun-Mei

    2011-04-01

    Online blind source separation (BSS) is proposed to overcome the high computational cost problem, which limits the practical applications of traditional batch BSS algorithms. However, the existing online BSS methods are mainly used to separate independent or uncorrelated sources. Recently, nonnegative matrix factorization (NMF) shows great potential to separate the correlative sources, where some constraints are often imposed to overcome the non-uniqueness of the factorization. In this paper, an incremental NMF with volume constraint is derived and utilized for solving online BSS. The volume constraint to the mixing matrix enhances the identifiability of the sources, while the incremental learning mode reduces the computational cost. The proposed method takes advantage of the natural gradient based multiplication updating rule, and it performs especially well in the recovery of dependent sources. Simulations in BSS for dual-energy X-ray images, online encrypted speech signals, and high correlative face images show the validity of the proposed method.

  17. Nonnegative matrix factorization: a blind spectra separation method for in vivo fluorescent optical imaging.

    PubMed

    Montcuquet, Anne-Sophie; Hervé, Lionel; Navarro, Fabrice; Dinten, Jean-Marc; Mars, Jérôme I

    2010-01-01

    Fluorescence imaging in diffusive media is an emerging imaging modality for medical applications that uses injected fluorescent markers that bind to specific targets, e.g., carcinoma. The region of interest is illuminated with near-IR light and the emitted back fluorescence is analyzed to localize the fluorescence sources. To investigate a thick medium, as the fluorescence signal decreases with the light travel distance, any disturbing signal, such as biological tissues intrinsic fluorescence (called autofluorescence) is a limiting factor. Several specific markers may also be simultaneously injected to bind to different molecules, and one may want to isolate each specific fluorescent signal from the others. To remove the unwanted fluorescence contributions or separate different specific markers, a spectroscopic approach is explored. The nonnegative matrix factorization (NMF) is the blind positive source separation method we chose. We run an original regularized NMF algorithm we developed on experimental data, and successfully obtain separated in vivo fluorescence spectra.

  18. A factor analytic and psychometric examination of pathology of separation-individuation.

    PubMed

    Lapsley, D K; Aalsma, M C; Varshney, N M

    2001-07-01

    Two studies are described that attempt to determine if standard-scale-reduction techniques could yield a construct-valid diagnostic screen of pathology of separation-individuation for use in nonclinical university settings. In Study 1 (N = 210), a measure of pathology of separation-individuation (PATHSEP) was reduced successfully to a single, internally consistent factor, accounting for 36% of the variance. In Study 2 (N = 304), these items also coalesced around a single factor, accounting for 35% of the variance. Study 2 also showed that PATHSEP is correlated moderately and positively with indices of insecure attachment, with the Center for Epidemiological Studies-Depression Scale, and with indices of psychiatric symptomatology (Hopkins Symptom Checklist). PATHSEP also was associated with a poorer profile of adjustment to college. Males reported more pathology of separation-individuation than did females. Evidence supports the construct validity of a shortened version of PATHSEP. Directions for future research are noted. Copyright 2001 John Wiley & Sons, Inc.

  19. Chapter 13 Petrogenesis of the Campanian Ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th isotopic data

    USGS Publications Warehouse

    Bohrson, W.A.; Spera, F.J.; Fowler, S.J.; Belkin, H.E.; de Vivo, B.; Rolandi, G.

    2006-01-01

    The Campanian Ignimbrite is a large-volume trachytic to phonolitic ignimbrite that was deposited at ???39.3 ka and represents one of a number of highly explosive volcanic events that have occurred in the region near Naples, Italy. Thermodynamic modeling using the MELTS algorithm reveals that major element variations are dominated by crystal-liquid separation at 0.15 GPa. Initial dissolved H2O content in the parental melt is ???3 wt.% and the magmatic system fugacity of oxygen was buffered along QFM+1. Significantly, MELTS results also indicate that the liquid line of descent is marked by a large change in the proportion of melt (from 0.46 to 0.09) at ???884??C, which leads to a discontinuity in melt composition (i.e., a compositional gap) and different thermodynamic and transport properties of melt and magma across the gap. Crystallization of alkali feldspar and plagioclase dominates the phase assemblage at this pseudo-invariant point temperature of ???884??C. Evaluation of the variations in the trace elements Zr, Nb, Th, U, Rb, Sm, and Sr using a mass balance equation that accounts for changing bulk mineral-melt partition coefficients as crystallization occurs indicates that crystal-liquid separation and open-system processes were important. Th isotope data yield an apparent isochron that is ???20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open system at the time of eruption. Because open-system behavior can profoundly change isotopic and elemental characteristics of a magma body, these Th results illustrate that it is critical to understand the contribution that open-system processes make to magmatic systems prior to assigning relevance to age or timescale information derived from such systems. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggests

  20. The use of stream flow routing for direct channel precipitation with isotopically-based hydrograph separations: the role of new water in stormflow generation

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Feng, Xiahong; Sinclair, Kelsey J.; Dums, Raymond H.

    2003-03-01

    Understanding the pathways by which event water contributes to stream stormflow provides insight into stormflow generation mechanisms. We analyze the impact of storm size on the relative contribution of event water to stormflow by using natural variations in the oxygen isotopic composition of precipitation and stream water to separate multiple stormflow hydrographs from a single fourth-order, 1212 ha catchment. We extend previous isotope-based hydrograph separations by independently accounting for the contribution of event water via direct channel precipitation to the stream hydrograph. The direct channel precipitation contribution is determined using a numerical model of stream flow routing though the catchment, taking precipitation and digital elevation data as input variables. For the range of storm sizes sampled, having recurrence intervals ranging from less than a week to ˜4 months, essentially all the event water in stream stormflow can be attributed to direct channel precipitation. Event water not directly falling on the stream channel indirectly contributes to stormflow by increasing the subsurface discharge of pre-event water to the stream. Neither the hydrograph separation data, field observations during the precipitation events, nor experimental observations of flow in a large-scale natural soil column extracted from the watershed are consistent with macropore flow or groundwater ridging as the primary mechanism responsible for increasing subsurface discharge. Results from a series of artificial rain experiments using the unsaturated natural soil column are consistent with a preferential kinematic flow model and indicate that the discharge of pre-event water to the stream during a storm event may be controlled by kinematic flow processes within the watershed soils.

  1. Isopycnic separation of Escherichia coli cultures possessing colonization factor antigen I.

    PubMed Central

    Giesa, F R; Zajac, I; Bartus, H F; Actor, P

    1982-01-01

    A culture of Escherichia coli possessing colonization factor antigen I was subjected to isopycnic separation on Percoll gradients. The results demonstrated successful division of the culture into two populations: (i) bacteria which cause mannose-resistant hemagglutination and (ii) bacteria which lack the ability to hemagglutinate in the presence of mannose. PMID:6286714

  2. Movement Precision and Amplitude as Separate Factors in the Control of Movement.

    ERIC Educational Resources Information Center

    Kerr, Robert

    The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…

  3. Movement Precision and Amplitude as Separate Factors in the Control of Movement.

    ERIC Educational Resources Information Center

    Kerr, Robert

    The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…

  4. Improving stable carbon and oxygen isotope geochemical measurements in dolomite: reference material and acid fractionation factor

    NASA Astrophysics Data System (ADS)

    Vandeginste, V.; John, C. M.; Jourdan, A.; Davis, S.

    2010-12-01

    The analysis of stable carbon and oxygen isotope composition is one of the most commonly used techniques in stratigraphic and diagenetic research of carbonate rocks. The wide-spread use and easy access of this long-established method has the side effect that little attention is paid to fundamental calibrations. Dolomite is often measured against a calcite standard (NBS19), and the acid fractionation factor used to calibrate is based on the one for calcite. To date, no reference material exists for dolomite. In this study, which is part of dolomite research in the Qatar Carbonates and Carbon Storage Research Centre project, we focus on two main goals. First, we characterize a current standard of dolomite used for major and minor elemental geochemistry, and assess its suitability as a new dolomite standard for δ18O and δ13C. Second, we attempt to better constrain the acid fractionation factor for dolomite and assess the influence of different dolomite types on this fractionation factor. As only two third of the total oxygen in the carbonate is released in the form of CO2 during acid reaction, a fractionation between the reacting carbonate and the resulting gas will occur. A recent study by Kim et al. (2007) improved on the acid fractionation factors for calcite and aragonite. Often, the acid fractionation factor for dolomite is used to calculate δ18O and δ13C from the values obtained by calibration with the calcite standard. Only two studies (from the 1980’s) have attempted to constrain the acid fractionation factor for dolomite, of which only Rosenbaum and Sheppard (1986) did experiments not only at 25°C, but also at 50 and 100°C. The dataset of the latter authors is, however, very limited and contains only two dolomite samples. We aim at improving the constraints on the acid fractionation factor of dolomite by reacting a wide range of different types of dolomite at a wide range of acid temperature, and compare this to the absolute isotopic composition of

  5. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  6. Precise determination of atomic g-factor ratios from a dual isotope magneto-optical trap

    SciTech Connect

    Chan, I.; Barrett, B.; Kumarakrishnan, A.

    2011-09-15

    We demonstrate a technique, for carrying out precise measurements of atomic g-factor ratios, which relies on measurements of Larmor oscillations from coherences between magnetic sublevels in the ground states of {sup 85}Rb and {sup 87}Rb atoms confined in a dual isotope magneto-optical trap. We show that a measurement of g{sub F}{sup (87)}/g{sub F}{sup (85)} with a resolution of 0.69 parts per 10{sup 6} is possible by recording the ratio of Larmor frequencies in the presence of a constant magnetic field. This represents the most precise single measurement of g{sub F}{sup (87)}/g{sub F}{sup (85)} without correcting for systematic effects.

  7. Astrophysical S factors for fusion reactions involving C, O, Ne, and Mg isotopes

    SciTech Connect

    Beard, M.; Afanasjev, A.V.; Chamon, L.C.; Gasques, L.R.; Wiescher, M.; Yakovlev, D.G.

    2010-09-15

    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to {approx}18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.

  8. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Clemens, Steven C.; Sun, Youbin; Prell, Warren L.; Huang, Yongsong; Gao, Li; Loomis, Shannon; Chen, Guangshan; Liu, Zhengyu

    2016-12-01

    For the past decade, East Asian monsoon history has been interpreted in the context of an exceptionally well-dated, high-resolution composite record of speleothem oxygen isotopes (δ18Ocave) from the Yangtze River Valley. This record is characterized by a unique spectral response, with variance concentrated predominantly within the precession band and an enigmatic lack of variance at the eccentricity and obliquity bands. Here we examine the spectral characteristics of all existing >250-kyr-long terrestrial water isotope records in Asia, including a new water isotope record using leaf wax hydrogen isotope ratios from the Chinese Loess Plateau. There exist profound differences in spectral characteristics among all orbital-scale Asian water isotope records. We demonstrate that these differences result from latitudinal gradients in the influence of the winter and summer monsoons, both of which impact climate and water isotopes throughout East Asia. Water isotope records therefore do not reflect precipitation during a single season or from a single circulation system. Rather, water isotope records in East Asia reflect the complex interplay of oceanic and continental moisture sources, operating at multiple Earth-orbital periods. These non-linear interactions are reflected in water isotope spectra by the presence of heterodynes. Although complex, we submit that water isotope records, when paired with rapidly developing isotope-enabled model simulations, will have the potential to elucidate mechanisms causing seasonal precipitation variability and moisture source variability in East Asia.

  9. Comparative analysis of S-fatty acylation of gel-separated proteins by stable isotope-coded fatty acid transmethylation and mass spectrometry.

    PubMed

    Dong, Linjie; Li, Jianjian; Li, Lun; Li, Tingting; Zhong, Hongying

    2011-08-18

    Covalent attachment of palmitic acid or other fatty acids to the thiol groups of cysteine residues of proteins through reversible thioester bonds has an important role in the regulation of diverse biological processes. We describe here the development of a mass spectrometry protocol based on stable isotope-coded fatty acid transmethylation (iFAT) for qualitative and comparative analysis of protein S-fatty acylation under different experimental conditions. In this approach, cellular proteins extracted from different cell states are separated by SDS-PAGE and then the gel is stained with either Coomassie blue or Nile red for improved sensitivity. Protein bands are excised and then an in-gel stable iFAT procedure is performed. The fatty acid methyl esters resulting from derivatization with d0- and d3-methanol are identified by mass spectrometry. By measuring the intensities of labeled and unlabeled fragment ion pairs of fatty acid methyl esters, the levels of S-fatty acylation in different cells or tissues can be compared. This approach has been applied to monitor the changes of S-fatty acylation of zebrafish liver proteome in response to environmental dichlorodiphenyltrichloroethane exposure. Compared with the approach using metabolic incorporation of radioactive fatty acid analogs, it is not only simple and effective but also eliminates the hazards of handling radioactive isotopes.

  10. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    SciTech Connect

    Makarov, G N; Petin, A N

    2016-03-31

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)

  11. Development of robotic analysis for input solution sample by ion-exchange separation and isotope dilution method

    SciTech Connect

    Uchikoshi, S.; Ishikawa, M.; Kato, Y.; Ito, M.; Adachi, T.

    1993-12-31

    An automated analytical system for input solution samples has been developed to increase analytical capability and to improve timeliness of measurements in a future large scale reprocessing plant. The original automated analytical system for input solution samples was composed of three subsystems for sample preparation together with a mass spectrometer and an alpha-ray spectrometer. This system was modified to meet the specifications for a large scale reprocessing plant and for the practical use of LSD (Large Size Dry) spike in input analysis. By adding the functions of subsystem 2 (ion-exchange separation) to the original subsystem 1, the latter was modified to work from sample aliquoting to ion-exchange separation. The components included in the modified subsystem 1+2 are contained in an envelope the size of the original subsystem 1. This was accomplished by miniaturizing the equipment and making the preparation procedures more effective. The subsystems basically consist of Cartesian robots with other necessary components. In subsystem 1+2, small duplicate samples are placed into two beakers, one of which contains an LSD spike. The valency state of plutonium in the samples is subsequently adjusted to be tetravalent. Uranium in the samples is then separated from the plutonium by an anion exchange separation technique. In subsystem 3, a small quantity of each separated fraction is placed on a mass spectrometer filament by a loading device where the fraction is automatically dried. In addition, a small quantity of the plutonium fraction is deposited on a counting dish for alpha-ray spectrometry. Using precisely known amounts of uranium and plutonium mixtures, the analytical results for concentrations of both elements obtained by this system exhibited 0.4 to 0.6% in both precision and accuracy. After modification, the time required for sample preparation was shortened from 18 to 10 hours.

  12. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    SciTech Connect

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  13. The Western Ghat as the water tower of the South Indian Rivers : a stable isotope investigation on the origin of water and factors affecting the water cycle.

    NASA Astrophysics Data System (ADS)

    Lambs, Luc; Tripti, Muguli; Balakrishna, Keshava

    2014-05-01

    The long stretch (1600 km) of Ghats on the western side (Western Ghats) of Peninsular India separates relatively wetter west coast from drier eastern coast. The western and eastern sides of the Ghats are having distinct isotopic signatures indicating unequal distribution of the moisture sources. South India is characterized by having moisture source for southwest monsoon from Arabian Sea and northeast monsoon from Bay of Bengal. The wetter side of Peninsular region is covered by combination of evergreen tropical forest and grass lands, termed as Shola Forests which support higher vapor recycling process. Very few isotopic studies have been undertaken in these areas, except few places, mainly along the coast lines. This study presents the stable isotope results on rivers and groundwater of the Western Ghats covering Agumbe (Karnataka) to Ooty (Tamil Nadu) and its west coast river basins as observed for the three year period. The stable isotope results on the surface, subsurface and deep water pools show that the mean d18O value range from -4 o to -2 o on the west slope, and from -5 o to -4 o on the east slope, with quite no altitude or amount effect up to 2000 m asl. The more depleted values are found only in higher elevation, like the Doddabeta in the Nilgiri (2637m), with d18O close to -9 o which is exceptional for a tropical area. The hills on the west slope of the Western Ghats as well as in the mountainous Shola forest exhibit strong water vapor recycling as evidenced by high d-excess values. On the contrary on the eastern slope, the drier condition and the numerous impoundments and river damming support strong evaporation process. Thus, the study identifies the profound effect of tropical vegetation and anthropogenic factors on the recharge functioning of river and groundwater pools in Southern India.

  14. Clustering Algorithm for Unsupervised Monaural Musical Sound Separation Based on Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Park, Sang Ha; Lee, Seokjin; Sung, Koeng-Mo

    Non-negative matrix factorization (NMF) is widely used for monaural musical sound source separation because of its efficiency and good performance. However, an additional clustering process is required because the musical sound mixture is separated into more signals than the number of musical tracks during NMF separation. In the conventional method, manual clustering or training-based clustering is performed with an additional learning process. Recently, a clustering algorithm based on the mel-frequency cepstrum coefficient (MFCC) was proposed for unsupervised clustering. However, MFCC clustering supplies limited information for clustering. In this paper, we propose various timbre features for unsupervised clustering and a clustering algorithm with these features. Simulation experiments are carried out using various musical sound mixtures. The results indicate that the proposed method improves clustering performance, as compared to conventional MFCC-based clustering.

  15. Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables

    NASA Astrophysics Data System (ADS)

    Niccoli, G.

    2013-05-01

    The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operators by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.

  16. Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables

    SciTech Connect

    Niccoli, G.

    2013-05-15

    The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operators by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.

  17. Search for the gamma-branch of the shape isomers of separated U isotopes using muon for nuclide excitation

    SciTech Connect

    Mireshghi, A.

    1982-12-01

    We have searched for back-decay gamma rays from the shape isomeric states in /sup 235/U, /sup 236/U, and /sup 238/U possibly excited in muon radiationless transition. The energies and intensities of gamma rays following muon atomic capture were measured as a function of time after muon stopping. Background was suppressed by requiring that the candidate gamma ray be followed by another gamma ray (..mu..-capture gamma ray). The prompt gamma-ray spectra included the U-muonic x rays. The measured /sup 235/U and /sup 238/U x-ray energies were in good agreement with previously reported results. The x-ray spectrum from /sup 236/U has not been previously reported. The /sup 236/U spectrum is very similar to that of /sup 238/U, except that the K x-rays exhibit an isotope shift of approximately 20 keV, the /sup 236/U energies being higher. In the analysis of the delayed spectra of /sup 236/U and /sup 238/U using the GAMANL peak searching program, and with an effective lower-limit detection efficiency of .15% per stopping muon, no candidate gamma rays for the back decay transitions from the shape isomeric state were observed.

  18. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  19. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  20. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  1. Pattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation

    PubMed Central

    Zhang, Junying; Wei, Le; Feng, Xuerong; Ma, Zhen; Wang, Yue

    2008-01-01

    Independent component analysis (ICA) is a widely applicable and effective approach in blind source separation (BSS), with limitations that sources are statistically independent. However, more common situation is blind source separation for nonnegative linear model (NNLM) where the observations are nonnegative linear combinations of nonnegative sources, and the sources may be statistically dependent. We propose a pattern expression nonnegative matrix factorization (PE-NMF) approach from the view point of using basis vectors most effectively to express patterns. Two regularization or penalty terms are introduced to be added to the original loss function of a standard nonnegative matrix factorization (NMF) for effective expression of patterns with basis vectors in the PE-NMF. Learning algorithm is presented, and the convergence of the algorithm is proved theoretically. Three illustrative examples on blind source separation including heterogeneity correction for gene microarray data indicate that the sources can be successfully recovered with the proposed PE-NMF when the two parameters can be suitably chosen from prior knowledge of the problem. PMID:18566689

  2. Pattern expression nonnegative matrix factorization: algorithm and applications to blind source separation.

    PubMed

    Zhang, Junying; Wei, Le; Feng, Xuerong; Ma, Zhen; Wang, Yue

    2008-01-01

    Independent component analysis (ICA) is a widely applicable and effective approach in blind source separation (BSS), with limitations that sources are statistically independent. However, more common situation is blind source separation for nonnegative linear model (NNLM) where the observations are nonnegative linear combinations of nonnegative sources, and the sources may be statistically dependent. We propose a pattern expression nonnegative matrix factorization (PE-NMF) approach from the view point of using basis vectors most effectively to express patterns. Two regularization or penalty terms are introduced to be added to the original loss function of a standard nonnegative matrix factorization (NMF) for effective expression of patterns with basis vectors in the PE-NMF. Learning algorithm is presented, and the convergence of the algorithm is proved theoretically. Three illustrative examples on blind source separation including heterogeneity correction for gene microarray data indicate that the sources can be successfully recovered with the proposed PE-NMF when the two parameters can be suitably chosen from prior knowledge of the problem.

  3. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Lin; Garzione, Carmala N.

    2017-02-01

    Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work

  4. Purification of human immunoglobulin G autoantibodies to tumor necrosis factor using affinity chromatography and magnetic separation.

    PubMed

    Sennikov, S V; Golikova, E A; Kireev, F D; Lopatnikova, J A

    2013-04-30

    Autoantibodies to cytokines are important biological effector molecules that can regulate cytokine activities. The aim of the study was to develop a protocol to purify autoantibodies to tumor necrosis factor from human serum, for use as a calibration material to determine the absolute content of autoantibodies to tumor necrosis factor by enzyme-linked immunosorbent assay. The proposed protocol includes a set of affinity chromatography methods, namely, Bio-Gel P6DG sorbent to remove albumin from serum, Protein G Sepharose 4 Fast Flow to obtain a total immunoglobulin G fraction of serum immunoglobulins, and Affi-Gel 15 to obtain specifically antibodies to tumor necrosis factor. The addition of a magnetic separation procedure to the protocol eliminated contaminant tumor necrosis factor from the fraction of autoantibodies to tumor necrosis factor. The protocol generated a pure fraction of autoantibodies to tumor necrosis factor, and enabled us to determine the absolute concentrations of different subclasses of immunoglobulin G autoantibodies to tumor necrosis factor in apparently healthy donors.

  5. Nature of the Mantle in the Iberia/Newfoundland Magma-poor Rifted Margin on the Basis of Radiogenic Isotopes in Separates Clinopyroxenes: Preliminary Results.

    NASA Astrophysics Data System (ADS)

    Amann, M.; Ulrich, M.; Autin, J.; Manatschal, G.; Pelt, E.; Boiron, M. C.; Sauter, D.

    2016-12-01

    The conjugate Iberia-Newfoundland margins represent the type example of a magma-poor rift system characterized by a zone of exhumed continental mantle (ZECM). Although the ZECM has been investigated in numerous studies, there are still little known on the nature and timing of emplacement of the magmatic rocks and the geochemical nature of the mantle section. In particular the lack of radiogenic isotope data makes the interpretation of the origin of the mantle in the ZECM difficult to constrain. In this study we present new in situ analytical data from mantle clinopyroxenes (CPX) derived from ODP Sites 1070 (Iberia) and 1277 (Newfoundland). Although these sites are at present separated by the N-Atlantic Ocean, the two sites are assumed to represent adjacent parts of the ZECM before being separated by lithospheric break-up and following seafloor spreading. On one hand, CPX from plagioclase-bearing harzburgites and related websterites from Iberia Abyssal Plain (IAP) are characterized by very low Na content and a strong depletion in light Rare Earth Elements (REE). Websterites have a 143Nd/144Nd ratio much lower than the Depleted Mantle (DMM). Pyroxenite layers in the IAP are thus the result of the partial melting of the subcontinental lithospheric mantle due to the asthenosphere upwelling during the incipient rifting. On the other hand, CPX from spinel harzburgites in the Newfoundland margin mantle are highly depleted in REE and have undergone higher partial melting degree. New radiogenic Pb-Nd-Sr analyzes on separates clinopyroxenes will provide new evidence to argue whether or not the exhumed mantle was geochemically homogeneous on both side of the incipient mid-oceanic ridge and if the subsequent break-up is related to a mantle inheritance such as the former Caledonian subduction zone.

  6. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  7. Nonnegative matrix factorization: a blind sources separation method to extract content of fluorophores mixture media

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Chen, Jun

    2014-03-01

    The fluorophores of malignant human breast cells change their compositions that may be exposed in the fluorescence spectroscopy and blind source separation method. The content of the fluorophores mixture media such as tryptophan, collagen, elastin, NADH, and flavin were varied according to the cancer development. The native fluorescence spectra of these key fluorophores mixture media excited by the selective excitation wavelengths of 300 nm and 340 nm were analyzed using a blind source separation method: Nonnegative Matrix Factorization (NMF). The results show that the contribution from tryptophan, NADH and flavin to the fluorescence spectra of the mixture media is proportional to the content of each fluorophore. These data present a possibility that native fluorescence spectra decomposed by NMF can be used as potential native biomarkers for cancer detection evaluation of the cancer.

  8. Ca isotope stratigraphy across the Cenomanian-Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor

    NASA Astrophysics Data System (ADS)

    Du Vivier, Alice D. C.; Jacobson, Andrew D.; Lehn, Gregory O.; Selby, David; Hurtgen, Matthew T.; Sageman, Bradley B.

    2015-04-01

    The Ca isotope composition of marine carbonate rocks offers potential to reconstruct drivers of environmental change in the geologic past. This study reports new, high-precision Ca isotope records (δ44/40Ca; 2σSD = ± 0.04 ‰) for three sections spanning a major perturbation to the Cretaceous ocean-climate system known as Ocean Anoxic Event 2 (OAE 2): central Colorado, USA (Portland #1 core), southeastern France (Pont d'Issole), and Hokkaido, Japan (Oyubari, Yezo Group). In addition, we generated new data for selected samples from Eastbourne, England (English Chalk), where a previous Ca isotope study was completed using different methodology (Blättler et al., 2011). Strata of the Yezo Group contain little carbonate (∼1 wt.% on average) and accordingly did not yield a clear δ44/40Ca signal. The Portland core and the Pont d'Issole section display comparable δ44/40Ca values, which increase by ∼ 0.10- 0.15 ‰ at the onset of OAE 2 and then decrease to near-initial values across the event. The Eastbourne δ44/40Ca values are higher than previously reported. They are also higher than the δ44/40Ca values for the Portland core and the Pont d'Issole section but define a similar pattern. According to a numerical model of the marine Ca cycle, elevated hydrothermal inputs have little impact on seawater δ44/40Ca values. Elevated riverine (chemical weathering) inputs produce a transient negative isotope excursion, which significantly differs from the positive isotope excursions observed in the Portland, Pont d'Issole, and Eastbourne records. A decrease in the magnitude of the carbonate fractionation factor provides the best explanation for a positive shift in δ44/40Ca values, especially given the rapid nature of the excursion. Because a decrease in the fractionation factor corresponds to an increase in the Ca/CO3 ratio of seawater, we tentatively attribute the positive Ca isotope excursion to transient ocean acidification, i.e., a reduction in the concentration of

  9. Tritium Separation by Electrolysis Using Solid Polymer Electrolyte

    SciTech Connect

    Ogata, Y.; Sakuma, Y.; Ohtani, N.; Kotaka, M.

    2005-07-15

    Hydrogen isotope separation effect by electrolysis of water was theoretically investigated and was compared with experimental results. The separation mechanism was analyzed as the hydrogen isotope exchange reaction between water and diatomic hydride that consists of hydrogen and cathode material. The equilibrium constants of the isotope exchange reaction were calculated from reduced partition function ratio. Using the constants, the separation factor (SF) of the isotopes was calculated according to the two-phase distribution theory for isotopes. Experimentally, light or heavy water spiked with tritiated water was electrolyzed by a device with a solid polymer electrolyte, which equipped with SUS, Ni, or carbon cathode. Thus, the SFs were experimentally obtained. Calculated SFs were well agreed with the experimentally values for SUS and Ni cathodes, and that for carbon cathode was somewhat small then the experimental value.

  10. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems.

    PubMed

    Castillo, Tiffany N; Pouliot, Michael A; Kim, Hyeon Joo; Dragoo, Jason L

    2011-02-01

    Clinical studies claim that platelet-rich plasma (PRP) shortens recovery times because of its high concentration of growth factors that may enhance the tissue repair process. Most of these studies obtained PRP using different separation systems, and few analyzed the content of the PRP used as treatment. This study characterized the composition of single-donor PRP produced by 3 commercially available PRP separation systems. Controlled laboratory study. Five healthy humans donated 100 mL of blood, which was processed to produce PRP using 3 PRP concentration systems (MTF Cascade, Arteriocyte Magellan, Biomet GPS III). Platelet, white blood cell (WBC), red blood cell, and fibrinogen concentrations were analyzed by automated systems in a clinical laboratory, whereas ELISA determined the concentrations of platelet-derived growth factor αβ and ββ (PDGF-αβ, PDGF-ββ), transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor (VEGF). There was no significant difference in mean PRP platelet, red blood cell, active TGF-β1, or fibrinogen concentrations among PRP separation systems. There was a significant difference in platelet capture efficiency. The highest platelet capture efficiency was obtained with Cascade, which was comparable with Magellan but significantly higher than GPS III. There was a significant difference among all systems in the concentrations of WBC, PDGF-αβ, PDGF-ββ, and VEGF. The Cascade system concentrated leukocyte-poor PRP, compared with leukocyte-rich PRP from the GPS III and Magellan systems. The GPS III and Magellan concentrate leukocyte-rich PRP, which results in increased concentrations of WBCs, PDGF-αβ, PDGF-ββ, and VEGF as compared with the leukocyte-poor PRP from Cascade. Overall, there was no significant difference among systems in the platelet concentration, red blood cell, active TGF-β1, or fibrinogen levels. Products from commercially available PRP separation systems produce differing concentrations of

  11. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  12. Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes

    SciTech Connect

    Gaffney, J.S.; Tanner, R.L.

    1988-01-01

    We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

  13. Entanglement or separability: the choice of how to factorize the algebra of a density matrix

    NASA Astrophysics Data System (ADS)

    Thirring, W.; Bertlmann, R. A.; Köhler, P.; Narnhofer, H.

    2011-10-01

    Quantum entanglement has become a resource for the fascinating developments in quantum information and quantum communication during the last decades. It quantifies a certain nonclassical correlation property of a density matrix representing the quantum state of a composite system. We discuss the concept of how entanglement changes with respect to different factorizations of the algebra which describes the total quantum system. Depending on the considered factorization a quantum state appears either entangled or separable. For pure states we always can switch unitarily between separability and entanglement, however, for mixed states a minimal amount of mixedness is needed. We discuss our general statements in detail for the familiar case of qubits, the GHZ states, Werner states and Gisin states, emphasizing their geometric features. As theorists we use and play with this free choice of factorization, which for an experimentalist is often naturally fixed. For theorists it offers an extension of the interpretations and is adequate to generalizations, as we point out in the examples of quantum teleportation and entanglement swapping.

  14. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  15. Momentum transport cross-section measurements for potassium and rubidium in rare gases and white light-induced separation of rubidium isotopes

    SciTech Connect

    Mugglin, D.T.

    1993-12-31

    This dissertation is concerned with two light-induced kinetic effects, light-induced diffusive pulling and light-induced drift. We use a light-induced diffusive pulling experiment to measure the ground state velocity-changing collision cross section (related to the momentum transport cross section and the diffusion coefficient) and the relative difference ({Delta}{sigma}/{sigma}) of the excited and ground state cross sections with respect to that of the ground state for potassium mixed with inert buffer gases. The measured excited state cross section is a weighted average of the potassium 4{sup 2}P{sub 1/2} and 4{sup 2}P{sub 3/2} fine structure levels, which are mixed by collisions with inert gas atoms. For the ground state cross sections, we obtain the following experimental results for potassium mixed with He, Ne, Ar, Kr, and Xe, respectively: 52 {+-} 4, 57 {+-} 8, 61 {+-} 5, 43 {+-} 5, and 60 {+-}5 {angstrom}{sup 2}. For {Delta}{sigma}/{sigma}, we obtain the following (in the same order): 0.085 {+-} 0.010, 0.058 {+-} 0.006, 0.41 {+-} 0.03, 0.43 {+-} 0.03, and 0.61 {+-} 0.05. For potassium-Ne and potassium-Ar, we combine these measurements with light-induced drift measurements of the ratio {Delta}{sigma}(J = 3/2) : {Delta}{sigma}(J = 1/2) to obtain absolute transport cross sections for the individual 4{sup 2}S{sub 1/2}, 4{sup 2}P{sub 1/2}, and 4{sup 2}P{sub 3/2} levels. We also use the light-induced diffusive pulling experimental method to measure {Delta}{sigma}/{sigma} for Rb-inert gas mixtures. We obtain values for the ground state diffusion cross section for Rb in several of the inert gases as well. We report the first experimental observation of the separation of two isotopes using broadband light by the process of white light-induced drift. For a light source, we use a broadband laser with an acousto-optic modulator as an output coupler. We verify the separation of the {sup 85}Rb and {sup 87}Rb isotopes.

  16. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  17. Separation of cognitive impairments in attention deficit hyperactivity disorder into two familial factors

    PubMed Central

    Kuntsi, J.; Wood, A.C.; Rijsdijk, F.; Johnson, K.A.; Andreou, P.; Albrecht, B.; Arias-Vasquez, A.; Buitelaar, J.K.; Mcloughlin, G.; Rommelse, N.N.J.; Sergeant, J.A.; Sonuga-Barke, E.J.S.; Uebel, H.; van der Meere, J.J.; Banaschewski, T.; Gill, M.; Manor, I.; Miranda, A.; Mulas, F.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Steinhausen, H.C.; Faraone, S.V.; Asherson, P.

    2013-01-01

    Context Attention deficit hyperactivity disorder (ADHD) is associated with widespread cognitive impairments, but it is not known whether the apparent multiple impairments share etiological roots, or whether separate etiological pathways exist. A better understanding of the etiological pathways is important for the development of targeted interventions and for identification of suitable intermediate phenotypes for molecular genetic investigations. Objective To determine, using a multivariate familial factor analysis approach, whether one or more familial factors underlie the slow and variable reaction times (RTs), impaired response inhibition and choice impulsivity that are associated with ADHD. Design An ADHD and control sibling-pair design. Setting Belgium, Germany, Ireland, Israel, Spain, Switzerland and the United Kingdom. Participants The sample consisted of 1265 participants, aged 6 to 18 years: 464 probands with ADHD and 456 of their siblings (524 with ADHD combined subtype), and 345 control participants. Main Outcome Measures Performance on a four-choice RT task, a go/no-go inhibition task and a choice-delay task. Results The final model consisted of two familial factors. The larger factor, reflecting 85% of the familial variance of ADHD, captured 98-100% of the familial influences on mean RT and RT variability. The second smaller factor, reflecting 12.5% of the familial variance of ADHD, captured 62-82% of the familial influences on commission and omission errors on the go/no-go task. Choice impulsivity was excluded in the final model, due to poor fit. Conclusions The findings suggest the existence of two familial pathways to cognitive impairments in ADHD and indicate promising cognitive targets for future molecular genetic investigations. The familial distinction between the two cognitive impairments is consistent with recent theoretical models – a developmental model and an arousal-attention model – on two separable underlying processes in ADHD

  18. Factors influencing separation distances against odour annoyance calculated by Gaussian and Lagrangian dispersion models

    NASA Astrophysics Data System (ADS)

    Piringer, Martin; Knauder, Werner; Petz, Erwin; Schauberger, Günther

    2016-09-01

    Direction-dependent separation distances to avoid odour annoyance, calculated with the Gaussian Austrian Odour Dispersion Model AODM and the Lagrangian particle diffusion model LASAT at two sites, are analysed and compared. The relevant short-term peak odour concentrations are calculated with a stability-dependent peak-to-mean algorithm. The same emission and meteorological data, but model-specific atmospheric stability classes are used. The estimate of atmospheric stability is obtained from three-axis ultrasonic anemometers using the standard deviations of the three wind components and the Obukhov stability parameter. The results are demonstrated for the Austrian villages Reidling and Weissbach with very different topographical surroundings and meteorological conditions. Both the differences in the wind and stability regimes as well as the decrease of the peak-to-mean factors with distance lead to deviations in the separation distances between the two sites. The Lagrangian model, due to its model physics, generally calculates larger separation distances. For worst-case calculations necessary with environmental impact assessment studies, the use of a Lagrangian model is therefore to be preferred over that of a Gaussian model. The study and findings relate to the Austrian odour impact criteria.

  19. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng

    2015-02-01

    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  20. Isotopic half-life and enrichment factor in two species of European freshwater fish larvae: an experimental approach.

    PubMed

    Latli, Adrien; Sturaro, Nicolas; Desjardin, Nelson; Michel, Loïc N; Otjacques, William; Lepoint, Gilles; Kestemont, Patrick

    2017-04-30

    Stable isotope ratios of carbon and nitrogen are valuable tools for field ecologists to use to analyse animal diets. However, the application of these tools requires knowledge of the tissue enrichment factor (TEF) and half-life (HL). We experimentally compared TEF and HL in two freshwater fish larvae. We hypothesised that chub had a better growth/tissue replacement ratio than roach, due to the use of a food closer to their natural diet. We determined the isotopic HL, the TEF and the contribution of growth or metabolic tissue replacement to dynamic isotopic incorporation. After yolk sac resorption, larvae were fed for 5 weeks with prey similar to their natural diet (Artemia nauplii) up to the isotopic equilibrium followed by Chironomid larvae. Stable isotope measurements were carried out using a continuous flow isotope ratio mass spectrometer coupled to an elemental analyser. Changes in isotopic composition strongly followed the predictions of exponential growth and time-dependent models. The isotopic HL varied between 8.2 and 12.6 days and the TEF of nitrogen and carbon ranged from 1.7 to 3.1 ‰ and from -0.9 to 1.2 ‰, respectively. The incorporation of dietary (13) C was due more to the production of new tissue (between 56 and 79%) than to the metabolic process. Chub allocated more energy to growth than roach and the Chironomidae diet contributed more to the consumers' growth than the Artemia diet. Metabolic rates seemed lower for chub than for roach, especially when they were fed with Chironomidae. A Chironomidae-based diet would be more profitable to chub, and the high associated growth rate could increase the development of the fish larvae. The HL and TEF were in the range of those reported in the literature. These results will be helpful for field-based studies, because they can help to increase the accuracy of models. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Separable sustained and selective attention factors are apparent in 5-year-old children.

    PubMed

    Underbjerg, Mette; George, Melanie S; Thorsen, Poul; Kesmodel, Ulrik S; Mortensen, Erik L; Manly, Tom

    2013-01-01

    In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy population. A new test battery (TEA-Ch(J)) was adapted from measures previously used with adults and older children and administered to 172 5-year-olds. Test-retest reliability was assessed in 60 children. Ninety-eight percent of the children managed to complete all measures. Discrimination of visual and auditory stimuli were good. In a factor analysis, the two TEA-Ch(J) selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-Ch(J) factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates of attention at the age of 5 with the results reflecting a similar factor structure to that obtained in older children and adults. The results are discussed in light of contemporary models of attention function. Given the potential advantages of early intervention for attention difficulties, the findings are of clinical as well as theoretical interest.

  2. Separable Sustained and Selective Attention Factors Are Apparent in 5-Year-Old Children

    PubMed Central

    Underbjerg, Mette; George, Melanie S.; Thorsen, Poul; Kesmodel, Ulrik S.; Mortensen, Erik L.; Manly, Tom

    2013-01-01

    In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy population. A new test battery (TEA-ChJ) was adapted from measures previously used with adults and older children and administered to 172 5-year-olds. Test-retest reliability was assessed in 60 children. Ninety-eight percent of the children managed to complete all measures. Discrimination of visual and auditory stimuli were good. In a factor analysis, the two TEA-ChJ selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-ChJ factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates of attention at the age of 5 with the results reflecting a similar factor structure to that obtained in older children and adults. The results are discussed in light of contemporary models of attention function. Given the potential advantages of early intervention for attention difficulties, the findings are of clinical as well as theoretical interest. PMID:24376591

  3. Study the influence factors to the adsorption process for separation of polyphenols from green tea

    NASA Astrophysics Data System (ADS)

    Phung, Lan Huong; Tran, Trung Kien; Van Quyet, Chu; Phi, Nguyen Thien

    2017-09-01

    The objective of this work is applying adsorption process for separation of polyphenols from extract solution of green tea by-product. The older leaves and stem of green tea tree are collected from Hiep Khanh Tea Company (Hoabinh province, Vietnam). In this study, two kinds of adsorbent (silicagel, active carbon) were applied for the adsorption process in batch stirring vessel. The factors that affected to the process productivity were investigated: temperature, solid/liquid ratio, duration time, stirring speed. The process has been empirically described with statistical models obtained by Design of Experiments. The results indicated that active carbon was verified to offer good adsorption productivity (more than 95%), much more effective than silicagel (with only about 20%). From the model, the most affected factor to the process could be seen as solid/liquid ratio.

  4. Machine learning source separation using maximum a posteriori nonnegative matrix factorization.

    PubMed

    Gao, Bin; Woo, Wai Lok; Ling, Bingo W-K

    2014-07-01

    A novel unsupervised machine learning algorithm for single channel source separation is presented. The proposed method is based on nonnegative matrix factorization, which is optimized under the framework of maximum a posteriori probability and Itakura-Saito divergence. The method enables a generalized criterion for variable sparseness to be imposed onto the solution and prior information to be explicitly incorporated through the basis vectors. In addition, the method is scale invariant where both low and high energy components of a signal are treated with equal importance. The proposed algorithm is a more complete and efficient approach for matrix factorization of signals that exhibit temporal dependency of the frequency patterns. Experimental tests have been conducted and compared with other algorithms to verify the efficiency of the proposed method.

  5. The Influence of Kinetic Growth Factors on the Clumped Isotope Composition of Calcite

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Watkins, J. M.; Tripati, A.; Ryerson, F. J.; DePaolo, D. J.

    2014-12-01

    Clumped isotope paleothermometry is based on the association of 13C and 18O within carbonate minerals. Although the influence of temperature on equilibrium 13C-18O bond ordering has been studied, recent oxygen isotope studies of inorganic calcite demonstrate that calcite grown in laboratory experiments and in many natural settings does not form in equilibrium with water. It is therefore likely that the carbon and clumped isotope composition of these calcite crystals are not representative of true thermodynamic equilibrium. To isolate kinetic clumped isotope effects that arise at the mineral-solution interface, clumped isotopic equilibrium of DIC species must be maintained. This can be accomplished by dissolving the enzyme carbonic anhydrase (CA) into the solution, thereby reducing the time required for isotopic equilibration of DIC species by approximately two orders of magnitude between pH 7.7 and 9.3. We conduct calcite growth experiments aimed specifically at measuring the pH-dependence of kinetic clumped isotope effects during non-equilibrium precipitation of calcite. We precipitated calcite from aqueous solution at a constant pH and controlled supersaturation over the pH range 7.7-9.3 in the presence of CA. For each experiment, a gas mixture of N2 and CO2 is bubbled through a beaker of solution without seed crystals. As CO2 from the gas dissolves into solution, calcite crystals grow on the beaker walls. The pH of the solution is maintained by use of an autotitrator with NaOH as the titrant. We control the temperature, pH, the pCO2 of the gas inflow, and the gas inflow rate, and monitor the total alkalinity, the pCO2 of the gas outflow, and the amount of NaOH added. A constant crystal growth rate of ~1.6 mmol/m2/hr is maintained over all experiments. Results from these experiments are compared to predictions from a recently-developed isotopic ion-by-ion growth model of calcite. The model describes the rate, temperature and pH dependence of oxygen isotope uptake

  6. Single-tube, non-isotopic, multiplex PCR/OLA assay and sequence-coded separation for simultaneous screening of 31 cystic fibrosis mutations

    SciTech Connect

    Brinson, E.C.; Adriano, T.; Bloch, W.

    1994-09-01

    We have developed a rapid, single-tube, non-isotopic assay that screens a patient sample for the presence of 31 cystic fibrosis (CF) mutations. This assay can identify these mutations in a single reaction tube and a single electrophoresis run. Sample preparation is a simple, boil-and-go procedure, completed in less than an hour. The assay is composed of a 15-plex PCR, followed by a 61-plex oligonucleotide ligation assay (OLA), and incorporates a novel detection scheme, Sequence Coded Separation. Initially, the multiplex PCR amplifies 15 relevant segments of the CFTR gene, simultaneously. These PCR amplicons serve as templates for the multiplex OLA, which detects the normal or mutant allele at all loci, simultaneously. Each polymorphic site is interrogated by three oligonucleotide probes, a common probe and two allele-specific probes. Each common probe is tagged with a fluorescent dye, and the competing normal and mutant allelic probes incorporate different, non-nucleotide, mobility modifiers. These modifiers are composed of hexaethylene oxide (HEO) units, incorporated as HEO phosphoramidite monomers during automated DNA synthesis. The OLA is based on both probe hybridization and the ability of DNA ligase to discriminate single base mismatches at the junction between paired probes. Each single tube assay is electrophoresed in a single gel lane of a 4-color fluorescent DNA sequencer (Applied Biosystems, Model 373A). Each of the ligation products is identified by its unique combination of electrophoretic mobility and one of three colors. The fourth color is reserved for the in-lane size standard, used by GENESCAN{sup TM} software (Applied Biosystems) to size the OLA electrophoresis products. The Genotyper{sub TM} software (Applied Biosystems) decodes these Sequence-Coded-Separation data to create a patient summary report for all loci tested.

  7. Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?

    SciTech Connect

    van Soest, M.C.; Kennedy, B.M.; Evans, W.C.; Mariner, R.H.

    2002-04-30

    Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusion regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.

  8. Low-energy structure of the even-A {sup 96-104}Ru isotopes via g-factor measurements

    SciTech Connect

    Taylor, M. J.; Bentley, M. A.; Guerdal, G.; Kumbartzki, G.; Benczer-Koller, N.; Sharon, Y. Y.; Stuchbery, A. E.; Berant, Z.; Casperson, R. J.; Casten, R. F.; Heinz, A.; Ilie, G.; McCutchan, E. A.; Qian, J.; Werner, V.; Williams, E.; Winkler, R.; Luettke, R.; Shoraka, B.

    2011-04-15

    The transient-field-perturbed angular correlation technique was used with Coulomb excitation in inverse kinematics to perform a systematic measurement of the g factors of the first excited 2{sub 1}{sup +} states in the stable even-A isotopes {sup 96-104}Ru. The measurements have been made relative to one another under matched kinematic conditions and include a measurement of g(2{sub 1}{sup +})=+0.47(3) in {sup 96}Ru.

  9. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  10. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  11. Computational study on the progressive factorization of composite polymer knots into separated prime components.

    PubMed

    Tubiana, Luca

    2014-05-01

    Using Monte Carlo simulations and advanced knot localization methods, we analyze the length and distribution of prime components in composite knots tied on freely jointed rings. For increasing contour length, we observe the progressive factorization of composite knots into separated prime components. However, we observe that a complete factorization, equivalent to the "decorated ring" picture, is not obtained even for rings of contour lengths N ≃ 3 N(0), about tens of times the most probable length of the prime knots tied on the rings. The decorated ring hypothesis has been used in the literature to justify the factorization of composite knot probabilities into the knotting probabilities of their prime components. Following our results, we suggest that such a hypothesis may not be necessary to explain the factorization of the knotting probabilities, at least when polymers excluding volume is not relevant. We rationalize the behavior of the system through a simple one-dimensional model in which prime knots are replaced by slip links randomly placed on a circle, with the only constraint being that the length of the loops has the same distribution as that of the length of the corresponding prime knots.

  12. Deuterium Solvent Isotope Effect and Proton Inventory Studies of Factor Xa-catalyzed Reactions†

    PubMed Central

    Zhang, Daoning; Kovach, Ildiko M.

    2008-01-01

    Kinetic solvent isotope effects (KSIE) for the Factor Xa (FXa)-catalyzed activation of prothrombin in the presence and absence of Factor Va (FVa) and 5.0 ×10−5 M phospholipid vesicles, are slightly inverse, 0.82−0.93, when substrate concentrations are at 0.2 Km. This is consistent with rate-determining association of the enzyme-prothrombin assembly, rather than rate-limiting chemical transformation. FVa is known to effect a major conformational change to expose the first scissile bond in prothrombin, which is the likely event triggering a major solvent rearrangement. At prothrombin concentrations >5 Km the KSIE is 1.6 ± 0.3, when FXa is in 1 : 1 ratio with FVa, but becomes increasingly inverse, 0.30 ± 0.05 and 0.19 ± 0.04, when FXa : FVa 1:4, with increasing FXa concentration and substrate concentration. The rate-determining step changes with the conditions, but the chemical step is not limiting under any circumstance. This corroborates the proposed predominance of the meizothrombin pathway when FXa is well saturated with the prothrombin complex. In contrast, the FXa-catalyzed hydrolysis of N-α-Z-D-Arg-Gly-Arg-pNA·2HCl (S-2765) and H-D-Ile-L-Pro-L-Arg-pNA.HCl (S-2288) is most consistent with two-proton bridges forming at the transition state between Ser195 OγH and His57 Nε2 and His57 Nδ1 and Asp102 COOβ- at the active site, with transition state fractionation factors of ϕ1 = ϕ2 = 0.57 ± 0.07 and ϕS = 0.78 ± 0.16 for solvent rearrangement for S-2765, and ϕ1 = ϕ2 = 0.674 ± 0.001 for S-2288 under enzyme saturation with substrate at pH 8.40 and 25.0 ± 0.1 °C. The rate-determining step(s) in these reactions is most likely the cleavage of the C-N bond and departure of the leaving group. PMID:17115712

  13. Simulating speleothem growth in the laboratory: Determination of stable isotope fractionation factors during precipitation of speleothem calcite

    NASA Astrophysics Data System (ADS)

    Hansen, Maximilian; Schöne, Bernd R.; Spötl, Christoph; Scholz, Denis

    2016-04-01

    We present laboratory experiments aiming to understand the processes affecting the δ13C and δ18O values of speleothems during precipitation of calcite from a thin layer of solution. In particular, we determined the precipitation rates and the isotope fractionation factors in dependence of several parameters, such as temperature, cave pCO2 and supersaturation with respect to calcite. The experiments were performed in a climate box in order to simulate cave conditions and to control them during the experiments[1]. In the experiments, a thin film of a CaCO3-CO2-H2O-solution supersaturated with respect to calcite flew down an inclined marble surface or a sand-blasted borosilicate glass plate, and the drip water was sampled at different distances and, thus, residence times on the plate. Subsequently, pH, electrical conductivity and the δ13C and δ18O values of the dissolved inorganic carbon (DIC) as well as the precipitated CaCO3 were determined. In addition, we determined the stable isotope values of the drip water and the atmosphere inside the box during the experiments. This enabled the identification of carbon and oxygen isotope fractionation factors between all carbonate species. The experiments were conducted at 10, 20 and 30 ° C, a pCO2 of 1000 and 3000 ppmV and with a Ca2+ concentration of 2 and 5 mmol/l. We observed an exponential decay of conductivity with increasing distance of flow documenting progressive precipitation of calcite confirming previous observations[2]. The corresponding time constants of precipitation range from 180 to 660 s. Both the δ13C and δ18O values show a progressive increase along the flow path. The enrichment of the δ13C values seems to be strongly influenced by kinetic isotope fractionation, whereas the δ18O values are in the range of isotopic equilibrium. The fractionation between the precipitated CaCO3 and DIC is between -1 and - 6.5 ‰ for carbon isotopes (13ɛ) and between -1.5 and -3 ‰ for oxygen isotopes (18ɛ). The

  14. Numerical experiments on the impacts of surface evaporation and fractionation factors on stable isotopes in precipitation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinping; Guan, Huade; Zhang, Xinzhu; Zhang, Wanjun; Yao, Tianci

    2016-06-01

    The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation.

  15. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  16. Trophic Discrimination Factors and Incorporation Rates of Carbon- and Nitrogen-Stable Isotopes in Adult Green Frogs, Lithobates clamitans.

    PubMed

    Cloyed, Carl S; Newsome, Seth D; Eason, Perri K

    2015-01-01

    Stable isotope analysis is an increasingly useful ecological tool, but its accuracy depends on quantifying the tissue-specific trophic discrimination factors (TDFs) and isotopic incorporation rates for focal taxa. Despite the technique's ubiquity, most laboratory experiments determining TDFs and incorporation rates have focused on birds, mammals, and fish; we know little about terrestrial ectotherms, and amphibians in particular are understudied. In this study we used two controlled feeding experiments to determine carbon (δ(13)C) and nitrogen (δ(15)N) isotope TDFs for skin, whole blood, and bone collagen and incorporation rates for skin and whole blood in adult green frogs, Lithobates clamitans. The mean (±SD) TDFs for δ(13)C were 0.1‰ (±0.4‰) for skin, 0.5‰ (±0.5‰) for whole blood, and 1.6‰ (0.6‰) for bone collagen. The mean (±SD) TDFs for δ(15)N were 2.3‰ (±0.5‰) for skin, 2.3‰ (±0.4‰) for whole blood, and 3.1‰ (±0.6‰) for bone collagen. A combination of different isotopic incorporation models was best supported by our data. Carbon in skin was the only tissue in which incorporation was best explained by two compartments, which had half-lives of 89 and 8 d. The half-life of carbon in whole blood was 69 d. Half-lives for nitrogen were 75 d for skin and 71 d for whole blood. Our results help fill a taxonomic gap in our knowledge of stable isotope dynamics and provide ecologists with a method to measure anuran diets.

  17. Factors That Contribute to the Improvement in Maternal Parenting after Separation from a Violent Husband or Partner

    ERIC Educational Resources Information Center

    Fujiwara, Takeo; Okuyama, Makiko; Izumi, Mayuko

    2012-01-01

    The authors test the hypothesis that separation from a violent husband or partner improves maternal parenting in Japan and examine how childhood abuse history (CAH), experience of domestic violence (DV), mental health problems, husband or partner's child maltreatment, and other demographic factors affect maternal parenting after such separation. A…

  18. Factors That Contribute to the Improvement in Maternal Parenting after Separation from a Violent Husband or Partner

    ERIC Educational Resources Information Center

    Fujiwara, Takeo; Okuyama, Makiko; Izumi, Mayuko

    2012-01-01

    The authors test the hypothesis that separation from a violent husband or partner improves maternal parenting in Japan and examine how childhood abuse history (CAH), experience of domestic violence (DV), mental health problems, husband or partner's child maltreatment, and other demographic factors affect maternal parenting after such separation. A…

  19. Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil.

    PubMed

    Mathieu, Olivier; Lévêque, Jean; Hénault, Catherine; Ambus, Per; Milloux, Marie-Jeanne; Andreux, Francis

    2007-01-01

    Nitrous oxide, a greenhouse gas, is mainly emitted from soils during the denitrification process. Nitrogen stable-isotope investigations can help to characterise the N(2)O source and N(2)O production mechanisms. The stable-isotope approach is increasingly used with (15)N natural abundance or relatively low (15)N enrichment levels and requires a good knowledge of the isotopic fractionation effect inherent to this biological mechanism. This paper reports the measurement of the net and instantaneous isotopic fractionation factor (alpha(s/p) (i)) during the denitrification of NO(3) (-) to N(2)O over a range of (15)N substrate enrichments (0.37 to 1.00 atom% (15)N). At natural abundance level, the isotopic fractionation effect reported falls well within the range of data previously observed. For (15)N-enriched substrate, the value of alpha(s/p) (i) was not constant and decreased from 1.024 to 1.013, as a direct function of the isotopic enrichment of the labelled nitrate added. However, for enrichment greater than 0.6 atom% (15)N, the value of alpha(s/p) (i) seems to be independent of substrate isotopic enrichment. These results suggest that for isotopic experiments applied to N(2)O emissions, the use of low (15)N-enriched tracers around 1.00 atom% (15)N is valid. At this enrichment level, the isotopic effect appears negligible in comparison with the enrichment of the substrate. Copyright (c) 2007 John Wiley & Sons, Ltd.

  20. Investigations of the g{sub K}-factors in the {sup 175,177,179}Hf Isotopes

    SciTech Connect

    Yakut, Hakan; Kuliev, Ali; Guliyev, Ekber

    2008-11-11

    In this paper the intrinsic g{sub K} and effective spin g{sub s} factors of the odd-mass {sup 175-179}Hf isotopes have been investigated within the Tamm-Dancoff approximation by using the realistic Saxon-Woods potential. The theoretically calculated g{sub K} and g{sub s}{sup eff} values are compared with experimental data. The comparison of the measured and calculated values of the effective g{sub s} factor shows that the spin polarization explains quite well the observed reduction of g{sub s} from its free-nucleon value.

  1. Methamphetamine reversed maternal separation-induced decrease in nerve growth factor in the ventral hippocampus.

    PubMed

    Dimatelis, J J; Russell, V A; Stein, D J; Daniels, W M

    2014-06-01

    Stress has been suggested to predispose individuals to drug abuse. The early life stress of maternal separation (MS) is known to alter the response to drugs of abuse later in life. Exposure to either stress or methamphetamine has been shown to alter neurotrophic factors in the brain. Changes in neurotrophin levels may contribute to the underlying molecular mechanisms responsible for drug use- and stress-induced behaviours. The purpose of the present study was to investigate the individual effects of MS and methamphetamine administration during adolescence and the combined effects of both stressors on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the dorsal and ventral hippocampus (HC) in adulthood. Methamphetamine administration (1 mg/kg, daily from postnatal day (PND) 33 to 36 and from PND 39 to 42), MS and the combination of the two stressors resulted in decreased BDNF levels in both the dorsal and ventral HC. MS decreased NGF levels in the ventral HC which was restored by methamphetamine administration in adolescence. In the dorsal HC, NGF remained unaltered by either stressor alone or in combination. We propose that the restoration of NGF levels in the ventral HC may reflect a possible compensatory mechanism in response to methamphetamine exposure in adolescence following the early life stress of MS.

  2. Nonnegative signal factorization with learnt instrument models for sound source separation in close-microphone recordings

    NASA Astrophysics Data System (ADS)

    Carabias-Orti, Julio J.; Cobos, Máximo; Vera-Candeas, Pedro; Rodríguez-Serrano, Francisco J.

    2013-12-01

    Close-microphone techniques are extensively employed in many live music recordings, allowing for interference rejection and reducing the amount of reverberation in the resulting instrument tracks. However, despite the use of directional microphones, the recorded tracks are not completely free from source interference, a problem which is commonly known as microphone leakage. While source separation methods are potentially a solution to this problem, few approaches take into account the huge amount of prior information available in this scenario. In fact, besides the special properties of close-microphone tracks, the knowledge on the number and type of instruments making up the mixture can also be successfully exploited for improved separation performance. In this paper, a nonnegative matrix factorization (NMF) method making use of all the above information is proposed. To this end, a set of instrument models are learnt from a training database and incorporated into a multichannel extension of the NMF algorithm. Several options to initialize the algorithm are suggested, exploring their performance in multiple music tracks and comparing the results to other state-of-the-art approaches.

  3. Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation

    NASA Astrophysics Data System (ADS)

    Domanov, Ignat; Lathauwer, Lieven De

    2016-06-01

    Algebraic geometry, although little explored in signal processing, provides tools that are very convenient for investigating generic properties in a wide range of applications. Generic properties are properties that hold "almost everywhere". We present a set of conditions that are sufficient for demonstrating the generic uniqueness of a certain structured matrix factorization. This set of conditions may be used as a checklist for generic uniqueness in different settings. We discuss two particular applications in detail. We provide a relaxed generic uniqueness condition for joint matrix diagonalization that is relevant for independent component analysis in the underdetermined case. We present generic uniqueness conditions for a recently proposed class of deterministic blind source separation methods that rely on mild source models. For the interested reader we provide some intuition on how the results are connected to their algebraic geometric roots.

  4. Generation of Radixenon Isotopes

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  5. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  6. Direct measurement of the boron isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH

    NASA Astrophysics Data System (ADS)

    Nir, Oded; Vengosh, Avner; Harkness, Jennifer S.; Dwyer, Gary S.; Lahav, Ori

    2015-03-01

    The boron isotopic composition of calcium carbonate skeletons is a promising proxy method for reconstructing paleo-ocean pH and atmospheric CO2 from the geological record. Although the boron isotope methodology has been used extensively over the past two decades to determine ancient ocean-pH, the actual value of the boron isotope fractionation factor (εB) between the two main dissolved boron species, 11B(OH)3 and 10B(OH)-4, has remained uncertain. Initially, εB values were theoretically computed from vibrational frequencies of boron species, resulting in a value of ∼ 19 ‰. Later, spectrophotometric pH measurements on artificial seawater suggested a higher value of ∼ 27 ‰. A few independent theoretical models also pointed to a higher εB value. Here we provide, for the first time, an independent empirical fractionation factor (εB = 26.0 ± 1.0 ‰ ; 25 °C), determined by direct measurements of B(OH)3 in seawater and other solutions. Boric acid was isolated by preferential passage through a reverse osmosis membrane under controlled pH conditions. We further demonstrate that applying the Pitzer ion-interaction approach, combined with ion-pairing calculations, results in a more accurate determination of species distribution in aquatic solutions of different chemical composition, relative to the traditional two-species boron-system approach. We show that using the revised approach reduces both the error in simulating ancient atmospheric CO2 (by up to 21%) and the overall uncertainty of applying boron isotopes for paleo-pH reconstruction. Combined, this revised methodology lays the foundation for a more accurate determination of ocean paleo-pH through time.

  7. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  8. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  9. The use of Alpert-Stein Factor Separation Methodology for climate variable interaction studies in hydrological land surface models and crop yield models. In:Factor Separation in the Atmosphere:Application and future prospects

    USDA-ARS?s Scientific Manuscript database

    The Factor Separation Method (FacSep) is a modeling application that has been utilized in the study of biophysical responses to changes in the environment to assess the relative contribution of different atmospheric factors on a biological system. In this chapter we will discuss crop simulation and...

  10. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Sanford, Robert A.; Johnson, Thomas M.; Lundstrom, Craig C.; Löffler, Frank E.

    2014-07-01

    We experimentally determined the magnitude of uranium isotopic fractionation induced by U(VI) reduction by metal reducing bacterial isolates. Our results indicate that microbial U(VI) reduction induces isotopic fractionation; heavier isotopes (i.e., 238U) partition into the solid U(IV) products. The magnitudes of isotopic fractionation (expressed as ε = 1000‰ * (α-1)) for 238U/235U were 0.68‰ ± 0.05‰ and 0.99‰ ± 0.12‰ for Geobacter sulfurreducens strain PCA and strain IFRC-N, respectively. The ε values for Anaeromyxobacter dehalogenans strain FRC-W, strain FRC-R5, a novel Shewanella isolate, and Desulfitobacterium sp. strain Viet1 were 0.72‰ ± 0.15‰, 0.99‰ ± 0.12‰, 0.96‰ ± 0.16‰ and 0.86‰ ± 0.06‰, respectively. Our results show that the maximum ε values of ∼1.0‰ were obtained with low biomass (∼107 cells/mL) and low electron donor concentrations (∼500 μM). These results provide an initial assessment of 238U/235U shifts induced by microbially-mediated U(VI) reduction, which is needed as 238U/235U data are increasingly applied as redox indicators in various geochemical settings.

  11. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Minmin; Dong, Guanghui; Jia, Xin; Wang, Hui; Cui, Yifu; Chen, Fahu

    2017-04-01

    :Human diets rely on natural resource availability and can reflect social and cultural values. When environments, societies, and cultures change, diets may also shift. This study traced the extent of dietary change and the factors influencing such change. Through stable carbon and nitrogen isotopic analysis of late Neolithic and early Bronze Age human and animal bone collagen, we found that significant shifts in human diets were closely associated with intercontinental cultural exchanges in Eurasia and climate change in northwestern China. The isotopic evidence indicated that human diets mainly consisted of C4 foodstuffs (presumably millet and/or animals fed with C4 foods) around 4000 calibrated years before the present (cal yr BP), corresponding to the flourishing of millet agriculture in the context of the optimal climate conditions of the mid-Holocene. Subsequently, more C3 foods (probably wheat, barley, and animals fed with C3 foods) were added to human diets post-3600 cal yr BP when the climate became cooler and drier. Such dietary variation is also consistent with the increasing intensity of long-distance exchange after 4000 cal yr BP. While many factors can lead to human dietary shifts (e.g. climate change, population growth, cultural factors, and human migration), climate may have been a key factor in Gansu and Qinghai.

  12. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Minmin; Dong, Guanghui; Jia, Xin; Wang, Hui; Cui, Yifu; Chen, Fahu

    2016-08-01

    Human diets rely on natural resource availability and can reflect social and cultural values. When environments, societies, and cultures change, diets may also shift. This study traced the extent of dietary change and the factors influencing such change. Through stable carbon and nitrogen isotopic analysis of late Neolithic and early Bronze Age human and animal bone collagen, we found that significant shifts in human diets were closely associated with intercontinental cultural exchanges in Eurasia and climate change in northwestern China. The isotopic evidence indicated that human diets mainly consisted of C4 foodstuffs (presumably millet and/or animals fed with C4 foods) around 4000 calibrated years before the present (cal yr BP), corresponding to the flourishing of millet agriculture in the context of the optimal climate conditions of the mid-Holocene. Subsequently, more C3 foods (probably wheat, barley, and animals fed with C3 foods) were added to human diets post-3600 cal yr BP when the climate became cooler and drier. Such dietary variation is also consistent with the increasing intensity of long-distance exchange after 4000 cal yr BP. While many factors can lead to human dietary shifts (e.g. climate change, population growth, cultural factors, and human migration), climate may have been a key factor in Gansu and Qinghai.

  13. Quenching of neutron spectroscopic factors of radioactive carbon isotopes with knockout reactions within a wide energy range

    NASA Astrophysics Data System (ADS)

    Wen, Chao; Xu, Yi-Ping; Pang, Dan-Yang; Ye, Yan-Lin

    2017-05-01

    The quenching factors of one-neutron spectroscopic factors, which are ratios of theoretical to experimental one-neutron removal cross sections, are studied for the carbon isotopes 15-19C, with 12C and 9Be targets within incident energies from around 50 to 900 MeV/nucleon. The resulting values of quenching factors do not show strong energy dependence within such an energy range. The average values of the these quenching factors agree well with the systematics in [J.A. Tostevin and A. Gade, Phys. Rev. C, 90 057602 (2014)], which was established for a large set of radioactive nuclei with different masses below 305 MeV/nucleon. Supported by National Natural Science Foundation of China (1275018, U1432247) and National Key Research and Development Program (2016YFA0400502)

  14. Onflow liquid chromatography at critical conditions coupled to (1)H and (2)H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition.

    PubMed

    Hehn, Mathias; Sinha, Pritish; Pasch, Harald; Hiller, Wolf

    2015-03-27

    The present work addresses a major challenge in polymer chromatography by developing a method to separate and analyze polymers with identical molar masses, chemical structures and tacticities that is solely based on differences in isotope composition. For the first time, liquid chromatography at critical conditions (LCCC) was used to separate PMMA regarding the H and D isotopes. At critical conditions of H-PMMA, D-PMMA eluted in the adsorption mode and vice versa. By online onflow LCCC-NMR, both PMMA species were clearly identified. Different from other detectors, NMR can distinguish between H and D. Onflow LCCC-H/NMR and LCCC-D/NMR measurements were carried out and the H/D-blend components were detected. (1)H and (13)C NMR provided the tacticity of protonated PMMA. Double resonance (13)C{H} and triple resonance (13)C{H,D} provided the tacticity of the deuterated samples. Samples with similar tacticities were used to ensure that separation occurs solely regarding the isotope labeling.

  15. Factors influence flexibility resistivity and zinc dendrite penetration rate of inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Developmental work resulted in a formulation which can improve the flexibility of the inorganic-organic-type separator for silver-zinc and nickel-zinc alkaline batteries. The effects of various fillers and reactive organic additives on separator volume resistivity are described. The effects of various inert fillers on the zinc dendrite penetration rate of the separator are shown. Conclusions regarding the operating mechanism of the separator are presented.

  16. Impact of CO2 and climate on Last Glacial maximum vegetation - a factor separation

    NASA Astrophysics Data System (ADS)

    Claussen, M.; Selent, K.; Brovkin, V.; Raddatz, T.; Gayler, V.

    2013-06-01

    The factor separation of Stein and Alpert (1993) is applied to simulations with the MPI Earth system model to determine the factors which cause the differences between vegetation patterns in glacial and pre-industrial climate. The factors firstly include differences in the climate, caused by a strong increase in ice masses and the radiative effect of lower greenhouse gas concentrations; secondly, differences in the ecophysiological effect of lower glacial atmospheric CO2 concentrations; and thirdly, the synergy between the pure climate effect and the pure effect of changing physiologically available CO2. It is has been shown that the synergy can be interpreted as a measure of the sensitivity of ecophysiological CO2 effect to climate. The pure climate effect mainly leads to a contraction or a shift in vegetation patterns when comparing simulated glacial and pre-industrial vegetation patterns. Raingreen shrubs benefit from the colder and drier climate. The pure ecophysiological effect of CO2 appears to be stronger than the pure climate effect for many plant functional types - in line with previous simulations. The pure ecophysiological effect of lower CO2 mainly yields a reduction in fractional coverage, a thinning of vegetation and a strong reduction in net primary production. The synergy appears to be as strong as each of the pure contributions locally, but weak on global average for most plant functional types. For tropical evergreen trees, however, the synergy is strong on global average. It diminishes the difference between glacial and pre-industrial coverage of tropical evergreen trees, due to the pure climate effect and the pure ecophysiological CO2 effect, by approximately 50 per cent.

  17. Discrimination factors of carbon and nitrogen stable isotopes from diet to hair and scat in captive tigers (Panthera tigris) and snow leopards (Uncia uncia).

    PubMed

    Montanari, Shaena; Amato, George

    2015-06-15

    In order to use stable isotope ratio values obtained from wild animal tissues, we must accurately calculate the differences in isotope ratios between diet and consumer (δtissue - δdiet). These values, called trophic discrimination factors (TDFs, denoted with ∆), are necessary for stable isotope ecology studies and are best calculated in controlled environments. Scat, hair, and diet samples were collected from captive tigers (n = 8) and snow leopards (n = 10) at the Bronx Zoo. The isotope ratios of carbon and nitrogen, the two most commonly used in ecological studies, of the samples were measured by continuous-flow isotope ratio mass spectrometry. The trophic discrimination factors were calculated for both carbon (δ(13)C values) and nitrogen (δ(15)N values). It was found that the only significant TDFs in this study were diet-hair, ∆(13)CHair, for snow leopards (5.97 ± 1.25‰) and tigers (6.45 ± 0.54‰), and diet-scat, ∆(15)NScat, in snow leopards (2.49 ± 1.30‰). The other mean isotope ratios were not significantly different from that of the premixed feline diet. The ∆(15)NHair values for both species were unusually low, potentially due to the protein content and quality of the feline diet. The discrimination factors of the stable isotopes of carbon and nitrogen calculated in this study can be applied to ecological studies of wild, non-captive terrestrial mammals. The effect of protein quality in isotope discrimination is also worthy of further investigation to better understand variation in TDFs. Carnivore scat is shown to be a valuable material for isotopic analysis. Copyright © 2015 John Wiley & Sons, Ltd.

  18. [Hyperspectral Band Selection Based on Spectral Clustering and Inter-Class Separability Factor].

    PubMed

    Qin, Fang-pu; Zhang, Ai-wu; Wang, Shu-min; Meng, Xian-gang; Hu, Shao-xing; Sun, Wei-dong

    2015-05-01

    With the development of remote sensing technology and imaging spectrometer, the resolution of hyperspectral remote sensing image has been continually improved, its vast amount of data not only improves the ability of the remote sensing detection but also brings great difficulties for analyzing and processing at the same time. Band selection of hyperspectral imagery can effectively reduce data redundancy and improve classification accuracy and efficiency. So how to select the optimum band combination from hundreds of bands of hyperspectral images is a key issue. In order to solve these problems, we use spectral clustering algorithm based on graph theory. Firstly, taking of the original hyperspectral image bands as data points to be clustered , mutual information between every two bands is calculated to generate the similarity matrix. Then according to the graph partition theory, spectral decomposition of the non-normalized Laplacian matrix generated by the similarity matrix is used to get the clusters, which the similarity between is small and the similarity within is large. In order to achieve the purpose of dimensionality reduction, the inter-class separability factor of feature types on each band is calculated, which is as the reference index to choose the representative bands in the clusters furthermore. Finally, the support vector machine and minimum distance classification methods are employed to classify the hyperspectral image after band selection. The method in this paper is different from the traditional unsupervised clustering method, we employ spectral clustering algorithm based on graph theory and compute the interclass separability factor based on a priori knowledge to select bands. Comparing with traditional adaptive band selection algorithm and band index based on automatically subspace divided algorithm, the two sets of experiments results show that the overall accuracy of SVM is about 94. 08% and 94. 24% and the overall accuracy of MDC is about 87

  19. Processing factors that influence casein and serum protein separation by microfiltration.

    PubMed

    Hurt, E; Barbano, D M

    2010-10-01

    Our objective was to demonstrate the effect of various processing factors on the performance of a microfiltration system designed to process skim milk and separate casein (CN) from serum proteins (SP). A mathematical model of a skim milk microfiltration process was developed with 3 stages plus an additional fourth finishing stage to standardize the retentate to 9% true protein (TP) and allow calculation of yield of a liquid 9% TP micellar CN concentrate (MCC) and milk SP isolate (MSPI; 90% SP on a dry basis). The model was used to predict the effect of 5 factors: 1) skim milk composition, 2) heat treatment of skim milk, 3) concentration factor (CF) and diafiltration factor (DF), 4) control of CF and DF, and 5) SP rejection by the membrane on retentate and permeate composition, SP removal, and MCC and MSPI yield. When skim milk TP concentration increased from 3.2 to 3.8%, the TP concentration in the third stage retentate increased from 7.92 to 9.40%, the yield of MCC from 1,000 kg of skim milk increased from 293 to 348 kg, and the yield of MSPI increased from 6.24 to 7.38 kg. Increased heat treatment (72.9 to 85.2°C) of skim milk caused the apparent CN as a percentage of TP content of skim milk as measured by Kjeldahl analysis to increase from 81.97 to 85.94% and the yield of MSPI decreased from 6.24 to 4.86 kg, whereas the third stage cumulative percentage SP removal decreased from 96.96 to 70.08%. A CF and DF of 2× gave a third stage retentate TP concentration of 5.38% compared with 13.13% for a CF and DF of 5×, with the third stage cumulative SP removal increasing from 88.66 to 99.47%. Variation in control of the balance between CF and DF (instead of an equal CF and DF) caused either a progressive increase or decrease in TP concentration in the retentate across stages depending on whether CF was greater than DF (increasing TP in retentate) or CF was less than DF (decreasing TP in retentate). An increased rejection of SP by the membrane from an SP removal

  20. Impact of CO2 and climate on Last Glacial Maximum vegetation - a factor separation

    NASA Astrophysics Data System (ADS)

    Claussen, M.; Selent, K.; Brovkin, V.; Raddatz, T.; Gayler, V.

    2012-11-01

    Differences between glacial and pre-industrial potential vegetation patterns can conceptually be attributed to two factors: firstly to differences in the climate, caused by a strong increase in ice masses and the radiative effect of lower greenhouse gas concentrations, and secondly to differences in the ecophysiological effect of lower glacial atmospheric CO2 concentrations. The synergy emerging from these effects when operating simultaneously can be interpreted as sensitivity of the effect of enhancing physiologically available CO2 on shifting vegetation to climate warming. Alternatively and equally valid, it can be viewed as sensitivity of climatically induced vegetation changes to differences in physiologically available CO2. A first complete factor separation based on simulations with the MPI Earth System Model indicates that the pure climate effect mainly leads to a contraction or a shift in vegetation patterns when comparing glacial with pre-industrial simulation vegetation patterns. Globally, a reduction in fractional coverage of most plant functional types is seen - except for raingreen shrubs which strongly benefit from the colder and drier climate. The ecophysiological effect of CO2 appears to be stronger than the pure climate contribution for many plant functional types - in line with previous simulations. The ecophysiological effect of lower CO2 mainly yields a reduction in fractional coverage, a thinning of vegetation and a strong reduction in net primary production. The synergy appears to be as strong as each of the pure contributions locally. For tropical evergreen trees, the synergy appears strong also on global average. Hence this modelling study suggests that for tropical forests, an increase in CO2 has, on average, a stronger ecophysiological effect in warmer climate than in glacial climate. Alternatively, areal differences in tropical forests induced by climate warming can, on average, be expected to be larger with increasing concentration of

  1. Dietary restriction: critical co-factors to separate health span from life span benefits.

    PubMed

    Mendelsohn, Andrew R; Larrick, James W

    2012-10-01

    Dietary restriction (DR), typically a 20%-40% reduction in ad libitum or "normal" nutritional energy intake, has been reported to extend life span in diverse organisms, including yeast, nematodes, spiders, fruit flies, mice, rats, and rhesus monkeys. The magnitude of the life span enhancement appears to diminish with increasing organismal complexity. However, the extent of life span extension has been notoriously inconsistent, especially in mammals. Recently, Mattison et al. reported that DR does not extend life span in rhesus monkeys in contrast to earlier work of Colman et al. Examination of these papers identifies multiple potential confounding factors. Among these are the varied genetic backgrounds and composition of the "normal" and DR diets. In monkeys, the correlation of DR with increased health span is stronger than that seen with life span and indeed may be separable. Recent mechanistic studies in Drosophila implicate non-genetic co-factors such as level of physical activity and muscular fatty acid metabolism in the benefits of DR. These results should be followed up in mammals. Perhaps levels of physical activity among the cohorts of rhesus monkeys contribute to inconsistent DR effects. To understand the maximum potential benefits from DR requires differentiating fundamental effects on aging at the cellular and molecular levels from suppression of age-associated diseases, such as cancer. To that end, it is important that investigators carefully evaluate the effects of DR on biomarkers of molecular aging, such as mutation rate and epigenomic alterations. Several short-term studies show that humans may benefit from DR in as little as 6 months, by achieving lowered fasting insulin levels and improved cardiovascular health. Optimized health span engineering will require a much deeper understanding of DR.

  2. [Separation of coagulation factor VIII with high activity using gigaporous anion exchange chromatography].

    PubMed

    Kang, Limei; Zhang, Yan; Luo, Jian; Li, You; Zhou, Yuefang; Yu, Rong; Su, Zhiguo

    2012-06-01

    A purification process to obtain coagulation factor VIII (F VIII) with high activity from human plasma was established. Based on the analysis of the size ratio between F VIII and matrix porous medium and its effect on the protein activity, a novel purification process designed was superporous ion exchange chromatography (IEC). The operating conditions of gigaporous and traditional anion exchange chromatography were optimized separately. The chromogenic substrate, gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to monitor the bioactivity and purity of the chromatographic products. The results showed that the superporous medium could not only protect structure of macro-protein but also enhance its mass transfer, finally giving FVIII product with high activity. The yield of F VIII in superporous chromatography was about five times of commercially agarose chromatography and the specific activity was up to 154 IU/mg protein. Furthermore, we studied the regeneration process of the superporous medium, washing the column with 5 column volumes of 1 mol/L NaOH at a low flow rate, to ensure the chromatographic stability. This purification process is simple, reproducible and suitable for large-scale production.

  3. A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2010-01-01

    A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.

  4. Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)

    SciTech Connect

    1996-02-12

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

  5. Stable isotope composition in Daphnia is modulated by growth, temperature, and toxic exposure: implications for trophic magnification factor assessment.

    PubMed

    Ek, Caroline; Karlson, Agnes M L; Hansson, Sture; Garbaras, Andrius; Gorokhova, Elena

    2015-06-02

    The potential for using stable isotope analysis in risk assessment of environmental contaminants is crucially dependent on the predictability of the trophic transfer of isotopes in food webs. The relationship between contaminant levels and trophic position of consumers is widely used to assess biomagnification properties of various pollutants by establishing trophic magnification factors (TMF). However, contaminant-induced variability of the isotopic composition in biota is poorly understood. Here, we investigated effects of toxic exposure on δ(15)N and δ(13)C values in a consumer, with a main hypothesis that these effects would be largely mediated via growth rate and metabolic turnover of the test animals. The cladoceran Daphnia magna was used in two experiments that were conducted to manipulate growth and body condition (assayed as C:N ratio) by food availability and temperature (Experiment 1) and by toxic exposure to the pesticide lindane (Experiment 2). We found a significant negative effect of growth rate and a positive effect of temperature on the consumer-diet discrimination factor for δ(15)N and δ(13)C, with no effects on the C:N ratio (Experiment 1). In lindane-exposed daphnids, a significant growth inhibition was observed, with concomitant increase in metabolic costs and significantly elevated size-specific δ(15)N and δ(13)C values. Moreover, a significantly higher incorporation of carbon relative to nitrogen, yet a concomitant decrease in C:N ratio was observed in the exposed animals. Together, these results have methodological implications for determining trophic positions and TMF in polluted environments, where elevated δ(15)N values would translate into overestimated trophic positions and underestimated TMF. Furthermore, altered δ(13)C values may lead to erroneous food-chain assignment of the consumer in question.

  6. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination.

    PubMed

    Xu, Meng; Wang, Guoan; Li, Xiaoliang; Cai, Xiaobu; Li, Xiaolin; Christie, Peter; Zhang, Junling

    2015-01-01

    Many environmental factors affect carbon isotope discrimination in plants, yet the predominant factor influencing this process is generally assumed to be the key growth-limiting factor. However, to our knowledge this hypothesis has not been confirmed. We therefore determined the carbon isotope composition (δ(13)C) of plants growing in two cold and humid mountain regions where temperature is considered to be the key growth-limiting factor. Mean annual temperature (MAT) showed a significant impact on variation in carbon isotope discrimination value (Δ) irrespective of study area or plant functional type with either partial correlation or regression analysis, but the correlation between Δ and soil water content (SWC) was usually not significant. In multiple stepwise regression analysis, MAT was either the first or the only variable selected into the prediction model of Δ against MAT and SWC, indicating that the effect of temperature on carbon isotope discrimination was predominant. The results therefore provide evidence that the key growth-limiting factor is also crucial for plant carbon isotope discrimination. Changes in leaf morphology, water viscosity and carboxylation efficiency with temperature may be responsible for the observed positive correlation between Δ and temperature.

  7. Separation as an Important Risk Factor for Suicide: A Systematic Review

    ERIC Educational Resources Information Center

    Ide, Naoko; Wyder, Marianne; Kolves, Kairi; De Leo, Diego

    2010-01-01

    Examining how different phases of relationship separation effects the development of suicidal behaviors has been largely ignored in suicide studies. The few studies conducted suggest that individuals experiencing the acute phase of marital/de facto separation may be at greater risk of suicide compared with those experiencing long-term separation…

  8. Psychological Factors Capable of Preventing the Inhibition of Antibody Responses in Separated Infant Monkeys.

    ERIC Educational Resources Information Center

    Coe, Christopher L.; And Others

    1987-01-01

    Capacity of infant monkeys to mount an antibody response to viral challenge was evaluated after monkeys' removal from their mothers in several social and physical environments. Results indicated that trauma of separation was reduced when infants were familiar with the separation environment or familiar social companions were available. (PCB)

  9. Psychological Factors Capable of Preventing the Inhibition of Antibody Responses in Separated Infant Monkeys.

    ERIC Educational Resources Information Center

    Coe, Christopher L.; And Others

    1987-01-01

    Capacity of infant monkeys to mount an antibody response to viral challenge was evaluated after monkeys' removal from their mothers in several social and physical environments. Results indicated that trauma of separation was reduced when infants were familiar with the separation environment or familiar social companions were available. (PCB)

  10. Separation as an Important Risk Factor for Suicide: A Systematic Review

    ERIC Educational Resources Information Center

    Ide, Naoko; Wyder, Marianne; Kolves, Kairi; De Leo, Diego

    2010-01-01

    Examining how different phases of relationship separation effects the development of suicidal behaviors has been largely ignored in suicide studies. The few studies conducted suggest that individuals experiencing the acute phase of marital/de facto separation may be at greater risk of suicide compared with those experiencing long-term separation…

  11. Factors Affecting the Clumped Isotope Signature of Dissolved Inorganic Carbon and Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Tripati, A. K.; Schauble, E. A.

    2011-12-01

    18O/16O ratios[a] and 13C-18O bond ordering[b] in many natural and synthetic carbonate minerals may reflect the extent of isotopic equilibration of dissolved inorganic carbon (DIC) species, rather than the crystalline equilibrium. In the simplest case where transport and surface-reaction steps do not impart their own fractionations, the clumped isotope signature (Δ47: the enrichment in per mil of 13C18O16O above the amount expected for a random distribution of isotopes among all CO2 isotopologues) of a carbonate mineral precipitating from solution would preserve the temperature of DIC equilibration at the time of precipitation. We examine the consequences of (1) the time scale of DIC equilibration and (2) precipitation rate on Δ47 values of carbonate minerals, using electronic structure models of molecular clusters that approximate aqueous and crystalline chemical environments. Our use of cluster models for both the aqueous and the mineral phases of the clumped isotope system has the advantage of enabling us to compare aqueous and mineral systems with the same electronic structure methods, partially canceling systematic model errors. Fluid cluster models containing 21-32 water molecules are generated from periodic-boundary-condition molecular dynamics simulations. Mineral clusters are derived from measured crystal structures, with boundaries terminated by link atoms so as to retain Pauling bond strengths with severed distal lattice bonds[c]. Different combinations of density functional theory (DFT) methods and basis sets are compared. These studies, combined with concurrent controlled precipitation experiments, will add to our understanding of the extent of disequilibrium effects on clumping while providing a framework to include previous studies (such as the work of Guo et al. on the kinetic effects of CO2 dehydration and dehydroxyation and acid digestion[e]). [a] Zeebe, R.E. (2007) G3, 8, Q09002,; Zeebe, R.E. (1999) GCA 63, 2001-2007 [b] Tripati, A.K. et al

  12. Method for sequential injection of liquid samples for radioisotope separations

    DOEpatents

    Egorov, Oleg B.; Grate, Jay W.; Bray, Lane A.

    2000-01-01

    The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.

  13. Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Vesselinov, Velimir V.

    2014-09-01

    The identification of the physical sources causing spatial and temporal fluctuations of aquifer water levels is a challenging, yet a very important hydrogeological task. The fluctuations can be caused by variations in natural and anthropogenic sources such as pumping, recharge, barometric pressures, etc. The source identification can be crucial for conceptualization of the hydrogeological conditions and characterization of aquifer properties. We propose a new computational framework for model-free inverse analysis of pressure transients based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the subsurface flow medium. Our analysis only requires information about pressure transients at a number of observation points, m, where m≥r, and r is the number of unknown unique sources causing the observed fluctuations. We apply this new analysis on a data set from the Los Alamos National Laboratory site. We demonstrate that the sources identified by NMFk have real physical origins: barometric pressure and water-supply pumping effects. We also estimate the barometric pressure efficiency of the monitoring wells. The possible applications of the NMFk algorithm are not limited to hydrogeology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations.

  14. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China

    NASA Astrophysics Data System (ADS)

    Pu, Junbing; Wang, Aoyu; Shen, Licheng; Yin, Jianjun; Yuan, Daoxian; Zhao, Heping

    2016-04-01

    A prerequisite for using cave speleothems to reconstruct palaeoenvironmental conditions is an accurate understanding of specific factors controlling calcite growth, in particular the isotopic partitioning of oxygen (δ18O) and carbon (δ13C) which are the most commonly used proxies. An in situ monitoring study from April 2008 to September 2009 at Xueyu Cave, Chongqing, SW China, provides insight into the controls on calcite growth rates, drip water composition, cave air parameters and δ18O and δ13C isotopic values of modern calcite precipitation. Both cave air PCO2 and drip water hydrochemical characteristics show obvious seasonality driven by seasonal changes in the external environment. Calcite growth rates also display clear intra-annual variation, with the lowest values occurring during wet season and peak values during the dry season. Seasonal variations of calcite growth rate are primarily controlled by variations of cave air PCO2 and drip water rate. Seasonal δ18O-VPDB and δ13C-VPDB in modern calcite precipitates vary, with more negative values in the wet season than in the dry season. Strong positive correlation of δ18O-VPDB vs. δ13C-VPDB is due to simultaneous enrichment of both isotopes in the calcite. This correlation indicates that kinetic fractionation occurs between parent drip water and depositing calcite, likely caused by the variations of cave air PCO2 and drip rate influenced by seasonal cave ventilation. Kinetic fractionation amplifies the equilibrium fractionation value of calcite δ18O (by ∼1.5‰) and δ13C (by ∼1.7‰), which quantitatively reflects surface conditions during the cave ventilation season. These results indicate that the cave monitoring of growth rate and δ18O and δ13C of modern calcite precipitation are necessary in order to use a speleothem to reconstruct palaeoenvironment.

  15. Economic viability and critical influencing factors assessment of black water and grey water source-separation sanitation system.

    PubMed

    Thibodeau, C; Monette, F; Glaus, M; Laflamme, C B

    2011-01-01

    The black water and grey water source-separation sanitation system aims at efficient use of energy (biogas), water and nutrients but currently lacks evidence of economic viability to be considered a credible alternative to the conventional system. This study intends to demonstrate economic viability, identify main cost contributors and assess critical influencing factors. A technico-economic model was built based on a new neighbourhood in a Canadian context. Three implementation scales of source-separation system are defined: 500, 5,000 and 50,000 inhabitants. The results show that the source-separation system is 33% to 118% more costly than the conventional system, with the larger cost differential obtained by lower source-separation system implementation scales. A sensitivity analysis demonstrates that vacuum toilet flow reduction from 1.0 to 0.25 L/flush decreases source-separation system cost between 23 and 27%. It also shows that high resource costs can be beneficial or unfavourable to the source-separation system depending on whether the vacuum toilet flow is low or normal. Therefore, the future of this configuration of the source-separation system lies mainly in vacuum toilet flow reduction or the introduction of new efficient effluent volume reduction processes (e.g. reverse osmosis).

  16. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  17. Isotopic Clues on Factors Controlling Geochemical Fluxes From Large Watersheds in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rosa, E.; Helie, J.; Ghaleb, B.; Hillaire-Marcel, C.; Gaillardet, J.

    2008-12-01

    A monitoring and monthly sampling program of the Nelson, Ottawa, St. Lawrence, La Grande and Great Whale rivers was started in September 2007. It provides information on the seasonality and sources of geochemical fluxes into the Hudson Bay and the North Atlantic from watersheds covering more than 2.6 106 km2 of the eastern Canadian boreal domain. Measurements of pH and alkalinity, analyses of major ions, strontium and dissolved silica, 2H and 18O of water, concentrations and isotopic properties of dissolved organic and inorganic carbon (13C) and uranium (234U/238U) were performed. Lithology more than latitudinal climatic gradients controls the river geochemistry. Rivers draining silicate terrains show lower dissolved U concentrations but greater 234U/238U disequilibria than rivers draining carbonates (average of 1.38 vs. 1.23). Groundwater supplies might exert some control on these U- isotope signatures. No clear seasonality is observed in 234U/238U ratios, but U concentrations are correlated to dissolved organic carbon (DOC) concentrations in most rivers. Rivers draining carbonates present higher total dissolved carbon concentrations and higher 13C-contents in dissolved inorganic carbon (DIC), in response to the dissolution of soil carbonates. DOC/DIC ratios above 2.4 are observed in rivers draining silicates; their lower 13C-DIC content directly reflects the organic matter oxidation in soils. Total dissolved solids are one order of magnitude or more greater in rivers draining carbonates, showing the strong difference in chemical weathering rates according to the geological setting. The stability in chemical fluxes and water isotopic compositions in the La Grande River, which hosts hydroelectric reservoirs covering more than 12 000 km2, indicates that it is the most buffered hydrological system among the investigated watersheds. Seasonal fluctuations are observed elsewhere, with maximum geochemical fluxes during the spring snowmelt. 2H-18O content of river water

  18. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E. (Inventor)

    1978-01-01

    Molecules of one and the same isotope were preferentially photodissociated by a laser and an ultraviolet source, or by multiphoton absorption of laser radiation. The resultant ions were confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photodissociation region by means of screening and accelerating grids, and collected in ducts.

  19. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    NASA Astrophysics Data System (ADS)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  20. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.