Sample records for isotopes diffusion elastique

  1. Mesure de haute resolution de la fonction de distribution radiale du silicium amorphe pur

    NASA Astrophysics Data System (ADS)

    Laaziri, Khalid

    1999-11-01

    Cette these porte sur l'etude de la structure du silicium amorphe prepare par irradiation ionique. Elle presente des mesures de diffraction de rayons X sur de la poudre de silicium cristallin, du silicium amorphe relaxe et non relaxe, ainsi que tous les developpements mathematiques et physiques necessaires pour extraire la fonction de distribution radiale correspondant a chaque echantillon. Au Chapitre I, nous presentons une methode de fabrication de membranes minces de silicium amorphe pur. Il y a deux etapes majeures lors du processus de fabrication: l'implantation ionique, afin de creer une couche amorphe de plusieurs microns et l'attaque chimique, pour enlever le reste du materiau cristallin. Nous avons caracterise premierement les membranes de silicium amorphe par spectroscopie Raman pour verifier qu'il ne reste plus de trace de materiau cristallin dans les films amorphes. Une deuxieme caracterisation par detection de recul elastique (ERD-TOF) sur ces memes membranes a montre qu'il y a moins de 0.1% atomique de contaminants tels que l'oxygene, le carbone, et l'hydrogene. Au Chapitre II, nous proposons une nouvelle methode de correction de la contribution inelastique "Compton" des spectres de diffusion totale afin d'extraire les pics de diffusion elastique, responsable de la diffraction de Bragg. L'article presente tout d'abord une description simplifiee d'une theorie sur la diffusion inelastique dite "Impulse Approximation" (IA) qui permet de calculer des profils de Compton en fonction de l'energie et de l'angle de diffusion 2theta. Ces profils sont utilises comme fonction de lissage de la diffusion Compton experimentale. Pour lisser les pics de diffusion elastique, nous avons utilise une fonction pic de nature asymetrique. Aux Chapitre III, nous exposons de maniere detaillee les resultats des experiences de diffraction de rayons X sur les membranes de silicium amorphe et la poudre de silicium cristallin que nous avons preparees. Nous abordons aussi les differentes etapes experimentales, d'analyse ainsi que les methodes de determination et de filtrage des transformees de Fourier des donnees de diffraction. Une comparaison des fonctions de distribution radiale du silicium amorphe relaxe et non relaxe indique que la relaxation structurelle dans le silicium amorphe est probablement due en grande partie a une annihilation des defauts plutot qu'a une reorganisation atomique globale du reseau de silicium amorphe. La deduction de la coordination des pics correspondants au premiers voisins atomiques par lissage de fonctions gaussienne indique que la coordination du silicium amorphe relaxe est de 3.88, celle du non-relaxe est de 3.79, alors que la mesure de reference sur la poudre de silicium cristallin donne une valeur de 4 tel que prevu. La sous-coordination du silicium amorphe expliquerait pourquoi sa densite est inferieure a celle du silicium cristallin. (Abstract shortened by UMI.)

  2. Experiment E89-044 of quasi-elastic diffusion 3He(e,e'p) at Jefferson Laboratory: Analyze cross sections of the two body breakup in parallel kinematics; Experience E89-044 de diffusion quasi-elastique 3he(e,e'p) au Jefferson Laboratory : analyse des sections efficaces de desintegration a deux corps en cinematique parallele (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penel-Nottaris, Emilie

    2004-07-01

    The Jefferson Lab Hall A experiment has measured the 3He(e,e'p) reaction cross sections. The separation of the longitudinal and transverse response functions for the two-body breakup reaction in parallel kinematics allows to study the bound proton electromagnetic properties in the 3He nucleus and the involved nuclear mechanisms beyond impulse approximation. Preliminary cross sections show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta, and sensitivity to final state interactions and 3He wave functions for missing momenta of 300 MeV/c.

  3. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.

  4. Isotope fractionation by multicomponent diffusion (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Liang, Y.; Richter, F. M.; Ryerson, F. J.; DePaolo, D. J.

    2013-12-01

    Isotope fractionation by multicomponent diffusion The isotopic composition of mineral phases can be used to probe the temperatures and rates of mineral formation as well as the degree of post-mineralization alteration. The ability to interpret stable isotope variations is limited by our knowledge of three key parameters and their relative importance in determining the composition of a mineral grain and its surroundings: (1) thermodynamic (equilibrium) partitioning, (2) mass-dependent diffusivities, and (3) mass-dependent reaction rate coefficients. Understanding the mechanisms of diffusion and reaction in geological liquids, and how these mass transport processes discriminate between isotopes, represents an important problem that is receiving considerable attention in the geosciences. Our focus in this presentation will be isotope fractionation by chemical diffusion. Previous studies have documented that diffusive isotope effects vary depending on the cation as well as the liquid composition, but the ability to predict diffusive isotope effects from theory is limited; for example, it is unclear whether the magnitude of diffusive isotopic fractionations might also vary with the direction of diffusion in composition space. To test this hypothesis and to further guide the theoretical treatment of isotope diffusion, two chemical diffusion experiments and one self diffusion experiment were conducted at 1250°C and 0.7 GPa. In one experiment (A-B), CaO and Na2O counter-diffuse rapidly in the presence of a small SiO2 gradient. In the other experiment (D-E), CaO and SiO2 counter-diffuse more slowly in a small Na2O gradient. In both chemical diffusion experiments, Ca isotopes become fractionated by chemical diffusion but by different amounts, documenting for the first time that the magnitude of isotope fractionation by diffusion depends on the direction of diffusion in composition space. The magnitude of Ca isotope fractionation that develops is positively correlated with the rate of CaO diffusion; in A-B, the total variation is 2.5‰ whereas in D-E it is only 1.3‰. The diffusion of isotopes in a multicomponent system is modeled using a new expression for the isotope-specific diffusive flux that includes self diffusion terms in addition to the multicomponent chemical diffusion matrix. Kinetic theory predicts a mass dependence on isotopic mobility, i.e., self diffusivity, but it is unknown whether or how the mass dependence on self diffusivity translates into a mass dependence on chemical diffusion coefficients. The new experimental results allow us to assess several empirical expressions relating the self diffusivity and its mass dependence to the elements of the diffusion matrix and their mass dependence. Several plausible theoretical treatments can fit the data equally well. We are currently at the stage where experiments are guiding the theoretical treatment of the isotope fractionation by diffusion problem, underscoring the importance of experiments for aiding interpretations of isotopic variations in nature.

  5. A FORTRAN Program for Elastic Scattering of Deuterons with an Optical Model Containing Tensorial Potentials; PROGRAMME FORTRAN POUR LA DIFFUSION ELASTIQUE DE DEUTONS AVEC UN MODELE OPTIQUE CONTENANT DES TERMES TENSORIELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, J.

    1963-01-01

    The FORTRAN program 5PM 037 calculates the effective elastic scattering cross section, polarizations, the effective total reaction cross section, and the polarization transfer coefficients for spin-1 particles of low charge and mass incident on a low charge and mass target at medium energy. The number of partial waves can not exceed 38, and calculations for different values of parameters for the optical model used can be made. The effect of tensorial potentials constructed from the distance of the deuteron from the target, and its angular momentum with respect to it, can also be studied. The optical model, necessary data, numericalmore » methods, and description of the problem are discussed. The program is described, and tables of equivalent statements necessary for modifying it are included. (auth)« less

  6. Kinetic isotopic fractionation during diffusion of ionic species in water

    NASA Astrophysics Data System (ADS)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso, Abelardo D.

    2006-01-01

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine DLi/DK,D/D,D/D,D/D,andD/D. The measured ratio of the diffusion coefficients for Li and K in water (D Li/D K = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li, we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D/D=0.99772±0.00026). This difference in the diffusion coefficient of 7Li compared to 6Li is significantly less than that reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D/D=1.00003±0.00006). Cl isotopes were fractionated during diffusion in water (D/D=0.99857±0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in limiting the isotopic fractionation associated with diffusion.

  7. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-Antoine; Watson, E. Bruce; Stern, Richard

    2017-12-01

    Previous experimental studies have revealed that the difference in diffusivity of two isotopes can be significant in some media and can lead to an observable fractionation effect in silicate melts based on isotope mass. Here, we report the first characterization of the difference in diffusivities of stable isotopes of Cl (35Cl and 37Cl). Using a piston-cylinder apparatus, we generated quenched melts of dacitic composition enriched in Cl; from these we fabricated diffusion couples in which Cl atoms were induced to diffuse in a chemical gradient at 1200 to 1350 °C and 1 GPa. We analyzed the run products by secondary ion mass spectrometry (SIMS) for their isotopic compositions along the diffusion profiles, and we report a diffusivity ratio for 37Cl/35Cl of 0.995 ± 0.001 (β = 0.09 ± 0.02). No significant effect of temperature on the diffusivity ratio was discernable over the 150 °C range covered by our experiments. The observed 0.5% difference in diffusivity of the two isotopes could affect our interpretation of isotopic measurements of Cl isotopes in bubble-bearing or degassed magmas, because bubble growth is regulated in part by the diffusive supply of volatiles to the bubble from the surrounding melt. Through numerical simulations, we constrain the extent of Cl isotopic fractionation between bubble and host melt during this process. Bubble growth rates vary widely in nature-which implies a substantial range in the expected magnitude of isotopic fractionation-but plausible growth scenarios lead to Cl isotopic fractionations up to about 5‰ enrichment of 35Cl relative to 37Cl in the bubble. This effect should be considered when interpreting Cl isotopic measurements of systems that have experienced vapor exsolution.

  8. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  9. Isotope effect of mercury diffusion in air.

    PubMed

    Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.

  10. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  11. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and Dcation/D, although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

  12. C Diffusion in Fe: Isotope Effects and Other Complexities

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.

    2011-12-01

    Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial equilibration scenarios in planets and meteorite parent bodies. Caution is warranted at this point, however, because D_{carbon} is sensitive to carbon concentration, complicating quantification of the isotope effect.

  13. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Tongwei; Krooss, Bernhard M.

    2001-08-01

    Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.

  14. Etude de l'influence de la temperature et de l'humidite sur les proprietes mecaniques en traction des fibres de chanvre et de coco

    NASA Astrophysics Data System (ADS)

    Ho Thi, Thu Nga

    L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.

  15. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  16. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; He, Yongsheng; Teng, Fang-Zhen; Ke, Shan; Hou, Zhenhui; Li, Shuguang

    2018-02-01

    Significant magnesium and iron isotope fractionations were observed in an adjacent gabbro and granite profile from the Dabie Orogen, China. Chilled margin and granitic veins at the gabbro side and gabbro xenoliths in the granite indicate the two intrusions were emplaced simultaneously. The δ26Mg decreases from -0.28 ± 0.04‰ to -0.63 ± 0.08‰ and δ56Fe increases from -0.07 ± 0.03‰ to +0.25 ± 0.03‰ along a ∼16 cm traverse from the contact to the granite. Concentrations of major elements such as Al, Na, Ti and most trace elements also systematically change with distance to the contact. All the observations suggest that weathering, magma mixing, fluid exsolution, fractional crystallization and thermal diffusion are not the major processes responsible for the observed elemental and isotopic variations. Rather, the negatively correlated Mg and Fe isotopic compositions as well as co-variations of Mg and Fe isotopes with Mg# reflect Mg-Fe inter-diffusion driven isotope fractionation, with Mg diffusing from the chilled gabbro into the granitic melt and Fe oppositely. The diffusion modeling yields a characteristic diffusive transport distance of ∼6 cm. Consequently, the diffusion duration, during which the granite may have maintained a molten state, can be constrained to ∼2 My. The cooling rate of the granite is calculated to be 52-107 °C/My. Our study suggests diffusion profiles can be a powerful geospeedometry. The observed isotope fractionations also indicate that Mg-Fe inter-diffusion can produce large stable isotope fractionations at least on a decimeter scale, with implications for Mg and Fe isotope study of mantle xenoliths, mafic dikes, and inter-bedded lavas.

  17. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.

    1987-01-01

    The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.

  18. Diffusive Fractionation of Lithium Isotopes in Olivine Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Homolova, V.; Watson, E. B.

    2012-12-01

    Diffusive fractionation of isotopes has been documented in silicate melts, aqueous fluids, and single crystals. In polycrystalline rocks, the meeting place of two grains, or grain boundaries, may also be a site of diffusive fractionation of isotopes. We have undertaken an experimental and modeling approach to investigate diffusive fractionation of lithium (Li) isotopes by grain boundary diffusion. The experimental procedure consists of packing a Ni metal capsule with predominantly ground San Carlos olivine and subjecting the capsule to 1100C and 1GPa for two days in a piston cylinder apparatus to create a nominally dry, 'dunite rock'. After this synthesis step, the capsule is sectioned and polished. One of the polished faces of the 'dunite rock' is then juxtaposed to a source material of spodumene and this diffusion couple is subject to the same experimental conditions as the synthesis step. Li abundances and isotopic profiles (ratios of count rates) were analyzed using LA-ICP-MS. Li concentrations linearly decrease away from the source from 550ppm to the average concentration of the starting olivine (2.5ppm). As a function of distance from the source, the 7Li/6Li ratio decreases to a minimum before increasing to the background ratio of the 'dunite rock'. The 7Li/6Li ratio minimum coincides with the lowest Li concentrations above average 'dunite rock' abundances. The initial decrease in the 7Li/6Li ratio is similar to that seen in other studies of diffusive fractionation of isotopes and is thought to be caused by the higher diffusivity (D) of the lighter isotope relative to the heavier isotope. The relationship between D and mass (m) is given by (D1/D2) =(m2/m1)^β, where β is an empirical fractionation factor; 1 and 2 denote the lighter and heavier isotope, respectively. A fit to the Li isotopic data reveals an effective DLi of ~1.2x10^-12 m/s^2 and a β of 0.1. Numerical modelling was utilized to elucidate the relationship between diffusive fractionation produced in the grain boundaries versus the lattices of the individual grains of the 'dunite rock'. The model assumes a linear grain boundary juxtaposed to the long side of a rectangular crystal lattice. During a simulation, the diffusant may directly enter the lattice or the grain boundary. Once in the grain boundary, the diffusant may then continue to diffuse away from the source until the end of the simulation or, alternatively, it may be incorporated into the lattice at some point during its travels down the grain boundary. The model system is similar to that considered by Whipple-LeClaire (1963) and our model results agree well with their analytical solution. Preliminary modeling results show that the distinctive minimum in the isotopic ratio is only produced when diffusive fractionation occurs in the grain boundary and not when the fractionation occurs only in the lattice. This suggests that the isotopic profile observed in the experiments may be a product of diffusive fractionation in grain boundaries. Implications of these results extend to the longevity of Li isotopic heterogeneities in the mantle, and suggest that the isotopes of other elements, which have a large relative mass difference, may also be diffusively fractionated by grain boundary diffusion.

  19. Isotopic fractionation of volatile species during bubble growth in magmas

    NASA Astrophysics Data System (ADS)

    Watson, E. B.

    2016-12-01

    Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.

  20. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry; Elliott, Tim

    2009-02-01

    High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.

  1. Experimentally determined isotope effect during Mg-Fe interdiffusion in olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Roskosz, M.; Dauphas, N.; Bennett, N.; Mock, T. D.; Shahar, A.

    2017-12-01

    Isotopic fractionation provides the most direct means to investigate the nature of chemical zoning in minerals, which can be produced by either diffusive transport or crystal growth. Misinterpreting the nature of chemical zoning can result in erroneous conclusions regarding magmatic cooling rates and diffusion timescales. Isotopes are useful in this regard because the light isotopes diffuse faster than their heavier counterparts. As a result, isotopic fractionations should be associated with chemical zoning profiles if they are diffusion-driven. In contrast, little isotopic fractionation is associated with crystal growth during slow cooling at magmatic temperatures. The isotope effect for diffusion is described by β and is related to the mass (m) and diffusivity (D) of isotopes i and j of an element via: Di/Dj = (mj/mi)β. To model isotopic profiles, knowledge of β is required. Several estimates of β for Mg and Fe diffusion in olivine have been reported using natural samples but these estimates are uncertain because they depend on the choice of modeling parameters (Sio et al., 2013; Oeser et al., 2015; Collinet et al., 2017). We have experimentally determined β for Fe (βFe) in olivine as a function of crystallographic orientation, composition, and temperature. Thirty experiments have been conducted by juxtaposing crystallographically oriented olivine crystals to make Fo83.4-Fo88.8 and Fo88.8-Fo100 diffusion couples. These diffusion couples were annealed in a 1 atm gas mixing furnace at 1200 °C, 1300 °C or 1400 °C at QFM - 1.5 for up to 15 days. Chemical profiles were characterized using an electron microprobe and isotopic analyses were done using laser ablation MC-ICPMS. We found a crystallographic dependence of βFe for the Fo88.8-Fo100 couple where βFe [100] ≈ βFe [010] > βFe [001]. For the Fo83.4-Fo88.8 couple, βFe is 0.16 ± 0.09 (2σ) for all 3 major crystallographic axes. A temperature dependence of βFe could not be resolved. These experimentally determined β-values can be used in conjunction with the Mg-Fe diffusivities given in Dohmen and Chakraborty (2007) to simultaneously model the chemical-isotopic profiles of olivine to retrieve cooling and crystallization histories of magmatic rocks.

  2. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  3. Lithium isotope fractionation by diffusion in minerals Part 2: Olivine

    NASA Astrophysics Data System (ADS)

    Richter, Frank; Chaussidon, Marc; Bruce Watson, E.; Mendybaev, Ruslan; Homolova, Veronika

    2017-12-01

    Recent experiments have shown that lithium isotopes can be significantly fractionated by diffusion in silicate liquids and in augite. Here we report new laboratory experiments that document similarly large lithium isotopic fractionation by diffusion in olivine. Two types of experiments were used. A powder-source method where lithium from finely ground spodumene (LiAlSi2O6) diffused into oriented San Carlos olivine, and piston cylinder annealing experiments where Kunlun clinopyroxene (∼30 ppm lithium) and oriented San Carlos olivine (∼2 ppm lithium) were juxtaposed. The lithium concentration along traverses across the run products was measured using both laser ablation as a source for a Varian 820-MS quadrupole mass spectrometer and a CAMECA 1270 secondary ion mass spectrometer. The CAMECA 1270 was also used to measure the lithium isotopic fractionation across olivine grains recovered from the experiments. The lithium isotopes were found to be fractionationed by many tens of permil in the diffusion boundary layer at the grain edges as a result of 6Li diffusing significantly faster than 7Li. The lithium concentration and isotopic fractionation data across the olivine recovered from the different experiments were modeled using calculations in which lithium was assumed to be of two distinct types - one being fast diffusing interstitial lithium, the other much less mobile lithium on a metal site. The two-site diffusion model involves a large number of independent parameters and we found that different choices of the parameters can produce very comparable fits to the lithium concentration profiles and associated isotopic fractionation. Because of this nonuniqueness we are able to determine only a range for the relative diffusivity of 6Li compared to 7Li. When the mass dependence of lithium diffusion is parameterized as D6Li /D7Li =(7 / 6) β , the isotope fractionation for diffusion along the a and c crystallographic direction of olivine can be fit by β = 0.4 ± 0.1 while the fractionation in the b direction appears to be somewhat lower. Model calculations were also used to fit the lithium concentration and isotopic fractionation across a natural olivine grain from a peridotite xenolith from the Eastern North China Craton. The isotopic data were fit using β values (0.3-0.36) similar to that of the laboratory experiments. This, along with the fact that the isotopic fractionation is restricted to that part of the mineral with a gradient in lithium concentration, is strong evidence that the lithium zoning of this mineral grain is the result of lithium loss by diffusion and thus that it can be used, as illustrated, to constrain the cooling history.

  4. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  5. Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites

    NASA Astrophysics Data System (ADS)

    Watson, Heather C.; Richter, Frank; Liu, Ankun; Huss, Gary R.

    2016-10-01

    Mass-dependent, kinetic fractionation of isotopes through processes such as diffusion can result in measurable isotopic signatures. When these signatures are retained in geologic materials, they can be used to help interpret their thermal histories. The mass dependence of the diffusion coefficient of isotopes 1 and 2 can be written as (D1 /D2) =(m2 /m1) β, where D1 and D2 are the diffusion coefficients of m1 and m2 respectively, and β is an empirical coefficient that relates the two ratios. Experiments have been performed to measure β in the Fe-Ni alloy system. Diffusion couple experiments between pure Fe and Ni metals were run in a piston cylinder at 1300-1400 °C and 1 GPa. Concentration and isotopic profiles were measured by electron microprobe and ion microprobe respectively. We find that a single β coefficient of β = 0.32 ± 0.04 can describe the isotopic effect in all experiments. This result is comparable to the isotope effect determined in many other similar alloy systems. The new β coefficient is used in a model of the isotopic profiles to be expected during the Widmanstätten pattern formation in iron meteorites. The results are consistent with previous estimates of the cooling rate of the iron meteorite Toluca. The application of isotopic constraints based on these results in addition to conventional cooling rate models could provide a more robust picture of the thermal history of these early planetary bodies.

  6. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine

    USGS Publications Warehouse

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.; Gao, S.; Huang, S.

    2011-01-01

    Diffusion plays an important role in Earth sciences to estimate the timescales of geological processes such as erosion, sediment burial, and magma cooling. In igneous systems, these diffusive processes are recorded in the form of crystal zoning. However, meaningful interpretation of these signatures is often hampered by the fact that they cannot be unambiguously ascribed to a single process (e.g., magmatic fractionation, diffusion limited transport in the crystal or in the liquid). Here we show that Mg and Fe isotope fractionations in olivine crystals can be used to trace diffusive processes in magmatic systems. Over sixty olivine fragments from Hawaiian basalts show isotopically fractionated Mg and Fe relative to basalts worldwide, with up to 0.4??? variation in 26Mg/24Mg ratios and 1.6??? variation in 56Fe/54Fe ratios. The linearly and negatively correlated Mg and Fe isotopic compositions [i.e., ??56Fe=(??3.3??0.3)????26Mg], co-variations of Mg and Fe isotopic compositions with Fe/Mg ratios of olivine fragments, and modeling results based on Mg and Fe elemental profiles demonstrate the coupled Mg and Fe isotope fractionation to be a manifestation of Mg-Fe inter-diffusion in zoned olivines during magmatic differentiation. This characteristic can be used to constrain the nature of mineral zoning in igneous and metamorphic rocks, and hence determine the residence times of crystals in magmas, the composition of primary melts, and the duration of metamorphic events. With improvements in methodology, in situ isotope mapping will become an essential tool of petrology to identify diffusion in crystals. ?? 2011 Elsevier B.V.

  7. Diffusion coefficients of Mg isotopes in enstatite and forsterite melts calculated by first-principles molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Huang, F.; Qi, Y.; Liu, X.; He, L.

    2016-12-01

    Stable isotopes can be fractionated by kinetic chemical diffusion because diffusion coefficients (D) of isotopes are mass-dependent. Diffusive isotopic fractionation recorded in rocks and minerals provide unique temporal constrains on geological processes. The mass dependence of D can be described in the form of Di/Dj= (mj/mi)β, where m denotes masses of isotope i and j, and β is an emperical parameter used to quantify the diffusive transport of isotopes [1]. β values can be estimated by experimental calibration and observation of natural samples, which are still rarely reported because it is challenging to precisely quantify the boundary conditions of diffusion processes [2,3,4]. Recent advances in computation technique provide a new way to theoretically calculate β values. For instance, classical molecular dynamics with empirical potential have been used to simulate interactions between atoms and estimate β of Mg isotopes in MgSiO3 melt [3]. Here, to further consider the effect of bonding and electron properties on β values, we apply first-principles Born-Oppenheimer Molecular Dynamics and pseudo-isotope methods (assuming mj/mi = 1/24, 1/4, 2, and 5) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β of Mg isotopes with pseudo-mass ratios are consistent, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.18 at 4000K and 0 GPa, higher than the value calculatedusing molecular dynamics simulations (0.135) [3]. For Mg2SiO4 melt at 0 GPa, β values are: 0.23 ± 0.04 at 2300K, 0.24 ± 0.07 at 3000K, and 0.24 ± 0.01 at 4000K. Notably, β of MgSiO3 and Mg2SiO4 melts are significantly higher than the value determined by diffusion experiments (0.05) [2]. These results indicate that β values are not sensitive to temperature, but dependent on melt composition.

  8. Diffusion of Oxygen Isotopes in Thermally Evolving Planetesimals and Size Ranges of Presolar Silicate Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakita, Shigeru; Nozawa, Takaya; Hasegawa, Yasuhiro, E-mail: shigeru@cfca.jp

    Presolar grains are small particles found in meteorites through their isotopic compositions, which are considerably different from those of materials in the solar system. If some isotopes in presolar grains diffused out beyond their grain sizes when they were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains could no longer be identified as presolar grains. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of {sup 18}O in presolar silicate grains. Our results show that presolar silicate grains smaller thanmore » ∼0.03 μ m cannot keep their original isotopic compositions even if the host planetesimals experienced a maximum temperature as low as 600 °C. Since this temperature corresponds to that experienced by petrologic type 3 chondrites, isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than ∼0.03 μ m. We also find that the diffusion length of {sup 18}O reaches ∼0.3–2 μ m in planetesimals that were heated up to 700–800°C. This indicates that, if the original size of presolar grains spans a range from ∼0.001 μ m to ∼0.3 μ m like that in the interstellar medium, then the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.« less

  9. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    NASA Astrophysics Data System (ADS)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-04-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study [3], provided a good agreement with the experimental data. References [1] Mackay, D. M.; Cherry, J. A. Groundwater contamination: Pumpand-treat remediation. Environ. Sci. Technol. 1989, 23, 630-636. [2] Parker, B. L.; Chapman, S. W.; Guilbeault, M. A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 19-19. [3] Jin, B., Rolle, M., Li, T., Haderlein, S.B., 2014. Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ. Sci. Technol. 48, 6141-6150.

  10. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results basedmore » on this model have well reproduced the experimental {sup 30}Si profiles.« less

  11. Isotope Fractionation by Diffusion in Liquids (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Frank

    The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the keymore » for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.« less

  12. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses

    USGS Publications Warehouse

    Sio, Corliss Kin I.; Dauphas, Nicolas; Teng, Fang-Zhen; Chaussidon, Marc; Helz, Rosalind T.; Roskosz, Mathieu

    2013-01-01

    Mineral zoning is used in diffusion-based geospeedometry to determine magmatic timescales. Progress in this field has been hampered by the challenge to discern mineral zoning produced by diffusion from concentration gradients inherited from crystal growth. A zoned olivine phenocryst from Kilauea Iki lava lake (Hawaii) was selected for this study to evaluate the potential of Mg and Fe isotopes for distinguishing these two processes. Microdrilling of the phenocryst (∼300 μm drill holes) followed by MC-ICPMS analysis of the powders revealed negatively coupled Mg and Fe isotopic fractionations (δ26Mg from +0.1‰ to −0.2‰ and δ56Fe from −1.2‰ to −0.2‰ from core to rim), which can only be explained by Mg–Fe exchange between melt and olivine. The data can be explained with ratios of diffusivities of Mg and Fe isotopes in olivine scaling as D2/D1 = (m1/m2)β with βMg ∼0.16 and βFe ∼0.27. LA-MC-ICPMS and MC-SIMS Fe isotopic measurements are developed and are demonstrated to yield accurate δ56Fe measurements within precisions of ∼0.2‰ (1 SD) at spatial resolutions of ∼50 μm. δ56Fe and δ26Mg stay constant with Fo# in the rim (late-stage overgrowth), whereas in the core (original phenocryst) δ56Fe steeply trends toward lighter compositions and δ26Mg trends toward heavier compositions with higher Fo#. A plot of δ56Fe vs. Fo# immediately distinguishes growth-controlled from diffusion-controlled zoning in these two regions. The results are consistent with the idea that large isotopic fractionation accompanies chemical diffusion in crystals, whereas fractional crystallization induces little or no isotopic fractionation. The cooling timescale inferred from the chemical-isotope zoning profiles is consistent with the documented cooling history of the lava lake. In the absence of geologic context, in situ stable isotopic measurements may now be used to interpret the nature of mineral zoning. Stable isotope measurements by LA-MC-ICPMS and MC-SIMS can be used as standard petrologic tools to identify samples for diffusion-based geospeedometry.

  13. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    NASA Astrophysics Data System (ADS)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.

  14. Segregation of isotopes of heavy metals due to light-induced drift: results and problems

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Aret, A.; Poolamäe, R.; Sapar, L.

    2008-04-01

    Atutov and Shalagin (1988) proposed light-induced drift (LID) as a physically well understandable mechanism to explain the formation of isotopic anomalies observed in CP stars. We have generalized the theory of LID and applied it to diffusion of heavy elements and their isotopes in quiescent atmospheres of CP stars. Diffusional segregation of isotopes of chemical elements is described by the equations of continuity and diffusion velocity. Computations of evolutionary sequences for the abundances of mercury isotopes in several model atmospheres have been made, using the Fortran 90 program SMART composed by the authors. Results confirm predominant role of LID in separation of isotopes.

  15. SIMS study of oxygen diffusion in monoclinic HfO2

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  16. Thermal Diffusion Fractionation of Cr and V Isotope in Silicate Melt

    NASA Astrophysics Data System (ADS)

    Lin, X.; Lundstrom, C.

    2017-12-01

    Earth's mantle is isotopically heavy relative to chondrites for V, Cr and some other siderophile elements. A possible solution is that isotopic fractionation by thermal diffusion occurs in a thermal boundary layer between solid mantle and an underlying basal magma ocean (BMO:Labrosse et al.,2007). If so, isotopically light composition might partition into the core, resulting in a complimentary isotopically heavy solid mantle. To verify how much fractionation could happen in this process, piston cylinder experiment were conducted to investigate the fractionation of Cr and V isotope ratios in partially molten silicate under an imposed temperature gradient from 1650 °C to 1350 °C at 1 GPa for 10 to 50 hours to reach a steady state isotopic profile. The temperature profile for experiments was determined by the spinel-growth method at the same pressure and temperature. Experimental runs result in 100% glass at the hot end progressing to nearly 100 % olivine at the cold end. Major and minor element concentrations of run products show systematic changes with temperature. Glass MgO contents increase and Al2O3 and CaO contents decrease by several weight percent as temperature increases across the charge. These are well modeled using IRIDIUM (Boudreau 2003) to simulate the experiments. Isotopic composition measurements of Cr and V at different temperatures are in progress, providing the first determinations of thermal diffusion isotopic sensitivity, Ω (permil isotopic fractionation per temperature offset per mass unit) for these elements. These results will be compared with previously determined Ω for network formers and modifiers and used in a BMO-based thermal diffusion model for formation of Earth's isotopically heavy mantle.

  17. Constraining Thermal Histories by Monte Carlo Simulation of Mg-Fe Isotopic Profiles in Olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Dauphas, N.

    2016-12-01

    In thermochronology, random time-temperature (t-T) paths are generated and used as inputs to model fission track data. This random search method is used to identify a range of acceptable thermal histories that can describe the data. We have extended this modeling approach to magmatic systems. This approach utilizes both the chemical and stable isotope profiles measured in crystals as model constraints. Specifically, the isotopic profiles are used to determine the relative contribution of crystal growth vs. diffusion in generating chemical profiles, and to detect changes in melt composition. With this information, tighter constraints can be placed on the thermal evolution of magmatic bodies. We use an olivine phenocryst from the Kilauea Iki lava lake, HI, to demonstrate proof of concept. We treat this sample as one with little geologic context, then compare our modeling results to the known thermal history experienced by that sample. To complete forward modeling, we use MELTS to estimate the boundary condition, initial and quench temperatures. We also assume a simple relationship between crystal growth and cooling rate. Another important parameter is the isotopic effect for diffusion (i.e., the relative diffusivity of the light vs. heavy isotope of an element). The isotopic effects for Mg and Fe diffusion in olivine have been estimated based on natural samples; experiments to better constrain these parameters are underway. We find that 40% of the random t-T paths can be used to fit the Mg-Fe chemical profiles. However, only a few can be used to simultaneously fit the Mg-Fe isotopic profiles. These few t-T paths are close to the independently determined t-T history of the sample. This modeling approach can be further extended other igneous and metamorphic systems where data exist for diffusion rates, crystal growth rates, and isotopic effects for diffusion.

  18. Metamorphism, metasomatism, retrogression: the common control on isotope transport

    NASA Astrophysics Data System (ADS)

    Villa, I. M.; Williams, M. L.

    2011-12-01

    Compositional or isotopic modification of a mineral can be viewed as a single process with many names. Depending on the large-scale context, different names are used: aqueous alteration, retrogression, metasomatism, metamorphism, but it should be clear that the underlying atomic-scale mechanism is the same. Changes in stoichiometry and in crystallographic structure require recrystallization. Following [1], all recrystallization processes can be viewed as nano-scale dissolution/reprecipitation, mediated by an aqueous fluid. In fact, aqueous fluids are the main control on the formation of all metamorphic parageneses [2], and also isotope exchange in minerals [3]. The reason is that the rate constants for fluid-mediated isotope transport are orders of magnitude larger, and activation energies much smaller, than those for diffusion. Recrystallisation is energetically less costly at almost any temperature than diffusive reequilibration [3]. However, recrystallization is not the only cause of isotope loss/exchange. Temperature can also play a role in reducing the retentivity of a geochronometer by increasing diffusivity. In cases where diffusion was the factor limiting isotopic closure (or chemical closure), a bell-shaped isotope (or element) concentration profile is observed. The criterion to decide whether in a particular sample diffusion or recrystallization was the principal control on chemical/isotope transport lies in the spatial variation of elemental or isotopic composition. Patchy spatial patterns are certain evidence of fluid-mediated local recrystallization. Bell-shaped gradients are compatible with (but not unambiguous proof of) volume diffusion. In-situ dating over three decades has never described bell-shaped isotope gradients in patchily zoned minerals. On the contrary, age mapping usually coincides with microchemical mapping [4]. This is best explained by a common cause for the recrystallization and the isotope transport. The cause, fluid-mediated dissolution/reprecipitation, depends mainly on water activity and only very loosely on temperature, i.e. provides a geohygrometric but not a geothermometric datum. We conclude that only in rare cases diffusion is the sole promoter of isotope resetting. The observations require a major shift in perspective on the significance of mineral ages. Just as the "diffusionist" view that zircon discordance is due to thermal disturbances (e.g. [5]) was superseded by the petrological understanding that it is due to recrystallization (e.g. [6]), a blanket interpretation of intra-mineral age variations in terms of a purely thermal history neglecting the petrogenetic context is no longer tenable. [1] Putnis A (2009) Rev Mineral Geochem 70, 87-124 [2] Lasaga A (1986) Mineral Mag 50, 359-373 [3] Cole DR et al (1983) Geochim Cosmochim Acta 47, 1681-1693 [4] Williams ML et al (2007) Ann Rev Earth Planet Sci 35, 137-175 [5] Steiger RH, Wasserburg GJ (1969) Geochim Cosmochim Acta 33, 1213-1232 [6] Mezger K, Krogstadt EJ (1997) J Metam Geol 15, 127-140

  19. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  20. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  1. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  2. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.

    2001-05-01

    Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.

  3. Transition from single-jump type to highly cooperative diffusion during structural relaxation of a metallic glass

    NASA Astrophysics Data System (ADS)

    Rätzke, K.; Hüppe, P. W.; Faupel, F.

    1992-04-01

    The isotope effect E=(Dα/Dβ-1)/[(mβ/mα)1/2-1] of cobalt diffusion has been measured in melt-spun amorphous Co76.7Fe2Nb14.3B7 ribbon at different stages of structural relaxation. A drastic drop of the isotope effect from E>0.5 in the as-quenched glass to E=0.1 in the relaxed state wass observed. While the latter value relflects highly cooperative diffusion, the large isotope effect in the as-quenched ribbon points to the prevalence of single-atom jumps and vacancylike holes of excess volume.

  4. Self-diffusion of magnesium in spinel and in equilibrium melts - Constraints on flash heating of silicates

    NASA Technical Reports Server (NTRS)

    Sheng, Y. J.; Wasserburg, G. J.; Hutcheon, I. D.

    1992-01-01

    An isotopic tracer is used to measure Mg self-diffusion in spinel and coexisting melt at bulk chemical equilibrium. The diffusion coefficients were calculated from the measured isotope profiles using a model that includes the complementary diffusion of Mg-24, Mg-25, and Mg-26 in both phases with the constraint that the Mg content of each phase is constant. The activation energy and preexponential factor for Mg self-diffusion in spinel are, respectively, 384 +/- 7 kJ and 74.6 +/- 1.1 sq cm/s. These data indicate Mg diffusion in spinel is much slower than previous estimates. The activation energy for Mg self-diffusion in coexisting melt is 343 +/- 25 kJ and the preexponential factor is 7791.9 +/- 1.3 sq cm/s. These results are used to evaluate cooling rates of plagioclase-olivine inclusions (POIs) in the Allende meteorite. Given a maximum melting temperature for POIs of about 1500 C, these results show that a 1-micron radius spinel would equilibrate isotopically with a melt within about 60 min.

  5. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the diffusivity ratio of 54Fe and 56Fe (i.e., D54Fe/D56Fe) is very similar to that of 24Mg and 26Mg, despite the smaller relative mass difference for the 54Fe-56Fe pair. This study demonstrates that a combined investigation of Fe-Mg chemical and isotopic zoning in olivine provides additional and more reliable information on magma evolution than chemical zoning alone.

  6. Paleotemperatures derived from the EPICA Dome-C core based on isotopic diffusion in the firn pack.

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Johnsen, S. J.; Vinther, B.; Sheldon, S.; Ritz, C.; Masson-Delmotte, V.

    2009-04-01

    Water isotope ratios as measured from ice core samples have been used as a proxy for past temperatures. Based i.a. on a Rayleigh fractionation process they record the cloud temperature during snow formation. However, changes in the temperature and humidity of the vapor source can also affect the isotopic signal of the polar precipitation, thus inducing isotopic artifacts. Furthermore, for the case of the Antarctic ice cap, temperature inversions frequently occur during snow formation. As a result, the cloud temperature as recorded by the water isotopes can differ significantly from the temperature at the surface. After the deposition of snow and until pore close off, a diffusive process occurs in the pore space of the firn pack, mixing water vapor from different layers and smoothing the isotopic profiles. The smoothing depends only on the resulting diffusion length. This process is temperature dependent and it presents a slightly different rate between the two isotopic species of water, H218O and HD16O. This is because the fractionation factors as defined for these two isotopic species have a different dependence on temperature. In this study we present a temperature reconstruction based on the different diffusion rates of H218O and HD16O water molecules in firn. The advantage of such an approach is that the temperatures estimated represent the actual conditions in the firn stack. As a result, we can surpass the artifacts that can possibly disrupt the use of the classical technique. We will present temperature estimations as extracted from two high resolution (2.5 cm) data sets, from the EPICA Dome C deep core focused on the Holoene Climatic Optimum and the Last Glacial Maximum and compare them with results obtained with the classical slope method as well as constrains imposed by the measured temperature profile. We will also address the problems of spectral power estimation for determining the diffusion lengths.

  7. Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine

    NASA Astrophysics Data System (ADS)

    Karato, Shun-ichiro

    2015-11-01

    Nominally anhydrous minerals such as olivine dissolve hydrogen in a variety of forms including free (or interstitial) proton (Hrad) and two protons trapped at the M-site ((2 H)M×). The strength of chemical bonding between protons and the surrounding atoms are different among different species, and consequently protons belonging to different species likely have different mobility (diffusion coefficients). I discuss the role of diffusion of protons in different species in the isotope exchange and hydrogen-assisted electrical conductivity adding a few notes to the previous work by Karato (2013) including a new way to test the model. I conclude that in the case of isotope exchange, the interaction among these species is strong because diffusion is heterogeneous, whereas there is no strong interaction among different species in electrical conduction where diffusion is homogeneous (in an infinite crystal). Consequently, the slowest diffusing species controls the rate of isotope exchange, whereas the fastest diffusing species controls electrical conductivity leading to a different temperature dependence of activation energy and anisotropy. This model explains the differences in the activation energy and anisotropy between isotope diffusion and electrical conductivity, and predicts that the mechanism of electrical conductivity changes with temperature providing an explanation for most of the discrepancies among different experimental observations at different temperatures except for those by Poe et al. (2010) who reported anomalously high water content dependence and highly anisotropic activation energy. When the results obtained at high temperatures are used, most of the geophysically observed high and highly anisotropic electrical conductivity in the asthenosphere can be explained without invoking partial melting.

  8. Hadean Oceanography: Experimental Constraints on the Development of the Terrestrial Hydrosphere and the Origin of Life on Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J

    The oxygen isotopic compositions of the world's oldest mineral grains, zircon, have recently been used to infer the compositions of the rocks from which they crystallized. The results appear to require a source that had once experienced isotopic fractionation between clay minerals and liquid water, thereby implying the presence of liquid water at the Earth's surface prior to 4.4 billion years ago, less than 2 million years after accretion. This observation has important implications for the development of the Earth's continental crust. The inferred composition of the zircon source rock is directly dependent upon the oxygen isotopic fractionation between zirconmore » and melt, and zircon and water. These fractionation factors have not been determined experimentally, however, constituting the weak link in this argument. A series of experiments to measure these fractionation factors has been conducted. The experiments consist of finely powdered quartz, a polished single crystal of zircon and isotopically-enriched or isotopically normal water to provide a range of isotopic compositions. The experiments will be run until quartz is in isotopic equilibrium with water. Zircon was expected to partially equilibrate producing an oxygen isotopic diffusion profile perpendicular to the surface. Ion probe spot analysis of quartz and depth profiling of zircon will determine the bulk and surface isotopic compositions of the phases, respectively. The well-known quartz-water isotopic fractionation factors can be used to calculate the oxygen isotopic composition of the fluid, and with the zircon surface composition, the zircon-water fractionation factor. Run at temperatures up to 1000 C for as long as 500 hours have not produced diffusion profiles longer than 50 nm. The steep isotopic gradient at the samples surface precludes use of the diffusion profile for estimation on the surface isotopic composition. The short profiles may be the result of surface dissolution, although such dissolution cannot be resolved in SEM images. The sluggish nature of diffusion in zircon may require that fractionation factors be determined by direct hydrothermal synthesis of zircon rather than by mineral-fluid exchange.« less

  9. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  10. Influence of water on clumped-isotope bond reordering kinetics in calcite

    NASA Astrophysics Data System (ADS)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external fluids. We explore the mechanism(s) by which clumped isotope reordering rates may be modestly increased under wet, high-pressure conditions, including changes in defect concentrations in the near surface environment due to reactions at the water-mineral interface, and lattice deformation resulting from pressurization of samples.

  11. Constraints on the origin of Os-isotope disequilibrium in included and interstitial sulfides in mantle peridotites: Implications for the interpretation of Os-isotope signatures in MORB and Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2016-12-01

    The use of isotope variations in basalts to probe the composition and evolution of the mantle is predicated on the assumption of local (i.e., grain-scale) isotopic equilibrium during mantle melting (Hofmann & Hart, 1978). However, several studies report Os-isotope disequilibrium in distinct populations of sulfides in some peridotites. In principle, grain-scale isotopic heterogeneity could reflect variable radiogenic ingrowth in ancient sulfides with variable Re/Os, or partial re-equilibration of low-Re/Os sulfides with high-Re/Os silicate phases along grain boundaries during mantle melting (e.g., Alard et al., 2005). Both cases require that sulfides fail to maintain isotopic equilibrium with neighboring phases over geologically long ( Ga) time scales. The preservation of Os-isotope disequilibrium in peridotites has been ascribed to the armoring effect of low-[Os] silicates, which limit diffusive exchange between isolated Os-rich phases. This raises the prospect that peridotite-derived melts may not inherit the Os-isotope composition of their source. The timescale required for diffusive equilibration between separate sulfide grains or between Os-rich sulfides and Os-poor silicates is a function of average sulfide size and spacing, Os diffusivity in armoring silicate minerals, and Os partitioning between silicate and sulfide phases. For typical sulfide abundances and sizes in mantle peridotites, neighboring sulfides are expected to re-equilibrate in less than a few 10s of m.y. at adiabatic mantle temperatures, even for very high (>106) sulfide/silicate KD values. Maintenance of disequilibrium requires very large sulfides (>100 um) separated by several mm and diffusion rates (D < 10-20 m2/s) slower than for most other elements in olivine. Equilibration timescales between sulfides and surrounding silicates are similar, so that large-scale isotopic disequilibrium between sulfides and silicates is also unlikely within the convecting mantle. Instead, observed grain-scale Os-isotope disequilibrium in mantle peridotites likely reflects recent sulfide metasomatism linked to interaction with eclogite- or pyroxenite-derived melts. Interstitial sulfides with radiogenic Os-isotopes provide further evidence for a role of eclogite melting in MORB genesis.

  12. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOEpatents

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  13. Future trends in transport and fate of diffuse contaminants in catchments, with special emphasis on stable isotope applications

    USGS Publications Warehouse

    Turner, J.; Albrechtsen, H.-J.; Bonell, M.; Duguet, J.-P.; Harris, B.; Meckenstock, R.; McGuire, K.; Moussa, R.; Peters, N.; Richnow, H.H.; Sherwood-Lollar, B.; Uhlenbrook, S.; van, Lanen H.

    2006-01-01

    A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound-specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright ?? 2006 John Wiley & Sons, Ltd.

  14. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  15. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    PubMed

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  16. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    DOE PAGES

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; ...

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).« less

  17. Diffusion of Helium Isotopes in Silicate Glasses and Minerals: Implications for Petrogenesis and Geochronology.

    DTIC Science & Technology

    1989-06-01

    the Chemistry Department, and the WHOI Education Office for providing financial support and a nice place to work. Parts of this research was funded by...and erosion studies is unknown. c 1.5 OBJECTIVES The objectives of this research are 1) to quantify the diffusive mobility of helium isotopes in...specifically tailored for the diffusion experiments. Data is recorded on a hard disk and on paper , and is automatically backed up to floppy disks

  18. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to experimental work, initial field data will be presented including a transect of increasing distance from a known strong source of Hg (Mt. Amiata mine, Italy), downwind of Kilauea volcano in Hawaii, and several other locales including the Arctic station Alert and various sites across Ontario, Canada.

  19. Experimental Evidence for Fast Lithium Diffusion and Isotope Fractionation in Water-bearing Rhyolitic Melts at Magmatic Conditions

    NASA Astrophysics Data System (ADS)

    Cichy, S. B.; Till, C. B.; Roggensack, K.; Hervig, R. L.; Clarke, A. B.

    2015-12-01

    The aim of this work is to extend the existing database of experimentally-determined lithium diffusion coefficients to more natural cases of water-bearing melts at the pressure-temperature range of the upper crust. In particular, we are investigating Li intra-melt and melt-vapor diffusion and Li isotope fractionation, which have the potential to record short-lived magmatic processes (seconds to hours) in the shallow crust, especially during decompression-induced magma degassing. Hydrated intra-melt Li diffusion-couple experiments on Los Posos rhyolite glass [1] were performed in a piston cylinder at 300 MPa and 1050 °C. The polished interfaces between the diffusion couples were marked by addition of Pt powder for post-run detection. Secondary ion mass spectrometry analyses indicate that lithium diffuses extremely fast in the presence of water. Re-equilibration of a hydrated ~2.5 mm long diffusion-couple experiment was observed during the heating period from room temperature to the final temperature of 1050 °C at a rate of ~32 °C/min. Fractionation of ~40‰ δ7Li was also detected in this zero-time experiment. The 0.5h and 3h runs show progressively higher degrees of re-equilibration, while the isotope fractionation becomes imperceptible. Li contamination was observed in some experiments when flakes filed off Pt tubing were used to mark the diffusion couple boundary, while the use of high purity Pt powder produced better results and allowed easier detection of the diffusion-couple boundary. The preliminary lithium isotope fractionation results (δ7Li vs. distance) support findings from [2] that 6Li diffuses substantially faster than 7Li. Further experimental sets are in progress, including lower run temperatures (e.g. 900 °C), faster heating procedure (~100 °C/min), shorter run durations and the extension to mafic systems. [1] Stanton (1990) Ph.D. thesis, Arizona State Univ., [2] Richter et al. (2003) GCA 67, 3905-3923.

  20. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.

  1. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  2. An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun

    2013-01-01

    Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.

  3. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers.

    PubMed

    Davies, James F; Wilson, Kevin R

    2016-02-16

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.

  4. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers

    DOE PAGES

    Davies, James F.; Wilson, Kevin R.

    2016-01-11

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less

  5. Paired measurements of K and Mg isotopes and clay authigenesis in marine sediments

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Dunlea, A. G.; Higgins, J. A.

    2016-12-01

    Despite its importance as a major sink for seawater K and Mg, estimates of clay authigenesis in marine sediments remain poorly constrained. Previous work on Mg isotope fractionation during clay formation has revealed a preferential uptake of 26Mg, yielding authigenic clay products with potentially distinct δ26Mg compared to the detrital component. In a similar manner, we aim to quantify the K isotope fractionation during authigenic clay formation and to use paired δ26Mg and δ41K measurements as proxies for the identification and quantification of authigenic clays in shallow and deep marine sedimentary systems. To better understand the behavior of paired Mg and K isotopes during authigenic clay formation in marine sediments, we measured δ26Mg and δ41K values of pore-fluids and sediments from ODP/IODP sites 1052, U1395, U1403 and U1366. We find that while pore-fluid K concentrations at sites 1052, U1395 and U1403 all decline with depth, δ41K profiles differ significantly. These differences might be a result of a complex interplay between clay authigenesis, sedimentation rate, and fractionation of K isotopes during diffusion. Results from 1-D diffusion-advection-reaction models suggest that, in contrast to Mg, diffusion may play an important role in determining the overall K isotope fractionation during clay authigenesis in sites with low-sedimentation rates. Sites with high sedimentation rates may act as close systems where diffusion is negligible. In such cases, K uptake can be modeled as a Rayleigh distillation process and K isotope fractionation can be estimated. Measurements of δ26Mg and δ41K of pore-fluids from site U1395 and bulk sediments from U1366 suggest that paired measurements of these isotopic systems in siliciclastic marine sediments can provide new insights into rates of marine clay authigenesis, a globally important but understudied component of many geochemical cycles.

  6. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    PubMed

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  7. Formulation, caracterisation, modelisation et prevision du comportement thermomecanique des pieces plastiques et composites de fibres de bois : Application aux engrenages =

    NASA Astrophysics Data System (ADS)

    Mijiyawa, Faycal

    Cette etude permet d'adapter des materiaux composites thermoplastiques a fibres de bois aux engrenages, de fabriquer de nouvelles generations d'engrenages et de predire le comportement thermique de ces engrenages. Apres une large revue de la litterature sur les materiaux thermoplastiques (polyethylene et polypropylene) renforces par les fibres de bois (bouleau et tremble), sur la formulation et l'etude du comportement thermomecanique des engrenages en plastique-composite; une relation a ete etablie avec notre presente these de doctorat. En effet, beaucoup d'etudes sur la formulation et la caracterisation des materiaux composites a fibres de bois ont ete deja realisees, mais aucune ne s'est interessee a la fabrication des engrenages. Les differentes techniques de formulation tirees de la litterature ont facilite l'obtention d'un materiau composite ayant presque les memes proprietes que les materiaux plastiques (nylon, acetal...) utilises dans la conception des engrenages. La formulation des materiaux thermoplastiques renforces par les fibres de bois a ete effectuee au Centre de recherche en materiaux lignocellulosiques (CRML) de l'Universite du Quebec a Trois-Rivieres (UQTR), en collaboration avec le departement de Genie Mecanique, en melangeant les composites avec deux rouleaux sur une machine de type Thermotron-C.W. Brabender (modele T-303, Allemand) ; puis des pieces ont ete fabriquees par thermocompression. Les thermoplastiques utilises dans le cadre de cette these sont le polypropylene (PP) et le polyethylene haute densite (HDPE), avec comme renfort des fibres de bouleau et de tremble. A cause de l'incompatibilite entre la fibre de bois et le thermoplastique, un traitement chimique a l'aide d'un agent de couplage a ete realise pour augmenter les proprietes mecaniques des materiaux composites. Pour les composites polypropylene/bois : (1) Les modules elastiques et les contraintes a la rupture en traction des composites PP/bouleau et PP/tremble evoluent lineairement en fonction du taux de fibres, avec ou sans agent de couplage (Maleate de polypropylene MAPP). De plus, l'adherence entre les fibres de bois et le plastique est amelioree en utilisant seulement 3 % MAPP, entrainant donc une augmentation de la contrainte maximale bien qu'aucun effet significatif ne soit observe sur le module d'elasticite. (2) Les resultats obtenus montrent que, en general, les proprietes en traction des composites polypropylene/bouleau, polypropylene/tremble et polypropylene/bouleau/ tremble sont tres semblables. Les composites plastique-bois (WPCs), en particulier ceux contenant 30 % et 40 % de fibres, ont des modules elastiques plus eleves que certains plastiques utilises dans l'application des engrenages (ex. Nylon). Pour les composites polyethylene/bois, avec 3%Maleate de polyethylene (MAPE): (1) Tests de traction : le module elastique passe de 1.34 GPa a 4.19 GPa pour le composite HDPE/bouleau, alors qu'il passe de 1.34 GPa a 3.86 GPa pour le composite HDPE/tremble. La contrainte maximale passe de 22 MPa a 42.65 MPa pour le composite HDPE/bouleau, alors qu'elle passe de 22 MPa a 43.48 MPa pour le composite HDPE/tremble. (2) Tests de flexion : le module elastique passe de 1.04 GPa a 3.47 GPa pour le composite HDPE/bouleau et a 3.64 GPa pour le composite HDPE/tremble. La contrainte maximale passe de 23.90 MPa a 66.70 MPa pour le composite HDPE/bouleau, alors qu'elle passe a 59.51 MPa pour le composite HDPE/tremble. (3) Le coefficient de Poisson determine par impulsion acoustique est autour de 0.35 pour tous les composites HDPE/bois. (4) Le test de degradation thermique TGA nous revele que les materiaux composites presentent une stabilite thermique intermediaire entre les fibres de bois et la matrice HDPE. (5) Le test de mouillabilite (angle de contact) revele que l'ajout de fibres de bois ne diminue pas de facon significative les angles de contact avec de l'eau parce que les fibres de bois (bouleau ou tremble) semblent etre enveloppees par la matrice sur la surface des composites, comme le montrent des images prises au microscope electronique a balayage MEB. (6) Le modele de Lavengoof-Goettler predit mieux le module elastique du composite thermoplastique/bois. (7) Le HDPE renforce par 40 % de bouleau est mieux adapte pour la fabrication des engrenages, car le retrait est moins important lors du refroidissement au moulage. La simulation numerique semble mieux predire la temperature d'equilibre a la vitesse de 500 tr/min; alors qu'a 1000 tr/min, on remarque une divergence du modele. (Abstract shortened by ProQuest.). None None None None None None None None

  8. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may not be the significant contributor as the energies involved in the hyperfine effect are much smaller than those with molecular collisions, especially under convective conditions.

  9. METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT

    DOEpatents

    Dole, M.

    1959-09-22

    An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

  10. Self diffusion of alkaline-Earth in Ca-Mg-aluminosilicate melts: Experimental improvements on the determination of the self-diffusion coefficients

    NASA Technical Reports Server (NTRS)

    Paillat, O.; Wasserburg, G. J.

    1993-01-01

    Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.

  11. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  12. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gasmore » was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.« less

  13. Diffusive gradients in thin films measurement of sulfur stable isotope variations in labile soil sulfate.

    PubMed

    Hanousek, Ondrej; Santner, Jakob; Mason, Sean; Berger, Torsten W; Wenzel, Walter W; Prohaska, Thomas

    2016-11-01

    A diffusive gradient in thin films (DGT) technique, based on a strongly basic anion exchange resin (Amberlite IRA-400), was successfully tested for 34 S/ 32 S analysis in labile soil sulfate. Separation of matrix elements (Na, K, and Ca) that potentially cause non-spectral interferences in 34 S/ 32 S analysis by MC ICP-MS (multi-collector inductively coupled plasma-mass spectrometry) during sampling of sulfate was demonstrated. No isotopic fractionation caused by diffusion or elution of sulfate was observed below a resin gel disc loading of ≤79 μg S. Above this threshold, fractionation towards 34 S was observed. The method was applied to 11 different topsoils and one mineral soil profile (0-100 cm depth) and compared with soil sulfate extraction by water. The S amount and isotopic ratio in DGT-S and water-extractable sulfate correlated significantly (r 2  = 0.89 and r 2  = 0.74 for the 11 topsoils, respectively). The systematically lower 34 S/ 32 S isotope ratios of the DGT-S were ascribed to mineralization of organic S.

  14. Understanding Potassium Isotope Fractionation During Authigenic Clay Formation in Pore-fluid Systems: Implications for the δ41K of Seawater

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2015-12-01

    Improvements in analytical precision on the latest generation multi-collector inductively coupled plasma mass spectrometers (MC-ICP-MS) have revealed a ~2‰ range in the ratios of stable potassium isotopes (41K/39K) in terrestrial materials (Morgan et al., in prep). Preliminary measurements of δ41K values indicate that seawater and silicate rocks are isotopically distinct reservoirs, with seawater having a δ41K value that is ~0.5‰ heavier than the silicate average (-0.5‰; Morgan et al., in prep). The heavy δ41K character of seawater might be related to 1) an isotopically enriched input flux (rivers and high-temperature hydrothermal reactions); or 2) a 41K-depleted sink associated with authigenic clay formation during low-temperature alteration of volcanic rocks. Here we present measurements of the δ41K values of pore-fluids from ODP site 1052 in order to constrain potassium isotope fractionation during secondary clay formation. We find that δ41K values and K concentrations both decline systematically with depth. Results from 1-D diffusion-advection-reaction modeling of potassium concentrations and isotopic compositions indicate that fractionation of K isotopes during diffusion (Bourg et al., 2010) can explain all of the change in δ41K values of the pore-fluid with depth. Although the size of the K sink at site 1052 is a trivial fraction of the global K sink in clay minerals, our results suggest that diffusive fractionation of K isotopes in shallow pore-fluids may be, in part, responsible for the elevated δ41K value of seawater.

  15. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    NASA Astrophysics Data System (ADS)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an influence in case of very long drip intervals and slow precipitation rates.

  16. Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite

    NASA Astrophysics Data System (ADS)

    Le Roux, V.; Bodinier, J.-L.; Alard, O.; O'Reilly, S. Y.; Griffin, W. L.

    2009-03-01

    Most peridotite massifs and mantle xenoliths show a wide range of isotopic variations, often involving significant decoupling between Hf, Nd and Sr isotopes. These variations are generally ascribed either to mingling of individual components of contrasted isotopic compositions or to time integration of parent-element enrichment by percolating melts/fluids, superimposed onto previous depletion event(s). However, strong isotopic decoupling may also arise during porous flow as a result of daughter-elements fractionation during solid-liquid interaction. Although porous flow is recognized as an important process in mantle rocks, its effects on mantle isotopic variability have been barely investigated so far. The peridotites of the Lherz massif (French Pyrenees) display a frozen melt percolation front separating highly refractory harzburgites from refertilized lherzolites. Isotopic signatures observed at the melt percolation front show a strong decoupling of Hf from Nd and Sr isotopes that cannot be accounted for by simple mixing involving the harzburgite protolith and the percolating melt. Using one dimensional percolation-diffusion and percolation-reaction modeling, we show that these signatures represent transient isotopic compositions generated by porous flow. These signatures are governed by a few critical parameters such as daughter element concentrations in melt and peridotite, element diffusivity, and efficiency of isotopic homogenization rather than by the chromatographic effect of melt transport and the refertilization reaction. Subtle variations in these parameters may generate significant inter-isotopic decoupling and wide isotopic variations in mantle rocks.

  17. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.

    2013-04-01

    Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009) and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion rate under saturated and unsaturated conditions and potential oxidation rates. For a submerged, organic-rich soil, the data indicate a CH4 oxidation efficiency of 50% at the anaerobic-aerobic interface in the upper horizon. The improved in situ quantification of CH4 oxidation in wetlands enables a better assessment of current and potential CH4 sources and sinks in permafrost-affected ecosystems and their potential strengths in response to global warming.

  18. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.

    2012-12-01

    Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009) and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion rate under saturated and unsaturated conditions and potential oxidation rates. For a submerged organic rich soil, the data indicate a CH4 oxidation efficiency of 50% at the anaerobic-aerobic interface in the upper horizon. The improved in situ quantification of CH4 oxidation in wetlands enables a better assessment of current and potential CH4 sources and sinks in permafrost affected ecosystems and their potential strengths in response to global warming.

  19. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  20. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions. Our calculations confirm that the crystal/vapor isotopic fractionation approaches the equilibrium value, and the crystals are compact (circular in 2D) as the saturation factor approaches unity (S= 1.0). However, few natural crystals form under such conditions. At higher oversaturation (e.g. S = 1.2), dendritic crystals of millimeter size develop on timescales appropriate to cloud processes, and kinetic effects control isotopic fractionation. Fractionation factors for dendritic crystals are similar to those predicted by the spherical diffusion model, but the model also gives estimates of crystal heterogeneity. Dendritic crystals are constrained to be relatively large, with dimension much greater than about 20D/k. The most difficult aspect of the modeling is to account for the large density difference between air and ice, which requires us to use a fictitious higher density for the vapor-oversaturated air and scale the crystal growth time accordingly. An approach using a larger scale simulation and the domain decomposition method can provide a vapor flux for a nested smaller scale calculation. The results clarify the controls on crystal growth, and the relationships between saturation state, growth rate, crystal morphology and isotopic fractionation.

  1. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number: Da = kh/D, where h is the width of the 2D calculation domain. Varying the nondimensional Da in the model is equivalent to varying the scale (h) in the model. Our calculations confirm that the crystal/vapor isotopic fractionation approaches the equilibrium value, and the crystals are compact (circular in 2D) as the saturation factor approaches unity (S= 1.0). At higher oversaturation (e.g. S = 1.2), dendritic crystals of millimeter size develop on timescales appropriate to cloud processes, the isotopic fractionations are dominated by kinetic effects, and similar to those predicted by the spherical diffusion model. Dendritic crystals are constrained to be relatively large, with dimension much greater than D/k. The most difficult aspect of the modeling is to account for the large density difference between air and ice, which requires us to use a fictitious higher density for the vapor-oversaturated air and scale the crystal growth time accordingly. A different approach, using a larger scale simulation to derive boundary conditions for a nested smaller scale calculation is in progress. The results to date clarify the controls on dendritic crystal growth, the relationships between saturation state, growth rate, crystal morphology and isotopic fractionation, and provide limits on the value of the accommodation coefficient.

  2. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    NASA Astrophysics Data System (ADS)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  3. DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE

    EPA Science Inventory


    An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...

  4. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    PubMed

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  5. Diffusion-controlled magnesium isotopic fractionation of a single crystal forsterite evaporated from the solid state

    NASA Technical Reports Server (NTRS)

    Wang, Jianhua; Davis, Andrew M.; Hashimoto, Akihiko; Clayton, Robert N.

    1993-01-01

    Though the origin of calcium- and aluminum-rich inclusions (CAI's) in carbonaceous chondrites is till a disputed issue, evaporation is no doubt one of the most important processes for the formation of CAI's in the early solar nebula. The mechanism for production of large isotopic mass fractionation effects in magnesium, silicon, oxygen, and chromium in CAI's can be better understood by examining isotopic fractionation during the evaporation of minerals. New evaporation experiments were performed on single-crystal forsterite. The magnesium isotopic distribution near the evaporating surfaces of the residues using a modified AEI IM-20 ion microprobe to obtain rastered beam depth profiles was measured. A theoretical model was used to explain the profiles and allowed determination of the diffusion coefficient of Mg(++) in forsterite at higher temperatures than previous measurements. The gas/solid isotopic fractionation factor for magnesium for evaporation from solid forsterite was also determined and found to be nearly the same as that for evaporation of liquid Mg2SiO4.

  6. Assessing the role of clay authigenesis in the seawater potassium cycle: A paired K and Mg isotope study of deep-sea pore fluids

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    In situ formation of clays (clay authigenesis) in marine sediments and altered oceanic crust is an important sink of a number of seawater cations. In particular, clay authigenesis is a major, and yet unconstrained, flux in the global seawater potassium cycle. Potassium is the fourth most abundant cation in the ocean, which constitutes an isotopically enriched K reservoir (δ41K 0‰) compared to the solid Earth (δ41K -0.5‰). Understanding what processes control this isotopic offset is the main goal of this study. Here we use a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) to measure the K and Mg isotope ratios (41K/39K and 26Mg/24Mg) of deep-sea pore fluids in order to assess the effects of clay formation in the K isotope composition of seawater. Mg isotopes are used as an independent proxy for clay formation, since marine authigenic clays are isotopically distinct from their detrital counterpart, an abundant component of marine sediments. Our study sites (ODP/IODP 1052, U1378, U1395, U1403) vary in location, lithology, age and sedimentation rates; however, pore-fluids from all sites show decreasing K concentrations with depth, suggesting potassium uptake into the sediments. We find that although K concentration trends are similar across all sites, measured δ41K values vary significantly. Results from 1-D diffusion-advection-reaction models suggest that these differences in isotopic profiles arise from a complex interplay between sedimentation rate and K isotopic fractionation during clay formation, aqueous K diffusion and ion exchange reactions. Further, model simulations yield fractionation factors between 0.9980 and 1.0000 for clay formation in deep-sea sediments. Despite the minor contribution of these deep-sea pore-fluids as sinks of seawater K, the processes responsible for K isotope fractionation in our study sites (clay formation and aqueous K diffusion) are also observed at shallow marine systems (major K sinks) and are thus likely responsible for setting the K isotopic composition of seawater.

  7. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  8. Diffusion-driven D/H fractionation in silicates during hydration, dehydration and degassing

    NASA Astrophysics Data System (ADS)

    Roskosz, Mathieu; Laporte, Didier; Deloule, Etienne; Ingrin, Jannick; Remusat, Laurent; Depecker, Christophe; Leroux, Hugues

    2017-04-01

    Understanding how degassing occurs during accretion and differentiation is crucial to explain the water budget of planetary bodies. In this context, the hydrogen isotopic signature of water in mantle minerals and melts is particularly useful to trace reservoirs and their interactions. Nonetheless, little is known on the influence of mantle processes on the D/H signatures of silicates. In this study, we performed controlled hydration/dehydration experiments. We explore the possibility that diffusion-driven fractionation could affect the D/H signature of partially hydrated amorphous or molten silicates and nominally anhydrous minerals (NAMs). High purity synthetic fused silica samples were annealed at between 200 and 1000°C at 20 mbar water partial pressure for 1 to 30 days. Dehydration of initially hydrated silica was also performed at 1000°C for a few hours. A set of rhyolitic samples previously synthesized in order to study bubble nucleation during magma decompression was also analyzed. Finally a natural grossular monocrystal (Zillertaler Alps, Austria), partially dehydrated in air at 800°C for 10 hours was studied. Water content and speciation were measured both by Fourier-Transform Infra-Red and Raman spectroscopies. Isotopic analyses were performed with the IMS 1270 and 1280 ion microprobes. The silica samples, the rhyolitic glasses and the grossular monocrystal exhibit typical water concentration profiles. In all cases, water speciation does not change significantly along concentration profiles. Concerning D/H signatures, no isotopic variation is detectable across amorphous silica and rhyolitic glasses. The situation is however very different in the grossular monocrystal. A strong isotopic gradient appears correlated to the water concentration profile. Our data are interpreted in terms of diffusion mechanisms in both amorphous (and molten) silicates and NAMs. Hydration, dehydration and magma degassing are probably not able to promote large diffusion-driven fractionation of hydrogen in amorphous silicates. Conversely, the diffusion of water through the structure of NAMs affects the overall isotopic composition of dissolved water.

  9. Opening the closed box: lattice diffusion in zircon?

    NASA Astrophysics Data System (ADS)

    Wheeler, J.; MacDonald, J.; Goodenough, K. M.; Crowley, Q.; Harley, S.; Mariani, E.

    2015-12-01

    In principle, any radiogenic parent or daughter element can diffuse through any crystalline lattice. Given improved analytic techniques and mathematical models, geochronology is beginning to take such diffusion into account in a quantitative fashion. Whilst lattice diffusion compromises simple interpretation of radiometric data, it can, when combined with spatially resolved data, provide more detailed insight into thermal histories. In regions that have experienced particularly high temperatures diffusion may become significant in minerals normally thought to be reliably closed. We have modelled Pb diffusion in zircon, building on earlier work on Ar diffusion in micas - the mathematics being basically the same. We are motivated by some challenging isotope data from zircon in the Lewisian Complex of NW Scotland (a TTG region with a long Archaean and Proterozoic history). For example we have grains with old rims and younger cores. Whilst other explanations are possible, we show how lattice diffusion of Pb is plausible, using experimental diffusion data together with estimates of ultra-high temperatures from the region. We have modified a previous model for Ar diffusion ("Diffarg") to include variations in parent isotope concentration, so we can understand the consequences of U zonation within zircon grains during prolonged thermal histories. This is also relevant to asking why Pb has apparently not diffused in zircon from other UHT regions - or has it?

  10. Diffusion related isotopic fractionation effects with one-dimensional advective-dispersive transport.

    PubMed

    Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be observable for common groundwater contaminants. Importantly, under most field conditions, Dmech/Deff≥10 is usually satisfied in the longitudinal direction, suggesting that DRIF is not likely to be observable in most groundwater systems in which contaminant transport is predominantly one-dimensional. Given the importance in the MDL it is recommended that MDL should always be explicitly reported in both modeling and field studies. Copyright © 2016. Published by Elsevier B.V.

  11. On the progressive enrichment of the oxygen isotopic composition of water along a leaf.

    PubMed

    Farquhar, G. D.; Gan, K. S.

    2003-06-01

    A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.

  12. Diffusion coefficients of Mg isotopes in MgSiO3 and Mg2SiO4 melts calculated by first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Qi, Yuhan; Zheng, Daye; Zhou, Chen; He, Lixin; Huang, Fang

    2018-02-01

    The mass dependence of diffusion coefficient (D) can be described in the form of Di/Dj = (mj/mi)β, where m denotes masses of isotope i and j, and β is an empirical parameter as used to quantify the diffusive transport of isotopes. Recent advances in computation techniques allow theoretically calculation of β values. Here, we apply first-principles Born-Oppenheimer molecular dynamics (MD) and pseudo-isotope method (taking mj/mi = 1/24, 6/24, 48/24, 120/24) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β values for Mg calculated with 24Mg and different pseudo Mg isotopes are identical, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.272 ± 0.005 at 4000 K and 0 GPa, higher than the value calculated using classical MD simulations (0.135). For Mg2SiO4 melt, β is 0.184 ± 0.006 at 2300 K, 0.245 ± 0.007 at 3000 K, and 0.257 ± 0.012 at 4000 K. Notably, β values of MgSiO3 and Mg2SiO4 melts are significantly higher than the value in basalt-rhyolite melts determined by chemical diffusion experiments (0.05). Our results suggest that β values are not sensitive to the temperature if it is well above the liquidus, but can be significantly smaller when the temperature is close to the liquidus. The small difference of β between silicate liquids with simple compositions of MgSiO3 and Mg2SiO4 suggests that the β value may depend on the chemical composition of the melts. This study shows that first-principles MD provide a promising tool to estimate β of silicate melts.

  13. Diffusion model validation and interpretation of stable isotopes in river and lake ice

    USGS Publications Warehouse

    Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.

    2002-01-01

    The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.

  14. Isotopic fractionation of gases during its migration: experiments and 2D numerical simulation

    NASA Astrophysics Data System (ADS)

    Kara, S.; Prinzhofer, A.

    2003-04-01

    Several works have been developed in the last decade on the experimental isotope fractionation of gases during migration (Prinzhofer et al., 1997 and Zhang &Krooss, 2001 among others). We add to these results new experiments on diffusion of CO_2, which becomes currently a crucial subject for environmental purpose. Our experiments showed that transport by diffusion of CO_2 through a water saturated shale induces a significant and systematic carbon isotopic fractionation with heavier (13C enriched) CO_2 migrating first. In all experiments, significant isotope fractionation was found but still remains without quantitative interpretation. To interpret these data, we developed a 2D numerical model at the pore scale. The general principle of this model is the study of transport by water solubilization/diffusion of gas in a capillary saturated with water with two different media : a mobile zone representing free water and a immobile zone representing bounded water. The model takes also into account solubilization coefficients of gas in water, as well as the migration distance and the volume of upstream and downstream reservoirs. Using our numerical model, we could reproduce the evolution of isotopic fractionations and the velocity of CO_2 migration versus the production factor F (proportion of diffused gas). We determined some physical parameters of the porous medium (bentonite) which are not directly measurable at the present time. Furthermore, we used these parameters to reproduce the curves of isotopic fractionation obtained by Pernaton (1998) on methane migration with the same porous rock. We used also a modified version of this model with infinite reservoirs to reproduce the curves of isotopic fractionation of Zhang &Krooss (2001). Application of this model to geological scale is under progress, in order to implement it into sedimentary basins modelling. REFERENCES: Zhang T. and Krooss M. (2001). Geochim. Cosmochim. Acta, Vol. 65, No.16, pp. 2723-2742. Pernaton E. (1998) PhD. Thesis, Université de Paris VII, 272 pp. Prinzhofer A. and Pernaton E. (1997) Chem. Geol., vol. 142, 193-200.

  15. Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Teng, Fang-Zhen; Arndt, Nicholas T.

    2010-06-01

    Komatiites from Alexo, Canada, are well preserved and represent high-degree partial mantle melts (˜50%). They are thus well suited for investigating the Mg and Fe isotopic compositions of the Archean mantle and the conditions of magmatic differentiation in komatiitic lavas. High precision Mg and Fe isotopic analyses of 22 samples taken along a 15-m depth profile in a komatiite flow are reported. The δ 25Mg and δ 26Mg values of the bulk flow are -0.138 ± 0.021‰ and -0.275 ± 0.042‰, respectively. These values are indistinguishable from those measured in mantle peridotites and chondrites, and represent the best estimate of the composition of the silicate Earth from analysis of volcanic rocks. Excluding the samples affected by secondary Fe mobilization, the δ 56Fe and δ 57Fe values of the bulk flow are +0.044 ± 0.030‰, and +0.059 ± 0.044‰, respectively. These values are consistent with a near-chondritic Fe isotopic composition of the silicate Earth and minor fractionation during komatiite magma genesis. In order to explain the early crystallization of pigeonite relative to augite in slowly cooled spinifex lavas, it was suggested that magmas trapped in the crystal mush during spinifex growth differentiated by Soret effect, which should be associated with large and coupled variations in the isotopic compositions of Mg and Fe. The lack of variations in Mg and Fe isotopic ratios either rules out the Soret effect in the komatiite flow or the effect is effaced as the solidification front migrates downward through the flow crust. Olivine separated from a cumulate sample has light δ 56Fe and slightly heavy δ 26Mg values relative to the bulk flow, which modeling shows can be explained by kinetic isotope fractionation associated with Fe-Mg inter-diffusion in olivine. Such variations can be used to identify diffusive processes involved in the formation of zoned minerals.

  16. Chemical and isotopic fractionations by evaporation and their cosmochemical implications

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Nagahara, Hiroko

    2001-07-01

    A kinetic model for evaporation of a multi-component condensed phase with a fixed rate constant of the reaction is developed. A binary system with two isotopes for one of the components undergoing simple thermal histories (e.g., isothermal heating) is investigated in order to evaluate the extent of isotopic and chemical fractionations during evaporation. Diffusion in the condensed phase and the effect of back reaction from ambient gas are taken into consideration. Chemical and isotopic fractionation factors and the Péclet number for evaporation are the three main parameters that control the fractionation. Dust enrichment factor (η), the ratio of the initial dust quantity to that required for attainment of gas-dust equilibrium, is critical when back reactions become significant. Dust does not reach equilibrium with gas at η < 1. Notable chemical and isotopic fractionations usually take place under these conditions. There are two circumstances in which isotopic fractionation of a very volatile element does not accompany chemical fractionation during isothermal heating. One is free evaporation when diffusion in the condensed phase is very slow (η = 0), and the other is evaporation in the presence of ambient gas (η > 0). In the former case, a quasi-steady state in the diffusion boundary layer is maintained for isotopic fractionation but not for chemical fractionation. In the latter case, the back reaction brings the strong isotopic fractionation generated in the earlier stage of evaporation back to a negligibly small value in the later stage before complete evaporation. The model results are applied to cosmochemical fractionation of volatile elements during evaporation from a condensed phase that can be regarded as a binary solution phase. The wide range of potassium depletion without isotopic fractionation in various types of chondrules (Alexander et al., 2000) is explained by instantaneous heating followed by cooling in a closed system with various degrees of dust enrichment (η = 0.001-10) and cooling rates of less than ˜5°C/min. The extent of decoupling between isotopic and chemical fractionations of various elements in chondrules and matrix minerals may constrain the time scale and the conditions of heating and cooling processes in the early solar nebula.

  17. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  18. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  19. Using carbon isotope fractionation for an improved quantification of CH4 oxidation efficiency in Arctic peatlands

    NASA Astrophysics Data System (ADS)

    Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.

    2012-04-01

    Much research effort is focused on identifying global CH4 sources and sinks to estimate their current and potential strength in response to land-use change and global warming. Aerobic CH4 oxidation is regarded as the key process reducing the strength of CH4 emissions in wetlands, but is hitherto difficult to quantify. Recent studies quantify the efficiency of CH4 oxidation based on CH4 stable isotope signatures. The approach utilizes the fact that a significant isotope fractionation occurs when CH4 is oxidized. Moreover, it also considers isotope fractionation by diffusion. For field applications the 'open-system equation' is applied to determine the CH4 oxidation efficiency: fox = (δE - δP)/ (αox - αtrans) where fox is the fraction of CH4 oxidized; δE is δ13C of emitted CH4; δP is δ13C of produced CH4; αox is the isotopic fractionation factor of oxidation; αtrans is the isotopic fractionation factor of transport. We quantified CH4 oxidation in polygonal tundra soils of Russia's Lena River Delta analyzing depth profiles of CH4 concentrations and stable isotope signatures. Therefore, both fractionation factors αox and αtrans were determined for three polygon centers with differing water table positions and a polygon rim. While most previous studies on landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1), other CH4 transport mechanisms as diffusion have to be considered in peatlands and αtrans exceeds a value of 1. At our study we determined αtrans = 1.013 ± 0.003 for CH4 when diffusion is the predominant transport mechanism. Furthermore, results showed that αox differs widely between sites and horizons (αox = 1.013 ± 0.012) and has to be determined for each case. The impact of both fractionation factors on the quantification of CH4 oxidation was estimated by considering both the potential diffusion rate at different water contents and potential oxidation rates. Calculations for a water saturated tundra soil indicated a CH4 oxidation efficiency of 88% in the upper horizon. Using carbon isotope fractionation improves the in situ quantification of CH4 oxidation in wetlands and thus the assessment of current and potential CH4 sources and sinks in these ecosystems.

  20. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber

    PubMed Central

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-01-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted. PMID:26620121

  1. Predictions and Verification of an Isotope Marine Boundary Layer Model

    NASA Astrophysics Data System (ADS)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the <5% of observations that fall slightly outside of the predicted region in both δD-δ18O and d-excess - δ18O space: 1) variations in seawater isotopic ratios, 2) variations in isotopic composition of subsiding air, and 3) influence of sea spray. The model can be used for understanding the effects of boundary layer processes and meteorological conditions on isotopic composition of vapor within, and vapor fluxes through the MBL, and how changes in moisture source regions affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  2. Numerical study of the effects of physical parameters on the dynamic fuel retention in tungsten materials

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Dai, Shuyu; Hu, Wanpeng; Wang, Dezhen

    2014-12-01

    Effects of different possible values of physical parameters on the fuel retention in tungsten (W) materials are studied in this work since W is considered as the primary plasma-facing surface material and fuel retention is a critical issue for next-step fusion devices. The upgraded Hydrogen Isotope Inventory Processes Code is used to conduct the study. First, the inventories of hydrogen isotopes (HI) inside W with different possible values of diffusivities and recombination rate coefficients are studied; then the influences of uncertainties in diffusivity, trap concentration, and recombination rate on the effective diffusion are also analyzed. Finally, an illustration of effective diffusion on the permeation and inventory is given. The enhancements of HI permeation flux and inventory in bulk W due to the presence of a carbide WxC layer on the PFS are explained.

  3. Benthic nitrogen turnover processes in coastal sediments at the Danube Delta

    NASA Astrophysics Data System (ADS)

    Bratek, Alexander; Dähnke, Kirstin; Neumann, Andreas; Möbius, Jürgen; Graff, Florian

    2017-04-01

    The Black Sea Shelf has been exposed to strong anthropogenic pressures from intense fisheries and high nutrient inputs and eutrophication over the past decades. In the light of decreasing riverine nutrient loads and improving nutrient status in the water column, nutrient regeneration in sediments and biological N-turnover in the Danube Delta Front have an important effect on nutrient loads in the shelf region. In May 2016 we determined pore water nutrient profiles in the Danube River Delta-Black Sea transition zone, aiming to assess N-regeneration and elimination based on nutrient profiles and stable N- isotope changes (nitrate and ammonium) in surface water masses and in pore water. We aimed to investigate the magnitude and isotope values of sedimentary NH4+ and NO3- and their impact on the current N-budget in Black Sea Shelf water. Based on changes in the stable isotope ratios of NO3- and NH4+, we aimed to differentiate diffusion and active processing of ammonium as well as nitrate sources and sinks in bottom water. First results show that the concentration of NH4+ in pore water increases with depth, reaching up to 1500 µM in deeper sediment layers. We find indications for high fluxes of ammonium to the overlying water, while stable isotope profiles of ammonium suggest that further processing, apart from mere diffusion, acts on the pore water ammonium pool. Nitrate concentration and stable isotope profiles show rapid consumption in deeper anoxic sediment layers, but also suggest that nitrate regeneration in bottom water increases the dissolved nitrate pool. Overall, the isotope and concentration data of pore water ammonium clearly mirror a combination of turnover processes and diffusion.

  4. Shear heating and solid state diffusion: Constraints from clumped isotope thermometry in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Affek, H. P.; Matthews, A.; Aharonov, E.; Reches, Z.

    2015-12-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the event. Here we examine clumped isotope thermometry for its ability to identify short duration elevated temperature events along frictionally heated carbonate faults. This method is based on measured Δ47 values that indicate the relative atomic order of oxygen and carbon stable isotopes in the calcite lattice, which is affected by heat and thus can serve as a thermometer. We examine three types of calcite rock samples: (1) samples that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples taken from principle slip zones of natural carbonate faults that likely experienced earthquake slip. Experimental results show that Δ47 values decrease rapidly (in the course of seconds) and systematically both with increasing temperature and shear velocity. On the other hand, carbonate shear zone from natural faults do not show such Δ47 reduction. We propose that the experimental Δ47 response is controlled by the presence of high-stressed nano-grains within the fault zone that can reduce the activation energy for diffusion by up to 60%, and thus lead to an increased rate of solid-state diffusion in the experiments. However, the lowering of activation energy is a double-edged sword in terms of clumped isotopes: In laboratory experiments, it allows for rapid disordering so that isotopic signal appears after very short heating, but in natural faults it also leads to relatively fast isotopic re-ordering after the cessation of frictional heating, thus erasing the high temperature signature in Δ47 values within relatively short geological times (<1 Ma).

  5. Stability of Zircon and its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months) Isotope Exchange Experiment at 850 °C and 50 MPa

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya N.; Schmitt, Axel K.; Lundstrom, Craig C.; Hervig, Richard L.

    2018-05-01

    Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb) diffuse when zircon is exposed to hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone) treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B) labeled water with a nominal δ18O value of +450‰ over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards) δ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a 130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards) depth profiling on a 2-3 µm thick wafer cut and thinned from treated zircon by focused ion beam (FIB) milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS) frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of 20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with 1 µm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak (1997). Instead, intracrystalline exchange of oxygen between fluid and zircon in wet experimental conditions with excess silica occurred over length-scales equivalent to those predicted for dry diffusion. Oxygen diffusion coefficients even under wet conditions and elevated temperatures (850 °C) are <1-3×10-23 m2/sec, underscoring a virtual lack of oxygen diffusion and an outstanding survivability of zircons

  6. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  7. Characterizing the impact of diffusive and advective soil gas transport on the measurement and interpretation of the isotopic signal of soil respiration

    Treesearch

    Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond

    2010-01-01

    By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...

  8. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h-1 m-2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in 40Ca. On the other hand, 40Ca may desorb more easily, especially if the bond strength is lower as in the case of aragonite. For kinetic oxygen isotopic fractionation, the faster deprotonation of HC16O3- and the faster incorporation of C16O32- at the surfaces causes a smaller enrichment of 18O in all three polymorphs, which will be preserved at higher precipitation rates. In consequence to the different behavior of calcium and oxygen isotopes, they can be useful for multiproxy applications. Thereby calcium isotopes can be used to identify kinetic effects, especially if both aragonite and calcite, can be analyzed in one sample. Oxygen isotopes are more strongly related to temperature. [1]A. Niedermayr, S.J. Köhler and M. Dietzel (2013), Chemical Geology, 340, 105-120.

  9. Horizon Partitioning of Soil CO2 Sources and their Isotopic Composition (13C) in a Pinus Sylvestris Stand

    NASA Astrophysics Data System (ADS)

    Goffin, S.; Parent, F.; Plain, C.; Maier, M.; Schack-Kirchner, H.; Aubinet, M.; Longdoz, B.

    2012-12-01

    The overall aim of this study is to contribute to a better understanding of mechanisms behind soil CO2 efflux using carbon stable isotopes. The approach combines a soil multilayer analysis and the isotopic tool in an in situ study. The specific goal of this work is to quantify the origin and the determinism of 13CO2 and 12CO2 production processes in the different soil layers using the gradient-efflux approach. To meet this, the work includes an experimental setup and a modeling approach. The experimental set up (see also communication of Parent et al., session B008) comprised a combination of different systems, which were installed in a Scot Pine temperate forest at the Hartheim site (Southwestern Germany). Measurements include (i) half hourly vertical profiles of soil CO2 concentration (using soil CO2 probes), soil water content and temperature; (ii) half hourly soil surface CO2 effluxes (automatic chambers); (iii) half hourly isotopic composition of surface CO2 efflux and soil CO2 concentration profile and (iv) estimation of soil diffusivity through laboratory measurements conducted on soil samples taken at several depths. Using the data collected in the experimental part, we developed and used a diffusive transport model to simulate CO2 (13CO2 and 12CO2) flows inside and out of the soil based on Fick's first law. Given the horizontal homogeneity of soil physical parameters in Hartheim, we treated the soil as a structure consisting of distinctive layers of 5 cm thick and expressed the Fick's first law in a discrete formalism. The diffusion coefficient used in each layer was derived from (i) horizon specific relationships, obtained from laboratory measurements, between soil relative diffusivity and its water content and (ii) the soil water content values measured in situ. The concentration profile was obtained from in situ measurements. So, the main model inputs are the profiles of (i) CO2 (13CO2 and 12CO2) concentration, (ii) soil diffusion coefficient and (iii) soil water content. Once the diffusive fluxes deduced at each layer interface, the CO2 (13CO2 and 12CO2) production profile was calculated using the (discretized) mass balance equation in each layer. The results of the Hartheim measurement campaign will be presented. The CO2 source vertical profile and its link with the root and the Carbon organic content distribution will be showed. The dynamic of CO2 sources and their isotopic signature will be linked to climatic variables such soil temperature and soil water content. For example, we will show that the dynamics of CO2 sources was mainly related to temperature while changing of isotopic signature was more correlated to soil moisture.

  10. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids

    USGS Publications Warehouse

    Santiago Ramos, Danielle P.; Morgan, Leah; Lloyd, Nicholas S.; Higgins, John A.

    2018-01-01

    In situ Al-silicate formation, also known as “reverse weathering,” is an important sink of many of the major and minor cations in seawater (e.g. Mg, K, and Li). However, the importance of this sink in global geochemical cycles and isotopic budgets of these elements remains poorly constrained. Here, we report on the potassium isotopic composition (41">41K/39">39K) of deep-sea sediment pore-fluids from four (Integrated) Ocean Drilling Program sites (1052, U1378, U1395 and U1403) to characterize potassium isotopic fractionation associated with the formation of authigenic Al-silicate minerals in marine sediments and its role in elevating the 41">41K/39">39K of seawater relative to bulk silicate Earth. Isotopic ratios are obtained by high-resolution multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in cold plasma conditions with a long-term external reproducibility of ca. 0.17‰. We find that, although all sites are characterized by pore-fluid K concentrations that decline with increasing depth, their K isotopic profiles vary systematically from site-to-site; at sites characterized by rapid sedimentation rates, pore-fluid profiles of 41">41K/39">39K are relatively invariant whereas at sites characterized by slow sedimentation rates, 41">41K/39">39K declines with depth by up to 1.8‰. Results from 1-D diffusion-advection-reaction models suggest that these differences may result from a complex interplay between sedimentation rate and fractionation of K isotopes during diffusion, Al-silicate authigenesis, and ion exchange. Model simulations suggest fractionation factors between 0.9980 and 1.0000 for reverse weathering reactions in deep-sea sediments. Although deep-sea sites do not constitute major sinks of K in seawater, some of the processes responsible for K isotopic fractionation at these sites (diffusion and Al-silicate authigenesis) likely play a role in determining the 41">41K/39">39K of seawater.

  11. Oxygen isotope thermometry of quartz-Al2SiO5veins in high-grade metamorphic rocks on Naxos island (Greece)

    NASA Astrophysics Data System (ADS)

    Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron

    2002-04-01

    Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.

  12. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins

    NASA Astrophysics Data System (ADS)

    Bura-Nakić, Elvira; Andersen, Morten B.; Archer, Corey; de Souza, Gregory F.; Marguš, Marija; Vance, Derek

    2018-02-01

    Sedimentary molybdenum (Mo) and uranium (U) abundances, as well as their isotope systematics, are used to reconstruct the evolution of the oxygenation state of the surface Earth from the geological record. Their utility in this endeavour must be underpinned by a thorough understanding of their behaviour in modern settings. In this study, Mo-U concentrations and their isotope compositions were measured in the water column, sinking particles, sediments and pore waters of the marine euxinic Lake Rogoznica (Adriatic Sea, Croatia) over a two year period, with the aim of shedding light on the specific processes that control Mo-U accumulation and isotope fractionations in anoxic sediment. Lake Rogoznica is a 15 m deep stratified sea-lake that is anoxic and euxinic at depth. The deep euxinic part of the lake generally shows Mo depletions consistent with near-quantitative Mo removal and uptake into sediments, with Mo isotope compositions close to the oceanic composition. The data also, however, show evidence for periodic additions of isotopically light Mo to the lake waters, possibly released from authigenic precipitates formed in the upper oxic layer and subsequently processed through the euxinic layer. The data also show evidence for a small isotopic offset (∼0.3‰ on 98Mo/95Mo) between particulate and dissolved Mo, even at highest sulfide concentrations, suggesting minor Mo isotope fractionation during uptake into euxinic sediments. Uranium concentrations decrease towards the bottom of the lake, where it also becomes isotopically lighter. The U systematics in the lake show clear evidence for a dominant U removal mechanism via diffusion into, and precipitation in, euxinic sediments, though the diffusion profile is mixed away under conditions of increased density stratification between an upper oxic and lower anoxic layer. The U diffusion-driven precipitation is best described with an effective 238U/235U fractionation of +0.6‰, in line with other studied euxinic basins. Combining the Mo and U systematics in Lake Rogoznica and other euxinic basins, it is apparent that the two different uptake mechanisms of U and Mo can lead to spatially and temporally variable Mo/U and Mo-U isotope systematics that depend on the rate of water renewal versus removal to sediment, the sulfide concentration, and the geometry of the basin. This study further emphasises the potential of combining multiple observations, from Mo-U enrichment and isotope systematics, for disentangling the various processes via which redox conditions control the chemistry of modern and ancient sediments.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald Martin

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less

  14. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Still, C.J.; Riley, W.J.; Biraud, S.C.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day.more » This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.« less

  15. Primordial Noble Gases from Earth's Core

    NASA Astrophysics Data System (ADS)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas isotopic constrains. (1) Bouhifd, M.A., Jephcoat, A.P., Heber, V.S., Kelley, S.P., 2013. Helium in Earth's early core. Nat. Geosci. 6, 982-986. (2) Mukhopadhyay, S., 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101-124.

  16. Reconciling Isotopic Partitioning Estimates of Moisture Fluxes in Semi-arid Landscapes Through a New Modeling Approach for Evaporation

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.

    2017-12-01

    The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller drop pools may produce a similarly weaker kinetic effect.

  17. Physical and Biological Carbon Isotope Fractionation in Methane During Gas-Push-Pull-Tests

    NASA Astrophysics Data System (ADS)

    Gonzalez-Gil, G.; Schroth, M. H.; Gomez, K.; Zeyer, J.

    2005-12-01

    Stable isotope analyses have become a common tool to assess microbially-mediated processes in subsurface environments. We investigated if stable carbon isotope analysis can be used as a tool to complement gas push-pull tests (GPPTs), a novel technique that was recently developed and tested for the in-situ quantification of CH4 oxidation in soils. During a GPPT a gas mixture containing CH4, O2 and nonreactive tracer gases is injected into the soil, where CH4 is oxidized by indigenous microorganisms. Thereafter, a blend of injected gas mixture and soil air is extracted from the same location, and CH4 oxidation is quantified from an analysis of extracted CH4 and tracer gases. To assess the magnitude of physical isotope fractionation due to molecular diffusion during GPPTs, we conducted laboratory experiments in the absence of microbial activity in a 1m-high, 1m-diameter tank filled with dry sand. During the GPPTs' extraction phase, the isotopic composition of methane was analyzed. Results indicated strong carbon isotope fractionation (>20 per mil) during GPPTs. To assess the combined effect of physical and biological isotope fractionation, numerical simulations of GPPTs were conducted in which microbial CH4 isotope fractionation was simulated using first-order rate constants and microbial kinetic isotope fractionation factors previously reported for methane oxidation in landfill environments. Results of these simulations indicated that for small CH4 oxidation rates, overall isotope fractionation in CH4 is dominated by physical fractionation. Conversely, for high CH4 oxidation rates, overall fractionation is dominated by biological fractionation. Thus, CH4 isotope fractionation data alone from a single GPPT cannot be used to assess microbial CH4 oxidation. However, biological fractionation may be quantified if physical fractionation due to diffusion is known. This can be achieved by conducting two sequential GPPTs, with microbial activity being inhibited in the second test.

  18. Gold and isotopically enriched platinium targets for the production of radioactive beams of francium

    NASA Astrophysics Data System (ADS)

    Lipski, A. R.; Orozco, L. A.; Pearson, M. R.; Simsarian, J. E.; Sprouse, G. D.; Zhao, W. Z.

    1999-12-01

    Au and isotopically enriched Pt targets are discussed for the production of radioactive Fr beams. Target foils, serving also as ionizers, have to be heated in order to enhance the diffusion of atoms to the surface for further extraction and injection into the electrostatic transport system.

  19. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    NASA Astrophysics Data System (ADS)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.

  20. Simulating Isotope Enrichment by Gaseous Diffusion

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  1. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  2. AMS Observations of Light Cosmic Ray Isotopes and Implications for their Production in the Galaxy

    NASA Astrophysics Data System (ADS)

    Tomassetti, Nicola

    2012-08-01

    Observations of light isotopes in cosmic rays provide information on their origin and propagation in the Galaxy. Using the data collected by AMS-01 in the STS-91 space mission, we report our final results on the isotopic composition of hydrogen and helium between 200 MeV and 1.4 GeV per nucleon. These measurements are in good agreement with the previous data and set new standards of precision. We discuss the role of isotopic composition data in modeling the cosmic ray production, acceleration and diffusive transport in the Galaxy.

  3. Vapour-Phase Processes Control Liquid-Phase Isotope Profiles in Unsaturated Sphagnum Moss

    NASA Astrophysics Data System (ADS)

    Edwards, T. W.; Yi, Y.; Price, J. S.; Whittington, P. N.

    2009-05-01

    Seminal work in the early 1980s clearly established the basis for predicting patterns of heavy-isotope enrichment of pore waters in soils undergoing evaporation. A key feature of the process under steady-state conditions is the development of stable, convex-upward profiles whose shape is controlled by the balance between downward-diffusing heavy isotopologues concentrated by evaporative enrichment at the surface and the upward capillary flow of bulk water that maintains the evaporative flux. We conducted an analogous experiment to probe evaporation processes within 20-cm columns of unsaturated, living and dead (but undecomposed) Sphagnum moss evaporating under controlled conditions, while maintaining a constant water table. The experiment provided striking evidence of the importance of vapour-liquid mass and isotope exchange in the air-filled pores of the Sphagnum columns, as evidenced by the rapid development of hydrologic and isotopic steady-state within hours, rather than days, i.e., an order of magnitude faster than possible by liquid-phase processes alone. This is consistent with the notion that vapour-phase processes effectively "short-circuit" mass and isotope fluxes within the Sphagnum columns, as proposed also in recent characterizations of water dynamics in transpiring leaves. Additionally, advection-diffusion modelling of our results supports independent estimates of the effective liquid-phase diffusivities of the respective heavy water isotopologues, 2.380 x 10-5 cm2 s-1 for 1H1H18O and 2.415 x 10-5 cm2 s-1 for 1H2H16O, which are in notably good agreement with the "default" values that are typically assumed in soil and plant water studies.

  4. Kinetic D/H fractionation during hydration and dehydration of silicate glasses, melts and nominally anhydrous minerals

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Deloule, E.; Ingrin, J.; Depecker, C.; Laporte, D.; Merkel, S.; Remusat, L.; Leroux, H.

    2018-07-01

    The distribution of hydrogen isotopes during diffusion-driven aqueous processes in silicate glasses, melts and crystals was investigated. Hydration/dehydration experiments were performed on silica glasses at 1000 °C and 1 bar total pressure. Dehydration triggered by decompression-driven bubble nucleation and growth was performed on rhyolitic melts at 800 °C and a few hundred MPa. Hydrogen extraction from a nominally anhydrous mineral (grossular) single crystal was carried out at 800 °C and ambient pressure. After these three series of experiments, pronounced water (sensu lato) concentration profiles were observed in all recovered samples. In the grossular single-crystal, a large spatial variation in H isotopes (δD variation > 550‰) was measured across the sample. This isotopic distribution correlates with the hydrogen extraction profile. The fit to the data suggests an extreme decoupling between hydrogen and deuterium diffusion coefficients (DH and DD respectively), akin to the decoupling expected in a dilute ideal gas (DH/DD ≈ 1.41). Conversely, no measurable spatially- and time-resolved isotopic variations were measured in silicate glasses and melts. This contrasted behavior of hydrogen isotopes likely stands in the different water speciation and solution mechanisms in the three different materials. Glasses and melts contain essentially hydroxyl and molecular water groups but the mobile species is molecular water in both cases. Protonated defects make up most of the water accommodated in grossular and other nominally anhydrous minerals (NAM). These defects are also the mobile species that diffuse against polarons. These results are crucial to accurately model the degassing behavior of terrestrial and lunar magmas and to derive the initial D/H of water trapped in fluid inclusions commonly analyzed in mantle NAMs, which suffered complex geological histories.

  5. Diffusion length history over the last 16 ka based on a high resolution δ18O record from NGRIP. Implications for glaciological and paleoclimatic studies.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Simonsen, Sebastian B.; Buchardt, Susanne L.; Vinther, Bo M.; White, James W. C.

    2013-04-01

    The Holocene epoch as seen in the water isotopic records of polar ice cores is described by a relatively stable climate characterized by minimal fluctuations in temperature. Arguably, the most commonly used proxy in ice core studies, the ratios of water's stable isotopes, provide an insight in past temperatures via a linear relationship with temperature, commonly referred to as the isotope slope. However, the validity of this slope has been extensively debated. Based on borehole thermometry and gas isotope fractionation studies, it has been shown that temperature changes over the Bølling - Allerød and Younger Dryas transitions as well as several interstadial events have been underestimated by the water isotope slope. Additionally, isotopic artifacts related to ice sheet elevation changes, apparent between 6 and 10 ka b2k, result in a poor or even absent representation of the Holocene climatic optimum in the δ18O record from Greenland ice cores, contrary to what other paleoclimatic records from Northern latitudes indicate. In this study we present ongoing work on the use of the firn isotopic diffusion lengths as a high resolution proxy of the snow and firn temperature. Our reconstruction is based on the high resolution δ18O dataset from NGRIP. Water isotope diffusion is a process that occurs after deposition of the precipitation and takes place in the porous space of the firn until the close off depth. Assuming a diffusivity parameterization and based on a densification and strain rate history, it is possible to investigate the effects of temperature and accumulation on the diffusion length. By inverting the model we produce a temperature reconstruction for the last 15 ka. This temperature signal is independent of factors like the water vapor source location and temperature, the intensity of the atmospheric inversion over the deposition site and the presence or not of clear sky precipitation. In order for the reconstruction to reproduce the long term climate signal, a correction for the thinning function is required. Under the assumption that the GICC05 chronology is the best available estimate for the age - depth relationship in the ice, that would require about 10 - 15% lower accumulation rates at the time of the climatic optimum. The temperature reconstruction is able to infer a Younger Dryas warming signal very close to what previous borehole thermometry and gas isotope fractionation studies indicate. A strong 8.2 ky event can be seen in the record and seems to occur in a two stage fashion and last longer than the raw δ18O signal indicates. Overall, the inferred temperature signal reveals a significant variance with climatic events that are initially not reflected in the δ18O record. Some of those events are supported by the findings of other northern hemispheric climatic or historical records (Medieval and Roman warm periods). The most profound of those events is a rapid warming occurring between 4 and 5 ky b2k, indicating a clear mid - Holocene optimum and ending with a rapid cooling at approximately 4.2 ky b2k. We will comment on the validity of those results as well as the feasibility of the magnitude of the temperature shifts and propose ways to constrain the findings further.

  6. Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars

    NASA Astrophysics Data System (ADS)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2017-01-01

    We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources collocated with a putative martian water table are very long, up to several million martian years. Transport timescales also mean that any temporally varying source process, even in the shallow subsurface, would not result in a significant, observable variation in atmospheric methane concentration since changes resulting from small variations in flux would be rapidly obscured by atmospheric transport. This means that a short-lived 'plume' of methane, as detected by Mumma et al. (2009) and Webster et al. (2014), cannot be reconciled with diffusive transport from any reasonable depth and instead must invoke alternative processes such as fracturing or convective plumes. It is shown that transport through the martian regolith will cause a significant change in the isotopic composition of the gas, meaning that methane release from depth will produce an isotopic signature in the atmosphere that could be significantly different than the source composition. The deeper the source, the greater the change, and the change in methane composition in both δ13C and δD approaches -1000 ‰ for sources at a depth greater than around 1 km. This means that signatures of specific sources, in particular the methane produced by biogenesis that is generally depleted in 13CH4 and CH3D, could be obscured. We find that an abiogenic source of methane could therefore display an isotopic fractionation consistent with that expected for biogenic source processes if the source was at sufficient depth. The only unambiguous inference that can be made from measurements of methane isotopes alone is a measured δ13C or δD close to zero or positive implies a shallow, abiogenic source. The effect of transport processes must therefore be carefully considered when attempting to identify the source of any methane observed by future missions, and the severe depletion in heavier isotopologues will have implications for the sensitivity requirements for future missions that aim to measure the isotopic fractionation of methane in the martian atmosphere.

  7. COUNTER-DIFFUSION OF ISOTOPICALLY LABELED TRICHLOROETHYLENE IN SILICA GEL AND GEOSORBENT MICROPORES: COLUMN RESULTS. (R822626)

    EPA Science Inventory

    To investigate counter-diffusion in microporous sorbents, the rate of
    exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and
    nondeuterated TCE (1HTCE) in slow desorbing sites was measured.
    Exchange rates were measured for a sili...

  8. Quasi-elastic neutron scattering study of a re-entrant side-chain liquid-crystal polyacrylate

    NASA Astrophysics Data System (ADS)

    Benguigui, L.; Noirez, L.; Kahn, R.; Keller, P.; Lambert, M.; Cohen de Lara, E.

    1991-04-01

    We present a first investigation of the dynamics of a side chain liquid crystal polyacrylate in the isotropic (I), nematic (N), smectic A (SA), and re-entrant nematic (NRe) phases by means of quasi-elastic neutron scattering. The motion or/and the mobility of the mesogen protons decreases as soon as the temperature decreases after the isotropic-nematic transition. The I-N and SA-NRe transitions corrspond to a jump in the curve of the Elastic Incoherent Structure Factor (ratio: elastic scattering/ total scattering) versus temperature, on the other hand the transition N-SA occurs without any change of slope. We conclude that the local order is very similar in the nematic and the smectic A phases. Nous présentons une première étude dynamique par diffusion quasi-élastique des neutrons, d'un échantillon de polyacrylate mésomorphe en peigne dans chacune des phases : isotrope, nématique, smectique et nématique rentrante. On montre que le mouvement et/ou la mobilité des protons du mésogène se restreint à mesure que la température diminue après la transition isotrope-nématique. Contrairement à la transition N-SA, les transitions I-N et SA-NRe correspondent à une discontinuité dans la courbe du Facteur de Structure Incohérent Elastique (rapport : intensité élastique/intensité totale) en fonction de la température ; l'ordre local semble donc très proche pour les phases nématique et smectique.

  9. Isotope effects accompanying evaporation of water from leaky containers.

    PubMed

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  10. Unraveling the Environmental Record of the Early Solar System: High Precision Laser Ablation Al-Mg Isotopes of Igneous CAIs

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Simon, J. I.; Russell, S. S.; Tonui, E.; Krot, A.

    2004-12-01

    Variations in intrinsic Mg isotope compositions provide a potentially rich record of the physiochemical evolution of CAIs. Moreover, Mg excesses from the short-lived 26Al chronometer can be used to constrain when these processes occurred; e.g., during the nebular phase and/or during the development of planetisimals (< 4 Myr). We obtained in situ UV (213 nm) laser ablation MC-ICPMS measurements of Al and Mg isotope ratios within core-to-rim traverses of igneous CAIs to place temporal constraints on when features of CAIs formed. Results provide tests of models for the chemical and isotopic evolution of CAIs involving volatilization and recondensation of elements in the solar nebula. We studied five CV3 CAIs, including Allende 3576-1 "b", Allende M5, Leoville 144A, Leoville MRS3, and Efremovka E44. Our sample-standard comparison approach affords a precision <0.2 \\permil per amu (2s) for intrinsic Mg isotope measurements and <0.3 \\permil (2s) for measured 26Mg excesses. Intra-object variation in \\delta25Mg exists with values ranging from as low as -2 \\permil and as high as +8 \\permil (compared to DSM3). The distinct Mg isotope patterns in the CAIs are difficult to explain by a single process or within a single nebular environment and likely require changing conditions or transfer of CAIs from one nebular environment to another. The ˜pristine Mg isotope profile of Leoville 144A is compared to results produced by implicit finite difference modeling. Model curves reflect isotopic fractionation at the moving surface of a shrinking molten sphere coupled with diffusion-limited transport within the sphere. We find that using mass-dependant diffusivities increases \\delta25Mg with evaporation, but does not produce the tight curvature in the edgeward increases in \\delta25Mg characteristic of Leoville 144A. Three CAIs that exhibit edgeward \\delta25Mg decreases are well described by diffusion in a Mg-rich chondritic environment suggestive of nebular temperatures and timescales on order of 100 yrs at 1300 K (temperatures <900 K require heating times >2 Myr, and are improbable for parent body thermal histories). We concluded that: (1) CAIs exhibit enriched \\delta25Mg interiors that require evaporation of molten spheres in low total pressures, and/or low Mg partial pressure environments and systematic edgeward mineral independent intrinsic Mg isotope variations (-2 to +8 \\permil per amu) that require multiple evolutionary steps, (2) Isotopic profile measurements are accompanied by excess 26Mg and thus support a nebular origin for their development, (3) After initial isotopic enrichment CAIs undergo at least two divergent thermal histories as demonstrated by the two distinctive groups of Mg isotope profiles and their Al-Mg chronologies, and (4) Wark-Lovering rims are condensates from a nebular gas of chondritic or subchondritic Mg isotope composition that grew while 26Al was still extant.

  11. Oxygen diffusion in monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  12. Grain boundary diffusion studied on nano scale by rim growth experiments with isotopically doped thin films

    NASA Astrophysics Data System (ADS)

    Milke, R.; Dohmen, R.; Wiedenbeck, M.; Wirth, R.; Abart, R.; Becker, H.-W.

    2003-04-01

    Grain boundary diffusion studies by the rim growth method in the system MgO(±FeO)-SiO_2 have evolved from measuring rim growth rates to the tracing of chemical components by using isotopically enriched starting materials and SIMS analyses (Milke et al. 2001). We miniaturized this setup for grain boundary diffusion experiments by using pulsed-laser deposited (PLD) thin films (Dohmen et al. 2002). The starting samples consist of polycrystalline layers of pyroxene (en90fs10) and isotopically doped (18O, 29Si) olivine (fo90fa10) with a total thickness <= 1 μm on a polished quartz surface. A first series of experiments was performed at temperatures between 1000 and 1200^oC at fO_2 of 10-10 bar. Resulting layer thickness and chemi-cal composition were measured by Rutherford Back-Scattering (RBS) and TEM using Focused Ion Beam (FIB) preparation methods. O and Si isotope profiles were measured by SIMS depth scanning. The enstatite layers thicken during the annealing experiments with well-defined interfaces by rates for Δx^2 of 700 to 50000 nm^2/h at the chosen conditions. The iso-tope profiles show that Si acts as a slow diffusing component. From the enstatite growth rates a Dgb_Aδ can be calculated, where A is the rate-determining component. This gives a Dgb_Aδ in the range of 10-26 (at 1000^oC) to 10-24 (at 1200^oC) m^3s-1, which is well in accordance with an extrapolation from the data of Fisler et al. (1997) at 1350 to 1450^oC. This indicates that over the entire interval from 1000 to 1450^oC the reaction is controlled by diffusion of the same component and more importantly that mechanisms on the nano scale are the same as on the microscopic scale. The new method has several advantages over previously used techniques. The well-defined layers on nano scale allow one to study rim growth at lower temperatures than before and avoids therefore large extrapolations to natural conditions. The very small amount of isotopically enriched material needed for one sample makes it also economically viable. The samples can be designed with variable chemical composi-tions, e.g. distinct members of the fo-fa and en-fs series. The versatility of the PLD-technique allows one to apply this method to other chemical systems as well. Ref.: Dohmen et al. (2002) Eur J Miner 14: 1155--1168; Milke et al. (2001), Contrib Miner Petrol 142: 15--26; Fisler et al. (1997) Phys Chem Minerals 24: 264--273.

  13. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    NASA Technical Reports Server (NTRS)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  14. Performance testing of a prototype Pd-Ag diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, G. A.; Hodge, B. J.

    The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less

  15. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications of the silicate network itself as the glass transition temperature is approached: as the available free volume (available site for diffusive jumps) is modified, noble gas diffusion is no longer solely temperature-activated but also becomes sensitive to the kinetics of network rearrangements. The non-Arrhenian behavior of noble gas diffusion close to Tg is well described by a modified Vogel-Tammann-Fulcher (VTF) equation: Finally, our step heating diffusion experiments suggest that at T close to Tg, noble gas isotopes may suffer kinetic fractionation at a degree larger than that predicted by Graham's law. In the case of 40Ar and 36Ar, the traditional assumption based on Graham's law is that the ratio D40Ar/D36Ar should be equal to 0.95 (the square root of the ratio of the mass of 36Ar over the mass of 40Ar). In our experiment with glass G1, D40Ar/D36Ar rapidly decreased with decreasing temperature, from near unity (0.98 ± 0.14) at T > 1040 K to 0.76 when close to Tg (T = 1003 K). Replicate experiments are needed to confirm the strong kinetic fractionation of heavy noble gases close to the transition temperature.

  16. Water in Volcanic Glass: From Volcanic Degassing to Secondary Hydration

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Palandri, J. L.; Watkins, J. M.; Ross, A. M.

    2015-12-01

    Volcanic glass contains both primary magmatic and secondary meteoric dissolved water, which can have distinguishable hydrogen isotopic ratios. We analyzed compositionally and globally diverse volcanic glass from recent to 640 ka for their δD (‰, VSMOW) and H2Ot (wt.%) on the TC/EA MAT 253 continuous flow system. We find that rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), which is opposite the trend for magmatic degassing, while a few equatorial glasses have little change in δD (‰). To better understand these results, we imaged 6 tephra clasts ranging in age and chemical composition using BSE (by FEI SEM) down to a resolution of ~1 mm. Mafic tephra have lower vesicle number densities (N/mm2 = 25-77) than silicic tephra (736) and thicker average bubble walls (0.07 mm) than silicic tephra (0.02 mm). Lengths of water diffusion were modeled by finite difference using H2Ot concentration-dependent diffusion coefficients for diffusion of water into basalt and rhyolite glass using Zhang et al. (2007) and Ni and Zhang (2008) diffusion parameterizations extrapolated to surface temperatures. Due to the 106 times slower diffusion, water only diffused ~10-5 mm into basaltic glass and ~10 mm into rhyolitic glass after 1000 years. These hydration rates match our H2Ot wt.% values for basaltic tephra, and would cause a rhyolite glass, with an average bubble wall thickness of 0.02 mm as described above, to already be fully hydrated with ~3.0-3.5 wt.% H2Ot after ~1000 years, which is similar to what we observe. Results here are our initial steps in understanding water diffusion rates at ambient temperature in basalt and rhyolite tephra, and the isotopic changes that occur during hydration, which have implications for research in physical volcanology (quantities of residual magmatic water) and paleoenvironments (low temperature hydration rates and isotopic changes of glass).

  17. Specific low temperature release of 131Xe from irradiated MOX fuel

    NASA Astrophysics Data System (ADS)

    Hiernaut, J.-P.; Wiss, T.; Rondinella, V. V.; Colle, J.-Y.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.

    2009-08-01

    A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ˜1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.

  18. Informational Aspects of Isotopic Diversity in Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2004-10-01

    Use of stable and radioactive isotopes in biology and medicine is intensive, yet informational aspects of isotopes as such are largely neglected (A.A.Berezin, J.Theor.Biol.,1992). Classical distinguishability (``labelability'') of isotopes allows for pattern generation dynamics. Quantum mechanically advantages of isotopicity (diversity of stable isotopes) arise from (almost perfect) degeneracy of various isotopic configurations; this in turn allows for isotopic sweeps (hoppings) by resonance neutron tunneling (Eccles mechanism). Isotopic variations of de Broglie wavelength affect quantum tunneling, diffusivity, magnetic interactions (e.g. by Lorentz force), etc. Ergodicity principle (all isoenergetic states are eventually accessed) implies possibility of fast scanning of library of morphogenetic patterns (cf metaphors of universal ``Platonic'' Library of Patterns: e.g. J.L.Borges, R.Sheldrake) with subsequent Darwinian reinforcement (e.g. by targeted mutations) of evolutionary advantageous patterns and structures. Isotopic shifts in organisms, from viruses and protozoa to mammalians, (e.g. DNA with enriched or depleted C-13) are tools to elucidate possible informational (e.g. Shannon entropy) role of isotopicity in genetic (e.g. evolutionary and morphological), dynamical (e.g. physiological and neurological) as well as medical (e.g. carcinogenesis, aging) aspects of biology and medicine.

  19. Self-diffusion in compressively strained Ge

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoko; Uematsu, Masashi; Hoshi, Yusuke; Sawano, Kentarou; Myronov, Maksym; Shiraki, Yasuhiro; Haller, Eugene E.; Itoh, Kohei M.

    2011-08-01

    Under a compressive biaxial strain of ˜ 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si0.2Ge0.8 virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al. [Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65±0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.

  20. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  1. On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits

    NASA Astrophysics Data System (ADS)

    Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hoerhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp

    2018-01-01

    Stable isotope ratios δ18O and δD in polar ice provide a wealth of information about past climate evolution. Snow-pit studies allow us to relate observed weather and climate conditions to the measured isotope variations in the snow. They therefore offer the possibility to test our understanding of how isotope signals are formed and stored in firn and ice. As δ18O and δD in the snowfall are strongly correlated to air temperature, isotopes in the near-surface snow are thought to record the seasonal cycle at a given site. Accordingly, the number of seasonal cycles observed over a given depth should depend on the accumulation rate of snow. However, snow-pit studies from different accumulation conditions in East Antarctica reported similar isotopic variability and comparable apparent cycles in the δ18O and δD profiles with typical wavelengths of ˜ 20 cm. These observations are unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80 mm w. e. yr-1 ( ˜ 6-21 cm of snow per year). Various mechanisms have been proposed to explain the isotopic variations individually at each site; however, none of these are consistent with the similarity of the different profiles independent of the local accumulation conditions.Here, we systematically analyse the properties and origins of δ18O and δD variations in high-resolution firn profiles from eight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of ˜ 20 cm by counting the isotopic maxima. Spectral analysis further shows a strong similarity between the sites but indicates no dominant periodic features. Furthermore, the apparent cycle length increases with depth for most East Antarctic sites, which is inconsistent with burial and compression of a regular seasonal cycle. We show that these results can be explained by isotopic diffusion acting on a noise-dominated isotope signal. The firn diffusion length is rather stable across the Antarctic Plateau and thus leads to similar power spectral densities of the isotopic variations. This in turn implies a similar distance between isotopic maxima in the firn profiles.Our results explain a large set of observations discussed in the literature, providing a simple explanation for the interpretation of apparent cycles in shallow isotope records, without invoking complex mechanisms. Finally, the results underline previous suggestions that isotope signals in single ice cores from low-accumulation regions have a small signal-to-noise ratio and thus likely do not allow the reconstruction of interannual to decadal climate variations.

  2. Long-Term (4 mo) Oxygen Isotope Exchange Experiment between Zircon and Hydrothermal Fluid

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Schmitt, A. K.; Lundstrom, C.; Golledge, S.

    2013-12-01

    Knowing oxygen diffusivity in zircon has several critical applications: 1) establishing zircon stability and solubility in hot silica-saturated hydrothermal solutions; 2) deriving metamorphic and magmatic heating timescales from intra-crystal oxygen isotopic gradients; 3) assessing the survivability of oxygen isotopic signatures in Hadean zircons. We report results of a microanalytical investigation of an isotope exchange experiment using a cold-seal pressure apparatus at 850°C and 500 MPa over 4 months duration. Natural zircon, quartz and rutile were sealed with a silica-rich solution doped with 18-O, D, 7-Li and 10-B in a gold capsule. The diffusion length-scales were examined by depth profiling using time-of-flight (TOF) and high-sensitivity dynamic secondary ionization mass spectrometry (SIMS). Starting materials had distinct and homogeneous δ18O: zircon from Mesa Falls tuff of Yellowstone (+3.6‰), rutile from Karelia (-29‰), Bishop Tuff Quartz (+8.4‰), and δ18O doped water (+400‰). Starting material zircon showed invariant 18O/16O during depth profiling. After the 4 month experiment, rutile crystal surfaces displayed etching (100's of nm), while zircon exteriors lacked visible change. Quartz was completely dissolved and reprecipitated in a minor residue. Rutile developed ~2 μm long Fickian diffusion profiles largely consistent with the wet diffusion coefficients for rutile previously reported [1]. Surface U-Pb dating of zircon detected no significant Pb loss from the outermost ~300 nm of the crystal face and returned identical core-face ages. We performed δ18O depth profiling of zircon in two directions. First, forward profiles (crystal rim inwards) by dynamic SIMS (no surface treatment besides Au-coating; Cs+ beam of 20 kV impact energy) showed initially high and decreasing 18O/16O over ~130 nm; TOF-SIMS forward profiles using a 2 kV Cs+ sputter beam and 25 kV Bi3+ primary ions on uncoated zircon surfaces (cleaned for 2 min with HF) yielded decreasing 18O/16O over a similar length scale. These profile lengths are largely consistent with wet diffusion coefficient for zircon reported by [2]. In contrast, back-side depth profiling was conducted by dynamic SIMS on a 1 μm thick wafer cut from the zircon by FIB. No significant elevation in 18O/16O was detected when the surface layer was penetrated, consistent with dry diffusion coefficients of [2]. The results suggest that nm-scale SIMS surface analysis of isotope ratios is challenging. We are investigating if they can be critically affected by knock-on effects and/or continuous mixing of a very thin enriched surface layer during depth profiling in our and previous experiments. [1] Moore et al., 1998, Am. Min. 83, 700-711 [2] Watson and Cherniak, 1997, EPSL 148, 537-544

  3. DIFFUSE: a FORTRAN program for design computation of tritium transport through thermonuclear reactor components by combined ordinary and thermal diffusion when the principal resistance to diffusion is the bulk metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, J.H.

    1977-10-01

    Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.

  4. Parent zonation in thermochronometers - resolving complexity revealed by ID-TIMS U-Pb dates and implications for the application of decay-based thermochronometers

    NASA Astrophysics Data System (ADS)

    Navin Paul, Andre; Spikings, Richard; Chew, David; Daly, J. Stephen; Ulyanov, Alexey

    2017-04-01

    High temperature (>350℃) U-Pb thermochronometers primarily use accessory minerals such as apatite, titanite and rutile, and assume that daughter isotopes are lost by thermally activated volume diffusion while the parent remains immobile. Studies exploiting such behaviour have been successfully used to reconstruct thermal histories spanning several hundred million years (e.g. Cochrane et al., 2014). However, outliers in date (ID-TIMS) vs diffusion length space are frequently observed, and grains are frequently found to be either too young or too old for expected thermal history solutions using the diffusion data of Cherniak et al. (2010). These deviations of single grain apatite U-Pb dates from expected behaviour could be caused by a combination of i) metamorphic (over-)growth, ii) fluid-aided Pb mobilisation during alteration/recrystallization, iii) parent isotope zonation, iv) metamictisation, and v) changes in diffusion length with time (e.g. fracturing). We present a large data set from the northern Andes of South America, where we compare apatite U-Pb ID-TIMS-(TEA) data with LA-ICP-MS element maps and in-situ apatite U-Pb LA-(MC)-ICP-MS dates. These are combined with U-Pb zircon and 40Ar/39Ar (muscovite) data to attempt to distinguish between thermally activated volume diffusion and secondary overgrowth/recrystallization. We demonstrate that in young (e.g. Phanerozoic) apatites that have not recrystallized or experienced metasomatic overgrowths, U-Pb dates are dominantly controlled by volume diffusion and intra-crystal uranium zonation. This implies that ID-TIMS analyses of apatites with zoned parent isotope distributions will not usually recover accurate thermal history solutions, and an in-situ dating method is required. Recovering the uranium distribution during in-situ analysis provides a means to account for parent zonation, substantially increasing the accuracy of the modelled t-T-paths. We present in-situ data from apatites where scatter in date v diffusion length scale is observed and compare t-T-paths from single grain and in-situ modelling. Modelling of in-situ data will further show if all apatites from a single hand specimen record the same thermal history using Cherniak et al. (2010) diffusion data, or if the Pb-in-apatite diffusion parameters are a function of composition. U zonation is ubiquitous in the studied rocks (Triassic apatites extracted from peraluminous leucosomes), implying that these conclusions may also apply to lower temperature thermochronometers that are based on uranium decay, such as (U-Th)/He dating.

  5. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates the quantitative interpretation of ice core signals but also makes the stable ice isotope signal a more robust regional indicator of climate, speakers noted. Meeting participants agreed that to further our understanding of these relationships, we need more process-focused field and laboratory campaigns.

  6. Ethane C-C clumping in natural gas : a proxy for cracking processes ?

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ferreira, A. A.; Santos Neto, E. V.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is the second-most abundant alkane in most natural gas reservoirs, and is used to produce ethylene for petrochemical industries. It is arguably the simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on Δ13C2H6in natural gas: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that undergo thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; diffusive fractionation; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will control isotopic variations among natural ethanes, but we think it likely that addition of this new isotopic proxy will reveal new insights into the natural chemistry of ethane. We have developed a method to measure the abundance of 13C2H6 in natural samples, using high-resolution mass spectrometry. We define Δ13C2H6 as 1000 . ((13C2H6/12C2H6)measured/(13C2H6/12C2H6)stochastic -1). We studied several suites of natural gas samples and experimentally produced or modified ethane. Natural ethanes, including closely related samples from a single natural gas field, exhibit surprisingly large ranges in Δ13C2H6 (4 ‰ overall; up to 3 ‰ in one gas field). Such ranges cannot be explained by thermodynamic equilibrium at a range of different temperatures, or by diffusive fractionation. Kinetic isotope effects associated with 'cracking' reactions, and/or inheritance of non-equilibrium carbon isotope structures from source organics are more likely causes. We observe a correlation between Δ13C2H6 and the concentration of alkanes other than methane in several suites of natural gases, suggesting the causes of clumped isotope variations are tied to the controls on gas wetness. An experiment examining ethane residual to high-temperature pyrolysis confirms this trend could be an isotopic fingerprint for ethane destruction.

  7. Carbon isotope discrepancy between precambrian stromatolites and their modern analogs: Inferences from hypersaline microbial mats of the sinai coast

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred

    1985-12-01

    The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.

  8. Hydrogen isotopes transport parameters in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Serra, E.; Benamati, G.; Ogorodnikova, O. V.

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.

  9. Grain boundary and triple junction diffusion in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.

    2014-09-01

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, , of ˜35 and ˜44 nm produced by spark plasma sintering were investigated by the radiotracer method using the 63Ni isotope. The measured diffusivities, Deff, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500ṡDgb within the temperature interval from 420 K to 470 K.

  10. Secondary neutrons as the main source of neutron-rich fission products in the bombardment of a thick U target by 1 GeV protons

    NASA Astrophysics Data System (ADS)

    Barzakh, A. E.; Lhersonneau, G.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Volkov, Yu. M.; Alyakrinskiy, O.; Barbui, M.; Stroe, L.; Tecchio, L. B.

    2011-05-01

    The diffusion-effusion model has been used to analyse the release and yields of Fr and Cs isotopes from uranium carbide targets of very different thicknesses (6.3 and 148 g/cm2) bombarded by a 1 GeV proton beam. Release curves of several isotopes of the same element and production efficiency versus decay half-life are well fitted with the same set of parameters. Comparison of efficiencies for neutron-rich and neutron-deficient Cs isotopes enables separation of the contributions from the primary ( p + 238U) and secondary (n + 238U) reactions to the production of neutron-rich Cs isotopes. A rather simple calculation of the neutron contribution describes these data fairly well. The FLUKA code describes the primary and secondary-reaction contributions to the Cs isotopes production efficiencies for different targets quite well.

  11. Effect of Isotope Mass in Simulations of JET H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Snyder, S. E.; Onjun, T.; Kritz, A. H.; Bateman, G.; Parail, V.

    2004-11-01

    In JET type-I ELMy H-mode discharges, it is found that the height of the pressure pedestal increases and the frequency of the ELMs decreases with increasing isotope mass. These experimentally observed trends are obtained in these simulations only if the pedestal width increases with isotope mass. Simulations are carried out using the JETTO integrated modeling code with a dynamic model for the H-mode pedestal and the ELMs.(T. Onjun et al, Phys. Plasmas 11 (2004) 1469 and 3006.) The HELENA and MISHKA stability codes are applied to calibrate the stability criteria used to trigger ELM crashes in the JETTO code and to explore possible access to second stability in the pedestal. In the simulations, transport in the pedestal is given by the ion thermal neoclassical diffusivity, which increases with isotope mass. Consequently, as the isotope mass is increased, the pressure gradient and the bootstrap current in the pedestal rebuild more slowly after each ELM crash. Several models are explored in which the pedestal width increases with isotope mass.

  12. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  13. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  14. Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates

    NASA Astrophysics Data System (ADS)

    Garcia-Anton, Elena; Cuezva, Soledad; Fernandez-Cortes, Angel; Alvarez-Gallego, Miriam; Pla, Concepcion; Benavente, David; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio

    2017-09-01

    This study characterizes the processes involved in seasonal CO2 exchange between soils and shallow underground systems and explores the contribution of the different biotic and abiotic sources as a function of changing weather conditions. We spatially and temporally investigated five karstic caves across the Iberian Peninsula, which presented different microclimatic, geologic and geomorphologic features. The locations present Mediterranean and Oceanic climates. Spot air sampling of CO2 (g) and δ13CO2 in the caves, soils and outside atmospheric air was periodically conducted. The isotopic ratio of the source contribution enhancing the CO2 concentration was calculated using the Keeling model. We compared the isotopic ratio of the source in the soil (δ13Cs-soil) with that in the soil-underground system (δ13Cs-system). Although the studied field sites have different features, we found common seasonal trends in their values, which suggests a climatic control over the soil air CO2 and the δ13CO2 of the sources of CO2 in the soil (δ13Cs-soil) and the system (δ13Cs-system). The roots respiration and soil organic matter degradation are the main source of CO2 in underground environments, and the inlet of the gas is mainly driven by diffusion and advection. Drier and warmer conditions enhance soil-exterior CO2 interchange, reducing the CO2 concentration and increasing the δ13CO2 of the soil air. Moreover, the isotopic ratio of the source of CO2 in both the soil and the system tends to heavier values throughout the dry and warm season. We conclude that seasonal variations of soil CO2 concentration and its 13C/12C isotopic ratio are mainly regulated by thermo-hygrometric conditions. In cold and wet seasons, the increase of soil moisture reduces soil diffusivity and allows the storage of CO2 in the subsoil. During dry and warm seasons, the evaporation of soil water favours diffusive and advective transport of soil-derived CO2 to the atmosphere. The soil CO2 diffusion is enough important during this season to modify the isotopic ratio of soil produced CO2 (3-6‰ heavier). Drought induces release of CO2 with an isotopic ratio heavier than produced by organic sources. Consequently, climatic conditions drive abiotic processes that turn regulate a seasonal storage of soil-produced CO2 within soil and underground systems. The results here obtained imply that abiotic emissions of soil-produced CO2 must be an inherent consequence of droughts, which intensification has been forecasted at global scale in the next 100 years.

  15. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    PubMed

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  16. Energy and lighting

    NASA Astrophysics Data System (ADS)

    Berman, Samuel

    1985-11-01

    Advances in research for new types of lighting with increased efficacies (lumens/watt) are discussed in the following areas: (1) high-frequency, solid-state ballasts, (2) isotopic enhancement of mercury isotopes, (3) magnetic augmentation, (4) electrodeless, ultra-high frequency, (5) tuned phosphors, (6) two-photon phosphors, (7) heat mirrors, and (8) advanced control circuits to take advantage of daylight and occupancy. As of 1985, improvements in efficacy have been accomplished on an economic basis to save energy for (1) high frequency ballasts (25%), (2) isotopic enhancement (5%), and (8) advanced control circuits (up to 50%). Most of these advances depend on a deeper understanding of the weakly ionized plasma as a radiating and diffusing medium.

  17. Transport hysteresis and hydrogen isotope effect on confinement

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  18. Characterization of oxygen and titanium diffusion at the anatase TiO2(001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Gregory S.; Zehr, Robert T.; Henderson, Michael A.

    2013-06-01

    The diffusion of intrinsic defects in a single crystal anatase TiO2(001) film was explored by isotopic labeling and static secondary ion mass spectrometry. Using both 46Ti and 18O as isotopic labels, we show that the anatase surface responds to redox imbalances by diffusion of both Ti and O into the bulk under vacuum reduction and (at least) Ti from the bulk to the surface during oxidation. The diffusion of Ti between the bulk and surface in anatase TiO2(001) closely resembles what was observed in the literature for the rutile TiO2(110) surface, however the latter is not known to have oxygenmore » diffusion between the bulk and surface under typical ultrahigh vacuum conditions. We speculate that the open lattice of the anatase bulk structure may facilitate independent diffusion of both point defects (Ti interstitials and O vacancies) or concerted diffusion of "TiO" subunits. The authors gratefully acknowledge S.A. Chambers of Pacific Northwest National Laboratory (PNNL) for providing the anatase samples. This research was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, the Office of Naval Research Contract Number 200CAR262, and the Oregon Nanoscience and Microtechnologies Institute. PNNL is operated for the U.S. DOE by Battelle under Contract Number DE05-AC76RL0 1830. The research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility funded by the U.S. DOE Office of Biological and Environmental Research.« less

  19. Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W; Simon, J I; DePaolo, D J

    Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 {per_thousand}, but gradual small improvements in analytical capability now yield 0.05 to 0.1 {per_thousand} resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior.more » For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop appropriate experimental tests and combine them with micro- and nano-scale characterization, and to capture the critical processes in mathematical models. Some of the largest fractionation effects have been observed for silicate liquids, where both chemical and thermal diffusion generate large isotopic variations. Intake and transport of Ca in plants is also associated with substantial fractionation. Continuing work is beginning to place the fractionation into the context of global Ca cycles.« less

  20. Numerical modeling and optimization of the Iguassu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  1. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  2. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterl, Jerome, E-mail: jguterl@ucsd.edu; Smirnov, R. D.; Krasheninnikov, S. I.

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samplesmore » exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.« less

  3. D/H diffusion in serpentine

    NASA Astrophysics Data System (ADS)

    Pilorgé, Hélène; Reynard, Bruno; Remusat, Laurent; Le Floch, Sylvie; Montagnac, Gilles; Cardon, Hervé

    2017-04-01

    Interactions between aqueous fluids and ultrabasic rocks are essential processes in a broad range of contexts including hydrothermal alteration on the parent body of carbonaceous chondrites, at mid-oceanic ridge, and in subduction zones. Tracking these processes and understanding reaction kinetics require knowledge of the diffusion of water in rocks, and of isotope fractionation in major minerals forming under hydrous conditions, such as serpentines. We present a study of D/H inter-diffusion in antigorite, a common variety of serpentine. High-temperature (HT) experiments were performed in a belt apparatus at 540˚ C and 3.0 GPa on natural antigorite powders saturated with interstitial D2O. A low-temperature (LT) experiment was performed in diamond anvil cell at 350˚ C and 2.5 GPa on an antigorite single-crystal loaded with pure D2O. D/(D+H) ratios were mapped using Raman spectroscopy for the HT experiment and NanoSIMS for the LT experiment. As antigorite is a phyllosilicate, diffusion coefficients were obtained for crystallographic directions parallel and perpendicular to the antigorite layers (perpendicular and parallel to the c∗-axis, respectively). The equations of D/H inter-diffusion coefficients were determined to be DD/H (m2/s) = 5.04 x 10-5 x exp(-170(±53) (kJ/mol) / RT) and DD/H (m2/s) = 1.52 x 10-7 x exp(-157(±32) (kJ/mol) / RT) perpendicular and along the c∗-axis, respectively, and DD/H (m2/s) = 7.29 x 10-6 x exp(-166(±14) (kJ/mol) / RT) for the bulk diffusivity. These results are similar to those obtained on chlorite, in agreement with the similar crystallographic structures and atomic bonds in the two minerals. Assuming D/H inter-diffusion coefficients for antigorite are the same for all serpentine species, closure temperature and diffusion durations are applied to hydrothermal fields and in CI, CM and CR chondrites. Closure temperatures lie below 300˚ C for terrestrial hydrothermal alteration and depend on serpentine variety because they have different typical grain sizes. They lie below 130˚ C for carbonaceous chondrites, indicating that D/H isotopic exchange may have persisted down to very low temperatures on their parent bodies. D/H isotopic composition may be associated with grain size heterogeneities in carbonaceous chondrites due to protracted alteration of fine-grained material with the lowest closure temperatures (ca 50˚ C).

  4. D/H diffusion in serpentine

    NASA Astrophysics Data System (ADS)

    Pilorgé, Hélène; Reynard, Bruno; Remusat, Laurent; Le Floch, Sylvie; Montagnac, Gilles; Cardon, Hervé

    2017-08-01

    Interactions between aqueous fluids and ultrabasic rocks are essential processes in a broad range of contexts including hydrothermal alteration on the parent body of carbonaceous chondrites, at mid-oceanic ridge, and in subduction zones. Tracking these processes and understanding reaction kinetics require knowledge of the diffusion of water in rocks, and of isotope fractionation in major minerals forming under hydrous conditions, such as serpentines. We present a study of D/H inter-diffusion in antigorite, a common variety of serpentine. Experiments were performed in a belt apparatus at 315 °C, 450 °C and 540 °C and at 3.0 GPa on natural antigorite powders saturated with interstitial D2O. An experiment was performed in a diamond anvil cell at 350 °C and 2.5 GPa on an antigorite single-crystal loaded with pure D2O. D/(D + H) ratios were mapped using Raman spectroscopy for the experiments at 315 °C, 450 °C and 540 °C and by NanoSIMS for the experiment at 350 °C. As antigorite is a phyllosilicate, diffusion coefficients were obtained for crystallographic directions parallel and perpendicular to the silicate layers (perpendicular and parallel to the c∗-axis, respectively). Arrhenius relations for D/H inter-diffusion coefficients were determined to be DD/H (m2/s) = 4.71 × 10-2 × exp(-207(-33/+58) (kJ/mol)/RT) and DD/H (m2/s) = 1.61 × 10-4 × exp(-192(-34/+93) (kJ/mol)/RT) perpendicular and parallel to the c∗-axis, respectively, and DD/H (m2/s) = 7.09 × 10-3 × exp(-202(-33/+70) (kJ/mol)/RT) for the bulk diffusivity. Assuming D/H inter-diffusion coefficients for antigorite are the same for all serpentine species, closure temperature and diffusion durations are applied to hydrothermal alteration in the oceanic lithosphere, and in CI, CM and CR chondrites. Closure temperatures lie below 300 °C for terrestrial hydrothermal alteration and depend on serpentine variety because they have different typical grain sizes. Closure temperatures lie below 160 °C for carbonaceous chondrites, indicating that D/H isotopic exchange may have persisted down to very low temperatures in their parent bodies. Local D/H isotopic compositions may be associated with grain size heterogeneities in carbonaceous chondrites due to protracted alteration of fine-grained material with the lowest closure temperatures (ca 80 °C).

  5. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far- east Russia: product of recent melt/fluid-rock reaction

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Ionov, D. A.

    2006-12-01

    Peridotite xenoliths from the Tok and Barhatny localities in far-east Russia are characterized by strong Li elemental and isotopic disequilibria caused by addition of Li to the rocks via diffusion from a small-volume grain boundary fluid or melt. Because Li diffuses rapidly at mantle temperatures, the disequilibrium is a transient feature and its preservation in these samples indicates that Li addition occurred shortly before or even during the entrainment of the xenoliths in the host basalts. δ&^{7}Licpx is consistently lower than that of coexisting olivines and Δ&^{7}Liol-cpx, which ranges from 2.8 to 22.9‰,correlates with bulk rock composition. The most refractory samples experienced the greatest overall Li addition and most closely approximate elemental and isotopic equilibrium due to longer equilibration times and probably also greater infiltration of the Li-bearing melt or fluid. The variable but often extreme isotopic compositions produced by this process (δ&^{7}Licpx down to -15 and δ&^{7}Liol up to +12) do not reflect the presence of an isotopically exotic recycled component, as has been previously inferred for xenoliths from this region. The best estimate for the δ&^{7}Li of the source of the Li in the Tok xenoliths is δ&^{7}Li = +1.4, which is identical to that of the host basalt. A single sample from the Koppy locality, which is situated closest to the paleo-Pacific subduction zone, shows both elemental and isotopic equilibration of Li and has a "normal" δ&^{7}Licpx of +3.5. The analytically identical δ&^{7}Li of olivine and cpx from this sample, coupled with its relatively low equilibration temperature of 990°C suggests that there is no discernible Li isotopic fractionation between coexisting minerals at mantle temperatures. This study highlights the very large isotopic effects that can be produced via kinetic fractionation in peridotite xenoliths at high temperatures and associated with host-rock xenolith interactions.

  6. A multi-proxy isotope study (δ41K, δ26Mg, 87Sr/86Sr) of low-temperature oceanic crust alteration: the Troodos Ophiolite and Ocean Drilling Program Hole 801C

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    Low-temperature alteration of oceanic crust plays an important role in a number of geochemical cycles, thus modulating the chemical composition of the oceans. In particular, it has been established that low-temperature (<150oC) alteration of basalt is a major sink of seawater potassium. However, little is known about the effects of this process on the potassium isotope composition of seawater, which is 0.5‰ enriched relative to bulk silicate Earth (δ41KBSE=-0.54‰). Here we measure a number of isotope systems (δ41K, δ26Mg, 87Sr/86Sr) in both host rock and vein material from the upper volcanic section of Cretaceous (Troodos Ophiolite) and Jurassic (ODP 801C) oceanic crust using a MC-ICP-MS. The goal is to estimate the K isotopic fractionation associated with basalt alteration in low-temperature conditions, and how it might affect the K isotope enrichment of seawater relative to BSE. We find that marine hydrothermal samples from Troodos and ODP site 801C are enriched in potassium relative to the unaltered glass compositions and have δ41K values both higher and lower than BSE, ranging from -0.45‰ to -0.69‰ (n = 9) and -0.32‰ to -0.71‰ (n = 5), respectively. The low measured δ41K values could represent 1) fractionation (α<1) of K isotopes during uptake from seawater (δ41KSW 0‰), or 2) remobilized mantle-sourced K (δ41KBSE=-0.54‰) from deeper within the ophiolite sequence. Measurements of δ26Mg (n=15) and 87Sr/86Sr (n=12) in these samples yield enriched values relative to bulk silicate Earth, suggesting that alteration of oceanic crust likely happened under high water-to-rock ratios in both Troodos and ODP 801C, and that the added potassium is seawater-sourced. We thus suggest that the isotopically light δ41K values measured in both sites are associated with the formation of secondary clays enriched in the 39K isotope. This light isotope enrichment could be intensified if seawater K sourcing is a diffusion-limited process, as aqueous potassium diffusion has been associated with K isotope fractionations between 0.9967 and 0.9984. Our results indicate that the uptake of potassium in altered oceanic crust could be responsible, in part, for the observed K isotope enrichment of seawater relative to bulk silicate Earth.

  7. Diffusion of Siderophile Elements in Fe Metal: Application to Zoned Metal Grains in Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Campbell, A. J.; Humajun, M.

    2003-01-01

    The distribution of highly siderophile elements (HSE) in planetary materials is controlled mainly by metal. Diffusion processes can control the distribution or re-distribution of these elements within metals, yet there is little systematic or appropriate diffusion data that can be used to interpret HSE concentrations in such metals. Because our understanding of isotope chronometry, redox processes, kamacite/taenite-based cooling rates, and metal grain zoning would be enhanced with diffusion data, we have measured diffusion coefficients for Ni, Co, Ga, Ge, Ru, Pd, Ir and Au in Fe metal from 1200 to 1400 C and 1 bar and 10 kbar. These new data on refractory and volatile siderophile elements are used to evaluate the role of diffusional processes in controlling zoning patterns in metal-rich chondrites.

  8. High Precision Isotope Analyses Using Multi-Collector SIMS: Applications to Earth and Planetary Science.

    NASA Astrophysics Data System (ADS)

    Kita, N. T.; Ushikubo, T.; Valley, J. W.

    2008-05-01

    The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4Ga) might preserve their primary oxygen isotopic records, which allows us to trace the geological processes of the early earth [1]. Lithium isotope analyses of pre- 4Ga zircon from Jack Hills show high Li abundance and low δ 7Li, indicating existence of highly weathered crustal material as early as 4.3Ga. In conclusion, these new techniques allow us to study small natural variations of stable isotopes at μm-scale that permit exciting and fundamental research where samples are small, precious, or zoned. [1] Page FZ et al. (2007) Am Min 92, 1772-1775.

  9. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    PubMed

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  10. Simulation of Helium-3 Extraction from Lunar Ilmenite

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Kulcinski, G. L.; Schmitt, H. H.

    2004-01-01

    Knowledge of the trapping mechanisms and diffusion characteristics of solar-wind implanted isotopes in the minerals of the lunar regolith will enable the optimization of the processes to extract solar wind gases from regolith particles. Extraction parameters include the temperature and duration of extraction, particle size, and gas yield. Diffusion data will increase the efficiency and profitability of future mining ventures. This data will also assist in optimizing the evaluations of various potential mining sites based on remote sensing data. For instance, if magnesian ilmenite (Mg,Fel.,Ti03) is found to retain He better than stoichiometric ilmenite (FeTi03), remote sensing data for Mg could be considered in addition to Ti and maturity data. The context of the currently discussed work is the mining of helium-3 for potential use as a fuel for fusion energy generation. However, the potential resources deposited by the solar wind include hydrogen (and derived water), helium-4, nitrogen and carbon. Implantation experiments such as those performed for helium isotopes in ilmenite are important for the optimized extraction of these additional resources. These experiments can easily be reproduced for most elements or isotopes of interest.

  11. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  12. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  13. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  14. Oxygen isotope geospeedometry by SIMS

    NASA Astrophysics Data System (ADS)

    Bonamici, C. E.; Valley, J. W.

    2013-12-01

    Geospeedometry, a discipline closely related and complimentary to thermochronology, exploits the phenomenon of diffusion in order to extract rate and duration information for segments of a rock's thermal history. Geospeedometry data, when anchored in absolute time by geochronologic data, allow for the construction of detailed temperature-time paths for specific terranes and geologic processes. We highlight the developing field of SIMS-based oxygen isotope geospeedometry with an application from granulites of the Adirondack Mountains (New York) and discuss potential future applications based on a recently updated and expanded modeling tool, the Fast Grain Boundary diffusion program (FGB; Eiler et al. 1994). Equilibrium oxygen isotope ratios in minerals are a function of temperature and bulk rock composition. In dynamic systems, intragrain oxygen isotope zoning can develop in response to geologic events that affect the thermal state of a rock and/or induce recrystallization, especially tectonic deformation and fluid infiltration. As an example, titanite grains from late-Grenville shear zones in the northwestern Adirondack Mountains exhibit a range of δ18O zoning patterns that record post-peak metamorphic cooling, episodic fluid infiltration, and deformation-facilitated recrystallization. Many titanite grains preserve smooth, core-to-rim decreasing, diffusional δ18O profiles, which are amenable to diffusion modeling. FGB models that best fit the measured δ18O profiles indicate cooling from ~700-500°C in just 2-5 m.y., a rapid thermal change signaling the final gravitational collapse of the late-Grenville orogen. Titanite can also be utilized as a U-Pb chronometer, and comparison of δ18O and U-Pb age zoning patterns within the Adirondack titanites pins the episode of rapid cooling inferred from the δ18O record to some time between 1054 and 1047 Ma. The expanded capabilities of FGB also allow for evaluation of a range of heating-cooling histories for the Adirondack granulites. Diffusional δ18O zoning profiles in titanite are best fit by complete re-equilibration at temperatures above 675 °C followed by rapid, monotonic cooling; FGB models that include only partial re-equilibration and/or episodes of reheating along the retrograde path do not fit the observed δ18O profiles. Beyond the Adirondack titanite example, FGB can be used as a predictive tool to target either specific minerals within a rock or specific rock types within a terrane for oxygen isotope geospeedometry and zoning studies. FGB generates predictions of δ18O zoning for all minerals in a rock of a given mineralogy and heating-cooling history. Different minerals within the same rock will record different segments of the thermal and fluid history based on their individual diffusivities, phase stabilities, and propensities for deformation-induced/facilitated recrystallization. It should therefore be possible to extract long thermal histories from a single sample by measuring oxygen isotope zoning profiles across several minerals with different partial retention zones for oxygen.

  15. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid rock reaction

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Ionov, Dmitri A.

    2007-04-01

    Lithium concentrations and isotopic compositions of coexisting olivine and clinopyroxene (cpx) in well-characterized peridotite xenoliths from Tok (SE Siberian craton) and samples from two other far-east Russian localities reveal strong elemental and isotopic disequilibria, which correlates with bulk rock composition. Lithium concentrations in cpx from Tok (1-12 ppm) are equal to or significantly greater than those in coexisting olivines (1-5 ppm). The Li-rich cpx show core to rim zoning, indicative of Li infiltration from the grain boundaries. Olivines are generally unzoned, although Li concentrations can vary significantly from grain to grain. ol/cpxD varies from 0.2 to 1.0, which is lower than that expected for equilibrium partitioning ( ol/cpxDeq = 1.1 to 2.0), and reflects preferential Li enrichment in cpx. The Li isotopic compositions of both minerals range far beyond normal mantle δ7Li of ˜ + 4 ± 2. δ7Li cpx (- 0.8 to - 14.6) is systematically lighter than δ7Li of coexisting olivine (- 1.7 to + 11.9), and Δ 7Li ol-cpx varies from 2.8 to 22.9‰. The greatest elemental and isotopic disequilibria occur in the most fertile samples (lherzolites) and may reflect longer equilibration times and/or enhanced melt permeability in the more refractory samples. Collectively, these observations suggest that the peridotite minerals experienced Li addition via diffusion from a grain boundary melt or fluid shortly before or coincident with their entrainment into the host basalt (i.e., within tens of thousands of years, based on published diffusion coefficients for Li in cpx at the temperatures of equilibration). This diffusional ingress of Li generated large kinetic isotopic fractionation, leading to unusually light cpx and heavier olivines. Thus, low δ7Li cpx do not reflect the influence of an exotic mantle component related to crustal recycling.

  16. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    PubMed

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  17. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  18. Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jing

    2017-05-01

    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10-40 cm depth in the grassland and arable land, and 10-60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20-50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  19. Compositional changes of minerals associated with dynamic recrystallizatin

    NASA Astrophysics Data System (ADS)

    Yund, Richard A.; Tullis, Jan

    1991-09-01

    The rate of compositional and isotopic exchange between minerals may be enhanced significantly if the rock is deformed simultaneously. The enhanced exchange rate may result from a reduction in grain size (shorter distance for volume diffusion), dissolution and growth of grains by diffusion creep (pressure solution), or the movement of high-angle grain boundaries through strained grains during recrystallization in the dislocation creep regime. The migration of high-angle grain boundaries provides high diffusivity paths for the rapid exchange of components during recrystallization. The operation of the latter process has been demonstrated by deforming aggregates consisting of two plagioclases (An1 and An79) at 900°C, 1 GPa confining pressure, and a strain rate of ˜2x10-6s-1. The polygonal, recrystallized grains were analyzed using an analytical transmission electron microscope and have a variable but often intermediate composition. At the conditions of these experiments, the volume interdiffusion rate of NaSi/CaAl is too slow to produce any observable chemical change, and microstructural-chemical relations indicate that the contribution from diffusion creep was insignificant except for initially fine-grained (2 10 μm) aggregates. These results indicate that strain-induced recrystallization can be an effective mechanism for enhancing the kinetics of metamorphic reactions and for resetting the isotope systematics of minerals such as feldspars, pyroxenes, and amphiboles.

  20. The clumped-isotope geochemistry of exhumed marbles from Naxos, Greece

    NASA Astrophysics Data System (ADS)

    Ryb, U.; Lloyd, M. K.; Stolper, D. A.; Eiler, J. M.

    2017-07-01

    Exhumation and accompanying retrograde metamorphism alter the compositions and textures of metamorphic rocks through deformation, mineral-mineral reactions, water-rock reactions, and diffusion-controlled intra- and inter-mineral atomic mobility. Here, we demonstrate that these processes are recorded in the clumped- and single-isotope (δ13 C and δ18 O) compositions of marbles, which can be used to constrain retrograde metamorphic histories. We collected 27 calcite and dolomite marbles along a transect from the rim to the center of the metamorphic core-complex of Naxos (Greece), and analyzed their carbonate single- and clumped-isotope compositions. The majority of Δ47 values of whole-rock samples are consistent with exhumation- controlled cooling of the metamorphic complex. However, the data also reveal that water-rock interaction, deformation driven recrystallization and thermal shock associated with hydrothermal alteration may considerably impact the overall distribution of Δ47 values. We analyzed specific carbonate fabrics influenced by deformation and fluid-rock reaction to study how these processes register in the carbonate clumped-isotope system. Δ47 values of domains drilled from a calcite marble show a bimodal distribution. Low Δ47 values correspond to an apparent temperature of 260 °C and are common in static fabrics; high Δ47 values correspond to an apparent temperature of 200 °C and are common in dynamically recrystallized fabrics. We suggest that the low Δ47 values reflect diffusion-controlled isotopic reordering during cooling, whereas high Δ47 values reflect isotopic reordering driven by dynamic recrystallization. We further studied the mechanism by which dynamic recrystallization may alter Δ47 values by controlled heating experiments. Results show no significant difference between laboratory reactions rates in the static and dynamic fabrics, consistent with a mineral-extrinsic mechanism, in which slip along crystal planes was associated with atomic-scale isotopic reordering in the calcite lattice. An intrinsic mechanism (enhanced isotopic reordering rate in deformed minerals) is contraindicated by these experiments. We suggest that Δ47 values of dynamically recrystallized fabrics that form below the diffusion-controlled blocking-temperature for calcite constrain the temperature of deformation. We find that Δ47-based temperatures of static fabrics from Naxos marbles are ∼60-80 °C higher than commonly observed in slowly cooled metamorphic rocks, and would suggest cooling rates of ∼105 °CMyr-1. A similar thermal history is inferred for dolomite marbles from the core vicinity, which preserve apparent temperatures up to 200 °C higher than a typical blocking temperature (∼300 °C). This finding could be explained by a hydrothermal event driving a brief thermal pulse and locally resetting Δ47 values. Rapid cooling of the core-complex region is consistent with a compilation of published cooling ages and a new apatite U-Th/He age, associating the thermal event with the emplacement of a granodiorite pluton at ∼12 Ma.

  1. Water-Mediated Proton Hopping on an Iron Oxide Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merte, L. R.; Peng, Guowen; Bechstein, Ralf

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociationmore » is a key step in proton diffusion.« less

  2. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    NASA Astrophysics Data System (ADS)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations indicate relatively fast plagioclase growth rates, of order 10 cm/yr, or growth from an aqueous medium where diffusive fractionation would be smaller. The growth rates suggested by our models imply that the mineralogical layering is likely to represent changes in external conditions of the host magma.

  3. Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo

    2016-06-21

    The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism ismore » in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.« less

  4. VizieR Online Data Catalog: C and O isotopic ratios in Arcturus and Aldebaran (Abia+ 2012)

    NASA Astrophysics Data System (ADS)

    Abia, C.; Palmerini, S.; Busso, M.; Cristallo, S.

    2012-10-01

    CNO abundances, C and O isotopic ratios and equivalent diffusive coefficients (D) are given for the calculated extra-mixing models. For Arcturus we used the electronic version of the Infrared Atlas Spectrum by Hinkle et al. (1995, Cat. J/PASP/107/1042; resolution 0.01cm-1), and for Aldebaran we used a spectrum obtained on February 6, 1980 at the KPNO 4m Coude telescope using a Fourier transform spectrometer, kindly provided by K. Hinkle (resolution 0.016cm-1) The first 2 rows of table4 report the CNO abundances and isotopic ratios resulting from the observations. The other rows give the CNO abundances and isotopic ratios accounted for by the FDU in the three stellar models considered of 1.3Mo, 1.2Mo and 1.08Mo (see the paper for more details). (1 data file).

  5. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  6. Implications for behavior of volatile elements during impacts—Zinc and copper systematics in sediments from the Ries impact structure and central European tektites

    NASA Astrophysics Data System (ADS)

    Rodovská, Zuzana; Magna, TomáÅ.¡; Žák, Karel; Kato, Chizu; Savage, Paul S.; Moynier, Frédéric; Skála, Roman; Ježek, Josef

    2017-10-01

    Moldavites are tektites genetically related to the Ries impact structure, located in Central Europe, but the source materials and the processes related to the chemical fractionation of moldavites are not fully constrained. To further understand moldavite genesis, the Cu and Zn abundances and isotope compositions were measured in a suite of tektites from four different substrewn fields (South Bohemia, Moravia, Cheb Basin, Lusatia) and chemically diverse sediments from the surroundings of the Ries impact structure. Moldavites are slightly depleted in Zn ( 10-20%) and distinctly depleted in Cu (>90%) relative to supposed sedimentary precursors. Moreover, the moldavites show a wide range in δ66Zn values between 1.7 and 3.7‰ (relative to JMC 3-0749 Lyon) and δ65Cu values between 1.6 and 12.5‰ (relative to NIST SRM 976) and are thus enriched in heavy isotopes relative to their possible parent sedimentary sources (δ66Zn = -0.07 to +0.64‰; δ65Cu = -0.4 to +0.7‰). In particular, the Cheb Basin moldavites show some of the highest δ65Cu values (up to 12.5‰) ever observed in natural samples. The relative magnitude of isotope fractionation for Cu and Zn seen here is opposite to oxygen-poor environments such as the Moon where Zn is significantly more isotopically fractionated than Cu. One possibility is that monovalent Cu diffuses faster than divalent Zn in the reduced melt and diffusion will not affect the extent of Zn isotope fractionation. These observations imply that the capability of forming a redox environment may aid in volatilizing some elements, accompanied by isotope fractionation, during the impact process. The greater extent of elemental depletion, coupled with isotope fractionation of more refractory Cu relative to Zn, may also hinge on the presence of carbonyl species of transition metals and electromagnetic charge, which could exist in the impact-induced high-velocity jet of vapor and melts.

  7. A divergent heritage for complex organics in Isheyevo lithic clasts

    NASA Astrophysics Data System (ADS)

    van Kooten, Elishevah M. M. E.; Nagashima, Kazuhide; Kasama, Takeshi; Wampfler, Susanne F.; Ramsey, Jon P.; Frimann, Søren; Balogh, Zoltan I.; Schiller, Martin; Wielandt, Daniel P.; Franchi, Ian A.; Jørgensen, Jes K.; Krot, Alexander N.; Bizzarro, Martin

    2017-05-01

    Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200-650‰) relative to H-clasts (δ15N = 50-180‰) and contain extremely 15N-rich domains with δ15N < 5000‰. The D/H ratios of the clasts are correlated with the degree of clast hydration and define two distinct populations, which we interpret as reflecting mixing between D-poor fluid(s) and distinct organic endmember components that are variably D-rich. High-resolution N isotope data of 15N-rich domains show that the lithic clast diffuse organic matter is typically more 15N-rich than globular organic matter. The correlated δ15N values and C/N ratios of nanoglobules require the existence of multiple organic components, in agreement with the H isotope data. The combined H and N isotope data suggest that the organic precursors of the lithic clasts are defined by an extremely 15N-poor (similar to solar) and D-rich component for H-clasts, and a moderately 15N-rich and D-rich component for A-clasts. In contrast, the composition of the putative fluids is inferred to include D-poor but moderately to extremely 15N-rich H- and N-bearing components. The variable 15N enrichments in H- and A-clasts are associated with structural differences in the N bonding environments of their diffuse organic matter, which are dominated by amine groups in H-clasts and nitrile functional groups in A-clasts. We suggest that the isotopically divergent organic precursors in Isheyevo clasts may be similar to organic moieties in carbonaceous chondrites (CI, CM, CR) and thermally recalcitrant organic compounds in ordinary chondrites, respectively. The altering fluids, which are inferred to cause the 15N enrichments observed in the clasts, may be the result of accretion of variable abundances of NH3 and HCN ices. Finally, using bulk Mg and Cr isotope composition of clasts, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System's N and H isotope variability.

  8. The Effect of He3 Diffusion on the Pulsational Spectra of DBV Models

    NASA Astrophysics Data System (ADS)

    Montgomery, M. H.; Winget, D. E.

    Isotopic separation is inevitable in white dwarf stars if our understanding of diffusion is correct. This can have many important, and largely unexplored, astrophysical consequences. Asteroseismology gives an opportunity to investigate this possibility. We first examine the relevant timescales for diffusion in these objects, and compare them to the evolutionary timescales in the context of the DBV white dwarfs. We then explore the consequences which He3 separation has on the pulsational spectra of DBV models. Since GD 358 is the best-studied member of this class of variables, we pay particular attention to the way this could affect previous fits.

  9. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  10. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  11. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in grossular. Mineralogical Magazine, 69, 359-371.

  12. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  13. Monitoring of tritium

    DOEpatents

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  14. Adaptation of micro-diffusion method for the analysis of (15) N natural abundance of ammonium in samples with small volume.

    PubMed

    Zhang, Shasha; Fang, Yunting; Xi, Dan

    2015-07-30

    There are several preparation methods for the measurement of the nitrogen (N) isotopic composition of ammonium (NH4 (+) ) in different types of samples (freshwater, saltwater and soil extracts). The diffusion method is the most popular and it involves NH4 (+) in solutions being released under alkaline conditions and then immediately trapped by an acidified filter. However, the traditional preparation is designed for samples with large volume and relatively high N concentrations. The performance of diffusion for small-volume samples (e.g., a few milliliters) remains unknown. We examined the overall performance of micro-diffusion on 5 mL samples on varying the incubation time, temperature and initial NH4 (+) concentration. The trapped ammonia was chemically converted into nitrous oxide (N2 O) with hypobromite and hydroxylamine in sequence. The produced N2 O was analyzed by a commercially available purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. We found that diffusion can be complete with no more than 7 days of treatment at 37 °C. Increasing the temperature to 50 °C and the incubation time to 11 days did not improve the overall performance. There were no significant differences in the overall performance during diffusion with NH4 (+) concentrations from 15 to 60 μM. The blank size was relatively large, and the N contamination might come from the reagents especially KCl salts. The method presented here combines micro-diffusion and hypobromite oxidation and hydroxylamine reduction. It is suitable for samples with small volume and low NH4 (+) concentrations. Our study demonstrates that the NH4 (+) concentrations in samples can be as low as 15 μM, and a volume of 5 mL is sufficient for this method. We suggest that this method can be used for the routine determination of (15) N/(14) N for either natural abundance or (15) N-enriched NH4 (+) . Copyright © 2015 John Wiley & Sons, Ltd.

  15. Variation of brine compositions resulting from flow from matrix or fracture permeability, investigated by high pressure laboratory experiments

    NASA Astrophysics Data System (ADS)

    Poszwa, A. C.; Coleman, M. L.; Pouya, A.; Ader, M.; Bounenni, A.

    2003-04-01

    Planning oil production from a chalk reservoir oilfield is difficult because the matrix usually has low permeability despite its high porosity. Most oil is thought to come from fracture porosity but the matrix contribution should increase as compaction occurs during production. To better understand the respective contributions from matrix and fracture, we studied the geochemical characteristics of fluids using high-pressure brine flow experiments on chalk cores. During the experiment axial load was changed relative to confining pressure to induce fractures and to close them again. We used chlorine stable isotope variations to study fluid pathway, because chlorine is a chemically conservative element in sedimentary systems and its isotopes fractionate only with physical processes like diffusion or adsorption that could occur mainly in the chalk matrix. A first experiment was performed on a very porous chalk from Henley (on-shore UK) and using a low-salinity brine. Large variations of brine Cl isotope composition were observed (from -0.56 to +0.08 per mil). The variations were correlated positively with the brine flux through the chalk and the permeability of the rock, both parameters controlled by the rock fracturing. A second experiment used brine with salinity similar to that of seawater. In this case, chemical and isotopic variations were not significant. From the beginning, the chalk structure seems to have been destroyed very quickly (induced fracture porosity collapsed) possibly because of the fluid nature, so that whatever pressure was applied, the permeability did not change significantly. Using Valhall reservoir chalk (offshore Norwegian North Sea) and fluid half the salinity of seawater in a third experiment, we obtained a large range of permeabilities. Brine isotopic trends were very similar on average to those of the first experiment even though variations were smaller (Cl isotopes from -0.09 to +0.29 per mil) and not significantly correlated simply to permeability values. The highest isotopic values were in brine flowed through chalk when the permeability was high and fractures opened; the lowest values were in brine flowed through the chalk when its permeability was reduced by closing fractures and increasing the relative contribution from matrix flow where diffusion processes fractionated chlorine isotopes. From this work it seems that the relative contributions from fracture and matrix permeability in reservoirs can be estimated from the geochemical compositions of brines that flowed from them.

  16. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  17. Variation in the terrestrial isotopic composition and atomic weight of argon

    USGS Publications Warehouse

    Böhlke, John Karl

    2014-01-01

    The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.

  18. Development of a Radial Deconsolidation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Montgomery, Fred C.; Hunn, John D.

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radiallymore » symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.« less

  19. Tracing Cationic Nutrients from Xylem into Stem Tissue of French Bean by Stable Isotope Tracers and Cryo-Secondary Ion Mass Spectrometry[W][OA

    PubMed Central

    Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Thorpe, Michael Robert; Schurr, Ulrich; Schroeder, Walter Heinz

    2010-01-01

    Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow. After 20 min of application, tracers were readily detectable to various degrees in all tissues. The xylem parenchyma near the vessels exchanged freely with the vessels, its nutrient elements reaching a steady state of strong exchange with elements in the vessels within 20 min, mainly via apoplastic pathways. A slow exchange between vessels and cambium and phloem suggested that they are separated from the xylem, parenchyma, and pith, possibly by an apoplastic barrier to diffusion for nutrients (as for carbohydrates). There was little difference in these distributions when tracers were applied directly to intact xylem via a microcapillary, suggesting that xylem tension had little effect on radial exchange of these nutrients and that their movement was mainly diffusive. PMID:19965970

  20. Effect of barium on diffusion of sodium in borosilicate glass.

    PubMed

    Mishra, R K; Kumar, Sumit; Tomar, B S; Tyagi, A K; Kaushik, C P; Raj, Kanwar; Manchanda, V K

    2008-08-15

    Diffusion coefficients of sodium in barium borosilicate glasses having varying concentration of barium were determined by heterogeneous isotopic exchange method using (24)Na as the radiotracer for sodium. The measurements were carried out at various temperatures (748-798 K) to obtain the activation energy (E(a)) of diffusion. The E(a) values were found to increase with increasing barium content of the glass, indicating that introduction of barium in the borosilicate glass hinders the diffusion of alkali metal ions from the glass matrix. The results have been explained in terms of the electrostatic and structural factors, with the increasing barium concentration resulting in population of low energy sites by Na(+) ions and, plausibly, formation of more tight glass network. The leach rate measurements on the glass samples show similar trend.

  1. Copper Diffusion in Silicate Melts and Melt Inclusion Study on Volatiles in The Lunar Interior

    NASA Astrophysics Data System (ADS)

    Ni, Peng

    This thesis focuses on the application of diffusion kinetics to both terrestrial and lunar geochemistry. In Chapters II and III, diffusivities of Cu in silicate melts were experimentally determined and used to discuss the role of Cu diffusion in formation of Cu ore deposits and also Cu isotope fractionation in tektites. In Chapters IV and V, lunar olivine-hosted melt inclusions are studied to understand their volatile loss during homogenization in lab, to estimate cooling rate for lunar Apollo sample 74220, and to estimate volatile abundance in the lunar mantle. Magmatic sulfide deposits and porphyry-type Cu deposits are two major types of Cu deposits that supply the world's Cu. In particular, porphyry-type Cu deposits provide ˜57% of the world's total discovered Cu. Recent studies suggest a potential role of diffusive transport of metals (e.g. Cu, Au, PGE, Mo) in the formation of magmatic sulfide deposits and porphyry-type deposits. Diffusivities of Cu in silicate melts, however, are poorly determined. In Chapters II and III of this thesis, Cu diffusion in basaltic melt and rhyolitic melts are studied by diffusion couple and chalcocite "dissolution" methods. Our results indicate high diffusivities of Cu and a general equation for Cu diffusion in silicate melts is obtained. The high diffusivity of Cu indicate that partition of Cu between the silicate phase and the sulfide or fluid phase can be assumed to be in equilibrium during the formation of magmatic sulfide deposits or porphyry-type deposits. In addition, our Cu diffusion data helps explain why Cu isotopes are more fractionated than Zn isotopes in tektites. Volatile abundances in the lunar mantle have profound implications for the origin of the Moon, which was thought to be bone-dry till about a decade ago, when trace amounts of H2O were detected in various types of lunar samples. In particular, high H2O concentrations comparable to mid-ocean ridge basalts were reported in lunar melt inclusions. There are still uncertainties, however, for lunar melt inclusion studies in at least two aspects. One is whether the low H2O/Ce ratios measured in homogenized crystalline inclusions are affected by the homogenization process. The other is that current estimation of volatile abundances in lunar mantle relies heavily on 74220, which is argued to be a local anomaly by some authors. In order to reach a conclusive answer on volatile abundances in lunar mantle, the above two questions have to be answered. To improve our understanding about these questions, in Chapter IV of this thesis, a series of experiments are carried out to understand possible volatile loss from lunar melt inclusions during homogenization. Our results indicate significant H2O loss from inclusions during homogenization in minutes, whereas loss of F, Cl or S is unlikely a concern under our experimental conditions. The most applicable way to preserve H2O during homogenization is to use large inclusions. In Chapter V of this thesis, volatile, trace and major element data for melt inclusions from 10020, 12040, 15016, 15647 and 74235 are reported. Our new data indicate large variation in H2O/Ce ratios from ˜77 to ˜1 across different lunar samples, which is at least partially due to H2O loss on lunar surface during cooling. In addition, evidences were found in F/Nd and S/Dy ratios that might suggest lunar mantle heterogeneity in terms of its volatile abundances.

  2. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  3. Evaluation of diffuse and preferential flow pathways of infiltratedprecipitation and irrigation using oxygen and hydrogen isotopes

    USGS Publications Warehouse

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jingxin

    2017-01-01

    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10–40 cm depth in the grassland and arable land, and 10–60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20–50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  4. Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models

    NASA Astrophysics Data System (ADS)

    Benyamin, David; Shaviv, Nir J.; Piran, Tsvi

    2017-12-01

    Electron capture (EC) isotopes are known to provide constraints on the low-energy behavior of cosmic rays (CRs), such as reacceleration. Here, we study the EC isotopes within the framework of the dynamic spiral-arms CR propagation model in which most of the CR sources reside in the galactic spiral arms. The model was previously used to explain the B/C and sub-Fe/Fe ratios. We show that the known inconsistency between the 49Ti/49V and 51V/51Cr ratios remains also in the spiral-arms model. On the other hand, unlike the general wisdom that says the isotope ratios depend primarily on reacceleration, we find here that the ratio also depends on the halo size (Z h) and, in spiral-arms models, also on the time since the last spiral-arm passage ({τ }{arm}). Namely, EC isotopes can, in principle, provide interesting constraints on the diffusion geometry. However, with the present uncertainties in the lab measurements of both the electron attachment rate and the fragmentation cross sections, no meaningful constraint can be placed.

  5. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Tao; Kang, Wei; Wang, Jianxiang, E-mail: jxwang@pku.edu.cn

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence ofmore » the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.« less

  6. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  7. Observations of the Li, Be, and B Isotopes and Constraints on Cosmic-ray Propagation

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Moskalenko, I. V.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.; hide

    2007-01-01

    The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.

  8. The effect of physical back-diffusion of 13CO2 tracer on the coupling between photosynthesis and soil CO2 efflux in grassland.

    PubMed

    Burri, Susanne; Sturm, Patrick; Baur, Thomas; Barthel, Matti; Knohl, Alexander; Buchmann, Nina

    2014-01-01

    Pulse labelling experiments provide a common tool to study short-term processes in the plant-soil system and investigate below-ground carbon allocation as well as the coupling of soil CO(2) efflux to photosynthesis. During the first hours after pulse labelling, the measured isotopic signal of soil CO(2) efflux is a combination of both physical tracer diffusion into and out of the soil as well as biological tracer release via root and microbial respiration. Neglecting physical back-diffusion can lead to misinterpretation regarding time lags between photosynthesis and soil CO(2) efflux in grassland or any ecosystem type where the above-ground plant parts cannot be labelled in gas-tight chambers separated from the soil. We studied the effects of physical (13)CO(2) tracer back-diffusion in pulse labelling experiments in grassland, focusing on the isotopic signature of soil CO(2) efflux. Having accounted for back-diffusion, the estimated time lag for first tracer appearance in soil CO(2) efflux changed from 0 to 1.81±0.56 h (mean±SD) and the time lag for maximum tracer appearance from 2.67±0.39 to 9.63±3.32 h (mean±SD). Thus, time lags were considerably longer when physical tracer diffusion was considered. Using these time lags after accounting for physical back-diffusion, high nocturnal soil CO(2) efflux rates could be related to daytime rates of gross primary productivity (R(2)=0.84). Moreover, pronounced diurnal patterns in the δ(13)C of soil CO(2) efflux were found during the decline of the tracer over 3 weeks. Possible mechanisms include diurnal changes in the relative contributions of autotrophic and heterotrophic soil respiration as well as their respective δ(13)C values. Thus, after accounting for physical back-diffusion, we were able to quantify biological time lags in the coupling of photosynthesis and soil CO(2) efflux in grassland at the diurnal time scale.

  9. Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2018-03-01

    The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .

  10. Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation

    DOE PAGES

    Bonamici, Chloe E.; Fanning, C. Mark; Kozdon, Reinhard; ...

    2015-02-11

    Here, titanite is an important U-Pb chronometer for dating geologic events, but its high-temperature applicability depends upon its retention of radiogenic lead (Pb). Experimental data predict similar rates of diffusion for lead (Pb) and oxygen (O) in titanite at granulite-facies metamorphic conditions (T = 650-800°C). This study therefore investigates the utility of O-isotope zoning as an indicator for U-Pb zoning in natural titanite samples from the Carthage-Colton Mylonite Zone of the Adirondack Mountains, New York. Based on previous field, textural, and microanalytical work, there are four generations (types) of titanite in the study area, at least two of which preservemore » diffusion-related δ 18O zoning. U-Th-Pb was analyzed by SIMS along traverses across three grains of type-2 titanite, which show well-developed diffusional δ 18O zoning, and one representative grain from each of the other titanite generations.« less

  11. The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks

    NASA Astrophysics Data System (ADS)

    Visser, R.; van Dishoeck, E. F.; Black, J. H.

    2009-08-01

    Aims: Photodissociation by UV light is an important destruction mechanism for carbon monoxide (CO) in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth dependence and isotope-selective nature of this process. Methods: We present a photodissociation model based on recent spectroscopic data from the literature, which allows us to compute depth-dependent and isotope-selective photodissociation rates at higher accuracy than in previous work. The model includes self-shielding, mutual shielding and shielding by atomic and molecular hydrogen, and it is the first such model to include the rare isotopologues C17O and 13C17O. We couple it to a simple chemical network to analyse CO abundances in diffuse and translucent clouds, photon-dominated regions, and circumstellar disks. Results: The photodissociation rate in the unattenuated interstellar radiation field is 2.6 × 10-10 s-1, 30% higher than currently adopted values. Increasing the excitation temperature or the Doppler width can reduce the photodissociation rates and the isotopic selectivity by as much as a factor of three for temperatures above 100 K. The model reproduces column densities observed towards diffuse clouds and PDRs, and it offers an explanation for both the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The photodissociation of C17O and 13C17O shows almost exactly the same depth dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally fractionated with respect to 16O. This supports the recent hypothesis that CO photodissociation in the solar nebula is responsible for the anomalous 17O and 18O abundances in meteorites. Grain growth in circumstellar disks can enhance the N(12CO)/N(C17O) and N(12CO)/N(C18O) ratios by a factor of ten relative to the initial isotopic abundances. Tables [see full textsee full text]-[see full textsee full text] are only available in electronic form at http://www.aanda.org

  12. Izu-Oshima volcano, Japan: ten years of geochemical monitoring by means of CO2 soil diffuse degassing

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, P. A.; Mori, T.; Notsu, K.; Morita, M.; Padron, E.; Onizawa, S.; Melián, G.; Sumino, H.; Asensio-Ramos, M.; Nogami, K.; Yamane, K.; Perez, N. M.

    2016-12-01

    Izu-Oshima is an active volcanic island located around 100 km SSW of Tokyo. The centre of the island is occupied by a caldera complex with a diameter of 3 km. A large post-caldera cone known as Mt. Mihara is located at the south-western quadrant of the caldera. Izu-Oshima has erupted 74 times, consisting mainly in fissure eruptions, both inside and outside of the caldera. The last eruption of Izu-Oshima occurred in 1986. Since 2007, eight soil gas surveys have been carried out to investigate the spatial and temporal evolution of diffuse CO2 emission from this volcanic system and to identify those structures controlling the degassing process. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. The location of the CO2 anomalies has always shown a close relationship with the structural characteristics of Miharayama, with most of the gas discharged from the rim of the summit crater. Temporal evolution of diffuse CO2 emission rate from Mt. Miharayama has shown a good temporal correlation with the main two peaks of seismic activity occur when highest CO diffuse emissions were computed, March 2007, August 2010 and July 2011, may be associated with fluid pressure fluctuations in the volcanic system due stress changes at depth. In order to strength the contribution of deep seated gases, we performed carbon isotopic analysis of soil gas samples at selected sites during 2010, 2013, 2015 and 2016 surveys. At isotopic compositions lighter than - 6‰, the soil CO2 effluxes were always low, while at heavier isotopic compositions an increasing number of points are characterized by relatively high soil CO efflux. Soil CO2 efflux peak values (xB) showed also a good correlation with the observed seismicity, with the largest value computed on June 2013. This parameter is a geochemical expression of the magnitude of the anomalous degassing, and the observed change in the trend may indicate an increase of the seismic-volcanic activity in the next future. Therefore, performing regularly soil CO2 efflux surveys seems to be an effective geochemical surveillance tool Izu-Oshima volcano in order to detect a change in the tendency of the CO2 emission rate in case of future episodes of volcanic unrest.

  13. Studies of the Terrestrial Molecular Oxygen and Carbon Cycles in Sand Dune Gases and in Biosphere 2.

    NASA Astrophysics Data System (ADS)

    Severinghaus, Jeffrey Peck

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O_2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO_2. Test drilling in sand dunes shows that sand dunes do contain old air, as shown by the concentrations of chlorofluorocarbons and ^{85}Kr. Diffusion is shown to dominate mixing rather than advection. However, biological respiration in dunes corrupts the signal, and isotopic analysis of O_2 and N _2 shows that fractionation of the gases precludes use of sand dunes as archives. Chapter 2 further explores this fractionation, revealing a previously unknown "water vapor flux fractionation" process. A flux of water vapor out of the moist dune into the dry desert air sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N_2 and O_2 diffuse more slowly, creating a steady state depletion of heavy isotopes in the dune interior. Molecular diffusion theory and a laboratory simulation of the effect agree well with the observations. Additional fractionation of the dune air occurs via thermal diffusion and gravitational settling, and it is predicted that soil gases in general will enjoy all three effects. Chapter 3 examines the cause of a mysterious drop in O _2 concentrations in the closed ecosystem of Biosphere 2, located near Tucson, Arizona. The organic -rich soil manufactured for the experiment is shown to be the culprit, with CO_2 produced by bacterial respiration of the organic matter reacting with the extensive concrete surfaces inside. Chapter 4 examines the O_2:C stoichiometry of terrestrial soil respiration and photosynthesis, in the context of using atmospheric O_2 measurements to constrain the size of the "missing sink" of CO_2. Direct measurements of soil respiration and biomatter elemental abundance suggest a value of 1.1 +/- 0.05 oxygen molecules per CO_2 molecule.

  14. Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects

    USGS Publications Warehouse

    Ellis, A.S.; Johnson, T.M.; Bullen, T.D.

    2004-01-01

    Chromium stable isotope values can be effectively used to monitor reduction of Cr(VI) in natural waters. We investigate effects of sorption during transport of Cr(VI) which may also shift Cr isotopes values, complicating efforts to quantify reduction. This study shows that Cr stable isotope fractionation caused by sorption is negligible. Equilibrium fractionation of Cr stable isotopes between dissolved Cr-(VI) and Cr(VI) adsorbed onto ??-Al2O3 and goethite is less than 0.04???. (53Cr/52Cr) under environmentally relevant pH conditions. Batch experiments at pH 4.0 and pH 6.0 were conducted in series to sequentially magnify small isotope fractionations. A simple transport model suggests that adsorption may cause amplification of a small isotope fractionation along extreme fringes of a plume, leading to shifts in 53Cr/52Cr values. We therefore suggest that isotope values at extreme fringes of Cr plumes be critically evaluated for sorption effects. A kinetic effect was observed in experiments with goethite at pH 4 where apparently lighter isotopes diffuse into goethite clumps at a faster rate before eventually reaching equilibrium. This observed kinetic effect may be important in a natural system that has not attained equilibrium and is in need of further study. Cr isotope fractionation caused by speciation of Cr(VI) between HCrO4- and CrO42- was also examined, and we conclude that it is not measurable. In the absence of isotope fractionation caused by equilibrium speciation and sorption, most of the variation in ??53 Cr values may be attributed to reduction, and reliable estimates of Cr reduction can be made.

  15. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    USGS Publications Warehouse

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  16. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately using the operator-splitting method (Implicit Pressure Explicit Saturation, IMPES). The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. To date, there has been no research investigating how subsurface transport impacts isotope activity ratios. The isotopic activity ratio method can be used to discriminate between civil release or nuclear explosion sources. This study examines possible fractionation of Xe-135, Xe-133m, Xe-133, Xe-131m during barometric pumping-driven subsurface migration, which can affect surface arrival times and isotopic activity ratios. Surface arrival times for the Noble gases Kr-81, Kr-85 and Ar-39 are also calculated.

  17. Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Tao; Yang, Jing-Hong; Yan, Xiong; Wu, He-Pin; Yang, Tang-Li

    2015-10-01

    A new, feasible procedure for high-precision bromine isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is described. With a combination of HR mass resolution mode and accurate optimization of the Zoom Optics parameters (Focus Quad: -1.30; Zoom Quad: 0.00), the challenging problem of the isobaric interferences ((40)Ar(38)ArH(+) and (40)Ar(40)ArH(+)) in the measurement of bromine isotopes ((79)Br(+), (81)Br(+)) has been effectively solved. The external reproducibility of the measured (81)Br/(79)Br ratios in the selected standard reference materials ranged from ±0.03‰ to ±0.14‰, which is superior to or equivalent to the best results from previous contributions. The effect of counter cations on the Br(+) signal intensity and the instrumental-induced mass bias was evaluated as the loss of HBr aerosol in nebulizer and potential diffusive isotope fractionations. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Simulating dynamics of δ13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Tans, Pieter P.; Huang, Lin

    2006-11-01

    Stable isotopes of CO2 contain unique information on the biological and physical processes that exchange CO2 between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of δ13C and thus the global δ13C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of 13CO2 in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49°52'29.9''N, 81°34'12.3''W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to δ13C on diurnal and seasonal scales. The simulated annual mean vertical gradient of δ13C in the PBL in the vicinity of the FRD tower was about 0.25‰ in 1999. The δ13C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO2. Most of the vertical gradient (96.5% +/-) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%+/-) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on δ13C of CO2 dynamics in PBL, moreover, was confined to the near surface layers (less than 350 m).

  19. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    NASA Astrophysics Data System (ADS)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a primary melt (i.e. in equilibrium with the mantle) from which other enriched shergottites derived.

  20. Final Summary of Research Report to the National Aeronautics and Space Administration Origins of Solar Systems Program

    NASA Technical Reports Server (NTRS)

    O'D. Alexander, Conel

    2003-01-01

    The chondrites are aggregates of components (e.g. chondrules, chondrule rims and matrix) that formed in the nebula but, at present, there is no consensus on how any of these components formed or whether their formation produced or post dated the chemical fractionations between the chondrites. Chondrites are, at present, the most primitive Solar System objects available for laboratory study and the conditions under which their principle components formed would provide the most direct constraints for models of nebula formation and evolution. The conditions under which chondrules formed is of particular importance because, if their relative abundance in chondrites approximates that in the nebula, they are the products of one of the most energetic and pervasive processes that operated in the early Solar System. The goal of this proposal was to combine theoretical modeling with a comprehensive study of the elemental and isotopic compositions of the major components in unequilibrated ordinary chondrites (UOCs), with the aim of determining the conditions in the nebula at the time of their formation. The isotopes of volatile and moderately volatile elements should be particularly revealing of conditions during chondrule formation, as evaporation under most conditions would lead to isotopic mass fractionation. Modeling of chondrule and matrix formation requires the development of a kinetic model of evaporation and condensation, and calibration of this model against experiments. Cosmic spherules present an opportunity to test our evaporation models under flash heating conditions that would be difficult to simulate experimentally. However, there is surprisingly little known about the isotopic compositions of silicate cosmic spherules, and a number of questions need to be addressed. Is the range of compositions they exhibit due to evaporation? If they are, are the relative volatilities consistent with the models/experiments and are the isotopic fractionations consistent with Rayleigh conditions? For instance, do the alkalis and S evaporate prior to significant melting so that conditions did not meet the Rayleigh criteria of rapid diffusion? If so, their isotopic fractionation might be considerably suppressed. Could this mechanism of K loss apply to chondrule formation? The Fe isotopic fractionation during evaporation of silicates has not been measured, so cosmic spherules might provide a clue to whether FeO diffusion is fast enough to maintain Rayleigh conditions during evaporation. And so on.

  1. Multi-isotope (C - O - S - H - B - Mg - Ca - Ba) and trace element variations along a vertical pore water profile across a brackish-fresh water transition, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Lapham, Laura; Gussone, Nikolaus; Struck, Ulrich; Buhl, Dieter; Immenhauser, Adrian; Moeller, Kirsten; Pretet, Chloé; Nägler, Thomas F.; Dellwig, Olaf; Schnetger, Bernhard; Huckriede, Hermann; Halas, Stan; Samankassou, Elias

    2013-04-01

    The Holocene Baltic Sea has been switched several times between fresh water and brackish water modes. Modern linear sedimentation rates, based on 210-Pb, 137-Cs, and Hg dating of surface sediments, are between 0.1 and 0.2 mm per year. The change in paleo-environmental conditions caused downcore gradients in the concentrations of dissolved species from modern brackish waters towards fresh paleo-pore waters, interrupted by the brief brackish Yoldia stage. These strong physico-chemical changes had consequences for e.g., microbial activity and further physical and chemical water-solid interactions associated with multiple stable isotope fractionation processes, and, in turn, have strong implications for isotope and trace element partitioning upon early diagenetic mineral (trans)formations. In this communication, we present the results from the first integrated multi-isotope and trace element investigation conducted in this type of salinity-gradient system. It is found that concentrations of conservative elements (e.g., Na, Cl) decrease with depth due to diffusion of ions from brackish waters into underlying fresh waters. This is associated with pronounced depletions in H-2 and O-18 of pore water with depth. Covariations of both isotope systems are close to the meteoric water line as defined by modern Baltic Sea surface waters. A downward increase and decrease of Ca and Mg concentrations, respectively, is associated with decreasing Ca-44 and Mg-26 isotope values. B-11 isotope values decrease in the limnic part of the sediments, too. On the other hand, an increase in Ba concentrations with depth is associated with an increase in Ba-137/134 isotope values. Microbial sulfate reduction and organic matter oxidation lead to an increase in DIC, but a decrease in sulfate concentrations and in C-13 contents of DIC with depth. Suess (1981) was probably the first to propose, that desorption of Ca and Ba from glacial sediments due to downward diffusing ions may be responsible for a downcore increase in pore water concentrations of earth alkaline ions and the formation of authigenic barites. Coupled S-34 and O-18 isotope signals in authigenic barites suggest that they were formed in pre-Yoldia sediments from pore waters strongly depleted in O-18 (as low as -20 per mil vs. VSMOW). In the present communication, we will discuss possible impacts of diagenetic processes on multi-isotope signals in pore waters and authigenic phases. A combination of mixing between brackish and fresh water, ion exchange, precipitation/dissolution, and transport reactions is considered to explain most of the observed isotope variations along the vertical pore water profile. This work was supported by the Leibniz IOW, BONUS+ program, the Universities of Bern, Geneva, Bochum, Münster, and Oldenburg, and the Natural Museum of History, Berlin.

  2. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    NASA Astrophysics Data System (ADS)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of diffuse agrochemical pollutants in a relatively simple hydrological system. The simulated shifts in isotopic signals are within a range that could be detected with current isotope analytics. Concentrations in the stream vary significantly only for a short period during and after intense rainfall events. In contrast, CSIA values reveal longer response times such that isotopic shifts are likely to be detected in samples with a coarser temporal resolution. Rainfall events which result in fast lateral subsurface transport from the pollution source to the stream can be separated from those that lead to pollution migration through deeper subsurface zones with much longer travel times. Two-dimensional CSIA highlights an increasing importance of the oxic reaction in the topsoil during the wetter period of the year. In order to examine to which extent CSIA is applicable for more complex hydrological systems, it is projected to simulate isotope fractionation in a 3-dimensional catchment featuring additional processes such as migration from several pollution sources or in-stream degradation.

  3. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.

  4. Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Young, Edward D.

    2007-05-01

    Silicon isotope ratios of a typical CAI from the Leoville carbonaceous chondrite, obtained in situ by laser ablation MC-ICPMS, together with existing 25Mg/ 24Mg data, reveal a detailed picture of the astrophysical setting of CAI melting and subsequent heating. Models for the chemical and isotopic effects of evaporation of the molten CAI are used to produce a univariant relationship between PH 2 and time during melting. The result shows that this CAI was molten for a cumulative time of no more than 70 days and probably less than 15 days depending on temperature. The object could have been molten for an integrated time of just a few hours if isotope ratio zoning was eliminated after melting by high subsolidus temperatures (e.g., > 1300 K) for ˜ 500 yr. In all cases subsolidus heating sufficient to produce diffusion-limited isotope fractionation at the margin of the solidified CAI is required. These stable isotope data point to a two-stage history for this igneous CAI involving melting for a cumulative timescale of hours to months followed by subsolidus heating for years to hundreds of years. The thermobarometric history deduced from combining Si and Mg isotope ratio data implicates thermal processing in the disk, perhaps by passage through shockwaves, following melting. This study underscores the direct link between the meaning of stable isotope ratio zoning, or lack thereof, and the inferred astrophysical setting of melting and subsequent processing of CAIs.

  5. Formation and Preservation of the Depleted and Enriched Shergottite Isotopic Reservoirs in a Convecting Martian Mantle

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Jones, John H.

    2015-01-01

    There is compelling isotopic and crater density evidence for geologically recent volcanism on Mars, in the last 100-200 million years and possibly in the last 50 million years. This volcanism is due to adiabatic decompression melting and thus requires some type of present-day convective upwelling in the martian mantle. On the other hand, martian meteorites preserve evidence for at least 3 distinct radiogenic isotopic reservoirs. Anomalies in short-lived isotopic systems (Sm-146, Nd-142, Hf-182, W-182) require that these reservoirs must have developed in the first 50 to 100 million years of Solar System history. The long-term preservation of chemically distinct reservoirs has sometimes been interpreted as evidence for the absence of mantle convection and convective mixing on Mars for most of martian history, a conclusion which is at odds with the evidence for young volcanism. This apparent paradox can be resolved by recognizing that a variety of processes, including both inefficient mantle mixing and geographic separation of isotopic reservoirs, may preserve isotopic heterogeneity on Mars in an actively convecting mantle. Here, we focus on the formation and preservation of the depleted and enriched isotopic and trace element reservoirs in the shergottites. In particular, we explore the possible roles of processes such as chemical diffusion and metasomatism in dikes and magma chambers for creating the isotopically enriched shergottites. We also consider processes that may preserve the enriched reservoir against convective mixing for most of martian history.

  6. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  7. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  8. A first-principles and experimental study of helium diffusion in periclase MgO

    NASA Astrophysics Data System (ADS)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  9. Diffusion studies with synchrotron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.

    2011-12-01

    Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.

  10. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  11. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first partmore » consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.« less

  12. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO₂ diffusion dynamically at different CO₂ concentrations.

    PubMed

    Tazoe, Youshi; VON Caemmerer, Susanne; Estavillo, Gonzalo M; Evans, John R

    2011-04-01

    In C₃ leaves, the mesophyll conductance to CO₂ diffusion, g(m) , determines the drawdown in CO₂ concentration from intercellular airspace to the chloroplast stroma. Both g(m) and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of g(m) to changes in CO₂ in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO₂ calibration system specially designed for a range of CO₂ and O₂ concentrations. CO₂ was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O₂ a step increase from 200 to 1000 ppm significantly decreased g(m) by 26-40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26-38% increase in g(m) was not statistically significant. The response of g(m) to CO₂ was less in 21% O₂. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO₂. We discuss the effects of isotope fractionation factors on estimating g(m) . © 2011 Blackwell Publishing Ltd.

  13. Reassessing the stable isotope composition assigned to methane flux from natural wetlands in isotope-constrained budgets

    NASA Astrophysics Data System (ADS)

    Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew

    2013-04-01

    Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.

  14. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    NASA Astrophysics Data System (ADS)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  15. Chemical and Isotopic Characterization of Waters in Rio Tinto, Spain, Shows Possible Origin of the Blueberry Haematite Nodules in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Hubbard, C. G.; Mielke, R. E.; Black, S.

    2005-12-01

    Meridiani Planum sediments formed in an acid environment and include jarosite and other evaporitic sulfate minerals. Nodular spheroidal concretions appear to have grown in situ and are predominantly hematite. The source of the Rio Tinto, S. Spain, drains an area of extensive sulfide mineralization and is dominated by acid mine drainage processes. The system is not a Mars analog but potentially similar processes of sulfide oxidation produce sulfate rich waters which feed into the river and precipitate a large range of evaporitic sulfates including jarosite. Iron oxide minerals associated with the evaporites are either dispersed or bedded but not nodular. The water compositions appear to be mixtures of a few discreet end-members: the two most significant occur in undiluted form as inputs to the river and are relevant to many such systems. They both have all sulfur totally oxidized as sulfate. The first is a bright red water, pH ~1.5, Fe/S 0.5 and 23 g/L iron which is greater than 95% Fe3+. Its sulfate oxygen isotope composition is +2‰SMOW and about +7‰, relative to the water O isotope composition. These data indicate pyrite oxidation by Fe3+ with O in sulfate coming mainly from water. The second end-member is a pale green water, pH ~0.7, Fe/S 0.7, 50 g/L iron present mainly as Fe2+ and O isotope composition of sulfate about +6‰SMOW , about +12.5‰ relative to the water O value. Oxygen in sulfate comes mainly from atmospheric oxygen resulting from pyrite oxidation by molecular oxygen dissolved in water. Although the Rio Tinto system reactions probably are microbiologically mediated (relevant genera have been identified there) similar processes could occur abiotically but more slowly. Meridiani Planum sediments and nodules can be described by a plausible set of similar end-member processes. The primary source of sulfate is oxidation of sulfides present in basalt (pyrite, FeS2 or pyrrhotite, FeS) and weathering would have produced oxidized sulfate rich solutions at low pH. Ground water migration could produce evaporitic ponds where various bedded sulfate mineral sediments could form. The intergranular pore-spaces would be water filled. Most terrestrial spheroidal nodular concretions form by radial diffusion in pore-water of a chemical component of a very different oxidation state from that of the surrounding water. A nodular concretion is most usually formed by the reaction of the diffusive component with others in the pore-water. There are two main possible reaction sets for formation of the Blueberries that are consistent with all current data. 1. Local concentrations of organic matter (pre-biotic or biotic) formed reduction spots in which a small amount of Fe3+ either in solution or from evaporite mineral salts, was reduced to Fe2+ and then diffused radially to form an iron oxide nodule by reaction with inwardly diffusing dissolved oxygen. 2. Similar local concentrations of organic matter could also have engendered sulfate reduction and consequent outward diffusion of dissolved sulfide reacted with iron in solution to produce an iron sulfide nodule, subsequently oxidized in situ to hematite (maybe via goethite). Our current work is successfully identifying chemical and stable isotopic characteristics for both microbial and abiotic modes of all relevant reactions.

  16. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Jen; Pogge von Strandmann, Philip A. E.; Dohmen, Ralf; Takazawa, Eiichi; Elliott, Tim

    2015-09-01

    We have analysed the Li and Mg isotope ratios of a suite of samples from the Horoman Peridotite Massif. Our results show that most Li and all Mg isotopic compositions of the Horoman peridotites are constant over 100 metres of continuous outcrop, yielding values for pristine mantle of δ7Li = 3.8 ± 1.4‰ (2SD, n = 9), δ25Mg = -0.12 ± 0.02‰ and δ26Mg = -0.23 ± 0.04‰ (2SD, n = 17), in keeping with values for undisturbed mantle xenoliths. However, there are also some anomalously low δ7Li values (-0.2‰ to 1.6‰), which coincide with locations that show enrichment of incompatible elements, indicative of the prior passage of small degree melts. We suggest Li diffused from infiltrating melts with high [Li] into the low [Li] minerals and kinetically fractionated 7Li/6Li as a result. Continued diffusion after the melt flow had ceased would have resulted in the disappearance of this isotopically light signature in less than 15 Ma. In order to preserve this feature, the melt infiltration must have been a late stage event and the massif must have subsequently cooled over a maximum of ∼0.3 Ma from peak temperature (950 °C, assuming the melts were hydrous) to Li closure temperature (700 °C), likely during emplacement. The constant δ26Mg values of Horoman peridotites suggest that chemical potential gradients caused by melt infiltration were insufficient to drive associated δ26Mg fractionation greater than our external precision of 0.03‰.

  17. Helium isotopes in matrix pore fluids from SAFOD drill core samples suggest mantle fluids cannot be responsible for fault weakening

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.

    2008-12-01

    To quantify fluid flow in the San Andreas Fault (SAF) (and since direct fracture fluid sampling of the fault zone was not available), we have adapted a method to extract rare gases from matrix fluids of whole rocks by diffusion. Helium was measured on drill core samples obtained from 3054 m (Pacific Plate) to 3990 m (North American Plate) through the San Andreas Fault Zone (SAFZ) ~3300 m during SAFOD Phases I (2004), II (2005), III (2007). Samples were typically collected as 2.54 cm diameter subcores drilled into the ends of the cores, or from the core catcher and drillcore fragments within <2hr after core recovery. The samples were placed into ultra high vacuum stainless steel containers, flushed with ultra high purity nitrogen and immediately evacuated. Helium isotopes of the extracted matrix pore fluids and the solid matrix were determined by mass spectrometery at LDEO. Matrix porefluid 3He/4He ratios are ~0.4 - 0.5xRa (Ra: atmospheric 3He/4He = 1.384 x 10-6) in the Pacific Plate, increasing toward the SAFZ, while pore fluids in the North American Plate have a 3He/4He range of 0.7-0.9Ra, increasing away from the SAFZ (consistent with results from mud gas samples (Wiersberg and Erzinger, 2007) and direct fluid samples (Kennedy et al., 2007)). Helium isotope ratios of the solid matrix are less than 0.06Ra across the SAF in samples from both the North American and the Pacific plates, thereby excluding the host matrix as source for the enhanced isotopic signature. If the system is assumed to be in steady state, then the flux of mantle helium must be from the North American Plate to the Pacific plate. The steeper gradient in the Pacific Plate relative to the North American plate is consistent with a porosity corrected effective diffusivity. The source for this mantle helium in the North American Plate is likely related to a low crustal conductivity zone identified by magnetotelluric signals (Becken et al., 2008) that provides a channel for transport of mantle helium within brittle crust under high strain rates (Kennedy et al., 2007). The helium isotope gradients suggest that fault weakening by mantle-derived fluid pressure is unlikely. More likely, mantle fluids "bleed" into the North American plate below seismogenic depths and are transported across the fault by nonseismic, diffusive processes.

  18. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  19. Environmental isotope investigation for the identification of source of springs observed in the hillock on the left flank of Gollaleru Earthen Dam, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Noble, J.; Arzoo Ansari, MD

    2017-07-01

    A hydrometric, hydrochemical and environmental isotopic study was conducted to identify the source and origin of observed springs on the foot of the hillock abutting the left flank of the Gollaleru earthen dam, Nandyal, Andhra Pradesh, India. Water samples (springs, reservoir water and groundwater) in and around the dam area were collected and analyzed for environmental isotopes (δ^{18}!O, δ2H and 3H) and hydrochemistry. Reservoir level, spring discharges and physico-chemical parameters (temperature, electrical conductivity, pH, etc.) were monitored in-situ. Isotopic results indicated that the source of springs is from the Owk reservoir and groundwater contribution to the springs is insignificant. Based on hydrometric observations, it is inferred that the springs might be originated from the reservoir level of 209 m amsl. It is found that the lower spring discharges were derived from diffuse sources (seepage) which could be a mixture of reservoir water and the groundwater, while the relatively higher spring discharges were resulted from concentrated sources (leakage) from the reservoir. Thus, the study portraits the usefulness of isotope techniques in understanding the dam seepage/leakage related problems.

  20. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  1. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  2. Diffusion of neon in white dwarf stars.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2010-12-01

    Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.

  3. Ag out-surface diffusion in crystalline SiC with an effective SiO 2 diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Xiao, H. Y.; Zhu, Z.

    2015-05-07

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope ( 110mAg) through the SiC coating layer is a safety concern. In order to understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. Our results suggestmore » little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO 2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  4. Ag Out-surface Diffusion In Crystalline SiC With An Effective SiO2 Diffusion Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Xiao, Haiyan Y.; Zhu, Zihua

    2015-09-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration ofmore » buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  5. Experimental investigation of sulphur isotope partitioning during outgassing of hydrogen sulphide from diluted aqueous solutions and seawater.

    PubMed

    Baune, Claudia; Bottcher, Michael E

    2010-12-01

    The diffusion of hydrogen sulphide across the sediment-water interface and subsequent liberation to the atmosphere may occur in iron-deficient coastal marine environments with enhanced microbial activity in surface sediments and corresponding accumulation of dissolved H2S in near-surface pore waters. The involvement of analogue processes in periods of global mass extinctions during Earth's history (e.g. at the Permian-Triassic boundary) is currently in discussion [L.R. Kump, A. Pavlov, and M. Arthur,Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia, Geology 33, 397 (2005)]. The outgassing of H₂S is associated with a fractionation of the stable sulphur isotopes, which has so far only been investigated experimentally at selected acidic and neutral pH values, and no experiments with seawater had been carried out. In this communication, we report on sulphur isotope fractionation that takes place during the experimental degassing of H₂S from aqueous solution by an inert gas (N₂) at 21 °C. Experiments were conducted in the pH range between 2.6 and 10.8, corresponding to the dominance fields of dissolved hydrogen sulphide (H₂S(aq)), bisulphide (HS-(aq)), and mixtures of both sulphide species. Overall isotope enrichment factors between -1.6 and +3.0‰ were observed, with the residual dissolved sulphide being enriched or depleted in ³⁴S compared to the liberated H₂S at low and high pH values, respectively. The difference in the low and high pH isotope fractionation effects can be explained by isotope exchange between H₂S(aq) and HS-(aq) [B. Fry, H. Gest, and J.M. Hayes, Sulfur Isotope Effects Associated with Protonation of HS- and Volatilization of H₂S, Chem. Geol. (Isot. Geosci. Sec.) 58, 253 (1986); R. Geßler and K. von Gehlen, Investigation of Sulfur Isotope Fractionation Between H2S Gas and Aqueous Solutions, Fresenius J. Anal. Chem. 324, 130 (1986)] followed by the subsequent transfer of H₂S(aq) to the gaseous phase. The assumption of pure physical outgassing of H₂S(aq) at low pH values leads to an isotope enrichment factor of -0.9 ± 0.4‰ (n = 14) which is caused by the combined differences in dehydration and diffusion coefficients of H₂³²S(aq) and H₂³⁴S(aq). In the pH range of natural surface and shallow pore waters, ³⁴S will be equal to or enriched in the gaseous phase compared to the aqueous solution, therefore creating no or a slight enrichment of ³²S in the aqueous solution. Experiments in seawater solution showed no significant influence of increased ionic strength and changed corresponding aqueous speciation on sulphur isotope effects.

  6. Analysis of δ18O and δD values of environmental waters at high temporal and spatial resolution by continuous diffusion sampling cavity ring-down spectrometry

    NASA Astrophysics Data System (ADS)

    Munksgaard, Niels; Bass, Adrian; Wurster, Chris; Bird, Michael

    2013-04-01

    A novel sampling device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring-Down Spectrometry (CRDS). Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling-CRDS (DS-CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS-CRDS data. The internal precision for an integration period of 3 min (standard deviation = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by injection/evaporation CRDS of discrete water samples. The isotopic effects of variable air and water temperature, water vapour concentration and water pumping rate were found to be either negligible or correctable by analysis of water standards. Separation of the analysed water vapour from non-volatile dissolved and particulate contaminants in the liquid sample minimises interferences associated with CRDS analyses of many aqueous samples. Coupling of the DS-CRDS instrument to an auto sampler enables rapid analysis (10 min) of discrete water samples. The DS-CRDS system was used in the first continuous shipboard measurement of δ18O and δD of water. Combined with continuous salinity recordings, a data set of nearly 6,000 isotope measurements was made at 30-s intervals during a 3-day voyage through the Great Barrier Reef Lagoon. Precise identification of river plumes within the Great Barrier Reef Lagoon was possible because unique δ18O/δD-salinity relationships of individual plumes were measured at high spatial and temporal resolution. Continuous shipboard measurement of δ18O/δD values by DS-CRDS provides additional discriminatory power for assessing water mass formation processes and histories at a small fraction of the cost of traditional isotope analysis of discrete samples. In a second application of DS-CRDS, continuous real-time analysis, at 30-s intervals, of precipitation at an Australian tropical location revealed extreme and rapidly changing δ18O and δD values related to variations in moisture source areas, transport paths and precipitation histories. The range of δ18O (-19.6 ‰ to +2.6 ‰) and δD (-140 ‰ to +13 ‰) values from almost 6,000 measurements of nine rain events over 15 days during an 8-month period at a single location was comparable with the range measured in 1532 monthly samples from all seven Australian Global Network of Isotopes in Precipitation stations from 1962 to 2002. Extreme variations in δ18O (-8.7 ‰ to -19.6 ‰) and δD (-54 ‰ to -140 ‰) were recorded within a single 4-h period. Real-time stable isotope monitoring of environmental waters at high temporal and spatial resolution enables new and powerful tracer applications in climatology, hydrology, eco-physiology and palaeo-climatology.

  7. Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: smei4@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu; Maurer, L. N.

    2014-10-28

    We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chenmore » et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.« less

  8. Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton

    NASA Astrophysics Data System (ADS)

    Gajos, Norbert A.; Lundstrom, Craig C.; Taylor, Alexander H.

    2016-11-01

    We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = -0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.

  9. Evaporation and Accompanying Isotopic Fractionation of Sulfur from FE-S Melt During Shock Wave Heating

    NASA Technical Reports Server (NTRS)

    Tachibana, S.; Huss, G. R.; Miura, H.; Nakamoto, T.

    2004-01-01

    Chondrules probably formed by melting and subsequent cooling of solid precursors. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. It is known that kinetic evaporation, especially evaporation from a melt, often leads to enrichment of heavy isotopes in an evaporation residue. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules for K, Mg, Si, and Fe (as FeO). The lack of isotopic fractionation has also been found for sulfur in troilites (FeS) within Bishunpur (LL3.1) and Semarkona (LL3.0) chondrules by an ion microprobe study. The largest fractionation, found in only one grain, was 2.7 +/- 1.4 %/amu, while all other troilite grains showed isotopic fractionations of <1 %/amu. The suppressed isotopic fractionation has been interpreted as results of (i) rapid heating of precursors at temperatures below the silicate solidus and (ii) diffusion-controlled evaporation through a surrounding silicate melt at temperatures above the silicate solidus. The kinetic evaporation model suggests that a rapid heating rate of >10(exp 4)-10(exp 6) K/h for a temperature range of 1000-1300 C is required to explain observed isotopic fractionations. Such a rapid heating rate seems to be difficult to be achieved in the X-wind model, but can be achieved in shock wave heating models. In this study, we have applied the sulfur evaporation model to the shock wave heating conditions of to evaluate evaporation of sulfur and accompanying isotopic fractionation during shock wave heating at temperatures below the silicate solidus.

  10. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  11. Helix formation via conformation diffusion search

    PubMed Central

    Huang, Cheng-Yen; Getahun, Zelleka; Zhu, Yongjin; Klemke, Jason W.; DeGrado, William F.; Gai, Feng

    2002-01-01

    The helix-coil transition kinetics of an α-helical peptide were investigated by time-resolved infrared spectroscopy coupled with laser-induced temperature-jump initiation method. Specific isotope labeling of the amide carbonyl groups with 13C at selected residues was used to obtain site-specific information. The relaxation kinetics following a temperature jump, obtained by probing the amide I′ band of the peptide backbone, exhibit nonexponential behavior and are sensitive to both initial and final temperatures. These data are consistent with a conformation diffusion process on the folding energy landscape, in accord with a recent molecular dynamics simulation study. PMID:11867741

  12. Partial structure factors reveal atomic dynamics in metallic alloy melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Kordel, T.; Hansen, T. C.; Meyer, A.

    2017-07-01

    We investigate the dynamical decoupling of the diffusion coefficients of the different components in a metallic alloy melt, using a combination of neutron diffraction, isotopic substitution, and electrostatic levitation in Zr-Ni melts. We show that excess Ni atoms can diffuse more freely in a background of saturated chemical interaction, causing their dynamics to become much faster and thus decoupled than anticipated from the interparticle interactions. Based on the mode-coupling theory of the glass transition, the averaged structure as given by the partial static structure factors is able to explain the observed dynamical behavior.

  13. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  14. Application of the isotope-dilution principle to the analysis of factors affecting the incorporation of [3H]uridine and [3H]cytidine into cultured lymphocytes. Evaluation of pools in serum and culture media

    PubMed Central

    Forsdyke, D. R.

    1971-01-01

    1. Rat lymph-node cells were incubated in serum and medium 199 with [5-3H]uridine or [5-3H]cytidine and acid-precipitable radioactivity was measured. Results were interpreted in terms of an isotope-dilution model. 2. Both serum and medium 199 contained pools that inhibited radioactive labelling in a competitive manner. The serum activity was diffusible and inhibited labelling with [3H]cytidine more than with [3H]uridine; in these respects the activity resembled cytidine (14μm). 3. The pools in serum and plasma were the same size; however, the rate of labelling was greater in plasma, owing to a diffusible factor. 4. Paradoxically, relatively simple media (Earle's salts and Eagle's minimum essential) appeared to have a larger pool than the more complex pyrimidine-containing medium 199; this suggests a contribution to the pool by cells in the simple media. 5. In the absence of pools the average cell was capable of incorporating 2000 radioactive nucleoside molecules/s. PMID:4947658

  15. Oxygen isotopic variations in the outer margins and Wark–Lovering rims of refractory inclusions

    DOE PAGES

    Simon, Justin I.; Matzel, Jennifer E. P.; Simon, Steven B.; ...

    2016-05-02

    Oxygen isotopic variations across the outer margins and Wark–Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16O-rich protosolar gas reservoir and were later exposed to both relatively 17,18O-rich and 16O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles asmore » diffusion gradients between inclusion interiors and edges establishes a range of permissible time–temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 10 3 to 3 × 10 5 years. Assuming CAIs originated with a relatively 16O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. In addition, evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16O-rich but subtly distinct among different CAIs. Melilite is often relatively 16O-poor, but rare relatively 16O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body.« less

  16. Oxygen isotopic variations in the outer margins and Wark-Lovering rims of refractory inclusions

    NASA Astrophysics Data System (ADS)

    Simon, Justin I.; Matzel, Jennifer E. P.; Simon, Steven B.; Hutcheon, Ian D.; Ross, D. Kent; Weber, Peter K.; Grossman, Lawrence

    2016-08-01

    Oxygen isotopic variations across the outer margins and Wark-Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16O-rich protosolar gas reservoir and were later exposed to both relatively 17,18O-rich and 16O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time-temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 103 to 3 × 105 years. Assuming CAIs originated with a relatively 16O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16O-rich but subtly distinct among different CAIs. Melilite is often relatively 16O-poor, but rare relatively 16O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body.

  17. Troctolite 76535 - A study in the preservation of early isotopic records

    NASA Technical Reports Server (NTRS)

    Caffee, M.; Hohenberg, C. M.; Hudson, B.

    1982-01-01

    The lunar rock considered in the present investigation is a coarse-grained troctolite granulite containing about 58(vol)% plagioclase, 37% olivine, 4% pyroxene, and less than 1% accessory phases with a texture which indicates formation as a cumulate at depths between 10 and 30 km followed by an extended period of slow cooling. A description is presented of noble gas studies of separated minerals from 76535. The quantity of fission xenon from the in situ decay of Pu-244 provides further evidence for different, mineral-specific, isotopic closure times. The presented data shows that 76535 loses its surface-correlated xenon component upon disaggregation. No other xenon component is lost. The presence of solar gases in 76535 would seem to argue in favor of the external acquisition of the parentless extinct isotope effects and consequently favor 'thermal diffusion' and 'adsorption' over local redistribution models.

  18. Isotopic analysis of groundwater and carbonate system in the Surdulica geothermal aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadzisehovic, M; Miljevic, N.; Sipka, V.

    1993-01-01

    The authors present here results of their investigation of the isotopic chemical composition of groundwater and carbonates in the Surdulica geothermal aquifer, Serbia. They considered the effects of carbonate dissolution and measured [sup 13]C, [sup 14]C, D, [sup 18]O, [sup 3]H, field pH, temperature, Na[sup +], CA [sup 2+], Mg[sup 2+], HCO[sub 3] and other aqueous species from 30 springs and boreholes. Geothermal waters are supersaturated with calcite. Carbon isotope compositions vary with carbonate mineral dissolution. The [delta]D and [delta][sup 18]O of groundwater samples fit the meteoric water line, and indicate that groundwater is recharged mainly from higher altitudes andmore » the cold season. Different groundwater residence times point out two mechanisms for their formation: fissure flow for young waters and standard diffusion processes for old ones.« less

  19. Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis.

    PubMed

    Dorer, Conrad; Vogt, Carsten; Neu, Thomas R; Stryhanyuk, Hryhoriy; Richnow, Hans-Hermann

    2016-04-01

    Ethylbenzene and toluene degradation under nitrate-, Mn(IV)-, or Fe(III)-reducing conditions was investigated by compound specific stable isotope analysis (CSIA) using three model cultures (Aromatoleum aromaticum EbN1, Georgfuchsia toluolica G5G6, and a Azoarcus-dominated mixed culture). Systematically lower isotope enrichment factors for carbon and hydrogen were observed for particulate Mn(IV). The increasing diffusion distances of toluene or ethylbenzene to the solid Mn(IV) most likely caused limited bioavailability and hence resulted in the observed masking effect. The data suggests further ethylbenzene hydroxylation by ethylbenzene dehydrogenase (EBDH) and toluene activation by benzylsuccinate synthase (BSS) as initial activation steps. Notably, significantly different values in dual isotope analysis were detected for toluene degradation by G. toluolica under the three studied redox conditions, suggesting variations in the enzymatic transition state depending on the available TEA. The results indicate that two-dimensional CSIA has significant potential to assess anaerobic biodegradation of ethylbenzene and toluene at contaminated sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, T.; Sugura, K.; Enokida, Y.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less

  1. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  2. Isotope and mixture effects on neoclassical transport in the pedestal

    NASA Astrophysics Data System (ADS)

    Pusztai, Istvan; Buller, Stefan; Omotani, John T.; Newton, Sarah L.

    2017-10-01

    The isotope mass scaling of the energy confinement time in tokamak plasmas differs from gyro-Bohm estimates, with implications for the extrapolation from current experiments to D-T reactors. Differences in mass scaling in L-mode and various H-mode regimes suggest that the isotope effect may originate from the pedestal. In the pedestal, sharp gradients render local diffusive estimates invalid, and global effects due to orbit-width scale profile variations have to be taken into account. We calculate neoclassical cross-field fluxes from a radially global drift-kinetic equation using the PERFECT code, to study isotope composition effects in density pedestals. The relative reduction to the peak heat flux due to global effects as a function of the density scale length is found to saturate at an isotope-dependent value that is larger for heavier ions. We also consider D-T and H-D mixtures with a focus on isotope separation. The ability to reproduce the mixture results via single-species simulations with artificial ``DT'' and ``HD'' species has been considered. These computationally convenient single ion simulations give a good estimate of the total ion heat flux in corresponding mixtures. Funding received from the International Career Grant of Vetenskapsradet (VR) (330-2014-6313) with Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, and Framework Grant for Strategic Energy Research of VR (2014-5392).

  3. Does Oxygen Isotopic Heterogeneity in Refractory Inclusions and Their Wark-Lovering Rims Record Nebular Repressing?

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2013-01-01

    Large systematic variations in O-isotopic compositions found within individual mineral layers of rims surrounding Ca-, Al-rich inclusions (CAIs) and at the margins of some CAIs imply formation from distinct environments [e.g., 1-3]. The O-isotope compositions of many CAIs preserve a record of the Solar nebula gas believed to initially be O-16-rich (delta O-17 less than or equal to -25%0) [4-5]. Data from a recent study of the compact Type A Allende CAI, A37, preserve a diffusion profile in the outermost 70 micrometers of the inclusion and show greater than 25%0 variations in delta O-17 within its 100 micrometer-thick Wark-Lovering rim (WL-rim) [3]. This and comparable heterogeneity measured in several other CAIs have been explained by isotopic mixing between the O-16-rich Solar reservoir and a second O-16-poor reservoir (probably nebular gas) with a planetary-like isotopic composition, e.g., [1,2,3,6]. However, there is mineralogical and isotopic evidence from the interiors of CAIs, in particular those from Allende, for parent body alteration. At issue is how to distinguish the record of secondary reprocessing in the nebula from that which occurred on the parent body. We have undertaken the task to study a range of CAI types with varying mineralogies, in part, to address this problem.

  4. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle.

    PubMed

    Griffiths, Howard; Cousins, Asaph B; Badger, Murray R; von Caemmerer, Susanne

    2007-02-01

    A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry.

  5. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas

    2007-07-01

    Chlorine is present as an impurity in the UO{sub 2} nuclear fuel. {sup 35}Cl is activated into {sup 36}Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragmentsmore » or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the {sup 36}Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, {sup 37}Cl has been implanted into sintered depleted UO{sub 2} pellets (mean grain size around 18 {mu}m). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of {sup 37}Cl implanted UO{sub 2} pellets (implantation fluence of 10{sup 13} ions.cm{sup -2}) show that it is mobile from temperatures as low as 1273 K (E{sub a}=4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E{sub a}=0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10{sup -14} cm{sup 2}.s{sup -1}). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by : L=(Dt)1/2, the diffusion distance after 3 years is L=17 {mu}m. It results that there is a great probability for the chlorine contained in the UO{sub 2} grains to have reached the grain boundaries after 3 years, in the core of the fuel rod as well as at its periphery. Moreover, diffusion and concentration of chlorine at grain boundaries has been evidenced using SIMS mapping. Our results indicate therefore, that, during reactor operation and after, the majority of {sup 36}Cl is likely to have moved to grain boundaries, rim and gap. This fraction might then significantly contribute to the rapid or instant release of chlorine. This could have important consequences for safety assessment. During reactor operation, chlorine ({sup 35}Cl), an impurity of the nuclear fuel, is activated into {sup 36}Cl, a long lived mobile isotope. Because of its long half life and its mobility, this isotope may contribute significantly to the instant release fraction under disposal conditions. Thermal annealing of Cl implanted UO{sub 2} sintered pellets show that it is mobile from temperatures as low as 1273 K (E{sub a} = 4.3 eV). Chlorine diffusion induced by irradiation with fission products preserves a thermally activated contribution. The radiation induced defects significantly enhance chlorine migration. (authors)« less

  6. CO Diffusion and Desorption Kinetics in CO2 Ices

    NASA Astrophysics Data System (ADS)

    Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.

    2018-01-01

    The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.

  7. From Dates to Rates: The Emergence of Integrated Geochronometry (Invited)

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.; Adams, B. A.; Bohon, W.; Cooper, F. J.; Tripathy-Lang, A.; Van Soest, M. C.; Watson, E. B.; Young, K. E.

    2013-12-01

    Many applications of isotope geochemistry to telling time have involved geochronology - the measurement of the crystallization age of a mineral - or thermochronology, the measurement of the time at which a mineral cooled through an estimated closure temperature. The resulting data typically provide one or two points along an evolving temperature-time (Tt) path. Unfortunately, many problems require a richer knowledge of longer portions of the Tt path and thus the integrated application of multiple chronometers to individual minerals or suites of minerals from a particular sample or outcrop. In this presentation, we review some of the most recent advances in geochronometry, the direct dating of rates of a wide range of geologic processes on timescales ranging from seconds (in the case of bolide impact on Earth and elsewhere in the Solar System) to hundreds of millions of years (in the case of very slowly cooled Precambrian terrains). For all chronometers except those based on the production of fission tracks, our capacity to extract precise and accurate Tt paths depends on a good understanding of the kinetics of diffusive loss of radiogenic daughter isotopes. Laboratory experiments have substantially improved our understanding of nominal kinetic parameters in recent years, but our increased use of new methods for their determination (e.g., Rutherford backscattering spectroscopy, nuclear reaction analysis, and laser depth profiling) have demonstrated complexities related to compositional variations and asymmetric diffusion. At the same time, a growing number of geologic applications of these chronometers illustrate the importance of deformation history and radiation damage in modifying effective diffusion parameters. Such factors have two important implications for geochronometry. First, they suggest that studies of multiple minerals employing multiple isotopic methods - integrated geochronometry - are likely to produce more robust constraints on Tt paths than those involving the application of a single geochronometer. Second, they suggest that characterization of the chemistry and structure of minerals prior to dating may become standard procedure in most laboratories. Some of the most valuable constraints on the cooling histories of individual crystals come from microanalytical techniques that illuminate natural diffusive loss profiles, either directly (e.g., laser and ion microprobe mapping) or indirectly (e.g., 40Ar/39Ar and 4He/3He incremental heating experimentation). For most materials and most cooling histories, direct microanalytical approaches yield less spatial resolution and thus a poorer resolution of the cooling history. On the other hand, the extraction of cooling histories based on data obtained through indirect techniques requires significant simplifying assumptions regarding the three-dimensional distribution of parent isotopes that are not always warranted. Studies that integrate such techniques, rare in the literature thus far, are ushering in a new era of quantitative geochronometry.

  8. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  9. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  10. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE PAGES

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    2017-01-13

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  11. Surface geothermal exploration in the Canary Islands by means of soil CO_{2} degassing surveys

    NASA Astrophysics Data System (ADS)

    García-Merino, Marta; Rodríguez, Fátima; Padrón, Eleazar; Melián, Gladys; Asensio-Ramos, María; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    With the exception of the Teide fumaroles, there is not any evidence of hydrothermal fluid discharges in the surficial environment of the Canary Islands, the only Spanish territory with potential high enthalpy geothermal resources. Here we show the results of several diffuse CO2 degassing surveys carried out at five mining licenses in Tenerife and Gran Canaria with the aim of sorting the possible geothermal potential of these five mining licenses. The primary objective of the study was to reduce the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The yardstick used to classify the different areas was the contribution of volcano-hydrothermal CO2 in the diffuse CO2 degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each mining license. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100%, respectively) and isotopic compositions (-24, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 0-19%. The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  12. Deuterium-rich Water in Meteorites

    NASA Astrophysics Data System (ADS)

    Deloule, E.; Robert, F.

    1995-09-01

    D/H ratios of 2 meteorites (Renazzo CR and Semarkona LL3), which are known to exhibit the largest departures from the terrestrial hydrogen isotopic ratios, have been determined with the CRPG Nancy ion-microprobe. Correlations between the D/H ratios and the chemical compositions (H2O, K, Si, C/H) of plausible hydrogen carriers were observed. From these correlations, it is possible to show that, contrary to previous interpretations, phyllosilicates are the carriers of the deuterium-rich hydrogen in Semarkona and Renazzo : 870 x10-6 D/H 670 x106 (+4600 dD 3300) and 320 x10-6 (dD 1050), respectively. Hydrogen is also present in the chondrules of these two deuterium-rich meteorites. Isotopic equilibrium between the deuterium depleted phases and the deuterium-rich phyllosilicates was never attained. This is illustrated at a micron scale by the D/H ratios obtained continuously during a 3 hours measurement on a same position (see figure below). It can be seen that water-rich mineral(s) having D/H up to 550 x10-6 (dD = +2500) are in contact with a mineral having D/H = 234 x10-6 (dD = +500). The thickness of the boundary where the diffusion of hydrogen took place is restricted to less than 0.2 mm. Such isotopic heterogeneity is quite spectacular if one remembers that the isotopic variations that we can see within these 0.2 mm are an order of magnitude larger than the total observed variations on Earth. The large differences in D/H ratios between matrix (up to 700 x 10-6, dD up to +3500) and chondrules (from 120 x10-6 (dD = -230) to 230 x10-6 (dD = +475)) show that hydrogen in chondrules cannot originate from the matrix by simple contamination or diffusion processes. The high D/H ratios measured in water bearing minerals could not have been produced thermally within a dense solar nebula. Chemical reactions (i.e. involving ions or radicals), taking place in interstellar space or in the outer regions of the nebula at 110-140K are presently the only conceivable mechanisms capable of yielding such isotopic enrichments. Hydrogen isotopic composition and water concentration versus depth in the matrix of Semarkona. The profile was obtained by sputtering the minerals with the primary beam of the ion-probe (0 stands for the surface mineral). Note the complete lack of isotopic homogenisation between the hydrogen bearing phases : the D/H ratio increases within 0.2 mm by more than 300x10-6; that is one order of magnitude larger than the total variations on Earth. Such a distribution demonstrates that no secondary processes altered the pristine isotopic ratios established at the time of mineral formation.

  13. Evidence of isotopic fractionation of natural uranium in cultured human cells

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  14. Evidence of isotopic fractionation of natural uranium in cultured human cells

    PubMed Central

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-01-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes. PMID:27872304

  15. Evidence of isotopic fractionation of natural uranium in cultured human cells.

    PubMed

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-06

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235 U isotope with regard to 238 U. Efforts were made to develop and then validate a procedure for highly accurate n( 238 U)/n( 235 U) determinations in microsamples of cells. We found that intracellular U is enriched in 235 U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO 2 2+ ) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  16. Hydrochemical and stable isotope evidence for the extent and nature of the effective Chalk aquifer of north Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Hiscock, K. M.; Dennis, P. F.; Saynor, P. R.; Thomas, M. O.

    1996-05-01

    In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ 18O and δ 2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l -1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50-60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ 18O less than -7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ 18O about -7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.

  17. Positron Lifetime Modulation by Electric Field Induced Positronium Formation on a Gold Surface

    DTIC Science & Technology

    2012-03-22

    Angular Momentum (3) ......................................................................... 11 Stopping Power (4...isotope from which it was born, diffused into the material before annihilation occurred. 6 The radioisotope used in this experiment is Na-22 which...that positrons may be useful in studying the internal structure of a wide variety of materials. The radioisotope positron source used in this

  18. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  19. Continual in situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2014-05-01

    Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.

  20. Ultrahigh thermal conductivity of isotopically enriched silicon

    NASA Astrophysics Data System (ADS)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  1. The flow mechanism in the Chalk based on radio-isotope analyses of groundwater in the London Basin

    USGS Publications Warehouse

    Downing, R.A.; Pearson, F.J.; Smith, D.B.

    1979-01-01

    14C analyses of groundwaters from the Chalk of the London Basin are re-interpreted and the age of the groundwater is revised. Radio-isotope analyses are used to examine the flow mechanism in the aquifer. The evidence supports the view that a network of micro-fissures and larger intergranular pores in the matrix provides a significant part of the water pumped from Chalk wells and the major fissures distribute the water to the wells. Most of the matrix is fine-grained and contains a very old water. This diffuses into the micro-fissures and larger pores and is carried to the wells by the major fissures. ?? 1979.

  2. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain.

    PubMed

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-06-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc 2 O 3 multilayers as a function of the thick-ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec-trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al 2 O 3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y 2 O 3 -multilayers with similar microstructure. Using the Nernst-Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter-face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  3. Laser depth profiling studies of helium diffusion in Durango fluorapatite

    NASA Astrophysics Data System (ADS)

    van Soest, Matthijs C.; Monteleone, Brian D.; Hodges, Kip V.; Boyce, Jeremy W.

    2011-05-01

    Ultraviolet lasers coupled with sensitive mass spectrometers provide a useful way to measure laboratory-induced noble gas diffusion profiles in minerals, thus enabling the calculation of diffusion parameters. We illustrate this laser ablation depth profiling (LADP) technique for a previously well-studied mineral-isotopic system: 4He in Durango fluorapatite. LADP studies were conducted on oriented, polished slabs from a single crystal that were heated under vacuum to a variety of temperatures between 300 and 450 °C for variable times. The resolved 4He profiles exhibited error-function loss as predicted by previous bulk 4He diffusion studies. All of the slabs, regardless of crystallographic orientation, yielded modeled diffusivities that are statistically co-linear on an Arrhenius diagram, suggesting no diffusional anisotropy of 4He in this material. The data indicate an activation energy of 142.2 ± 5.0 (2 σ) kJ/mol and diffusivity at infinite temperature - reported as ln( D0) - of -4.71 ± 0.94 (2 σ) m 2/s. These values imply a bulk closure temperature for 4He in Durango fluorapatite of 74 °C for a 50 μm radius grain, infinite cylinder geometry, and a cooling rate of 10 °C/Myr.

  4. Developing a new, passive diffusion sampling array to detect helium anomalies associated with volcanic unrest

    USGS Publications Warehouse

    Dame, Brittany E; Solomon, D Kip; Evans, William C.; Ingebritsen, Steven E.

    2015-01-01

    Helium (He) concentration and 3 He/ 4 He anomalies in soil gas and spring water are potentially powerful tools for investigating hydrothermal circulation associated with volca- nism and could perhaps serve as part of a hazards warning system. However, in operational practice, He and other gases are often sampled only after volcanic unrest is detected by other means. A new passive diffusion sampler suite, intended to be collected after the onset of unrest, has been developed and tested as a relatively low-cost method of determining He- isotope composition pre- and post-unrest. The samplers, each with a distinct equilibration time, passively record He concen- tration and isotope ratio in springs and soil gas. Once collected and analyzed, the He concentrations in the samplers are used to deconvolve the time history of the He concentration and the 3 He/ 4 He ratio at the collection site. The current suite consisting of three samplers is sufficient to deconvolve both the magnitude and the timing of a step change in in situ con- centration if the suite is collected within 100 h of the change. The effects of temperature and prolonged deployment on the suite ’ s capability of recording He anomalies have also been evaluated. The suite has captured a significant 3 He/ 4 He soil gas anomaly at Horseshoe Lake near Mammoth Lakes, California. The passive diffusion sampler suite appears to be an accurate and affordable alternative for determining He anomalies associated with volcanic unrest.

  5. Ballistic and Diffusive Thermal Conductivity of Graphene

    NASA Astrophysics Data System (ADS)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  6. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  7. A double medium model for diffusion in fluid-bearing rock

    NASA Astrophysics Data System (ADS)

    Wang, H. F.

    1993-09-01

    The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.

  8. Diffusion of helium, hydrogen and deuterium in diamond: Experiment, theory and geochemical applications

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Meunier, V.; Kharche, N.

    2018-07-01

    Diffusivities of helium, deuterium and hydrogen have been characterized in diamond. Polished CVD diamond was implanted with either 3He, 2H, or 1H. Implanted samples were sealed under vacuum in silica glass capsules, and annealed in 1-atm furnaces. 3He, 2H and 1H distributions were measured with Nuclear Reaction Analysis. We obtain these Arrhenius relations: DHe = 4.00 × 10-15 exp(-138 ± 14 kJ mol-1/RT) m2 s-1. D2H = 1.02 × 10-4 exp(-262 ± 17 kJ mol-1/RT) m2 s-1. D1H = 2.60 × 10-4 exp(-267 ± 15 kJ mol-1/RT) m2 s-1. Diffusivities of 1H and 2H agree within experimental uncertainties, indicating little diffusive mass fractionation of hydrogen in diamond. To complement the experimental measurements, we performed calculations using a first-principles quantum mechanical description of diffusion in diamond within the Density Functional Theory (DFT). Differences in 1H and 2H diffusivities from calculations are found to be ∼4.5%, reflected in differences in the pre-exponential factor. This small difference in diffusivities, despite the large relative mass difference between these isotopes, is due to the fact that the atomistic process involved in the transition along the diffusion pathway is dictated by local changes to the diamond structures rather than to vibrations involving 1H/2H. This finding is consistent with the experimental results given experimental uncertainties. In contrast, calculations for helium diffusion in diamond indicate a difference of 15% between diffusivities of 3He and 4He. Calculations of diffusion distances for hydrogen using our data yield a distance of 50 μm in diamond in 300,000 years at 500 °C and ∼30 min at 1400 °C. Diffusion distances for He in diamond are shorter than for H at all temperatures above ∼350 °C, but differences increase dramatically with temperature because of the higher activation energy for H diffusion. For example, a 50 μm diffusion distance for He would be attained in ∼40 Myr at 500 °C and 400 yr at 1400 °C. For comparison, a 50 μm diffusion distance for N in diamond would require nearly 1 billion years at 1400 °C. The experimental data indicate that diamonds equilibrate with ambient H and He in the mantle on timescales brief relative to most geological processes and events. However, He diffusion in diamond is slower than in any other mineral measured to date, including other kimberlite-hosted minerals. Under some circumstances, diamond may provide information about mantle He not recoverable from other minerals. One possibility is diamonds entrained in kimberlites. Since the ascent of kimberlite from the mantle to near-surface is very rapid, entrained diamonds may retain most or all of the H and He acquired in mantle environments. Calculations using reasonable ascent rates and T-t paths indicate that He diffusive loss from kimberlite-hosted diamonds is negligible for grains of 1.0-0.2 mm radius, with fractional losses <0.15% for all ascent rates considered. If the host kimberlite magma is effectively quenched in the near-surface (or is erupted), diamonds should contain a faithful record of [He] and He isotopes from the mantle source region. Preservation of H in kimberlite-hosted diamonds is less clear-cut, with model outcomes depending critically upon rates of ascent and cooling.

  9. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    DOE PAGES

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...

    2015-08-31

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less

  10. Groundwater residence time and paleohydrology in the Baltic Artesian basin:isotope geochemical data

    NASA Astrophysics Data System (ADS)

    Vaikmae, R.; Gerber, C.; Purtschert, R.; Aeschbach, W.; Raidla, V., Sr.; Lu, Z. T.; Zappala, J. C.; Mueller, P.; Mokrik, R., Sr.; Jiang, W.

    2016-12-01

    In this study of the Cambrian aquifer system(CAS) in the Baltic Artesian Basin(BAS) (, chemistry, stable isotopes, noble gas measurements, and dating tracers were combined for study the flow and recharge dynamics of the system over the last million years We find that the variability in chemical composition, stable isotopes and noble gas content in the basin is predominately controlled by mixing of three distinct water masses: Holocene and Pleistocene interglacial water, glacial meltwater, and brine. 81Kr is a nearly ideal dating tracer for such old systems. The radiogenic 4He and 40Ar provide additional information, but are more difficult to interpret in terms of groundwater age. In this study, we did not consider diffusive loss of 81Kr to stagnant water, which might result in an overestimation of groundwater ages ). However, the relatively high porosity and large thickness of the CAS, together with the presumed high salinity and low Kr content of the stagnant water all diminish the effect of diffusive 81Kr loss on age estimates. Our results confirm that under normal conditions, underground production of 81Kr is not affecting the dating results. 81Kr, 4He, and 40Ar all indicate a residence time of the brine of more than 1-3 Ma. Some uncertainty about the brine formation process remains, but the combination of chemical and stable isotope composition of the brine, noble gas concentrations and dating results favors evaporative enrichment of seawater. Tracer ages of interglacial water and glacial meltwater are on the order of several hundred thousand years, which means that several reversals of the flow direction in the CAS as a result of the paleoclimatology of the area have to be taken into account. Under such conditions, small vertical leakage, through fracture zones for example, might considerably impact the net flow pattern. Due to the cyclic flow direction reversals, the aquifer was probably in a transient state over most of the last 1 Ma period.

  11. Raman bandshape analysis of the symmetric bending vibration in liquid chloroform

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Schwartz, M.

    In order to determine whether accurate rotational diffusion coefficients in liquids may be determined from the bandshapes of isotopically broadened vibrational peaks, we have investigated the isotropic and anisotropic Raman spectra of the ν 3( A1), CCl 3 symmetric bending, vibration in CHCl 3 as a function of temperature in the liquid phase. The spectral lineshapes were fitted by a model containing four Lorentzian/Gaussian summation bands with relative peak intensities equal to the relative abundances of the four isotopic combinations and frequency displacements constrained to values measured in the matrix infrared spectrum. The calculated room temperature perpendicular diffusion coefficient, D⊥ (25°C) = 8.310 10 s -1, was within the range of values reported from Raman measurements on the ν 1, symmetric carbon-hydrogen stretching, vibration, but was somewhat lower than published results from NMR relaxation time measurements, T1( 2D), on CDCl 3, and from dielectric relaxation. The activation energy, Ea( D⊥), determined from the ν 3 bandshape measurements was 30% higher than the average value from the NMR and dielectric studies. The deviation is believed to result from the sensitivity of this quantity to the fractional Lorentzian character of the fitting functions.

  12. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    PubMed

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  13. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    PubMed

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The carbon isotopic composition of ecosystem breath

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.

  15. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.

    PubMed

    Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai

    2008-03-01

    The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to grow in the future.

  16. Chromium isotope heterogeneity in the mantle

    NASA Astrophysics Data System (ADS)

    Xia, Jiuxing; Qin, Liping; Shen, Ji; Carlson, Richard W.; Ionov, Dmitri A.; Mock, Timothy D.

    2017-04-01

    To better constrain the Cr isotopic composition of the silicate Earth and to investigate potential Cr isotopic fractionation during high temperature geological processes, we analyzed the Cr isotopic composition of different types of mantle xenoliths from diverse geologic settings: fertile to refractory off-craton spinel and garnet peridotites, pyroxenite veins, metasomatised spinel lherzolites and associated basalts from central Mongolia, spinel lherzolites and harzburgites from North China, as well as cratonic spinel and garnet peridotites from Siberia and southern Africa. The δ53CrNIST 979 values of the peridotites range from - 0.51 ± 0.04 ‰ (2SD) to + 0.75 ± 0.05 ‰ (2SD). The results show a slight negative correlation between δ53Cr and Al2O3 and CaO contents for most mantle peridotites, which may imply Cr isotopic fractionation during partial melting of mantle peridotites. However, highly variable Cr isotopic compositions measured in Mongolian peridotites cannot be caused by partial melting alone. Instead, the wide range in Cr isotopic composition of these samples most likely reflects kinetic fractionation during melt percolation. Chemical diffusion during melt percolation resulted in light Cr isotopes preferably entering into the melt. Two spinel websterite veins from Mongolia have extremely light δ53Cr values of - 1.36 ± 0.04 ‰ and - 0.77 ± 0.06 ‰, respectively, which are the most negative Cr isotopic compositions yet reported for mantle-derived rocks. These two websterite veins may represent crystallization products from the isotopically light melt that may also metasomatize some peridotites in the area. The δ53Cr values of highly altered garnet peridotites from southern Africa vary from - 0.35 ± 0.04 ‰ (2SD) to + 0.12 ± 0.04 ‰ (2SD) and increase with increasing LOI (Loss on Ignition), reflecting a shift of δ53Cr to more positive values by secondary alteration. The Cr isotopic composition of the pristine, fertile upper mantle is estimated as δ53Cr = - 0.14 ± 0.12 ‰, after corrections for the effects of partial melting and metasomatism. This value is in line with that estimated for the BSE (- 0.12 ± 0.10 ‰) previously.

  17. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons

    NASA Astrophysics Data System (ADS)

    An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang

    2017-03-01

    We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.

  18. Thermal-field propagation in an exocontact zone of a magmatic body and its impact on radiogenic isotope concentrations in minerals.

    PubMed

    Brandt, I S; Rasskazov, S V; Brandt, S B; Ivanov, A V

    2002-03-01

    In application of radioactive isotope systems (K-Ar, Rb-Sr etc.) during the last decades, experience was gained not only on their geochronometrical uses, but also on estimations of some important parameters of geological processes, especially temperatures and durations of superimposed thermal events. In this paper, the formation of an exocontact thermal field of a magmatic intrusion is considered as a spreading of a thermal source delta-function. Appropriate solutions of the heat-transfer equation are deduced and correlated with diffusion parameters of the radiogenic argon, coupling radioactive, thermal and kinetic parameters in an exocontant zone of a magmatic body. These solutions were used for quantitative reinterpretations of data taken from Hart's classical paper [The petrology and isotopic mineral age relations of a contact zone in the Front Range, Colorado. J. Geol., 1964, v. 72, pp. 493-525]. Theoretic and measured radiogenic argon and strontium concentrations within exocontact aureoles are found to be in good concordance.

  19. Modeling stable isotope transport in metamorphic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.

    2007-12-01

    Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope exchange is given by instantaneous mass balance written for the isotope during reaction; b) equilibrium precipitation of products, but slow exchange kinetics for reactants. These observations require that the reactive term in the stable isotope reactive transport equation is re-written to include the net transfer reactions, which in turn implies the solution of the transport equation for the elements driving the reaction.

  20. Do Melt Inclusions Answer Big Questions?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Sobolev, A. V.

    2009-12-01

    In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of their experiments, geologically relevant diffusion rates are notoriously difficult to determine and may depend on factors not incorporated in the laboratory experiments. More recent diffusion experiments by Remmert et al. (2008) and by Cherniak (2009) have yielded diffusion coefficients three order of magnitude lower than those measured by Spandler. The heavy REE represent a possible exception to the above conclusions. We present data from olivine melt inclusions from Iceland basalts, which show unusual HREE patterns possibly caused by diffusional exchange with the host lava. Sobolev, A.V. & Shimizu, N. (1993) Nature 363, 151-154. Danyushevskii, L.V. et al. (2004) J. Petrol. 45, 2531-2553. Spandler, G., O’Neill, H.St.C., Kamenetsky, V.S. (2007) Nature, 447, 303-306. Remmert, P. Dohmen, R., Chakraborty, S. (2008) EOS Trans. AGU abs. MR331-1844. Cherniak, D.J. (2009) Am. Mineral. Ms. subm.

  1. Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the seawater-brine interface

    NASA Astrophysics Data System (ADS)

    Shah, S. R.; Joye, S. B.; Brandes, J. A.; McNichol, A. P.

    2013-05-01

    Orca Basin, an intraslope basin on the Texas-Louisiana continental slope, hosts a hypersaline, anoxic brine in its lowermost 200 m in which limited microbial activity has been reported. This brine contains a large reservoir of reduced and aged carbon, and appears to be stable at decadal time scales: concentrations and isotopic composition of dissolved inorganic (DIC) and organic carbon (DOC) are similar to measurements made in the 1970s. Both DIC and DOC are more "aged" within the brine pool than in overlying water, and the isotopic contrast between brine carbon and seawater carbon is much greater for DIC than DOC. While the stable carbon isotopic composition of brine DIC points towards a combination of methane and organic carbon remineralization as its source, radiocarbon and box model results point to the brine interface as the major source region for DIC, allowing for only limited oxidation of methane diffusing upwards from sediments. This conclusion is consistent with previous studies that identify the seawater-brine interface as the focus of microbial activity associated with Orca Basin brine. Isotopic similarities between DIC and DOC suggest a different relationship between these two carbon reservoirs than is typically observed in deep ocean basins. Radiocarbon values implicate the seawater-brine interface region as the likely source region for DOC to the brine as well as DIC.

  2. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  3. Kuiper Prize Lecture - Escape of atmospheres, ancient and modern

    NASA Astrophysics Data System (ADS)

    Hunten, D. M.

    1990-05-01

    A development history is presented for theories concerning planetary atmosphere gas-escape phenomena, which although firmly grounded in the kinetics of gases achieved truly productive results only after spacecraft remote sensing data for both the earth atmosphere and the planets became widely available. The most significant initial advances, encompassing diffusion-limited flow, nonthermal escape mechanisms, bound nonthermal coronas, and mass fractionation during early blowoff, followed from sounding rocket studies of the earth upper atmosphere, Mariner 5 results on hydrogen near Venus, and the nitrogen isotopic composition discovered by Viking in Mars. Attention has more recently been given to the xenon isotopic patterns in various atmospheres, as well as to the puzzling behavior of the Io atmosphere and plasma torus.

  4. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our continuous-flow water sample employs active control for all pertinent parameters, significantly increasing its stability and usability. We will present data from controlled laboratory experiments demonstrating sample-to-sample precision and long-term stability. We will also show experimental data that highlights the instrumental sample-to-sample memory, which we have decreased significantly from previous implementations of this technology. Additionally, we will present field results from the Sacramento River, CA. Dansgaard, W. (1964) 'Stable isotopes in precipitation', Tellus, 16(4), p. 436-468. Munksgaard, N.C., Wurster, C.M., Bass, A., Zagorskis, I., and Bird, M.I. (2012) 'First continuous shipboard d18O and dD measurements in seawater by diffusion sampling--cavity ring-down spectrometry', Environmental Chemistry Letters, 10, p.301-307. Munksgaard, N.C., Wurster, C.M., and Bird, M.I., (2011), 'Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters', Rapid Communications in Mass Spectrometry, 25, p. 3706-3712.

  5. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.

    2017-01-01

    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the highest U excess (≥5.8%) also has the most 18O isotope depletion (average δ18Oplag = −4.0‰). The granitoids are a probable assimilant and source of U excess in volcanic rocks from Mt. Mazama. Two granitoids have Th excess and low δ18O values, interpreted to record leaching of U during hydrothermal alteration. A U-Th isochron based on the U excess array of the granitoids and volcanic rocks indicates that hydrothermal circulation initiated ∼40–75 kyrs before the climactic eruption, potentially marking the initiation of a persistent upper-crustal magma chamber. The U-Th ages are consistent with the maximum timescales inferred for hydrothermal alteration based on oxygen isotope zoning in quartz.

  6. Isotopic Measurements in CAIs with the Nanosims: Implications to the understanding of the Formation process of Ca, Al-Rich Inclusions

    NASA Technical Reports Server (NTRS)

    Ito, M.; Messenger, S.; Walker, Robert M.

    2007-01-01

    Ca, Al-rich Inclusions (CAIs) preserve evidence of thermal events that they experienced during their formation in the early solar system. Most CAIs from CV and CO chondrites are characterized by large variations in O-isotopic compositions of primary minerals, with spinel, hibonite, and pyroxene being more O-16-rich than melilite and anorthite, with delta 17, O-18 = approx. -40%o (DELTA O-17 = delta O-17 - 0.52 x delta O-18 = approx. - 20%o ). These anomalous compositions cannot be accounted for by standard mass dependent fractionation and diffusive process of those minerals. It requires the presence of an anomalous oxygen reservoir of nucleosynthetic origin or mass independent fractionations before the formation of CAIs in the early solar system. The CAMECA NanoSIMS is a new generation ion microprobe that offers high sensitivity isotopic measurements with sub 100 nm spatial resolution. The NanoSIMS has significantly improved abilities in the study of presolar grains in various kind of meteorites and the decay products of extinct nuclides in ancient solar system matter. This instrument promises significant improvements over other conventional ion probes in the precision isotopic characterization of sub-micron scales. We report the results of our first O isotopic measurements of various CAI minerals from EK1-6-3 and 7R19-1(a) utilizing the JSC NanoSIMS 50L ion microprobe. We evaluate the measurement conditions, the instrumental mass fractionation factor (IMF) for O isotopic measurement and the accuracy of the isotopic ratio through the analysis of a San Carlos olivine standard and CAI sample of 7R19-1(a).

  7. Stable Isotopes as Indicators of Groundwater Recharge Mechanisms in Arid and Semi-arid Australia

    NASA Astrophysics Data System (ADS)

    Harrington, G. A.; Herczeg, A. L.

    2001-05-01

    The isotopic compositions of soil water and groundwaters in arid and semi-arid zones are always different from the mean composition of rainfall. Although evaporative processes always remove the lighter isotopes (1H and 16O) to the vapour phase, arid zone groundwaters are invariably depleted in the heavy isotopes (2H and 18O) relative to mean present day rainfall. We compare two sites, one in semi-arid South Australia and the other in arid Central Australia that have a similar mean annual rainfall (250 to 300 mm/a), very high potential evapotranspiration (2500 and 3500 mm/a respectively) but very different rainfall patterns (winter dominated versus summer monsoonal). We aim to evaluate whether inferences from groundwater \\delta2H and \\delta18O reveal information about palaeorecharge, or recharge mechanisms or a combination of both. Recharge to the unconfined limestone aquifer in the Mallee area of South Australia occurs annually via widespread (diffuse) infiltration of winter dominant rainfall. This process is reflected in soil and groundwater isotopic compositions that plot relatively close to both the Local Meteoric Water Line and the volume-weighted mean composition of winter rainfall, and have a deuterium excess (\\delta2H-8.\\delta18O) of between +2 and +8 for the freshest samples. Groundwater recharge to the arid Ti-Tree Basin occurs predominantly by inputs of partially-evaporated surface water from ephemeral rivers and flood-plains following rare, high-intensity storms that are derived from monsoonal activity to the north of Australia. These extreme events result in groundwater and soil water stable isotope compositions being significantly depleted in the heavy isotopes relative to the mean composition of rainfall and a deuterium excess of between minus 8 and +3 in the freshest groundwaters.

  8. An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite

    NASA Astrophysics Data System (ADS)

    Hermoso, M.; Minoletti, F.; Aloisi, G.; Bonifacie, M.; McClelland, H. L. O.; Labourdette, N.; Renforth, P.; Chaduteau, C.; Rickaby, R. E. M.

    2016-09-01

    Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals produced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the "vital effect", which overprints the oceanic temperatures recorded in coccolith calcite. Applying the passive diffusion model of carbon acquisition by the marine phytoplankton widely used in biogeochemical and palaeoceanographic studies, our results suggest that the oxygen isotope offsets from inorganic calcite in fast dividing species Emiliania huxleyi and Gephyrocapsa oceanica originates from the legacy of assimilated 18O-rich CO2 that induces transient isotopic disequilibrium to the internal dissolved inorganic carbon (DIC) pool. The extent to which this intracellular isotopic disequilibrium is recorded in coccolith calcite (1.5 to +3‰ over a 10 to 25 °C temperature range) is set by the degree of isotopic re-equilibration between CO2 and water molecules before intracellular mineralisation. We show that the extent of re-equilibration is, in turn, set by temperature through both physiological (dynamics of the utilisation of the DIC pool) and thermodynamic (completeness of the re-equilibration of the relative 18O-rich CO2 influx) processes. At the highest temperature, less ambient aqueous CO2 is present for algal growth, and the consequence of carbon limitation is exacerbation of the oxygen isotope vital effect, obliterating the temperature signal. This culture dataset further demonstrates that the vital effect is variable for a given species/morphotype, and depends on the intricate relationship between the environment and the physiology of biomineralising algae.

  9. Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Rudnick, Roberta L.; McDonough, William F.; Bose, Maitrayee; Goreva, Yulia

    2017-09-01

    Micron- to submicron-scale observations of Li distribution and Li isotope composition profiles can be used to infer the mechanisms of Li diffusion in natural zircon. Extreme fractionation (20-30‰) within each single crystal studied here confirms that Li diffusion commonly occurs in zircon. Sharp Li concentration gradients frequently seen in zircons suggest that the effective diffusivity of Li is significantly slower than experimentally determined (Cherniak and Watson, 2010; Trail et al., 2016), otherwise the crystallization/metamorphic heating of these zircons would have to be unrealistically fast (years to tens of years). Charge coupling with REE and Y has been suggested as a mechanism that may considerably reduce Li diffusivity in zircon (Ushikubo et al., 2008; Bouvier et al., 2012). We show that Li diffused in the direction of decreasing Li/Y ratio and increasing Li concentration (uphill diffusion) in one of the zircons, demonstrating charge coupling with REE and Y. Quantitative modeling reveals that Li may diffuse in at least two modes in natural zircons: one being slow and possibly coupled with REE+Y, and the other one being fast and not coupled with REE+Y. The partitioning of Li between these two modes during its diffusion may depend on the pre-diffusion substitution mechanism of REE and Y in the zircon lattice. Based on our results, sharp Li concentration gradients are not indicative of limited diffusion, and can be preserved at temperatures >700 °C on geologic timescales. Finally, large δ7 Li variations observed in the Hadean Jack Hills zircons may record kinetic fractionation, rather than a record of ancient intense weathering in the granite source materials.

  10. The Analytical Limits of Modeling Short Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Kent, A. J.

    2016-12-01

    Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.

  11. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    Intracellular water is an important pool of oxygen and hydrogen atoms for biosynthesis. Intracellular water is usually assumed to be isotopically identical to extracellular water, but an unexpected experimental result caused us to question this assumption. Heme O isolated from Escherichia coli cells grown in 95% H218O contained only a fraction of the theoretical value of labeled oxygen at a position where the O atom was known to be derived from water. In fact, fewer than half of the oxygen atoms were labeled. In an effort to explain this surprising result, we developed a method to determine the isotope ratios of intracellular water in cultured cells. The results of our experiments showed that during active growth, up to 70% of the oxygen atoms and 50% of the hydrogen atoms in the intracellular water of E. coli are generated during metabolism and can be isotopically distinct from extracellular water. The fraction of isotopically distinct atoms was substantially less in stationary phase and chilled cells, consistent with our hypothesis that less metabolically-generated water would be present in cells with lower metabolic activity. Our results were consistent with and explained the result of the heme O labeling experiment. Only about 40% of the O atoms on the heme O molecule were labeled because, presumably, only about 40% of the water inside the cells was 18O water that had diffused in from the culture medium. The rest of the intracellular water contained 16O atoms derived from either nutrients or atmospheric oxygen. To test whether we could also detect metabolically-derived hydrogen atoms in cellular constituents, we isolated fatty acids from log-phase and stationary phase E. coli and determined the H isotope ratios of individual fatty acids. The results of these experiments showed that environmental water contributed more H atoms to fatty acids isolated in stationary phase than to the same fatty acids isolated from log-phase cells. Stable isotope analyses of biomass of Bacillus subtilis, a Gram-positive bacterium, showed the same pattern. Rapidly-dividing cells derived fewer of their O and H atoms from environmental water than did more slowly-growing cells and spores. To test whether a eukaryotic cell, surrounded by only a membrane, would also maintain an isotopic gradient and a detectable percentage of metabolic water, we applied our approach to cultured rat fibroblasts. Preliminary results showed that approximately 50% of the O and H atoms in exponentially growing cells were derived from metabolic activity. In quiescent cells, metabolic activity generated approximately 25% of the O and H atoms in intracellular water. Thus far, the data we have obtained is consistent with the following model: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis.

  12. Effect of Non-laminar Regime on the Efficiency of a Thermal Diffusion Column. Report No. 26; INFLUENCIA DEL REGIMEN NO LAMINAR SOBRE LA EFICIENCIA DE UNA COLUMNA DE DIFUSION TERMICA. Informe No. 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espanol, C.E.

    1960-01-01

    The effect of the appearance of localized perturbations on the separation factor and operation time of a thermal diffusion column is studied. The separation factor of a column was obtained experimentally and the enrichment was recorded continuously as a function of time by measurement of the thermal conductivity of the gaseous mixture at the foot and head of the column. A mixture of Ar and CO/sub 2/ was used as it behaves as an isotopic mixture. The results showed the linear decrease of the separation factor with the number of stages and the operation time practically does not vary. Themore » introduction of localized turbulences in a thermal diffusion column reduces the column yield. (J.S.R.)« less

  13. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface

    PubMed Central

    Springer, Andreas; Hagen, Volker; Cherepanov, Dmitry A.; Antonenko, Yuri N.; Pohl, Peter

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. Commonly, it is treated as a succession of jumps between membrane-anchored proton-binding sites. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites by fluorescence measurements. The kinetics of the arrival is probed as a function of distance for different membranes and for different water isotopes. We found that proton diffusion along the membrane is fast even in the absence of ionizable groups in the membrane, and it decreases strongly in D2O as compared to H2O. We conclude that the fast proton transport along the membrane is dominated by diffusion via interfacial water, and not via ionizable lipid moieties. PMID:21859952

  14. Thermal equilibration of iron meteorite and pallasite parent bodies recorded at the mineral scale by Fe and Ni isotope systematics

    NASA Astrophysics Data System (ADS)

    Chernonozhkin, Stepan M.; Weyrauch, Mona; Goderis, Steven; Oeser, Martin; McKibbin, Seann J.; Horn, Ingo; Hecht, Lutz; Weyer, Stefan; Claeys, Philippe; Vanhaecke, Frank

    2017-11-01

    In this work, a femtosecond laser ablation (LA) system coupled to a multi-collector inductively coupled plasma-mass spectrometer (fs-LA-MC-ICP-MS) was used to obtain laterally resolved (30-80 μm), high-precision combined Ni and Fe stable isotope ratio data for a variety of mineral phases (olivine, kamacite, taenite, schreibersite and troilite) composing main group pallasites (PMG) and iron meteorites. The stable isotopic signatures of Fe and Ni at the mineral scale, in combination with the factors governing the kinetic or equilibrium isotope fractionation processes, are used to interpret the thermal histories of small differentiated asteroidal bodies. As Fe isotopic zoning is only barely resolvable within the internal precision level of the isotope ratio measurements within a single olivine in Esquel PMG, the isotopically lighter olivine core relative to the rim (Δ56/54Ferim-core = 0.059‰) suggests that the olivines were largely thermally equilibrated. The observed hint of an isotopic and concentration gradient for Fe of crudely similar width is interpreted here to reflect Fe loss from olivine in the process of partial reduction of the olivine rim. The ranges of the determined Fe and Ni isotopic signatures of troilite (δ56/54Fe of -0.66 to -0.09‰) and schreibersite (δ56/54Fe of -0.48 to -0.09‰, and δ62/60Ni of -0.64 to +0.29‰) may result from thermal equilibration. Schreibersite and troilite likely remained in equilibrium with their enclosing metal to temperatures significantly below their point of crystallization. The Ni isotopic signatures of bulk metal and schreibersite correlate negatively, with isotopically lighter Ni in the metal of PMGs and isotopically heavier Ni in the metal of the iron meteorites analyzed. As such, the light Ni isotopic signatures previously observed in PMG metal relative to chondrites may not result from heterogeneity in the Solar Nebula, but rather reflect fractionation in the metal-schreibersite system. Comparison between the isotope ratio profiles of Fe and Ni determined across kamacite-taenite interfaces (Δ56/54Fekam-tae = -0.51 to -0.69‰ and Δ62/60Nikam-tae = +1.59 to +2.50‰) and theoretical taenite sub-solidus diffusive isotopic zoning broadly constrain the cooling rates of Esquel, CMS 04071 PMGs and Udei Station IAB to between ∼25 and 500 °C/Myr.

  15. The Sun is a plasma diffuser that sorts atoms by mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manuel, O., E-mail: omatumr@yahoo.com; Kamat, S. A.; Mozina, M.

    2006-11-15

    The Sun is a plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova (SN) and is composed mostly of elements made near the SN core (Fe, O, Ni, Si, and S), like the rocky planets and ordinary meteorites. Neutron emission from the central neutron star triggers a series of reactions that generate solar luminosity, solar neutrinos, solar mass fractionation, and an outpouring of hydrogen in the solar wind. Mass fractionation seems to have operated in the parent starmore » and likely occurs in other stars as well.« less

  16. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain

    PubMed Central

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-01-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec­trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain. PMID:27877580

  17. Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navickas, Edvinas; Chen, Yan; Lu, Qiyang

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less

  18. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Asahara, Ryohei

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures withmore » the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.« less

  19. Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films

    PubMed Central

    2017-01-01

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249

  20. Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films

    DOE PAGES

    Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...

    2017-10-05

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less

  1. Layered intrusion formation by top down thermal migration zone refining (Invited)

    NASA Astrophysics Data System (ADS)

    Lundstrom, C.

    2009-12-01

    The formation of layered mafic intrusions by crystallization from cooling magmas represents the textbook example of igneous differentiation, often attributed to fractional crystallization through gravitational settling. Yet in detail, such interpretations have significant problems such that it remains unclear how these important features form. Put in the Earth perspective that no km scale blob of >50% melt has ever been imaged geophysically and that geochronological studies repeatedly indicate age inconsistencies with “big tank” magma chambers, it may be questioned if km scale magma chambers have ever existed. I will present the case for forming layered intrusions by a top down process whereby arriving basaltic magma reaches a permeability barrier, begins to underplate and forms the intrusion incrementally by sill injection with the body growing downward at ~1 mm/yr rate or less. A temperature gradient zone occurs in the overlying previously emplaced sills, leading to chemical components migrating by diffusion. As long as the rate of diffusion can keep up with rate of sill addition, the body will differentiate along a path similar to a liquid line of descent. In this talk, I will integrate data from 3 areas: 1) laboratory experiments examining the behavior of partially molten silicates in a temperature gradient (thermal migration); 2) numerical modeling of the moving temperature gradient zone process using IRIDIUM (Boudreau, 2003); 3) measurements of Fe isotope ratios and geochronology from the Sonju Lake Intrusion in the Duluth Complex. This model provides the ability to form km scale intrusions by a seismically invisible means, can explain million year offsets in chronology, and has implications for reef development and PGE concentration. Most importantly, this model of top down layered intrusion formation, following a similar recent proposal for granitoid formation (Lundstrom, 2009), represents a testable hypothesis: because temperature gradient driven diffusion leads to the prediction of heavy isotope ratios near the top of the intrusion and light ratios near the bottom of the intrusion, analyses of Fe, Mg and Si isotopes provide an important new tool for examining igneous differentiation.

  2. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  3. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    NASA Astrophysics Data System (ADS)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon incision.

  4. Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.

    2012-12-01

    Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation, consistent with evaporative enrichment in food (plants) due to plant transpiration. However, grasshopper body water from any given location is further enriched in 18O and D relative to food. Isotopic values decrease slightly with increasing elevation, but some specific grasshopper species appear more sensitive to elevation. Overall, evaporative enrichment of 18O and D in this relatively dry environment appears the strongest factors influencing grasshopper compositions.

  5. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    PubMed

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  6. Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry

    NASA Astrophysics Data System (ADS)

    Holycross, M.; Watson, E. B.

    2017-12-01

    In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact how Li-in-plagioclase geospeedometry is used to time igneous processes. Giletti, B.J., and T.M. Shanahan (1997) Alkali diffusion in plagioclase feldspar, Chem. Geol., 139, 3-20

  7. Uptake of 2, 4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, G.A.

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “nonmetabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carriermediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranylion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  8. Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, Gary

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carrier-mediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranyl ion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  9. Comment on "The shape and composition of interstellar silicate grains"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS)more » amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007)). Recent measurements show that the elemental compositions of GEMS with non-solar isotopic compositions are 'remarkably similar' to those with solar isotopic compositions (Keller & Messenger, 2007). About 80% of all isotopically anomalous IS silicates identified to date are GEMS with detectable and variable O isotopic memories of a circumstellar ancestry (Messenger, 2007). Bradley (1999) proposed that GEMS are IS silicates from 'a presolar interstellar molecular cloud, presumably the local molecular cloud from which the solar system formed'. Although based on incorrect data (detailed below), Min et al. propose that most GEMS actually formed in the presolar molecular cloud, and they further propose that none of them are IS silicates. IS silicate sources include molecular clouds, circumstellar outflows, supernovae, and even recently discovered black hole winds (Molster & Waters; 2003; Jones, 2005; Zhukovska et al. 2007; Markwick-Kemper et al. 2007). The average IS 10 {micro}m extinction feature observed along lines of sight towards the galactic center (modeled by Min et al.) presumably provides a good average for IS silicates, but it cannot distinguish amorphous silicates originating in the presolar molecular cloud from amorphous silicates originating in other interstellar molecular clouds or indeed other sources of amorphous IS silicates. Even if most GEMS accreted in the presolar molecular cloud, then they must also be representatives of some portion of the IS amorphous silicate population. Laboratory heating experiments indicate it is highly unlikely that GEMS were modified in a protoplanetary accretion disk environment (Brownlee et al. 2005). In summary, Min et al. conclude from their modeling of the shape and composition of IS silicates that the properties of GEMS are generally inconsistent with those of IS silicates. First, it has been rigorously confirmed via ion microprobe measurements that some GEMS are indeed presolar IS silicates. Second, regardless of whether GEMS, or components of GEMS, originated in presolar circumstellar outflows or a presolar molecular cloud they are all IS silicates. Third, key GEMS data reported in Min et al. are inaccurate. Had complete isotopic, chemical, mineralogical and infrared (IR) spectral properties of GEMS been considered, Min et al. may have concluded that the properties of GEMS, although not an exact match, are generally consistent with those of amorphous silicates in the ISM.« less

  10. Thermal diffusion of the lunar magma ocean and the formation of the lunar crust

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wang, S.

    2010-12-01

    The magma ocean hypothesis is consistent with several lines of evidence including planet formation, core-mantle differentiation and geochemical observations, and it is proved as an inevitable stage in the early evolution of planets. The magma ocean is assumed to be homogeneous in previous models during solidification or crystallization[1]. Based on the recent advance and our new data in experimental igneous petrology[2], we question this assumption and propose that an gabbrotic melt, from which the anorthositic lunar crust crystallized, can be produced by thermal diffusion, rather than by magma fractionation. This novel model can provide explanations for the absence of the advection in lunar magma ocean[3] and the old age of the anorthositic lunar crust[4-5]. 1. Solomatov, V., Magma Oceans and Primordial Mantle Differentiation, in Treatise on Geophysics, S. Gerald, Editor. 2007, Elsevier: Amsterdam. p. 91-119. 2. Huang, F., et al., Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009. 73(3): p. 729-749. 3. Turcotte, D.L. and L.H. Kellogg, Implications of isotope data for the origin of the Moon, in Origin of the Moon, W.K. Hartmann, R.J. Phillips, and G.J. Taylor, Editors. 1986, Lunar and Planet. Inst.: Houston, TX. p. 311-329. 4. Alibert, C., M.D. Norman, and M.T. McCulloch, An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica Et Cosmochimica Acta, 1994. 58(13): p. 2921-2926. 5. Touboul, M., et al., Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009. 199(2): p. 245-249.

  11. Diffuse migratory connectivity in two species of shrubland birds: evidence from stable isotopes

    USGS Publications Warehouse

    Knick, Steven T.; Leu, Matthias; Rotenberry, John T.; Hanser, Steven E.; Fesenmyer, Kurt

    2014-01-01

    Connecting seasonal ranges of migratory birds is important for understanding the annual template of stressors that influence their populations. Brewer’s sparrows (Spizella breweri) and sagebrush sparrows (Artemisiospiza nevadensis) share similar sagebrush (Artemisia spp.) habitats for breeding but have different population trends that might be related to winter location. To link breeding and winter ranges, we created isoscapes of deuterium [stable isotope ratio (δ) of deuterium; δ2H] and nitrogen (δ15N) for each species modeled from isotope ratios measured in feathers of 264 Brewer’s and 82 sagebrush sparrows and environmental characteristics at capture locations across their breeding range. We then used feather δ2Hf and δ15Nf measured in 1,029 Brewer’s and 527 sagebrush sparrows captured on winter locations in southwestern United States to assign probable breeding ranges. Intraspecies population mixing from across the breeding range was strong for both Brewer’s and sagebrush sparrows on winter ranges. Brewer’s sparrows but not sagebrush sparrows were linked to more northerly breeding locations in the eastern part of their winter range. Winter location was not related to breeding population trends estimated from US Geological Survey Breeding Bird Survey routes for either Brewer’s or sagebrush sparrows. Primary drivers of population dynamics are likely independent for each species; Brewer’s and sagebrush sparrows captured at the same winter location did not share predicted breeding locations or population trends. The diffuse migratory connectivity displayed by Brewer’s and sagebrush sparrows measured at the coarse spatial resolution in our analysis also suggests that local environments rather than broad regional characteristics are primary drivers of annual population trends.

  12. Hydrogen isotope fractionation in methane plasma

    NASA Astrophysics Data System (ADS)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  13. Changes in14c activity over time during vacuum distillation of carbon from rock pore water

    USGS Publications Warehouse

    Davidson, G.R.; Yang, I.C.

    1999-01-01

    The radiocarbon activity of carbon collected by vacuum distillation from a single partially saturated tuff began to decline after approximately 60% of the water and carbon had been extracted. Disproportionate changes in 14C activity and ??13C during distillation rule out simple isotopic fractionation as a causative explanation. Additional phenomena such as matrix diffusion and ion exclusion in micropores may play a role in altering the isotopic value of extracted carbon, but neither can fully account for the observed changes. The most plausible explanation is that distillation recovers carbon from an adsorbed phase that is depleted in 14C relative to DIC in the bulk pore water. ?? 1999 by the Arizona Board of Regents on behalf of the University of Arizona.

  14. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    NASA Astrophysics Data System (ADS)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements available). Additionally, the long-term decrease of the δ15N series after 1956 is linked to the low isotopic values of NOx emitted by car exhausts, as expressed by the provincial number of cars which reflect the amount of transport-related N deposition at the provincial scale. The 208Pb/206Pb and 204Pb/206Pb ratios as a function of 206Pb/207Pb of the 1880-1919 period reflect a mixture of natural lead from the mineral soil horizon and mainly anthropogenic lead from north-eastern American coal combustion. The lower Pb ratios of the 1920-1989 period correlate well with the introduction of leaded additives to gasoline characterized by lower ratios relative to coal combustion. Inferring the lead sources of the 1990-2008 period is not as straightforward because lead can potentially derive from three main sources: coal combustion, burnt recycled material and natural lead present in soils. Our results show the great potential of tree-ring stable isotopes to record pollution events in the context of peri-urban diffuse pollution, and to prolong the pollution history in regions where direct measurements of pollutants only covers a relatively short period.

  15. Self-diffusion of Si and O in diopside-anorthite melt at high pressures

    NASA Astrophysics Data System (ADS)

    Tinker, David; Lesher, Charles E.; Hutcheon, Ian D.

    2003-01-01

    Self-diffusion coefficients for Si and O in Di 58An 42 liquid were measured from 1 to 4 GPa and temperatures from 1510 to 1764°C. Glass starting powders enriched in 18O and 28Si were mated to isotopically normal glass powders to form simple diffusion couples, and self-diffusion experiments were conducted in the piston cylinder device (1 and 2 GPa) and in the multianvil apparatus (3.5 and 4 GPa). Profiles of 18O/ 16O and 29,30Si/ 28Si were measured using secondary ion mass spectrometry. Self-diffusion coefficients for O (D(O)) are slightly greater than self-diffusion coefficients for Si (D(Si)) and are often the same within error. For example, D(O) = 4.20 ± 0.42 × 10 -11 m 2/s and D(Si) = 3.65 ± 0.37 × 10 -11 m 2/s at 1 GPa and 1662°C. Activation energies for self-diffusion are 215 ± 13 kJ/mol for O and 227 ± 13 kJ/mol for Si. Activation volumes for self-diffusion are -2.1 ± 0.4 cm 3/mol and -2.3 ± 0.4 cm 3/mol for O and Si, respectively. The similar self-diffusion coefficients for Si and O, similar activation energies, and small, negative activation volumes are consistent with Si and O transport by a cooperative diffusion mechanism, most likely involving the formation and disassociation of a high-coordinated intermediate species. The small absolute magnitudes of the activation volumes imply that Di 58An 42 liquid is close to a transition from negative to positive activation volume, and Adam-Gibbs theory suggests that this transition is linked to the existence of a critical fraction (˜0.6) of bridging oxygen.

  16. Method of producing encapsulated thermonuclear fuel particles

    DOEpatents

    Smith, Warren H.; Taylor, William L.; Turner, Harold L.

    1976-01-01

    A method of producing a fuel particle is disclosed, which comprises forming hollow spheroids which have a mass number greater than 50, immersing said spheroids while under the presence of pressure and heat in a gaseous atmosphere containing an isotope, such as deuterium and tritium, so as to diffuse the gas into the spheroid and thereafter cooling said spheroids up to about 77.degree. Kelvin to about 4.degree. Kelvin.

  17. The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa

    NASA Astrophysics Data System (ADS)

    Stott, Lowell D.

    2002-02-01

    The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better recorder of diet than is the insoluble shell organic carbon. Because the systematic fractionation of carbon isotopes within the snail is temperature dependent, the δ 13C of the shell could provide an independent technique for estimating paleotemperature changes.

  18. Core formation conditons in planetesimals: constraints from isotope fractionation experiments.

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Quitté, G.; Toplis, M. J.; Poitrasson, F.

    2016-12-01

    Planetesimals are small objects (10 to 1000 km) early accreted in the history of the solar system which show a wide variety of thermal history due to the initial amount of radiogenic elements [1] (26Al and 60Fe), from a simple metamorphism to a complete metal-silicate differentiation. Moreover, isotope compositions of siderophile element, e.g. Fe, Ni, and W in meteorites spread on a range that can be attributed to the process of core-mantle segregation. We therefore performed isotope fractionation experiments of nickel and tungsten between metal and silicate in a gas-mixing (CO-CO2) vertical furnace, at different temperatures (from 1270°C to 1600°C), oxygen fugacity (from IW+2 to IW-6) and annealing times (from 20 minutes to 48 hours). The starting silicate is an anorthite-diopside eutectic composition glass, synthesize from the respective oxides. The starting metal is either a nickel or tungsten wire according to the element to study. After each experiment, metal and silicate are mechanically separated and digested in acids. Nickel and Tungsten separation have been made according to the methods developed by [2] and [3] and isotopes measurements have been made using a high resolution MC-ICP-MS (Neptune; Thermofisher©). Results show evidence for a strong kinetic isotope fractionation during the first annealing times with a faster diffusion of lightest isotopes than heaviest. Similar mechanism has been already highlighted for iron isotope fractionation between silicate and metal [4]. Chemical and isotopic equilibrium is also reached in our experiments but the time required dependent on the conditions of temperature and oxygen fugacity. Therefore, at equilibrium, metal-silicate isotope fractionation has also been quantified as well its temperature dependence. These experimental data can be used in order to bring new constraints on the metal silicate segregation in the planetesimals early accreted. [1] Lee T., et al., GRL, 3, 41-44 (1976) [2] Quitté G., and Oberli F., JAAS, 21, 1249-1255 (2006) [3] Breton T., and Quitté G., JAAS, 29, 2284-2293 (2014) [4] Roskosz M., et al., EPSL, 248, 851-867 (2006)

  19. Analytical model for release calculations in solid thin-foils ISOL targets

    NASA Astrophysics Data System (ADS)

    Egoriti, L.; Boeckx, S.; Ghys, L.; Houngbo, D.; Popescu, L.

    2016-10-01

    A detailed analytical model has been developed to simulate isotope-release curves from thin-foils ISOL targets. It involves the separate modeling of diffusion and effusion inside the target. The former has been modeled using both first and second Fick's law. The latter, effusion from the surface of the target material to the end of the ionizer, was simulated with the Monte Carlo code MolFlow+. The calculated delay-time distribution for this process was then fitted using a double-exponential function. The release curve obtained from the convolution of diffusion and effusion shows good agreement with experimental data from two different target geometries used at ISOLDE. Moreover, the experimental yields are well reproduced when combining the release fraction with calculated in-target production.

  20. A 220Rn source for the calibration of low-background experiments

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Brown, A.; Brown, E.; Cervantes, M.; Macmullin, S.; Masson, D.; Schreiner, J.; Simgen, H.

    2016-04-01

    We characterize two 40 kBq sources of electrodeposited 228Th for use in low-background experiments. The sources efficiently emanate 220Rn, a noble gas that can diffuse in a detector volume. 220Rn and its daughter isotopes produce α-, β-, and γ-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of < 0.008 atoms/min/kBq (90% CL) for 228Th and (1.53 ± 0.04) atoms/min/kBq for 224Ra. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.

  1. Evidence of a kinetic isotope effect in nanoaluminum and water combustion.

    PubMed

    Tappan, Bryce C; Dirmyer, Matthew R; Risha, Grant A

    2014-08-25

    The normally innocuous combination of aluminum and water becomes violently reactive on the nanoscale. Research in the field of the combustion of nanoparticulate aluminum has important implications in the design of molecular aluminum clusters, hydrogen storage systems, as well as energetic formulations which could use extraterrestrial water for space propulsion. However, the mechanism that controls the reaction speed is poorly understood. While current models for micron-sized aluminum water combustion reactions place heavy emphasis on diffusional limitations, as reaction scales become commensurate with diffusion lengths (approaching the nanoscale) reaction rates have long been suspected to depend on chemical kinetics, but have never been definitely measured. The combustion analysis of nanoparticulate aluminum with H2O or D2O is presented. Different reaction rates resulting from the kinetic isotope effect are observed. The current study presents the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauth, D. C.; Taylor, C. J.; Federman, S. R.

    Measurements of the lithium isotopic ratio in the diffuse interstellar medium from high-resolution spectra of the Li i λ 6708 resonance doublet have now been reported for a number of lines of sight. The majority of the results for the {sup 7}Li/{sup 6}Li ratio are similar to the solar system ratio of 12.2, but the line of sight toward o Per, a star near the star-forming region IC 348, gave a ratio of about two, the expected value for gas exposed to spallation and fusion reactions driven by cosmic rays. To examine the association of IC 348 with cosmic raysmore » more closely, we measured the lithium isotopic ratio for lines of sight to three stars within a few parsecs of o Per. One star, HD 281159, has {sup 7}Li/{sup 6}Li ≃ 2 confirming production by cosmic rays. The lithium isotopic ratio toward o Per and HD 281159 together with published analyses of the chemistry of interstellar diatomic molecules suggest that the superbubble surrounding IC 348 is the source of the cosmic rays.« less

  3. Isotopic differentiation and sublattice melting in dense dynamic ice

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2013-12-01

    The isotopes of hydrogen provide a unique exploratory laboratory for examining the role of zero point energy (ZPE) in determining the structural and dynamic features of the crystalline ices of water. There are two critical regions of high pressure: (i) near 1 TPa and (ii) near the predicted onset of metallization at around 5 TPa. At the lower pressure of the two, we see the expected small isotopic effects on phase transitions. Near metallization, however, the effects are much greater, leading to a situation where tritiated ice could skip almost entirely a phase available to the other isotopomers. For the higher pressure ices, we investigate in some detail the enthalpics of a dynamic proton sublattice, with the corresponding structures being quite ionic. The resistance toward diffusion of single protons in the ground state structures of high-pressure H2O is found to be large, in fact to the point that the ZPE reservoir cannot overcome these. However, the barriers toward a three-dimensional coherent or concerted motion of protons can be much lower, and the ensuing consequences are explored.

  4. Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria

    NASA Technical Reports Server (NTRS)

    Happell, James D.; Chanton, Jeffrey P.; Whiting, Gary J.; Showers, William J.

    1993-01-01

    The stable carbon isotopic composition of CH4 is used to study the processes that affect it during transport through plants from sediment to the atmosphere. The enhancement of CH4 flux from Cladium and Eleocharis over the flux from open water or clipped sites indicated that these plants served as gas conduits between the sediments and the atmosphere. Lowering of the water table below the sediment surface caused an Everglades sawgrass marsh to shift from emission of CH4 to consumption of atmospheric CH4. Cladium transported gases passively mainly via molecular diffusion and/or effusion instead of actively via bulk flow. Stable isotropic data gave no evidence that CH4 oxidation was occurring in the rhizosphere of Cladium. Both CH4 stable carbon isotope and flux data indicated a lack of CH4 oxidation at the sediment-water interface in Everglades marl soils and its presence in peat soils where 40 to 92 percent of the flux across the sediment-water interface was oxidized.

  5. Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, Western Alaska

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Kelley, Cheryl A.; Chanton, Jeffrey P.; Showers, William J.

    1992-01-01

    The results are reported of a study of the carbon and hydrogen isotopic composition of methane from tundra environments of the Yukon-Kuskokwin Delta of western Alaska. The delta C-13 value of diffusive methane emissions from wet meadow tundra of the Delta is -65.82 +/- 2.21 per mil (n=18). Detritus-rich sediments of tundra lakes are loaded with methane-rich gas bubbles during the warm season. Spatial trend is the major gas concentration and isotopic values of methane in these gas bubbles appear to reflect processes associated with production rate and mechanisms; high methane concentrations, lightest delta C-13 values, the heaviest delta D value occur in detritus-rich sediments isolated from emergent vegetation. Heavier delta C-13 and lighter delta D values in methane from heavily vegetated lake margins suggest a shift toward a larger role for acetate fermentation in association with aquatic plants and plant detritus. Bubble ebullition is estimated to account for up to 17 percent of total Delta methane emissions.

  6. 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.

    PubMed

    Didenko, Tatiana; Boelens, Rolf; Rüdiger, Stefan G D

    2011-01-01

    The translational diffusion coefficient is a sensitive parameter to probe conformational changes in proteins and protein-protein interactions. Pulsed-field gradient NMR spectroscopy allows one to measure the translational diffusion with high accuracy. Two-dimensional (2D) heteronuclear NMR spectroscopy combined with diffusion-ordered spectroscopy (DOSY) provides improved resolution and therefore selectivity when compared with a conventional 1D readout. Here, we show that a combination of selective isotope labelling, 2D ¹H-¹³C methyl-TROSY (transverse relaxation-optimised spectroscopy) and DOSY allows one to study diffusion properties of large protein complexes. We propose that a 3D DOSY-heteronuclear multiple quantum coherence (HMQC) pulse sequence, that uses the TROSY effect of the HMQC sequence for ¹³C methyl-labelled proteins, is highly suitable for measuring the diffusion coefficient of large proteins. We used the 20 kDa co-chaperone p23 as model system to test this 3D DOSY-TROSY technique under various conditions. We determined the diffusion coefficient of p23 in viscous solutions, mimicking large complexes of up to 200 kDa. We found the experimental data to be in excellent agreement with theoretical predictions. To demonstrate the use for complex formation, we applied this technique to record the formation of a complex of p23 with the molecular chaperone Hsp90, which is around 200 kDa. We anticipate that 3D DOSY-TROSY will be a useful tool to study conformational changes in large protein complexes.

  7. The stable isotope composition of halite and sulfate of hyperarid soils and its relation to aqueous transport

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo

    2012-12-01

    Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.

  8. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  9. Methane evasion and oxidation in the Big Cypress National Preserve—a low relief carbonate wetland

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Bianchi, T. S.; Cohen, M. J.; Martin, J. B.; Quintero, C.; Brown, A.; Osborne, T.; Sawakuchi, H. O.

    2016-12-01

    The Big Cypress National Preserve is a low relief carbonate wetland characterized by unique basin patterning known as "cypress domes." Here we examine the concentration and stable isotopic composition of methane in pore waters, surface waters, and bubbles from the sediment across horizontal gradients in four domes during three sampling campaigns. The proportion of methane oxidized in surface waters was estimated based on isotopic differences between surface water and pore waters/bubbles. Rates of methane evasion from surface waters, soils, and cypress knees to the atmosphere were also measured. Surface water CH4 concentrations ranged from 170 to 4,533 ppm with the highest levels generally being observed during wet periods. Pore water CH4 concentrations ranged from 748 to 75,213 ppm. The concentration of methane in bubbles ranged from 6.5 to 71%. The stable isotopic composition of CH4 ranged from -69.2 to -43.8‰ for all samples and was generally more enriched in surface waters compared to bubbles and porewaters, particularly in the two domes that were persistently inundated throughout the year. Based on these isotopic values, the average percentage of surface water CH4 that was oxidized was 37 ± 16% (maximum of 67%) and 19 ± 4% (maximum of 47%) in the two domes that are persistently inundated versus the two domes that are not inundated during the dry season, respectively. The average rate of CH4 evasion was 3.6 ± 1.6 mmol m-2 d-1 via diffusion, 7.6 ± 4.7 mmol m-2 d-1 via ebullition, 10.9 ± 11.4 mmol m-2 d-1­ from soil surfaces, and 34.3 ± 27.4 mmol m-2 d-1 from cypress knees. These results indicate that CH4 is produced in great quantities in inundated sediments, particularly in the center of the cypress domes. Diffusive fluxes from surface waters are suppressed by microbial oxidation in the water column, whereas ebullition from sediments and evasion through cypress knees, and likely other vascular vegetation, are the primary pathways for CH4 outgassing.

  10. Solar wind noble gases and nitrogen in metal from lunar soil 68501

    NASA Technical Reports Server (NTRS)

    Becker, Richard H.; Pepin, Robert O.

    1994-01-01

    Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar greater than Kr greater than Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum delta N-15 value equal to or greater than +150% and a more probable value equal to or greater than +200%.

  11. Development of a model using the MATLAB System identification toolbox to estimate (222)Rn equilibrium factor from CR-39 based passive measurements.

    PubMed

    Abo-Elmagd, M; Sadek, A M

    2014-12-01

    Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  13. An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records

    NASA Astrophysics Data System (ADS)

    Treble, Pauline C.; Bradley, Chris; Wood, Anne; Baker, Andy; Jex, Catherine N.; Fairchild, Ian J.; Gagan, Michael K.; Cowley, Joan; Azcurra, Cecilia

    2013-03-01

    We investigated the distinctive shallow sub-surface hydrology of the southwest Western Australia (SWWA) dune calcarenite using observed rainfall and rainfall δ18O; soil moisture, cave drip rate and dripwater δ18O over a six-year period: August 2005-March 2012. A lumped parameter hydrological model is developed to describe water fluxes and drip δ18O. Comparison of observed data and model output allow us to assess the critical non-climatic karst hydrological processes that modify the precipitation δ18O signal and discuss the implications for speleothem paleoclimate records from this cave and those with a similar karst setting. Our findings include evidence of multiple reservoirs, characterised by distinct δ18O values and recharge responses ('low' and 'high' flow sites). Dripwaters exhibit δ18O variations in wet versus dry years at low-flow sites receiving diffuse seepage from the epikarst with an attenuated isotopic composition that approximates mean rainfall. Recharge from high-magnitude rain events is stored in a secondary reservoir which is associated with high-flow dripwater that is 1‰ lower than our monitored low-flow sites (δ18O). One drip site is characterised by mixed-flow behaviour and exhibits a non-linear threshold response after the cessation of drainage from a secondary reservoir following a record dry year (2006). Additionally, our results yield a better understanding of the vadose zone hydrology and dripwater characteristics in Quaternary age dune limestones. We show that flow to our monitored sites is dominated by diffuse flow with inferred transit times of less than one year. Diffuse flow appears to follow vertical preferential paths through the limestone reflecting differences in permeability and deep recharge into the host rock.

  14. Investigations into the climate of the South Pole

    NASA Astrophysics Data System (ADS)

    Town, Michael S.

    Four investigations into the climate of the South Pole are presented. The general subjects of polar cloud cover, the surface energy balance in a stable boundary layer, subsurface energy transfer in snow, and modification of water stable isotopes in snow after deposition are investigated based on the historical data set from the South Pole. Clouds over the South Pole. A new, accurate cloud fraction time series is developed based on downwelling infrared radiation measurements taken at the South Pole. The results are compared to cloud fraction estimates from visual observations and satellite retrievals of cloud fraction. Visual observers are found to underestimate monthly mean cloud fraction by as much as 20% during the winter, and satellite retrievals of cloud fraction are not accurate for operational or climatic purposes. We find associations of monthly mean cloud fraction with other meteorological variables at the South Pole for use in testing models of polar weather and climate. Surface energy balance. A re-examination of the surface energy balance at the South Pole is motivated by large discrepancies in the literature. We are not able to find closure in the new surface energy balance, likely due to weaknesses in the turbulent heat flux parameterizations in extremely stable boundary layers. These results will be useful for constraining our understanding and parameterization of stable boundary layers. Subsurface energy transfer. A finite-volume model of the snow is used to simulate nine years of near-surface snow temperatures, heating rates, and vapor pressures at the South Pole. We generate statistics characterizing heat and vapor transfer in the snow on submonthly to interannual time scales. The variability of near-surface snow temperatures on submonthly time scales is large, and has potential implications for revising the interpretation of paleoclimate records of water stable isotopes in polar snow. Modification of water stable isotopes after deposition. The evolution of water stable isotopes in near-surface polar snow is simulated using a Rayleigh fractionation model including the processes of pore-space diffusion, forced ventilation, and intra-ice-grain diffusion. We find isotopic enrichment of winter snow during subsequent summers as enriched water vapor is forced into the snow and deposits as frost. This process depends on snow and atmospheric temperatures, surface wind speed, accumulation rate, and surface morphology. We further find that differential enrichment between the present day and the Last Glacial Maximum (LGM) may exaggerate the greenlandic glacial-interglacial temperature difference derived from water stable isotopes. In Antarctica, present-day post-depositional modification is likely equal to that of the LGM due to the compensating factors of lower temperatures and lower accumulation rate during the LGM.

  15. High resolution and high precision on line isotopic analysis of Holocene and glacial ice performed in the field

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Johnsen, S. J.; Blunier, T.; Bigler, M.; Stowasser, C.; Schüpbach, S.; Leuenberger, D.

    2010-12-01

    Ice core records as obtained from polar ice caps provide a wealth of paleoclimatic information. One of the main features of ice cores is their potential for high temporal resolution. The isotopic signature of the ice, expressed through the relative abundances of the two heavy isotopologues H218O and HD16O, is a widely used proxy for the reconstruction of past temperature and accumulation. One step further the combined information obtained from these two isotopologues, commonly referred to as the deuterium excess, can be utilized to infer additional information about the source of the precipitated moisture. Until very recently isotopic analysis of polar ice was performed with isotope Ratio Mass Spectrometry (IRMS) in a discrete fashion resulting in a high workload related to the preparation of samples. Most important though the available temporal resolution of the ice core was in many cases not fully exploited. In order to overcome these limitations we have developed a system that interfaces a commercially available IR laser cavity ring-down spectrometer tailored for water isotope analysis to a stream of liquid water as extracted from a continuously melted ice rod. The system offers the possibility for simultaneous δ18O and δD analysis with a sample requirement of approximately 0.1 ml/min. The system has been deployed in the field during the NEEM ice core drilling project on 2009 and 2010. In this study we present actual on line measurements of Holocene and glacial ice. We also discuss how parameters as the melt rate, acquisition rate and integration time affect the obtained precision and resolution and we describe data analysis techniques that can improve these last two parameters. By applying spectral methods we are able to quantify the smoothing effects imposed by diffusion of the sample in the sample transfer lines and the optical cavity of the instrument. We demonstrate that with an acquisition rate of 0.2 Hz we are able to obtain a precision of 0.5‰ and 0.15‰ for δD and δ18O respectively. This is comparable to the performance of traditional IRMS systems for δD but slightly less precise for δ18O. With this acquisition rate the system’s 3db bandwidth is 0.006 Hz. With a melt rate equal to 3 cm/min, the latter translates to signals with wavelengths of 8.3 cm. We will comment on the quality of the acquired ice core data and their potential use for dating, paleotemperature reconstruction, isotopic firn diffusion and deuterium excess studies.

  16. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    NASA Astrophysics Data System (ADS)

    Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.

    2018-04-01

    Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter-mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter-mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine - δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine-spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine-spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult-to-apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet-bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks, the clearly resolvable inter-mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited.

  17. Exsolution lamellae as fast diffusion pathways in rutile: implications for U-Pb thermochronology and Zr thermometry

    NASA Astrophysics Data System (ADS)

    Smye, A.; Seman, S.; Roberts, N. M. W.; Condon, D. J.; Davis, B.

    2017-12-01

    Geophysical processes impart characteristic thermal signatures to the lithosphere. Near-continuous thermal histories can be obtained from inversion of intracrystalline U-Pb age profiles in rutile and apatite provided that it can be shown that profile formed in response to Fickian-type diffusion. Here, we present the results of a combined LA-ICPMS and ID-TIMS U-Pb study on rutile grains from two garnet-bearing granulite xenoliths from a kimberlite in the Archean Slave province. Interpreted using numerical models, we show that the rutile U-Pb isotope systematics are consistent with slow-cooling following crystallization at 1.2 Ga, contemporaneous with the Mackenzie dike swarm. However, inversion of rutile U-Pb age gradients is complicated by the ubiquitous presence of ilmenite exsolution lamellae. We show that these lamellae act as fast diffusion pathways for Pb and High Field Strength Elements, including Zr. This has important implications for the use of rutile as a U-Pb themochronometer and as a single-phase thermometer.

  18. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ

    NASA Astrophysics Data System (ADS)

    Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.

    2018-06-01

    Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.

  19. Computational design of high efficiency release targets for use at ISOL facilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.; Middleton, J. W.

    1999-06-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  20. High-efficiency-release targets for use at ISOL facilities: computational design

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.

    1999-12-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.

  1. Evapotranspiration flux partitioning using an Iso-SPAC model in a temperate grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, P.

    2014-12-01

    To partition evapotranspiration (ET) into soil evaporation and vegetation transpiration (T), a new numerical Iso-SPAC (coupled heat, water with isotopic tracer in Soil-Plant-Atmosphere-Continuum) model was developed and applied to a temperate-grassland ecosystem in central Japan. Several models of varying complexity have been tested with the aim of obtaining the close to true value for the isotope composition of leaf water and transpiration flux. The agreement between the model predictions and observations demonstrates that the Iso-SPAC model with a steady-state assumption for transpiration flux can reproduce seasonal variations of all the surface energy balance components,leaf and ground surface temperature as well as isotope data (canopy foliage and ET flux). This good performance was confirmed not only at diurnal timescale but also at seasonal timescale. Thus, although the non-steady-state behavior of isotope budget in a leaf and isotopic diffusion between leaf and stem or root is exactly important, the steady-state assumption is practically acceptable for seasonal timescale as a first order approximation. Sensitivity analysis both in physical flux part and isotope part suggested that T/ET is relatively insensitive to uncertainties/errors in assigned model parameters and measured input variables, which illustrated the partitioning validity. Estimated transpiration fractions using isotope composition in ET flux by Iso-SPAC model and Keeling plot are generally in good agreement, further proving validity of the both approaches. However, Keeling plot approach tended to overestimate the fraction during an early stage of glowing season and a period just after clear cutting. This overestimation is probably due to insufficient fetch and influence of transpiration from upwind forest. Consequently, Iso-SPAC model is more reliable than Keeling plot approach in most cases.The T/ET increased with grass growth, and the sharp reduction caused by clear cutting was well reflected. The transpiration fraction ranges from 0.02 to 0.99 during growing seasons, and the mean value was 0.75 with a standard deviation of 0.24.

  2. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer.

    PubMed

    Spence, Michael J; Bottrell, Simon H; Thornton, Steven F; Richnow, Hans H; Spence, Keith H

    2005-09-01

    Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.

  3. Development and deployment of a passive sampling system in groundwater to characterize the critical zone through isotope tracing

    NASA Astrophysics Data System (ADS)

    Gal, Frédérick; Négrel, Philippe; Chagué, Bryan

    2017-04-01

    The Critical Zone (CZ) is the evolving boundary layer where rock, soil, water, air, and living organisms interact, zone controlling the transfer and storage of water and chemical elements. For investigating the CZ, we have developed an integrative sampling system to concentrate the chemical elements in groundwater (CRITEX project). Aims are to measure concentrations and isotopic ratios in groundwater through integrative sampling. In the frame of the groundwater analysis, particularly those located in the critical zone (0-100 m depth), this system makes it possible to create a water flow in a support of passive samplers using Diffusive Gradient in Thin type (DGT) and thus to pre-concentrate the chemical species on a chelating resin by diffusion through a membrane and over a given period in order to facilitate subsequent laboratory measurements. Because DGTs are generally used in surface waters with a high flow rate, the current objective is to create a sufficient flow of water in the sampler to optimize the trapping of elements. Different options and geometries have been modelled by simulation of the flow (agitation of water supplied by a motor and a propeller, pumping ...). The economic model of the device is based on an assembly of commercially available equipment, the novation is based on the support, fully designed in house (patent pending). The device aims to recreate sufficient water flow to avoid the creation of a too large Diffusion Boundary Layer (DBL) on the DGT surface and then to mimic the uptake conditions that prevail in surface waters. The simulations made it possible to optimize the position of the DGT and the velocity of the fluid in order to obtain the maximum flow at its surface and avoid the creation of the DBL. Conditions equivalent to those of a circulation of weakly agitated surface water are thus recreated. The first tests were carried out at lab, in a column simulating a piezometer, including pump, DGT holder and flow meter. Initial functional tests were carried out with tap water to observe the flow of water in the device, to determine the technical characteristics of the system (current, voltage, flow...) and to perform blank measurements to ensure that the device brings no contamination. We then carried out 6 days of immersion of the system on a piezometer of the BRGM site. In parallel, daily sampling was performed using conventional pumping method. Finally, we carried out tests on drillings in the Coët Dan experimental basin (Naizin, Morbihan, France). We established a screening of chemical elements on which isotopic measurements can be done by comparing the accumulated mass in the DGT with respect to the concentration of the elements in water. This suggests that the isotopic determination is possible for U, Sr, Nd and Ni with the exception of Cu and Zn at the moment. Possible contamination of DGTs themselves and/or during field investigations should be further studied in order to rule if Cu or Zn isotope analyses can be foreseen in the future.

  4. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-ray Studies

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.

    2004-01-01

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma-rays and dimsses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near fume. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  5. Subsurface characterization of methane production and oxidation from a New Hampshire wetland.

    PubMed

    Shoemaker, J K; Schrag, D P

    2010-06-01

    We measured the carbon isotopic composition of pore water carbon dioxide from Sallie's Fen, a New Hampshire poor fen. The isotope profiles are used in combination with a one-dimensional diffusion-reaction model to calculate rates of methane production, oxidation and transport over an annual cycle. We show how the rates vary with depth over a seasonal cycle, with methane produced deeper during the winter months and at progressively shallower depths into the summer season. The rates of methane production, constrained by the measured delta(13)C(dic) profiles, cannot explain high methane emission during the summer. We suggest that much of the methane produced during this time comes either from the unsaturated peat, or from the top 1-3 cm of saturated peat where episodic exchange with the atmosphere makes it invisible to our method.

  6. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  7. Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Wilmarth, B.; Restivo, M.

    2017-03-13

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less

  8. Modeling Deuterium Release from Plasma Implanted Surfaces

    NASA Astrophysics Data System (ADS)

    Grossman, A. A.; Doerner, R.; Hirooka, Y.; Luckhardt, S. C.; Sze, F. C.

    1997-11-01

    When energetic ions or atoms of hydrogen isotopes interact with a solid surface, they may either be reflected or they may be implanted, a slowing down process within the subsurface layer of the energetic particles to thermal velocities. Subsequent interactions of the thermalized particles are those of diffusion and trapping within the material and the possibility of re-emission from the solid via desorption. The diffusion equation and its boundary conditions govern the transport of this thermalized hydrogen within the material. Diffusivities obey an Arrhenius law over as much as fourteen orders of magnitude for the temperature range of interest for a fusion reactor first wall and divertor plate. Using TMAP4, a variety of diffusion models are set up for comparison with experiments on PISCES which involve implantation and desorption of deuterium from beryllium, tungsten, carbon and boron carbide. The parameters and characteristics of the models which give the closest fit to the experimental data are reported. At the high fluences of these experiments, it is necessary to take into account saturation effects during implantation using a separate implantation layer with thickness given by TRIM and a higher trapping to lattice ratio than in the bulk in order to model the experimental data.

  9. Mechanism of sodium and chloride transport in the thin ascending limb of Henle.

    PubMed Central

    Imai, M; Kokko, J P

    1976-01-01

    Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set of studies it was shown that bromide inhibits transport of chloride and that the magnitude of inhibition is dependent on chloride concentrations. The fourth set of studies ruled out the existence of exchange diffusion. In conclusion, these studies indicate that sodium transport across tALH is by simple passive diffusion, while chloride transport across tALH involves at least two mechanisms: (1) simple passive diffusion; and (2) a specific membrane interaction process (carrier-mediated) which is competitively inhibited by bromide. PMID:993330

  10. Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation.

    PubMed

    Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri

    2017-10-25

    Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D 2 through direct selective separation studies using 1:1 D 2 /H 2 mixtures.

  11. Isomeric and Isotopic Effects on the Electronic Spectrum of {{\\rm{C}}}_{60}^{+}–He: Consequences for Astronomical Observations of {{\\rm{C}}}_{60}^{+}

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2018-05-01

    Laboratory measurements are reported that enable a more accurate determination of the characteristics of the near-infrared absorptions of {{{C}}}60+ below 10 K. These data were obtained by photofragmentation of {{{C}}}60+{--}{He} complexes in a cryogenic trap. Asymmetry in the profiles of the observed 9577 and 9632 Å absorption bands of {{{C}}}60+{--}{He} is caused by the attachment of the weakly bound helium atom to hexagonal or pentagonal faces of {{{C}}}60+. The implication is that the FWHM of the bands in the electronic spectrum of {{{C}}}60+ below 10 K is 1.4 Å. The effect of 13C isotopes on the {{{C}}}60+ electronic spectrum is experimentally evaluated by measurement of {}12{{{C}}}60+{--}{He}, {}13{{{C}}}112{{{C}}}59+{--}{He}, and {}13{{{C}}}212{{{C}}}58+{--}{He}. Data on the 9365 Å absorption band indicate a wavelength shift of about 0.3 Å between the former and latter. This result is consistent with models used to interpret the vibrational isotope effect in the Raman spectrum of neutral C60. The influence of 13C isotopes on the 9348, 9365, 9428, 9577, and 9632 Å diffuse interstellar bands is expected to be minor considering other broadening factors that affect astronomical observations. The presented data also provide more accurate relative intensities of the five interstellar bands attributed to {{{C}}}60+.

  12. Calculation of gas-flow in plasma reactor for carbon partial oxidation

    NASA Astrophysics Data System (ADS)

    Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya

    2018-03-01

    The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.

  13. Parsec-scale Variations in the 7Li I/6Li I Isotope Ratio Toward IC 348 and the Perseus OB 2 Association

    NASA Astrophysics Data System (ADS)

    Knauth, D. C.; Taylor, C. J.; Ritchey, A. M.; Federman, S. R.; Lambert, D. L.

    2017-01-01

    Measurements of the lithium isotopic ratio in the diffuse interstellar medium from high-resolution spectra of the Li I λ6708 resonance doublet have now been reported for a number of lines of sight. The majority of the results for the 7Li/6Li ratio are similar to the solar system ratio of 12.2, but the line of sight toward o Per, a star near the star-forming region IC 348, gave a ratio of about two, the expected value for gas exposed to spallation and fusion reactions driven by cosmic rays. To examine the association of IC 348 with cosmic rays more closely, we measured the lithium isotopic ratio for lines of sight to three stars within a few parsecs of o Per. One star, HD 281159, has 7Li/6Li ≃ 2 confirming production by cosmic rays. The lithium isotopic ratio toward o Per and HD 281159 together with published analyses of the chemistry of interstellar diatomic molecules suggest that the superbubble surrounding IC 348 is the source of the cosmic rays. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  14. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive instrument performance tests for both laser spectrometers that will be presented here. In addition, we will present the instrumentation, the measurement periphery as well as anticipated analysis approaches required for the planned measurement campaign.

  15. Kinetics of oxygen interstitial injection and lattice exchange in rutile TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Hollister, Alice G.; Pangan-Okimoto, Kristine

    2014-05-12

    The existence of a facile surface pathway for generation of O interstitials (O{sub i}) in rutile that can facilitate annihilation of O undesirable vacancies has been demonstrated recently. Through isotopic self-diffusion experiments, the present work determines a value of approximately 1.8 eV for the activation energy of O{sub i} injection from TiO{sub 2} (110). The mean path length for O{sub i} diffusion decreases by nearly an order of magnitude upon adsorption of 0.1 monolayer of sulfur. Sulfur apparently inhibits the surface annihilation rate of Ti interstitials, lowering their bulk concentration and the corresponding catalytic effect they seem to exert upon O{submore » i} exchange with the lattice.« less

  16. Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs.

    PubMed

    Minet, E P; Goodhue, R; Meier-Augenstein, W; Kalin, R M; Fenton, O; Richards, K G; Coxon, C E

    2017-11-01

    Excessive nitrate (NO 3 - ) concentration in groundwater raises health and environmental issues that must be addressed by all European Union (EU) member states under the Nitrates Directive and the Water Framework Directive. The identification of NO 3 - sources is critical to efficiently control or reverse NO 3 - contamination that affects many aquifers. In that respect, the use of stable isotope ratios 15 N/ 14 N and 18 O/ 16 O in NO 3 - (expressed as δ 15 N-NO 3 - and δ 18 O-NO 3 - , respectively) has long shown its value. However, limitations exist in complex environments where multiple nitrogen (N) sources coexist. This two-year study explores a method for improved NO 3 - source investigation in a shallow unconfined aquifer with mixed N inputs and a long established NO 3 - problem. In this tillage-dominated area of free-draining soil and subsoil, suspected NO 3 - sources were diffuse applications of artificial fertiliser and organic point sources (septic tanks and farmyards). Bearing in mind that artificial diffuse sources were ubiquitous, groundwater samples were first classified according to a combination of two indicators relevant of point source contamination: presence/absence of organic point sources (i.e. septic tank and/or farmyard) near sampling wells and exceedance/non-exceedance of a contamination threshold value for sodium (Na + ) in groundwater. This classification identified three contamination groups: agricultural diffuse source but no point source (D+P-), agricultural diffuse and point source (D+P+) and agricultural diffuse but point source occurrence ambiguous (D+P±). Thereafter δ 15 N-NO 3 - and δ 18 O-NO 3 - data were superimposed on the classification. As δ 15 N-NO 3 - was plotted against δ 18 O-NO 3 - , comparisons were made between the different contamination groups. Overall, both δ variables were significantly and positively correlated (p < 0.0001, r s  = 0.599, slope of 0.5), which was indicative of denitrification. An inspection of the contamination groups revealed that denitrification did not occur in the absence of point source contamination (group D+P-). In fact, strong significant denitrification lines occurred only in the D+P+ and D+P± groups (p < 0.0001, r s  > 0.6, 0.53 ≤ slope ≤ 0.76), i.e. where point source contamination was characterised or suspected. These lines originated from the 2-6‰ range for δ 15 N-NO 3 - , which suggests that i) NO 3 - contamination was dominated by an agricultural diffuse N source (most likely the large organic matter pool that has incorporated 15 N-depleted nitrogen from artificial fertiliser in agricultural soils and whose nitrification is stimulated by ploughing and fertilisation) rather than point sources and ii) denitrification was possibly favoured by high dissolved organic content (DOC) from point sources. Combining contamination indicators and a large stable isotope dataset collected over a large study area could therefore improve our understanding of the NO 3 - contamination processes in groundwater for better land use management. We hypothesise that in future research, additional contamination indicators (e.g. pharmaceutical molecules) could also be combined to disentangle NO 3 - contamination from animal and human wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    2013-01-01

    PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales. Surface complexation can be calculated with the CD-MUSIC (Charge Distribution MUltiSIte Complexation) triple-layer model in addition to the diffuse-layer model. The composition of the electrical double layer of a surface can be estimated by using the Donnan approach, which is more robust and faster than the alternative Borkovec-Westall integration. Multicomponent diffusion, diffusion in the electrostatic double layer on a surface, and transport of colloids with simultaneous surface complexation have been added to the transport module. A series of keyword data blocks has been added for isotope calculations—ISOTOPES, CALCULATE_VALUES, ISOTOPE_ALPHAS, ISOTOPE_RATIOS, and NAMED_EXPRESSIONS. Solution isotopic data can be input in conventional units (for example, permil, percent modern carbon, or tritium units) and the numbers are converted to moles of isotope by PHREEQC. The isotopes are treated as individual components (they must be defined as individual master species) so that each isotope has its own set of aqueous species, gases, and solids. The isotope-related keywords allow calculating equilibrium fractionation of isotopes among the species and phases of a system. The calculated isotopic compositions are printed in easily readable conventional units. New keywords and options facilitate the setup of input files and the interpretation of the results. Keyword data blocks can be copied (keyword COPY) and deleted (keyword DELETE). Keyword data items can be altered by using the keyword data blocks with the _MODIFY extension and a simulation can be run with all reactants of a given index number (keyword RUN_CELLS). The definition of the complete chemical state of all reactants of PHREEQC can be saved in a file in a raw data format ( DUMP and _RAW keywords). The file can be read as part of another input file with the INCLUDE$ keyword. These keywords facilitate the use of IPhreeqc, which is a module implementing all PHREEQC version 3 capabilities; the module is designed to be used in other programs that need to implement geochemical calculations; for example, transport codes. Charting capabilities have been added to some versions of PHREEQC. Charting capabilities have been added to Windows distributions of PHREEQC version 3. (Charting on Linux requires installation of Wine.) The keyword data block USER_GRAPH allows selection of data for plotting and manipulation of chart appearance. Almost any results from geochemical simulations (for example, concentrations, activities, or saturation indices) can be retrieved by using Basic language functions and specified as data for plotting in USER_GRAPH. Results of transport simulations can be plotted against distance or time. Data can be added to a chart from tab-separated-values files. All input for PHREEQC version 3 is defined in keyword data blocks, each of which may have a series of identifiers for specific types of data. This report provides a complete description of each keyword data block and its associated identifiers. Input files for 22 examples that demonstrate most of the capabilities of PHREEQC version 3 are described and the results of the example simulations are presented and discussed.

  18. Constraining the global bromomethane budget from carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition, simple model studies suggest that the soil uptake of CH3Br and hence its isotopic effect is largely controlled by diffusion resulting in an even smaller apparent isotopic fractionation. As a consequence, the estimated source signature for the unknown source is discussed with respect to the assumptions made for the soil sink.

  19. Oxygen self-diffusion in diopside with application to cooling rate determinations

    NASA Astrophysics Data System (ADS)

    Farver, John R.

    1989-04-01

    The kinetics of oxygen self-diffusion in a natural diopside have been measured over the temperature range 700-1250°C. Experiments were run under hydrothermal conditions using 18O-enriched water. Profiles of 18O/( 16O+ 18O) versus depth into the crystal were obtained using an ion microprobe. At 1000 bars (100 MPa) confining pressure, the Arrhenius relation for diffusion parallel to the c crystallographic direction yields a pre-exponential factor ( D0) = 1.5 × 10 -6 cm 2/s and an activation energy ( Q) = 54 ± 5 kcal/g-atom O (226 kJ/g-atom O) over the temperature range of the experiments. Diffusion coefficients parallel to the c crystallographic direction are ≈ 100 times greater than perpendicular to c. The oxygen self-diffusion coefficient obtained for diopside is ≈ 1000 times less than that for diffusion in feldspars, and ≈ 100 times less than that for quartz at 800°C, transport parallel to the c axis. Closure temperatures calculated for oxygen diffusional exchange in natural diopside are significantly higher than for quartz or feldspars. Measurable oxygen isotope exchange in diopside by diffusion would require geological settings with very high temperatures maintained for very long durations. The oxygen diffusional exchange kinetics in diopside presented in this paper find important applications in studies of meteoric hydrothermal circulation systems and the time-temperature history of high-grade regionally metamorphosed terrains. Examples considered include the Outer Unlayered Gabbro, Cuillins Gabbro Complex, Isle of Skye, Scotland, and the granulite-grade Turpentine Hill Metamorphics near Einasleigh, Queensland, Australia.

  20. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    DTIC Science & Technology

    2012-03-01

    For example, synthetic zeolites could be used to separate molecular isotopes of hydrogen [12; 10] as could thermal diffusion and gas chromatography... thermal muon flux is large (see Chapter 8). Reactions which have the potential of increasing the muon-catalyzed fusion rate and reactions that could...the remainder of this document. Changes to the muon-catalyzed fusion cycle, that are expected to occur when the thermal muon flux is high, are

  1. Aging of nickel added to soils as predicted by soil pH and time.

    PubMed

    Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J; Oliver, Ian W; Nolan, Annette L; Oorts, Koen; Smolders, Erik

    2013-08-01

    Although aging processes are important in risk assessment for metals in soils, the aging of Ni added to soils has not been studied in detail. In this study, after addition of water soluble Ni to soils, the changes over time in isotopic exchangeability, total concentrations and free Ni(2+) activity in soil pore water, were investigated in 16 European soils incubated outdoors for 18 months. The results showed that after Ni addition, concentrations of Ni in soil pore water and isotopic exchangeability of Ni in soils initially decreased rapidly. This phase was followed by further decreases in the parameters measured but these occurred at slower rates. Increasing soil pH increased the rate and extent of aging reactions. Semi-mechanistic models, based on Ni precipitation/nucleation on soil surfaces and micropore diffusion, were developed and calibrated. The initial fast processes, which were attributed to precipitation/nucleation, occurred over a short time (e.g. 1h), afterwards the slow processes were most likely controlled by micropore diffusion processes. The models were validated by comparing predicted and measured Ni aging in three additional, widely differing soils aged outdoors for periods up to 15 months in different conditions. These models could be used to scale ecotoxicological data generated in short-term studies to longer aging times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A new model integrating short- and long-term aging of copper added to soils

    PubMed Central

    Zeng, Saiqi; Li, Jumei; Wei, Dongpu

    2017-01-01

    Aging refers to the processes by which the bioavailability/toxicity, isotopic exchangeability, and extractability of metals added to soils decline overtime. We studied the characteristics of the aging process in copper (Cu) added to soils and the factors that affect this process. Then we developed a semi-mechanistic model to predict the lability of Cu during the aging process with descriptions of the diffusion process using complementary error function. In the previous studies, two semi-mechanistic models to separately predict short-term and long-term aging of Cu added to soils were developed with individual descriptions of the diffusion process. In the short-term model, the diffusion process was linearly related to the square root of incubation time (t1/2), and in the long-term model, the diffusion process was linearly related to the natural logarithm of incubation time (lnt). Both models could predict short-term or long-term aging processes separately, but could not predict the short- and long-term aging processes by one model. By analyzing and combining the two models, we found that the short- and long-term behaviors of the diffusion process could be described adequately using the complementary error function. The effect of temperature on the diffusion process was obtained in this model as well. The model can predict the aging process continuously based on four factors—soil pH, incubation time, soil organic matter content and temperature. PMID:28820888

  3. The investigation of argon diffusion in phlogopite under high pressure conditions

    NASA Astrophysics Data System (ADS)

    Yudin, Denis; Korzhova, Sophia; Travin, Alexey; Zhimulev, Egor; Murzintsev, Nikolay; Moroz, Tatiana

    2014-05-01

    The present study deals with assessment of pressure effect on the mechanism of bleeding an argon from mica at high temperatures and pressures. The influence of pressure on the diffusion of argon in crustal conditions is not significant (Harrison et al., 2009), while in the mantle conditions, should be significant. The authors suggest that the findings will help to better understand the behavior of K/Ar isotopic system in mica under the lower crust and mantle, including xenoliths transport by kimberlite melt. The experiment was made by using high-pressure spacer "split-sphere" (BARS - 300). Phlogopite from veins cutting metamorphic rocks from the Sludyanka number 2 quarry was used as a testing material. Inclusions of other minerals were not found in the original phlogopite crystal. Chemical composition of phlogopite is homogeneous. 8 experiments was made at a constant pressure of 30 kbar and different temperature and duration: 20 degrees Celsius, 20 minutes; 700 degrees Celsius, 20 minutes; 800 degrees Celsius, 10 minutes; 800 degrees Celsius, 20 minutes; 800 degrees Celsius, 30 minutes; 900 degrees Celsius, 20 minutes; 1000 degrees Celsius, 20 minutes; 1100 degrees Celsius, 20 minutes. According the results of SEM-observation, there is no signs of recrystallization and solid state transformations and melting of phlogopite. It's chemical composition is identical to that of the original phlogopite. Diffractograms of phlogopites after the experiments are similar to the diffractograms of the original phlogopites. Research results of IR spectroscopy, together with the results of SEM and microprobe analysis suggest that phlogopite dehydroxylation in the temperature range T = 700-900 degrees Celsius was negligible. Numerical simulation of the behavior of radiogenic argon in phlogopite at high temperatures and pressure was performed using «Diffarg» software finite differences algorithm, based on the mechanism of bulk thermally activated diffusion (Wheeler, 1996). The size of the effective diffusion domain of mica was considered to be 100-150 microns, when modeling (Baxter, 2010). Comparison of results of simulations and experiments suggests that the mobility of argon isotopes in phlogopite at high temperatures and pressure is well described by the mechanism of thermally activated volume diffusion. Stepwise release of argon in a vacuum experiment was also conducted. The activation energy of 207,714 J/mol was calculated from the slope of the line on the Arrhenius chart. This value is consistent with data obtained by other authors in hydrothermal experiments (Baxter, 2010). The work was supported by the grant of the President of Russia MK-3240.2014.5. Baxter E.F. Diffusion of Noble Gases in Minerals // Reviews in Mineralogy & Geochemistry. 2010. V.72. P.509-557. Harrison T.M., Celerier J., Aikman A.B., Hermann J., Heizler M.T. Diffusion of 40Ar in muscovite // Geochim Cosmochim Acta. 2009. V.73. P.1039-1051. Wheeler J. Diffarg: A program for simulating argon diffusion profiles in minerals // Computers & Geosciences. 1996. V. 22(8). P. 919-929.

  4. Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites: A case for metasomatically induced Nd-Hf decoupling

    NASA Astrophysics Data System (ADS)

    Choi, Sung Hi; Mukasa, Samuel B.

    2012-12-01

    We determined the Lu-Hf and Sm-Nd isotope compositions of spinel peridotite xenoliths in alkali basalts from Baengnyeong and Jeju islands, South Korea, to constrain the timing of melt-depletion events and stabilization of the lithospheric mantle beneath the region. Equilibration temperatures estimated by two-pyroxene thermometry range from 780 to 950 °C, and from 960 to 1010 °C for Baengnyeong and Jeju peridotites, respectively. The Baengnyeong peridotite clinopyroxenes are characterized by extremely radiogenic Hf in association with isotopically less extreme Nd, resulting in strong Nd-Hf decoupling referenced to the mantle array. This is in stark contrast to the well-correlated isotopic compositions of Hf and Nd in the Jeju peridotite clinopyroxenes, which plot along the Nd-Hf mantle array. The Hf abundances and isotopic compositions of the Baengnyeong clinopyroxenes were less affected by relatively recent secondary enrichments that overprinted the light rare earth element abundances and Nd isotopes, causing the decoupling of the Nd-Hf isotopes. The Nd-Hf isotopic compositions of the Jeju peridotites appear to have been re-equilibrated, probably as a result of efficient diffusion at the relatively higher temperatures of the Jeju peridotites. Lu-Hf tie lines for clinopyroxene and orthopyroxene from four of the Korean peridotites have negative slopes on a Lu-Hf isochron diagram, yielding negative ages. This is interpreted to indicate recent isotopic exchange in orthopyroxene by reaction with metasomatic agents having low 176Hf/177Hf components. Secondary overprinting in orthopyroxene was facilitated by the considerably lower Hf concentrations than in co-located clinopyroxene. Baengnyeong lherzolite clinopyroxenes yield a Lu-Hf errorchron age of 1.9 ± 0.1 Ga, which is independently supported by a model Os age (based on Re depletion or TRD) of 1.8 Ga on a refractory Baengnyeong peridotite. We interpret this age range to mark the time of stabilization of the mantle section beneath this area by major melt extraction. This Proterozoic melt removal coincided in time with widespread ca. 2.1 to 1.8 Ga tectonothermal events documented throughout the Korean Peninsula. These observations indicate that the Lu-Hf system can be used to date mantle melting events recorded in lherzolite xenoliths.

  5. Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites: A case for metasomatically induced Nd-Hf decoupling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.

    2012-12-01

    We determined the Lu-Hf and Sm-Nd isotope compositions of spinel peridotite xenoliths in alkali basalts from Baengnyeong and Jeju islands, South Korea, to constrain the timing of melt-depletion events and stabilization of the lithospheric mantle beneath the region. Equilibration temperatures estimated by two-pyroxene thermometry range from 780 to 950°C, and from 960 to 1010°C for Baengnyeong and Jeju peridotites, respectively. The Baengnyeong peridotite clinopyroxenes are characterized by extremely radiogenic Hf in association with isotopically less extreme Nd, resulting in strong Nd-Hf decoupling referenced to the mantle array. This is in stark contrast to the well-correlated isotopic compositions of Hf and Nd in the Jeju peridotite clinopyroxenes, which plot along the Nd-Hf mantle array. The Hf abundances and isotopic compositions of the Baengnyeong clinopyroxenes were less affected by relatively recent secondary enrichments that overprinted the light rare earth element abundances and Nd isotopes, causing the decoupling of the Nd-Hf isotopes. The Nd-Hf isotopic compositions of the Jeju peridotites appear to have been re-equilibrated, probably as a result of efficient diffusion at the relatively higher temperatures of the Jeju peridotites. Lu-Hf tie lines for clinopyroxene and orthopyroxene from four of the Korean peridotites have negative slopes on a Lu-Hf isochron diagram, yielding negative ages. This is interpreted to indicate recent isotopic exchange in orthopyroxene by reaction with metasomatic agents having low 176Hf/177Hf components. Secondary overprinting in orthopyroxene was facilitated by the considerably lower Hf concentrations than in co-located clinopyroxene. Baengnyeong lherzolite clinopyroxenes yield a Lu-Hf errorchron age of 1.9 ± 0.1 Ga, which is independently supported by a model Os age (based on Re depletion or TRD) of 1.8 Ga on a refractory Baengnyeong peridotite. We interpret this age range to mark the time of stabilization of the mantle section beneath this area by major melt extraction. This Proterozoic melt removal coincided in time with widespread ca. 2.1 to 1.8 Ga tectonothermal events documented throughout the Korean Peninsula. These observations indicate that the Lu-Hf system can be used to date mantle melting events recorded in lherzolite xenoliths.

  6. Diffuse CO2 degassing studies to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Perez, N. M.; García-Merino, M.; Padron, E.; Melián, G.; Asensio-Ramos, M.; Hernandez Perez, P. A.; Padilla, G.; Barrancos, J.; Cótchico, M. A.

    2016-12-01

    The Canary Islands, owing to their recent volcanism, are the only Spanish territory with potential high enthalpy geothermal resources. The final goal of geothermal exploration in a specific area is to locate and define the size, shape, structure of hidden geothermal resources, and determine their characteristics (fluid type, temperature, chemical composition an ability to produce energy). At those areas where there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system) the geochemical methods for geothermal exploration must include soil gas surveys. This is the case of five mining licenses for geothermal exploration in the Canay Islands, four in Tenerife and one in Gran Canaria Island. We report herein the results of diffuse CO2 emission studies in the five mining licenses during 2011-2014. The primary objective of the study was to sort the possible geothermal potential of these five mining licenses, thus reducing the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The criterion used to sort the different areas was the contribution of volcano-hydrothermal CO2 in the degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each study area. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100% respectively) and isotopic compositions (-20, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 2-19%.The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  7. Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.

    2014-06-01

    ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.

  8. SIMS depth profiling of rubber-tyre cord bonding layers prepared using 64Zn depleted ZnO

    NASA Astrophysics Data System (ADS)

    Fulton, W. S.; Sykes, D. E.; Smith, G. C.

    2006-07-01

    Zinc oxide and copper/zinc sulphide layers are formed during vulcanisation and moulding of rubber to brass-coated steel tyre reinforcing cords. Previous studies have described how zinc diffuses through the rubber-brass interface to form zinc sulphide, and combines with oxygen to create zinc oxide during dezincification. The zinc is usually assumed to originate in the brass of the tyre cord, however, zinc oxide is also present in the rubber formulation. We reveal how zinc from these sources is distributed within the interfacial bonding layers, before and after heat and humidity ageing. Zinc oxide produced using 64Zn-isotope depleted zinc was mixed in the rubber formulation in place of the natural ZnO and the zinc isotope ratios within the interfacial layers were followed by secondary ion mass spectroscopy (SIMS) depth profiling. Variations in the relative ratios of the zinc isotopes during depth profiling were measured for unaged, heat-aged and humidity-aged wire samples and in each case a relatively large proportion of the zinc incorporated into the interfacial layer as zinc sulphide was shown to have originated from ZnO in the rubber compound.

  9. On the 3He anomaly in hot subdwarf B stars

    NASA Astrophysics Data System (ADS)

    Schneider, David; Irrgang, Andreas; Heber, Ulrich; Nieva, Maria F.; Przybilla, Norbert

    2017-12-01

    Decades ago, 3He isotope enrichment in helium-weak B-type main-sequence, in blue horizontal branch and in hot subdwarf B (sdB) stars, i.e., helium-core burning stars of the extreme horizontal branch, were discovered. Diffusion processes in the atmosphere of these stars lead to the observed abundance anomalies. Quantitative spectral analyses of high-resolution spectra to derive photospheric isotopic helium abundance ratios for known 3He sdBs have not been performed yet. We present preliminary results of high-resolution and high S/N spectra to determine the 3He and 4He abundances of nine known 3He sdBs. We used a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars investigating multiple He i lines, including λ4922 Å and λ6678 Å, which show the strongest isotopic shifts in the optical spectral range.We also report the discovery of four new 3He sdBs from the ESO Supernova Progenitor survey. Most of the 3He sdBs cluster in a narrow temperature strip between ˜ 26000 K and ˜ 30000 K and have almost no atmospheric 4He at all. Interestingly, three 3He sdBs show evidence for vertical helium stratification.

  10. A radon-thoron isotope pair as a reliable earthquake precursor

    PubMed Central

    Hwa Oh, Yong; Kim, Guebuem

    2015-01-01

    Abnormal increases in radon (222Rn, half-life = 3.82 days) activity have occasionally been observed in underground environments before major earthquakes. However, 222Rn alone could not be used to forecast earthquakes since it can also be increased due to diffusive inputs over its lifetime. Here, we show that a very short-lived isotope, thoron (220Rn, half-life = 55.6 s; mean life = 80 s), in a cave can record earthquake signals without interference from other environmental effects. We monitored 220Rn together with 222Rn in air of a limestone-cave in Korea for one year. Unusually large 220Rn peaks were observed only in February 2011, preceding the 2011 M9.0 Tohoku-Oki Earthquake, Japan, while large 222Rn peaks were observed in both February 2011 and the summer. Based on our analyses, we suggest that the anomalous peaks of 222Rn and 220Rn activities observed in February were precursory signals related to the Tohoku-Oki Earthquake. Thus, the 220Rn-222Rn combined isotope pair method can present new opportunities for earthquake forecasting if the technique is extensively employed in earthquake monitoring networks around the world. PMID:26269105

  11. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  12. Isotopic evidence of spatial magnitude of the Pb deposition near a lead smelter

    NASA Astrophysics Data System (ADS)

    Flament, P.; Franssens, M.; Debout, K.; Weis, D.

    2003-05-01

    In order to détermine the dry deposition of lead around a Pb-Zn refinery, two cross-sectional sampling experiments, using deposition plates, have been performed on a daiiy basis, ucder representative meteorological situations (north-easterly and south-westerly winds). The amount of lead deposited as well as its isotopic composition (expressed by the ^{206}Pb/^{207}Pb ratio) are systematically measured. For a daily production of approximately 670 metric tons of (Pb+Zn) the dry fallout, greater than 1000 μg Pb.h^{-1}.m^{-2} on the edge of the plant, falls to about 100 μg Pb.h^{-1}.m^{-2}, four kilometres away from the refinery. This value is still ten times higher than th urban background (<10 μg Pb.h^{-1}.m^{-2}). The spatial extension of the dry deposition plume is evidenced by the evolution of the isotopic signature of the refinery (1.10<^{206}Pb/^{207}), clearly distinct from the urban backgrounde signature (1.15<^{206}Pb/^{207}Pb<1.16). As a first estimate, the extension of the deposition plume seems not to be linked to the wind speed. At the opposite, diffuse emissions from slag heaps are related to this parameter.

  13. Gravitational effects on plant growth hormone concentration

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  14. Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in La1–xSrxCoO3−δ Thin Films

    PubMed Central

    2013-01-01

    The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691

  15. Partial melting and melt percolation in the mantle: The message from Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Ionov, Dmitri A.

    2007-07-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with the generally observed difference between peridotites and basalts; this slope was used here to estimate the Fe isotope composition of the fertile upper mantle (at Mg# = 0.894, δ 56Fe ≈ 0.02 ± 0.03‰). Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events, e.g. melt percolation. At two localities (Tok, Siberia and Tariat, Mongolia) δ 56Fe correlates with iron contents of the peridotites, which was increased from about 8% to up to 14.5% FeO by post-melting melt percolation. This process produced a range of Fe isotope compositions in the percolation columns, from extremely light (δ 56Fe = - 0.42‰) to heavy (δ 56Fe = + 0.17‰). We propose reaction with isotopically heavy melts and diffusion (enrichment of light Fe isotopes) as the most likely processes that produced the large isotope variations at these sites. Thus, Fe isotopes might be used as a sensitive tracer to identify such metasomatic processes in the mantle.

  16. Morphological and functional effects of graphene on the synthesis of uranium carbide for isotopes production targets.

    PubMed

    Biasetto, L; Corradetti, S; Carturan, S; Eloirdi, R; Amador-Celdran, P; Staicu, D; Blanco, O Dieste; Andrighetto, A

    2018-05-29

    The development of tailored targets for the production of radioactive isotopes represents an active field in nuclear research. Radioactive beams find applications in nuclear medicine, in astrophysics, matter physics and materials science. In this work, we study the use of graphene both as carbon source for UO 2 carbothermal reduction to produce UC x targets, and also as functional properties booster. At fixed composition, the UC x target grain size, porosity and thermal conductivity represent the three main points that affect the target production efficiency. UC x was synthesized using both graphite and graphene as the source of carbon and the target properties in terms of composition, grain size, porosity, thermal diffusivity and thermal conductivity were studied. The main output of this work is related to the remarkable enhancement achieved in thermal conductivity, which can profitably improve thermal dissipation during operational stages of UC x targets.

  17. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    NASA Astrophysics Data System (ADS)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  18. Observation of the 60Fe Nucleosynthesis-Clock Isotope in Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Christian, E. R.; Cummings, A. C.; de Nolfo, G. A.; Lave, K. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2016-01-01

    Iron-60 (60Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 105 iron nuclei, with energies 195 to 500 megaelectron volts per nucleon, of which we identify 15 60Fe nuclei. The 60Fe56Fe source ratio is (7.5 2.9) 105. The detection of supernova-produced 60Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the 60Fe half-life of 2.6 million years and that the 60Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, 1 kiloparsec. A natural place for 60Fe origin is in nearby clusters of massive stars.

  19. Trace element diffusion in minerals: the role of multiple diffusion mechanisms operating simultaneously

    NASA Astrophysics Data System (ADS)

    Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.

    2016-12-01

    Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain some of the differing results noted above and such considerations need to be taken into account when modelling diffusion in natural systems. [1] Cherniak 2010, Am Mineral 95:362-368; [2] Spandler and O'Neill 2010, Contrib Mineral Petrol 159:791-818; [3] Faak et al. 2013 Geochim Cosmochim Acta 123:195-217; [4] Van Orman et al. 2014 Earth Planet Sci Lett 385:79-88

  20. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  1. Methane production and consumption monitored by stable H and C isotope ratios at a crude oil spill site, Bemidji, Minnesota

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.; Baedecker, Mary J.; Glynn, Pierre D.

    1995-01-01

    Stable isotopic ratios of C and H in dissolved CH4 and C in dissolved inorganic C in the ground water of a crude-oil spill near Bemidji, Minnesota, support the concept of CH4production by acetate fermentation with a contemporaneous increase in HCO3−concentration. Methane concentrations in the saturated zone decrease from 20.6 mg L−1 to less than 0.001 mg L−1 along the investigated flow path. Dissolved N2 and Ar concentrations in the ground water below the oil plume are 25 times lower than background; this suggests that gas exsolution is removing dissolved CH4 (along with other dissolved gases) from the ground water. Oxidation of dissolved CH4 along the flow path seems to be minimal because no measurable change in isotopic composition of CH4 occurs with distance from the oil body. However, CH4 is partly oxidized to CO2 as it diffuses upward from the ground water through a 5- to 7-m thick unsaturated zone; theδ13C of the remaining CH4 increases, theδ13C of the CO2 decreases, and the partial pressure of CO2 increases.Calculations of C fluxes in the saturated and unsaturated zones originating from the degradation of the oil plume lead to a minimum estimated life expectancy of 110 years. This is a minimum estimate because the degradation of the oil body should slow down with time as its more volatile and reactive components are leached out and preferentially oxidized. The calculated life expectancy is an order of magnitude estimate because of the uncertainty in the average linear ground-water velocities and because of the factor of 2 uncertainty in the calculation of the effective CO2 diffusion coefficient.

  2. Diffusion of Helium in the mantle: an explanation for MORB-OIB patterns of 3He/4He ratios

    NASA Astrophysics Data System (ADS)

    Morgan, W. J.; Morgan, J. P.

    2011-12-01

    OIBs have a wide range of 3He/4He ratios, MORBs have a much narrower range peaked at 3He/4He ≈ 8 Ra. In addition, the ratio of 3He/20Ne (both stable isotopes) is significantly higher in MORB than in OIB, likewise the ratio of 4He/21Ne (both daughter isotopes produced by U and Th decay) are similarly higher in MORB than OIB. (Stable 3He/36Ar and radiogenic 4He/40Ar have the same pattern as the He/Ne plots, only with more scatter.) [See Honda and Patterson, GCA 63, 1999.] We assume the rising mantle plumes are 'lumpy'; a mixture that includes lumps of primordial mantle (which will be rich in 3He, 20Ne, 22Ne, 36Ar, etc.) as well as lumps containing the EM1, EM2, HIMU components, all in a general matrix of relatively-barren, previously-melted 'harzburgite'. When the rising lumps (plums) melt, the He, Ne, Ar, and most of the other incompatible elements will go into the melts that are known as OIB. But not all of the lumps melt (near the edge, some don't rise shallow enough to pressure-release melt); those that don't melt go into the asthenosphere, flowing horizontally away from the rising column. At a spreading center, this asthenosphere contributes the 'plums' it has left but also some of the more barren matrix that the plums are embedded in becomes part of the melt because of the higher extents of partial melting that occur when making MORB. What is the effect of diffusion? If the helium, because of its small size, can diffuse a distance of 100 m or 1000 m in a billion-plus years (the 'age' of a lump) whereas neon or argon diffuse only decimeters or centimeters in this time because of their larger radii (i.e., not much more than non-noble incompatible elements like K, Rb, or U can diffuse), then the 3He and 4He (and H) can diffuse far out into the 'barren harzburgite' matrix. Thus when the lumps in a plume melt there will be a shortage of 3He and 4He relative to the 20Ne, 21Ne, or argon. With the extensive melting that occurs to make MORB, fluxing causes some of the barren matrix to contribute its 3He and 4He to the MORB melt which results in an excess of helium relative to neon and argon. This extraction of helium from the longtime-diffused-into barren matrix also can explain the uniformity of the 3/4 ratio in MORB as opposed to the variability of 3/4 in OIB where the individual lumps each contribute their own variable contents. What is lacking in this explanation are data on diffusion rates of the noble gases under deep mantle conditions. What experimental data exists suggest helium diffuses sufficiently fast, but published data only go up to ≈1300 °C, and at only uppermost mantle pressures. Can experiments in diamond anvils or calculations that include 'helium atoms' in molecular dynamics models give diffusion constants to test this hypothesis?

  3. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Kappel, W.M.

    1998-01-01

    The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of fiver water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that fiver infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of river water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that river infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.

  4. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  5. Origin of halides (Cl- and Br-) and of their stable isotopes (d37Cl and d81Br) at the Tournemire URL (France) - Experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Bachir-Bey, Nassim; Matray, Jean-Michel

    2014-05-01

    This work is part of research conducted by the Institute of Radiological and Nuclear Safety (IRSN) on the geological disposal of High-Level and Intermediate-Level Long-Lived (HL-ILLL) radioactive waste in deep clayrocks. In France, the choice of the potential host rock for the geological storage is focused on the Callovian-Oxfordian (COx) of Meuse/Haute-Marne from its low permeability, capacity for self- sealing, high sorption and ability to radionuclide (RN) transport by diffusion. IRSN, which plays an expert role for ASN has its own underground research laboratory in a clayrock which has strong analogies to the COx. This is the Toarcian/Domerian clayrock located at Tournemire in southern Aveyron in France. The purpose of this study was to assess the transfer of RN in the Tournemire clayrock through the study of halides contents and of their stable isotopes (Cl-, Br-, Cl-/Br-, d37Cl, d81Br). The approach used was multiple and consisted for halides to: 1) Assess their stock in different fractions of the rock by applying several techniques including i) alkaline fusion for their total stock, ii) leaching to access their stock in porewater and to mineral phases sensitive to dissolution iii) cubic diffusion for their stock in porewater, 2) Get their diffusive transport parameters of a selection of samples from the upper Toarcian by cubic diffusion experiments modelled using the Hytec transport code developed by Mines ParisTech and 3) Model their transport after palaeohydrogeological known changes of the Tournemire massif. The experimental approach, conducted at the LAME lab, did not lead to an operational protocol for the alkaline fusion due to an incomplete rock dissolution. Leaching was used to characterize the concentrations of halides in the fractions of pore water and of minerals sensitive to dissolution. The results show levels of halides much higher than those of pore water with very low Cl/Br ratios likely resulting from the dissolution of mineral species. The cubic diffusion produced the pore diffusion coefficients for Cl and Br as well as their concentration in the porewater. Cubic diffusion also allowed to estimate a Cl to Br pore diffusion coefficient ratio, necessary to calculate the profiles of Cl/Br. These estimates have required the use of the transport code Hytec i) for dimensioning and implementing the experiment in a time frame compatible with the work period, ii) for analysing the sensitiveness of the model to the accessible porosity and to the diffusion coefficient which act respectively to the steady phase and transient phase of the experiments, and finally, iii ) for adjusting the pore diffusion coefficients of Cl and Br to an accessible porosity of 3-4%. The Hytec code was then used to check the consistency of the current profiles of chlorides, bromides, 35Cl , 37Cl , d37Cl, Cl/Br in 1D, a fake drilling assumed crossing the entire clayrock. The assumption is that halides have undergone a diffusive transport between seawater trapped during sedimentation and meteoric waters infiltrated at different times to domain boundaries. Four scenarios were tested according to the paleohydrogeological history of the massif. All tracers and scenarios are consistent with a unique marine source of halides more or less diluted by meteoric waters. The duration of the diffusive exchange initially suggested 85 ± 10 Ma (Bensenouci, 2010) is never contradicted despite uncertainties related to changes in boundary conditions. This body of evidence would suggest that molecular diffusion is the transport process which has affected and still affect the Tournemire clayrock, outside fault zones. The d37Cl results expected on the surrounding carbonated aquifers, leachates and fracture waters (including d81Br values) should help to refine the models and the results.

  6. Micro-Raman study of isotope substitution in YBa2Cu183O6.2 during local laser annealing

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Iliev, M. N.; Thomsen, C.

    1995-11-01

    The local laser heating of YBa2Cu183O6.2 in air was used to study the oxygen diffusion and oxygen ordering in sample volumes of the order of a few μm3. Raman microprobe at points corresponding to different annealing temperatures was applied to monitor both the stages of substitution of 16O for 18O at different oxygen sites and the structural changes in the basal [Cu(1)-O(1)] planes occurring during the oxygen in-diffusion. The population of the O(1) sites initially results in the formation of short Cu(1)-O(1) fragments which later conjunct into long chains. The results can be applied for a better understanding of oxygen reordering processes in YBa2Cu3O7-δ during thermal treatment.

  7. An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves.

    PubMed

    Xing, Yanlong; Cai, Jinjun; Li, Liangjun; Yang, Menglong; Zhao, Xuebo

    2014-08-14

    The quantum sieving effect of H2/D2 at 77 K on commercially available carbon molecular sieves (1.5GN-H and 3KT-172) was studied. An exceptional reverse kinetic quantum effect is observed on 1.5GN-H where D2 diffuses much faster than H2 with a ratio of up to 5.83 at low pressure, and the difference is still very evident even as the pressure increases up to 1 bar. D2 also diffuses faster than H2 on 3KT-172 with a ratio of up to 1.86. However, the reverse kinetic sieving disappears in a polymer-based carbon (PC). The present kinetic quantum sieving effect of H2 and D2 at 77 K on 1.5GN-H is the highest to date.

  8. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits.

    PubMed

    Guo, Qi; Wei, Hai-Zhen; Jiang, Shao-Yong; Hohl, Simon; Lin, Yi-Bo; Wang, Yi-Jing; Li, Yin-Chuan

    2017-12-19

    Except for extensive studies in core formation and volatile-element depletion processes using radiogenic Ag isotopes (i.e., the Pd-Ag chronometer), recent research has revealed that the mass fractionation of silver isotopes is in principle controlled by physicochemical processes (e.g., evaporation, diffusion, chemical exchange, etc.) during magmatic emplacement and hydrothermal alteration. As these geologic processes only produce very minor variations of δ 109 Ag from -0.5 to +1.1‰, more accurate and precise measurements are required. In this work, a robust linear relationship between instrumental mass discrimination of Ag and Pd isotopes was obtained at the Ag/Pd molar ratio of 1:20. In Au-Ag ore deposits, silver minerals have complex paragenetic relationships with other minerals (e.g., chalcopyrite, sphalerite, galena, pyrite, etc.). It is difficult to remove such abundant impurities completely because the other metals are tens to thousands of times richer than silver. Both quantitative evaluation of matrix effects and modification of chemical chromatography were carried out to deal with the problems. Isobaric inferences (e.g., 65 Cu 40 Ar + to 105 Pd, 208 Pb 2+ to 104 Pd, and 67 Zn 40 Ar + to 107 Ag + ) and space charge effects dramatically shift the measured δ 109 Ag values. The selection of alternative Pd isotope pairs is effective in eliminating spectral matrix effects so as to ensure accurate analysis under the largest possible ranges for metal impurities, which are Cu/Ag ≤ 50:1, Fe/Ag ≤ 600:1, Pb/Ag ≤ 10:1, and Zn/Ag ≤ 1:1, respectively. With the modified procedure, we reported silver isotope compositions (δ 109 Ag) in geological standard materials and typical Au-Ag ore deposit samples varying from -0.029 to +0.689 ‰ with external reproducibility of ±0.009-0.084 ‰. A systemic survey of δ 109 Ag (or ε 109 Ag) variations in rocks, ore deposits, and environmental materials in nature is discussed.

  9. Sources and fate of mercury pollution in Almadén mining district (Spain): Evidences from mercury isotopic compositions in sediments and lichens.

    PubMed

    Jiménez-Moreno, María; Barre, Julien P G; Perrot, Vincent; Bérail, Sylvain; Rodríguez Martín-Doimeadios, Rosa C; Amouroux, David

    2016-03-01

    Variations in mercury (Hg) isotopic compositions have been scarcely investigated until now in the Almadén mining district (Spain), which is one of the most impacted Hg areas worldwide. In this work, we explore and compare Hg isotopic signatures in sediments and lichens from Almadén mining district and its surroundings in order to identify and trace Hg aquatic and atmospheric contamination sources. No statistically significant mass independent fractionation was observed in sediments, while negative Δ(201)Hg values from -0.12 to -0.21‰ (2SD = 0.06‰) were found in lichens. A large range of δ(202)Hg values were reported in sediments, from -1.86 ± 0.21‰ in La Serena Reservoir sites far away from the pollution sources to δ(202)Hg values close to zero in sediments directly influenced by Almadén mining district, whereas lichens presented δ(202)Hg values from -1.95 to -0.40‰ (2SD = 0.15‰). A dilution or mixing trend in Hg isotope signatures versus the distance to the mine was found in sediments along the Valdeazogues River-La Serena Reservoir system and in lichens. This suggests that Hg isotope fingerprints in these samples are providing a direct assessment of Hg inputs and exposure from the mining district, and potential information on diffuse atmospheric contamination and/or geochemical alteration processes in less contaminated sites over the entire hydrosystem. This study confirms the applicability of Hg isotope signatures in lichens and sediments as an effective and complementary tool for tracing aquatic and atmospheric Hg contamination sources and a better constraint of the spatial and temporal fate of Hg released by recent or ancient mining activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Segregation of Calcium Isotopes in the Atmospheres of CP Stars as a Consequence of Light-Induced Drift

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2018-06-01

    A mechanism for the segregation of calcium isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of singly charged 48Ca+ ions is discussed. One peculiarity of Ca+ is that an adequate description of the effect of LID requires taking into account several energy levels of Ca+, and thus several pairs of relative differences ( ν i - ν k )/ ν i for the transport frequencies for collisions of levels i and k with neutral atoms (hydrogen, helium). The known real (calculated ab initio) interaction potentials are used to numerically calculate the factors ( ν i - ν k )/ ν i for several states of Ca+ for collisions with H and He atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 6600-12 000 K, fairly high values are obtained for Ca+ ions, ( ν i - ν k )/ ν i ≈ 0.4-0.6. Simple, transparent computations demonstrate that the LID rates of Ca+ ions in the atmospheres of cool CP stars ( T eff = 6600 K) exceed the drift rate due to light pressure by two orders of magnitude. The LID is directed upward in the stellar atmosphere, and the heavy isotope 48Ca is pushed into upper layers of the atmosphere. This can explain the observed predominance of the heavy isotope 48Ca in the upper atmospheric layers of CP stars; according to the radiative-diffusion theory, the action of light pressure alone (in the absence of LID) would lead to sinking of the isotope 48Ca deeper into stellar atmosphere, following the lighter main isotope 40Ca. The 48Ca+ LIDrate decreases and its drift rate due to light pressure increases with growth of the effective temperatures in the atmospheres of CP stars. The manifestations of LID and light pressure are roughly comparable in the atmospheres of CP stars with effective temperatures near T eff = 9500 K.

  11. Etudes des Reactions de Transfert LITHIUM-7/LITHIUM -6

    NASA Astrophysics Data System (ADS)

    Baddou, Djafer

    Les reactions de transfert de deux nucleons ^7Li/^6Li(^3He, rm p)^8Be/^9Be ont ete effectuees a partir d'um faisceau d'^3He initialement polarise et d'energie incidente egale a 4.58 MeV au centre de la cible. Le faisceau d'^3He est simplement ionise et il est accelere par l'accelerateur Van de Graaff de l'Universite Laval. Ce faisceau d' ^3He est de polarisation egale a 40% et il est obtenu a partir d'une source d'^3He a l'etat metastable. Nous avons decrit la reaction depuis la production et le transport du faisceau initial de l'^3 He jusqu'a la chambre de reaction. Par la suite, nous avons obtenu les distributions angulaires de la section efficace differentielle et du pouvoir d'analyse de ces reactions. Elles ont ete comparees a la theorie DWBA a l'approximation zero. La theorie a montre qu'il s'agit d'un transfert de deux particules independants (neutron, proton) pour le cas de la reaction ^7Li( ^3He,rm p)^9Be et d'un transfert de "cluster" deuteron pour le cas de la reaction ^6Li(^3He, rm p)^8Be. Notons que pour cette reaction l'instabilite du ^8Be ne nous permet pas d'avoir une diffusion elastique permettant la determination des parametres du modele optique entre ce noyau et la particule diffusee. Afin de contourner cette difficulte, nous supposons que le ^8 Be est un noyau compose de deux particules alpha et nous avons teste cette hypothese avec les reactions ^6Li(^3He, rm p)^8Be et ^7Li( ^3He,rm d)^8Be. Nous mentionnons a la fin que nous avons observe que l'etat fondamental de la reaction ^6Li( ^3He,rm p)^8Be et l'etat excite 2.43 MeV de la reaction ^7Li(^3He,rm p)^9Be sont des reactions directes alors que le premier etat excite (2.96 MeV) de la reaction ^6Li(^3He,rm p)^8Be et l'etat fondamental de la reaction ^7Li(^3He,rm p)^9Be peuvent etre domines par une reaction a noyau compose.

  12. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately by operator-splitting. The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing, Germany. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. This study examines barometric pumping-driven subsurface transport of Xe-135, Xe-133m, Xe-133, Xe-131m including I-131, I-133 and I-135 on arrival times and isotopic activity ratios. This work was funded by the CTBTO Research Award for Young Scientist and Engineers (2013).

  13. Constraints on the Rates of Replenishment, Magma Mixing, and Crystal Recycling at Santorini Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Martin, V. M.; Davidson, J. P.; Morgan, D. J.; Jerram, D. A.

    2007-12-01

    Santorini is a young, active volcano, which preserves abundant evidence for open-system processes such as magma replenishment and crystal recycling, and thus represents an ideal system in which to study magma chamber dynamics. Santorini is the largest volcanic centre in the Aegean arc, with an eruptive history spanning more than 250,000 years over two eruptive cycles. The cycles are dominated by extended periods of effusive shield-building activity with occasional large-magnitude explosive eruptions, the Minoan eruption of ~3600 years ago being the most recent. Current activity consists of a phase of post-caldera reconstruction, focused recently on the intra-caldera Kameni islands. Microsampling to measure 87Sr/86Sr ratios of plagioclase cores indicates the presence of a complex plumbing system beneath Santorini. Large rhyodacitic deposits typically contain a mafic component, interpreted as the eruption trigger. In some cases, the mafic magma groundmass and phenocrysts are isotopically similar to their rhyodacite host; other deposits show the opposite, implying the coexistence of isotopically distinct magma batches. To add further complexity, plagioclase phenocrysts are in some cases in equilibrium with their groundmass while others show the reverse, implying modification due to crystal recycling or shallow mixing processes prior to eruption. Mafic enclaves in the recent Kameni lavas, again interpreted as the probable eruption trigger, provide some constraints on the rates of these recycling, mixing, and triggering processes. Glomerocrysts and xenocrysts of recycled gabbroic cumulate material are present in a number of Kameni enclaves. Isotopic and chemical disequilibrium between the cumulate crystals and the host indicate that these fragments are derived from pre- existing crystal mush piles pervaded by the replenishing melts as they migrated to shallow levels, creating disequilibrium between the cumulate mineral cores and the replenishing melts. 87Sr/86Sr isotope ratios of plagioclase xenocryst cores suggest crystal recycling from a pre-Minoan source is probable. Olivine xenocrysts in the enclaves possess narrow (10-30 μm) Fe-Mg diffusion profiles, due to interaction with enclave magma groundmass, which can be used to estimate the interval between entrainment and eruption. Initial modelling of diffusion profiles from more than 60 crystals suggests short timescales, from 15 to 45 days, for the combined migration-replenishment-eruption cycle at Kameni.

  14. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  15. Voyager measurements of the isotopic composition of cosmic-ray aluminum and implications for the propagation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of aluminum in the low-energy range form 75 to 206 MeV per nucleon.This measurement was made using the high-energy telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1993 with an average solar modulation level about 497 MV, roughly the same as at Earth near sunspot minimum. We obtain approximately 430 Al events of which approximately 35 are Al-26 and 395 are Al-27. The Al isotopes were separated with an average mass resolution sigma of 0.35 amu. Our interpretation of the isotopic composition of cosmic-ray aluminum is based on a standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the latest cross sections of the New Mexico-Saclay collaboration as well as a disk-halo diffusion model. From our observed ratio Al-26/Al-27 of 8.3 +/- 2.4 % we deduce an average interstellar density of about 0.52 (+0.26, -0.2) atoms per cu cm. This density is larger than the value of 0.28 (+0.14, -0.11) atoms per cu cm we found from an analysis of the observed abundance of the longer lived Be-10 made using data from the Voyager detectors over almost the same time interval and using essentially the same propagation program.

  16. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5more » day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.« less

  17. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Astrophysics Data System (ADS)

    Lukasiak, A.; Ferrando, P.; McDonald, F. B.; Webber, W. R.

    1994-03-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and a cosmic-ray lifetime for escape of 27 (+19, -9) x 106 years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  18. Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity

    NASA Astrophysics Data System (ADS)

    Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.

    2017-12-01

    Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the apparent force constant with increasing temperature and increasing mean square displacement. We have measured the Fe force constant of basalt glass and olivine using a wire furnace. At the conference, we will report on these experiments and will discuss some implications for igneous petrology.

  19. N vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in TiN studied by ab-initio and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sangiovanni, Davide G.; Alling, Björn; Hultman, Lars; Abrikosov, Igor A.

    2015-03-01

    We use ab-initio and classical molecular dynamics (AIMD, CMD) to simulate diffusion of N vacancy and N self-interstitial point-defects in B1 TiN. The physical properties of TiN, important material system for thin film and coatings applications, are largely dictated by concentration and mobility of point defects. We determine N dilute-point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, MD simulations reveal an unanticipated atomistic process, which controls the spontaneous formation of N-self-interstitial/N-vacancy pairs (Frenkel pairs) in defect-free TiN. This entails that a N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; 50% of these processes result in the exchange of two nitrogen lattice atoms. Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects. The Knut and Alice Wallenberg foundation (Isotope Project, 2011.0094), the Swedish Research Council (VR) Linköping Linnaeus Initiative LiLi-NFM (Grant 2008-6572), and the Swedish Government Strategic Research (Grant MatLiU 2009-00971).

  20. [Monitoring of extra- and intra-cellular compartment through total body impedance (author's transl)].

    PubMed

    Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E

    1979-01-01

    To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.

  1. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; Cassata, William S.

    2017-05-01

    Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. In this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars. Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (Ea) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D0) spanning three orders of magnitude from 2.4 × 10-3 to 8.9 × 10-1 cm2 s-1. As a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.

  2. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not seen in marine air. This study shows strong evidence suggesting the utility of applying these isotope tracers and, provides data to quantify atmospheric moisture variability in land surface models.

  3. Multi-stage metasomatism revealed by trace element and Li isotope distributions in minerals of peridotite xenoliths from Allègre volcano (French Massif Central)

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyan; Deloule, Etienne; France, Lydéric; Ingrin, Jannick

    2016-11-01

    The modal, chemical, and isotopic compositions of mantle peridotite are largely modified by metasomatic processes, which may affect them repeatedly. Xenoliths are commonly used to characterize those metasomatic processes along with the structure, and chemical and isotopic compositions of mantle domains. Nevertheless, the original mantle signatures born by mantle xenoliths are potentially obscured by the interactions occurring between the host magma and the xenolith itself. Here we attempt to identify to which degree the original Li content and isotopic composition, as well as other trace element contents of mantle xenoliths, can be modified by interaction with the host magma. Peridotite xenoliths that have suffered extensive exchange with the entraining magma were sampled in the solidified lava lake of Allègre, Southern French Massif Central, in order to decipher the signature related to peridotite-melt interaction, and to further unravel the evolution of the sub-continental lithospheric mantle. In-situ trace element analyses of clinopyroxene (Cpx) were performed via LA-ICP-MS, and the Li content and isotopic composition of pyroxene and olivine (Ol) via SIMS. Negative HFSE anomalies (Ti/Eu ratios as low as 437) and markedly high LREE/HREE ratios ((La/Yb)N as high as 79) are characteristic of mantle metasomatism at depth. Lithium isotope systematics indicates that at least two different metasomatic events affected the peridotite. Exceptionally high Li contents in Cpx (up to 50 ppm) and slight Li enrichment of Ol rims are ascribed to diffusive Li influx with a positive δ7Li value (+ 3.2‰) from the host magma after entrainment. Conversely, Ol cores preserve extremely light Li isotopic compositions (δ7Li as low as - 25‰) with high Li contents (up to 4.4 ppm) compared to normal mantle, indicating a metasomatic event that occurred before xenolith entrainment. The negative δ7Li signature of this early metasomatism may be related to subduction-related fluids released during the Variscan orogeny. Trace element distributions in minerals reveal that the HFSE and REE composition of Cpx and the negative δ7Li signature in Ol cores were not acquired simultaneously. Therefore at least three successive metasomatic events affected the Allegre peridotites, as revealed through the use of detailed in-situ Li isotopic analyses to trace melt-rock interactions.

  4. Constraining N2O emissions since 1940 by firn air isotope measurements in both hemispheres

    NASA Astrophysics Data System (ADS)

    Prokopiou, Markella; Martinerie, Patricia; Sapart, Celia; Witrant, Emmanuel; Monteil, Guillaume; Ishijima, Kentaro; Kaiser, Jan; Levin, Ingeborg; Sowers, Todd; Blunier, Thomas; Etheridge, David; Dlugokencky, Ed; van de Wal, Roderik; Röckmann, Thomas

    2017-04-01

    N2O is currently the 3rd most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290±1) nmol mol-1 in 1940 to (322±1) nmol mol-1 in 2008 the isotopic δ values of atmospheric N2O decreased by (- 2.2±0.2) ‰ for δ15Nav, (- 1.0±0.3) ‰ for δ18O, (- 1.3±0.6) ‰ for δ15Nα, and (- 2.8±0.6) ‰ for δ15Nβover the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to be 123 a. Adopting this lifetime results in total average source isotopic signatures of (- 7.6±0.8) ‰ (vs. Air-N2) for δ15Nav, (32.2±0.2) ‰ (vs. VSMOW) for δ18O, (- 3.0±1.9) ‰ (vs. Air-N2) for δ15Nα, and (- 11.7±2.3) ‰ (vs. Air-N2) for δ15Nβ over the investigated period. δ15Navand δ15Nβ show some temporal variability while the other source isotopic signatures remain unchanged. The 15N site-preference (= δ15Nα - δ15Nβ) can be used to reveal further information on the source emission origins. Based on the changes in the isotopes we conclude that the main contribution to N2O changes in the atmosphere since 1940 is from soils, with agricultural soils being the principal anthropogenic component, which is in line with previous studies.

  5. Distribution and origin of salinity in the surficial and intermediate aquifer systems, southwestern Florida

    USGS Publications Warehouse

    Schmerge, David L.

    2001-01-01

    Chloride concentrations in the surficial and intermediate aquifer systems in southwestern Florida indicate a general trend of increasing salinity coastward and with depth. There are some notable exceptions to this trend. Brackish water is present in the sandstone and mid-Hawthorn aquifers in several inland areas in Lee County. In an area near the coast in Collier County, the lower Tamiami aquifer contains freshwater, with brackish water present farther inland. Saline water is present in the lower Tamiami aquifer along the coast in Collier County, but water is brackish in the underlying mid-Hawthorn and Upper Floridan aquifers. The analyses of major ions, hydrogen and oxygen isotopes, and strontium isotopes indicate the primary sources of salinity are underlying aquifers and the Gulf of Mexico. Based on these data, much of the salinity is from upward leakage of brackish water from underlying aquifers. Discharge as diffuse upward leakage and artesian wells are two possible pathways of saltwater intrusion from underlying aquifers. Artesian wells open to multiple aquifers have been pathways of saltwater intrusion in the sandstone and mid-Hawthorn aquifers in much of Lee County. The source of brackish water in the lower Tamiami and mid-Hawthorn aquifers in Collier County may be natural diffuse leakage from underlying aquifers. The source of the saline water in the lower Tamiami aquifer in Collier County is apparently the Gulf of Mexico; it is unclear however, whether this saline water is residual water from former Pleistocene sea invasions or recent saltwater intrusion.

  6. Experimenting with mixing and layered convection in phono-trachytic magmas: Implications on reservoir dynamics

    NASA Astrophysics Data System (ADS)

    de Campos, C. P.; Civetta, L.; Dingwell, D. B.; Perugini, D.; Petrelli, M.; Fehr, T. K.

    2006-12-01

    Abundant geochemical and volcanological data on the Campanian Ignimbrite, (>200 km3, 39 ka) Phlegrean Fields, Italy, support the existence of a layered magmatic reservoir, which evolved via 1) replenishment of the chamber with trachytic magma and 2) short-term pre-eruptive mixing between new trachytic and phono- trachytic resident magmas. We have initiated an experimental program in order to constrain the dynamics of such mingling/mixing events. We used melted natural products from these two magmas of sub-equal but distinct composition, which are thought to have been involved in the origin of this magmatic system as end-members (phono-trachyte = end- member A and trachyte = end-member B). The two were then stirred together and sampled by experiment termination as a time series, ranging from 1-hour up to 1-week. Stirring under constant low flow velocity (0.5 rotations per minute) generated at first homogenization and mixing of the starting compositions. Then separate convection cells and compositional layering for major and minor elements emerged. Calculated density distributions along sections from the experimental glasses, after decoupling, are very similar to density distributions in aqueous systems under double-diffusive convection. In order to test double- diffusive decoupled convection in this system, we performed 87Sr/86Sr-isotopic and Sr- LA-ICP-MS- measurements, using the 25-hour experimental glasses. The effective chemical separation of different convection cells has been confirmed with clearly distinct isotopic signatures for both bottom and top cells. Comparison with natural samples from the Campanian Ignimbrite strengthens the importance of the role of a double-diffusive similar convection as a major differentiation process leading to layering in this system. Our results support the effectiveness of a DDC-driven fractionation for moderately high-silica magmas under high near-liquidus temperatures, before the onset of fractional crystallization.

  7. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.

  8. The influence of layering and barometric pumping on firn air transport in a 2-D model

    NASA Astrophysics Data System (ADS)

    Birner, Benjamin; Buizert, Christo; Wagner, Till J. W.; Severinghaus, Jeffrey P.

    2018-06-01

    Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability) on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D) firn air models. Here we present a two-dimensional (2-D) trace gas advection-diffusion-dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast- and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 °C in noble-gas-based mean ocean temperature reconstructions at WAIS Divide, Antarctica.

  9. Quantifying the signature of the industrial revolution from Pb and Cd isotopes in the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Herndon, E.; Jin, L.; Sanchez, D.; Brantley, S. L.

    2013-12-01

    Anthropogenic forcings have dominated metal cycling in many environments. During the period of the industrial revolution, mining and smelting of ores and combustion of fossil fuels released non-negligible amounts of potentially toxic metals such as Pb, Cd, Mn, and Zn into the environment. The extent and fate of these metal depositions in soils during that period however, have not been adequately evaluated. Here, we combine Pb isotopes with Cd isotopes to trace the sources of metal pollutants in a small temperate watershed (Shale Hills) in Pennsylvania. Previous work has shown that Mn additions to soils in central PA was caused by early iron production, as well as coal burning and steel making upwind. Comparison of the Pb and Cd concentrations in the bedrock and soils from this watershed show that Pb and Cd in soils at Shale Hills are best characterized by addition profiles, consistent with atmospheric additions. Three soil profiles at Shale Hills on the same hillslope have very similar anthropogenic Pb inventories. Pb isotope results further reveal that the extensive use of local coals during iron production in early 19th century in Pennsylvania is most likely the anthropogenic Pb source for the surface soils at Shale Hills. Pb concentrations and isotope ratios were used to calculate mass balance and diffusive transport models in soil profiles. The model results further reveal that during the 1850s to 1920s, coal burning in local iron blasting furnaces significantly increased the Pb deposition rates to 8-14 μg cm-2 yr-1, even more than modern Pb deposition rates derived from the use of leaded gasoline in the 1940s to 1980s. Furthermore, Cd has a low boiling point (~760 °C) and easily evaporates and condenses. The evaporation and condensation processes could generate systematic mass-dependent isotope fractionation between Cd in coal burning products and the naturally occurring Cd in the sulfide minerals of coals. This fractionation indicates that Cd isotopes can be used as a novel tracer of materials that have been affected by industrial high temperature processes, distinguishing them from natural Cd sources. Our ongoing Cd isotope measurements in the same soil profiles thus hold significant promise for tracing anthropogenic sources of this highly toxic metal in the environment. This will be the first time that Cd isotopes are characterized for polluted soils related to coal-burning activities. Such information will provide the first Cd isotope dataset to assess the environmental impacts due to the use of coals on a global scale. These new Pb and Cd isotope results, along with previous observations of Mn enrichment at Shale Hills, suggest that historical point sources from the industrial revolution could contribute significant amounts of metal contamination to top-soils. Our study highlights the importance of using multiple isotope systems to investigate Critical Zone processes in identical lithology and environmental settings.

  10. Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.

    PubMed

    Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja

    2018-07-01

    Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Bryophytes as Climate Indicators: moss and liverwort photosynthetic limitations and carbon isotope signals in organic material and peat deposits

    NASA Astrophysics Data System (ADS)

    Griffiths, H.; Royles, J.; Horwath, A.; Hodell, D. A.; Convey, P.; Hodgson, D.; Wingate, L.; Ogeé, J.

    2011-12-01

    Bryophytes make a significant contribution to carbon sequestration and storage in polar, boreal, temperate and tropical biomes, and yet there is limited understanding of the determinants of carbon isotope composition. Bryophytes are poikilohydric and lack stomata in the vegetative (gametophyte) stage, and lack of roots and reliance on liquid water to maintain hydration status also imposes diffusional limitations on CO2 uptake and extent of carbon isotope discrimination. Real-time gas exchange and instantaneous discrimination studies can be used to quantify responses to liquid phase limitation. Thus, wetted tissues show less negative δ13C signals due to liquid phase conductance and, as the thallus surface dries, maximum CO2 assimilation and discrimination are attained when the limitation is primarily the internal (mesophyll) conductance. Continued desiccation then leads to additional biochemical limitation in drought tolerant species, and low discrimination, although the carbon gain is low at this time. In this paper we explore the extent of carbon isotope discrimination in bulk organic material and cellulose as a function of climatic and environmental conditions, in temperate, tropical and Antarctic bryophytes. Field studies have been used to investigate seasonal variations in precipitation and water vapour inputs for cloud forest formations as a function of bryophyte biomass, diversity and isotope composition in epiphytes (particularly leafy liverworts) along an altitudinal gradient in Peru. In the Antarctic, moss banks sampled on Signy Island consisted of only two species, primarily Chorisodontium aciphyllum and some Polytrichum strictum, allowing the collection of shallow and deep cores representative of growth over the past 200 to 2000 years. The well-preserved peat has provided data on growth (14C) and stable isotopic proxies (13C, 18O) for material contemporary with recent anthropogenic climate forcing (over the past 200 years), for comparison with longer-term trends. Once corrected for source CO2 inputs, the carbon isotope signals are consistent with recent increases in growing season length. Laboratory studies on real-time CO2 uptake and isotope discrimination as a function of water content, for the desiccation-tolerant moss Syntrichia ruralis, reveal the interactions between surface water, liquid phase and mesophyll diffusion limitation. These data have been used to develop a model for isotope discrimination in mosses as a function of water status and we will discuss the extent that such a model can be used predictively to determine moss-peat water status, and infer current and past climatic conditions.

  12. The streaming of 1.3 - 2.3 MeV cosmic-ray protons during periods between prompt solar particle events. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    1977-01-01

    The anisotropy of 1.3 to 2.3 MeV protons in interplanetary space was measured using the Caltech electron/isotope spectrometer aboard IMP-7 for 317 6 hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies were determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles was found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy was inconsistent with previously proposed sources of low energy proton increases seen at 1 AU which involve continual solar acceleration. The typical properties of this new component of low-energy cosmic rays were determined for this period which is near solar minimum.

  13. THORON-SCOUT - first diffusion based active Radon and Thoron monitor

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.

    2016-10-01

    THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.

  14. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  15. One Year of Monthly N and O Isotope Measurements in Nitrate from 18 Streamwater Monitoring Stations Within the Predominantly Pastoral Upper Manawatu Catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Douence, C.

    2010-12-01

    New Zealand's intensive pastoral agricultural systems have a significant impact on water quality due to nitrogen loading in rivers. A research programme has been designed to develop indicators of the sources and denitrification losses of nitrate in streamwater. This work describes the results of one year of monthly measurements at ~18 monitoring locations in the 1260 square km upper Manawatu River catchment. The catchment was chosen for study because it is among the most pastoral catchments in New Zealand, with little non-pastoral agriculture and limited forest area outside of the Tararua mountain range on the west side of the catchment. The use of N and O isotope ratios in nitrate has considerable potential to elucidate the sources and fate of nitrate with greater precision than in most other nations due to the lack of nitrate in atmospheric deposition and the lack of nitrates used as fertilizer. We measured N and O isotope ratios in nitrate plus nitrite using cadmium and azide chemical denitrification method, and refer to the results as nitrate for brevity due to low nitrite concentrations. When examined as annual averages at each monitoring site, we found the lowest N and O isotope ratios in our only site draining native forest. All agricultural monitoring sites sit approximately on a 1:1 line, enriched in N-15 and O-18 by 2-6 per mil relative to the native forest subcatchment. The three main effluent point sources in the catchment demonstrated unexpected variability in isotope ratios. Two modern sewage treatment ponds had N and O isotope ratios close to those found in agricultural catchments, while a closed meat freezing factory effluent pond had isotope ratios strongly enriched in N-15 and O-18. The lack of summer low flows during monitoring period, combined with the variability in isotope ratios from point source, appeared to be responsible for our inability to clearly detect the effect of point sources in the isotope data from stations upstream and downstream of the point source inputs. Month-to-month variation in some catchments sat near the 1:1 line expected for denitrification as the primary driver of variability in isotope ratios, but the data from many stations including river's main stem was more complex. Overall, we are hopeful about the potential for the development of isotope indicators as planned. Specifically, our results tentatively support the use of the O isotope composition of soil water as a function of elevation and irrigation, and N isotope composition of soil N as a function of agricultural intensity driving the use of N and O isotopes to identify sources. While diffusion processes appear to suppress the isotope effect associated with denitrification, it may be observable and consistent in smaller and more uniform subcatchments. These smaller subcatchments will therefore become an increasing focus of our study. If successful, the indicators we intend to develop have the potential to work within a nitrogen cap and trade scheme for the catchment, providing an important efficiency tool to enable agriculture intensification in areas of effective N removal while targeting areas of poor nitrogen removal for decreased agricultural intensity or alternate land uses.

  16. The use of natural isotopes for identifying the origins of groundwater flows: Drentsche Aa Brook Valley, The Netherlands.

    NASA Astrophysics Data System (ADS)

    Elshehawi, Samer; Grootjans, Ab; Bregman, Enno

    2017-04-01

    This paper investigates the origin of various groundwater flows in a small brook valley reserve Drentsche Aa Valley in the northern part of the Netherlands. The aim was also to validate a hydrological model that simulated coupled particle flow in this area and also incorporated different scenarios for groundwater abstraction in order to predict future implications of groundwater abstraction on ecological values. Water samples from various sites and depths were analysed for macro-ionic composition, stable isotopes (2H and 18O) and also 14C. Three sites have 14C activities over 100%, indicating very recent water. The main groundwater discharge areas showed inflow of old groundwater up to 5000 years. Inflow of different groundwater flows of various ages could be detected most clearly from the 14C data. Downstream area that were affected by groundwater abstraction showed distinct infiltration characteristics, both in macro-ionic composition and contents of natural isotopes, to a depth of 6m below surface In the main exfiltration areas, we found that at 95 meters below the surface, the groundwater was characterized by a NaCl type groundwater facies. But the absolute concentrations were not high enough to conclude that double diffusive convection (DDC) near a salt diapir was responsible for this effect.

  17. Carbon isotope variations in a solar pond microbial mat: Role of environmental gradients as steering variables

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred; Gorzawski, Hendrik; Dor, Inka

    1994-05-01

    A biogeochemical traverse is presented for a juvenile benthic mat covering the depth profile of an artificially stratified and eutrophicated hypersaline heliothermal pond with known gradients of temperature, salinity, pH, and light transmission. It can be shown that visual mat development depends primarily on temperature and salinity as main environmental steering variables whose increase with depth goes along with the attenuation and final disappearance of a visible microbial film in the pond's hypolimnic compartment. Recorded biogeochemical parameters (C org content, cell numbers, chlorophyll-a content) evidently reflect, as either biomass- or productivity-related index functions, the visually perceptible growth gradient of the microbial ecosystem along the pond slope. The observed coincidence of maxima in these index functions with maxima in δ13Corg clearly identifies high rates of primary productivity as the agent ultimately responsible for the generation of isotopically heavy ( 13C-enriched) biomass in these and related environments. Extreme demands placed on the local feeder pool of dissolved inorganic carbon by high rates of primary productivity entertained by the mat-forming microbenthos obviously give rise to severe CO 2 limitation, enforcing the operation of a diffusion-(supply-)limited assimilatory pathway with an isotopically indiscriminate metabolization of the available CO 2 resources.

  18. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    PubMed

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.

  19. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  20. Chromium isotope fractionation in ferruginous sediments

    NASA Astrophysics Data System (ADS)

    Bauer, Kohen W.; Gueguen, Bleuenn; Cole, Devon B.; Francois, Roger; Kallmeyer, Jens; Planavsky, Noah; Crowe, Sean A.

    2018-02-01

    Ferrous Fe is a potent reductant of Cr(VI), and while a number of laboratory studies have characterized Cr isotope fractionation associated with Cr(VI) reduction by ferrous iron, the expression of this fractionation in real-world ferrous Fe-rich environments remains unconstrained. Here we determine the isotope fractionation associated with Cr(VI) reduction in modern ferrous Fe-rich sediments obtained from the previously well studied Lake Matano, Indonesia. Whole core incubations demonstrate that reduction of Cr(VI) within ferruginous sediments provides a sink for Cr(VI) leading to Cr(VI) concentration gradients and diffusive Cr(VI) fluxes across the sediment water interface. As reduction proceeded, Cr(VI) remaining in the overlying lake water became progressively enriched in the heavy isotope (53Cr), increasing δ53Cr by 2.0 ± 0.1‰ at the end of the incubation. Rayleigh distillation modelling of the evolution of Cr isotope ratios and Cr(VI) concentrations in the overlying water yields an effective isotope fractionation of εeff = 1.1 ± 0.2‰ (53Cr/52Cr), whereas more detailed diagenetic modelling implies an intrinsic isotope fractionation of εint = 1.80 ± 0.04‰. Parallel slurry experiments performed using anoxic ferruginous sediment yield an intrinsic isotope fractionation of εint = 2.2 ± 0.1‰. These modelled isotope fractionations are corroborated by direct measurement of the δ53Cr composition on the upper 0.5 cm of Lake Matano sediment, revealing an isotopic offset from the lake water of Δ53Cr = 0.21-1.81‰. The data and models reveal that effective isotope fractionations depend on the depth at which Cr(VI) reduction takes place below the sediment water interface-the deeper the oxic non-reactive zone, the smaller the effective fractionation relative to the intrinsic fractionation. Based on the geochemistry of the sediment we suggest the electron donors responsible for reduction are a combination of dissolved Fe(II) and 0.5 M HCl extractable (solid phase) Fe(II). Our results are in line with the range of intrinsic fractionation factors observed for such phases in previous laboratory studies. We suggest that intrinsic isotope fractionations of around 1.8‰, may be broadly characteristic of ferruginous environments, but we note that the partitioning of ferrous Fe between dissolved and solid phases may modulate this value. These results indicate that seawater δ53Cr is only captured with high-fidelity by ferruginous sediments when oxygen penetration, and therefore the upper boundary of the zone of Cr(VI) reduction, extends to more than 10 cm below the sediment-water-interface, as can be the case in sediments deposited below oligotrophic waters. In more productive regions, with thinner oxic zones, ferruginous sediments would record δ53Cr as much as 1.8‰ lower than seawater δ53Cr. This implies that a range of sediment δ53Cr compositions, that include that of the igneous silicate earth (ISE), are possible even when seawater is isotopically heavier than the ISE.

  1. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps.

  2. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy-rich ceria during re-oxidation at room temperature. The quantified oxygen isotope fractionation factors are consistent with the direct involvement of O2 in the rate limiting step for ceria reoxidation in air at room temperature. While additional parameters may reduce some of the uncertainties in our approach, this study demonstrates that isotope effects can be an encouraging tool for studying oxygen transport kinetics in ceria and other oxides. In addition, our finding warns of the special cares and limits in using ceria as an exchange medium for laboratory triple oxygen isotope analysis of CO2 or other oxygen-bearing gases.

  3. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  4. Radium isotopes to investigate the water mass pathways on the Kerguelen plateau (KEOPS project)

    NASA Astrophysics Data System (ADS)

    Bourquin, M.; van Beek, P.; Reyss, J.; Souhaut, M.; Charette, M.; Jeandel, C.

    2006-12-01

    High biological productivity takes place on the Kerguelen Plateau in the Indian sector of the Southern Ocean known to be a HNLC region. Natural iron fertilization is suspected in that area. One goal of the KEOPS project is to understand the mechanisms controlling iron fertilization. We measured radium isotopes (228Ra, T1/2=5.75 y; 226Ra, T1/2=1602 y) in seawater in order to provide information on the water mass pathways on the Kerguelen plateau. Ra isotopes are produced in the sediment and diffuse in the water column. Ra isotopes may thus be a good analogue for tracing the input of sedimentary iron and its fate on the Kerguelen Plateau. The large volumes of seawater needed for Ra analysis were collected using either the ship-intake, Niskin bottles or in-situ pumping. MnO2 fibers were then used to separate Ra from seawater. 228Ra activities are extremely low in the plateau area, being in most cases <0.1 dpm/100 kg (ca. 1 ag/kg). Station A3 (520 m depth), located on the plateau in the middle of the bloom zone, also displays such low values with, however, higher 228Ra activities in the upper 50-150 m. Such a pattern suggests the presence of a water mass that has been advected on the Kerguelen Plateau. This water mass could have been enriched in 228Ra in contact with the sediment of Heard Island, south of the Kerguelen Plateau. The Ra data agree with the REE results of Zhang et al.

  5. Uptake and mobility of uranium in black oaks: implications for biomonitoring depleted uranium-contaminated groundwater.

    PubMed

    Edmands, J D; Brabander, D J; Coleman, D S

    2001-08-01

    In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.

  6. Spallation reactions in shock waves at supernova explosions and related problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustinova, G. K., E-mail: ustinova@dubna.net.ru

    2013-05-15

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies ofmore » many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.« less

  7. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  8. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars

    DOE PAGES

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; ...

    2017-02-20

    Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. Here in this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars.more » Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (E a) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D 0) spanning three orders of magnitude from 2.4 ×10 -3 to 8.9 × 10 -1 cm 2 s -1. Finally, as a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.« less

  9. Identification of nitrate sources in groundwater using a stable isotope and 3DEEM in a landfill in Northeast China.

    PubMed

    Ma, Zhifei; Yang, Yu; Lian, Xinying; Jiang, Yonghai; Xi, Beidou; Peng, Xing; Yan, Kun

    2016-09-01

    The groundwater was sampled in a typical landfill area of the Northeast China. Coupled stable isotope and three dimensional excitation-emission matrix (3DEEM) were applied to dentify diffused NO3(-) inputs in the groundwater in this area. The results indicated that combined with the feature of groundwater hydrochemistry and three-dimensional fluorescence technology can effectively identify the nitrate pollution sources. The nitrate was derived from manure and sewage by δ(15)N and δ(18)O-NO3(-) values of groundwater in the different periods. The excitation-emission matrix fluorescence spectroscopy was further evidence of groundwater DOM mainly which comes from the landfill. The protein-like was very significant at the sampling points near the landfill (SPNL), but only fulvic acid-like appeared at downstream of the landfill groundwater sampling points (DLGSP) in the study area. Partial denitrification processes helped to attenuate nitrate concentration in anaerobic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Following 18O uptake in scCO2–H2O mixtures with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, Charles F.; Schaef, Herbert T.; Martin, Paul F.

    2012-03-01

    The kinetics of 18O/16O isotopic exchange in scCO2 containing liquid water was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C16O18O and C18O2 molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing liquid H218O into scC16O2. Temporal dependence indicated the isotopic exchange was diffusion-limited in our cell for both molecules, and that the chemical reactions within the liquid phase were comparatively rapid. However, the ratio of concentrations of the 18O-labeled CO2 molecules, C18O2/C16O18O, was much higher than expected in the supercritical phase, suggestingmore » the role of an intermediate step, possibly desorption, in moderating the concentrations of these species in the liquid water phase.« less

  11. Observation of the ⁶⁰Fe nucleosynthesis-clock isotope in galactic cosmic rays.

    PubMed

    Binns, W R; Israel, M H; Christian, E R; Cummings, A C; de Nolfo, G A; Lave, K A; Leske, R A; Mewaldt, R A; Stone, E C; von Rosenvinge, T T; Wiedenbeck, M E

    2016-05-06

    Iron-60 ((60)Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 × 10(5) iron nuclei, with energies ~195 to ~500 mega-electron volts per nucleon, of which we identify 15 (60)Fe nuclei. The (60)Fe/(56)Fe source ratio is (7.5 ± 2.9) × 10(-5) The detection of supernova-produced (60)Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the (60)Fe half-life of 2.6 million years and that the (60)Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, ⪍1 kiloparsec. A natural place for (60)Fe origin is in nearby clusters of massive stars. Copyright © 2016, American Association for the Advancement of Science.

  12. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.

  13. The role of phosphates for the Lu-Hf chronology of meteorites

    NASA Astrophysics Data System (ADS)

    Debaille, Vinciane; Van Orman, James; Yin, Qing-Zhu; Amelin, Yuri

    2017-09-01

    The 176Lu-176Hf isotopic system is widely used for dating and tracing cosmochemical and geological processes, but still suffers from two uncertainties. First, Lu-Hf isochrons for some early Solar System materials have excess slope of unknown origin that should not be expected for meteorites with ages precisely determined with other isotopic chronometers. This observation translates to an apparent Lu decay constant higher than the one calculated by comparing ages obtained with various dating methods on terrestrial samples. Second, unlike the well constrained Sm/Nd value (to within 2%) for the chondritic uniform reservoir (CHUR), the Lu/Hf ratios in chondrites vary up to 18% when considering all chondrites, adding uncertainty to the Lu/Hf CHUR value. In order to better understand the Lu-Hf systematics of chondrites, we analyzed mineral fractions from the Richardton H5 chondrite to construct an internal Lu-Hf isochron, and set up a numerical model to investigate the effect of preferential diffusion of Lu compared to Hf from phosphate, the phase with the highest Lu-Hf ratio in chondrites, to other minerals. The isochron yields an age of 4647 ± 210 million years (Myr) using the accepted 176Lu decay constant of 1.867 ± 0.008 ×10-11yr-1. Combining this study with the phosphate fractions measured in a previous study yields a slope of 0.08855 ± 0.00072, translating to a 176Lu decay constant of 1.862 ± 0.016 ×10-11yr-1 using the Pb-Pb age previously obtained, in agreement with the accepted value. The large variation of the Lu/Hf phosphates combined with observations in the present study identify phosphates as the key in perturbing Lu-Hf dating and generating the isochron slope discrepancy. This is critical as apatite has substantially higher diffusion rates of rare earth elements than most silicate minerals that comprise stony meteorites. Results of numerical modeling depending of temperature peak, size of the grains and duration of the metamorphic event, show that diffusion processes in phosphate can produce an apparently older Lu-Hf isochron, while this effect will remain negligible in perturbing the Sm-Nd chronology. Our results suggest that only type 3 chondrites with the lowest metamorphic grade and large minerals with minimal diffusive effects are suitable for determination of the Lu-Hf CHUR values and the Lu decay constant respectively.

  14. Study of iodine migration in zirconia using stable and radioactive ion implantation

    NASA Astrophysics Data System (ADS)

    Chevarier, N.; Brossard, F.; Chevarier, A.; Crusset, D.; Moncoffre, N.

    1998-03-01

    The large uranium fission cross section leading to iodine and the behaviour of this element in the cladding tube during energy production and afterwards during waste storage is a crucial problem, especially for 129I which is a very long half-life isotope ( T = 1.59 × 10 7yr). Since a combined external and internal oxidation of the zircaloy cladding tube occurs during the reactor processing, iodine diffusion parameters in zirconia are needed. In order to obtain these data, stable iodine atoms were first introduced by ion implantation into zirconia with an energy of 200 keV and a dose equal to 8 × 10 15at cm -2. Diffusion profiles were measured using 3 MeV alpha-particle Rutherford Backscattering Spectrometry at each step of the annealing procedure between 700°C and 900°C. In such experiments a reduced iodine concentration was observed, which correlated to a diffusion-like process. Similar analysis has been performed using radioactive 131I implanted at a very low dose of 10 9 at cm -2. In this case the iodine release is deduced from gamma-ray spectroscopy measurements. The results are discussed in this paper.

  15. Fast Xe-129 relaxation in solid xenon near its melting point: Cross-over from Raman scattering of phonons to vacancy diffusion.

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-03-01

    NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.

  16. The distribution of 99mTc-EHDP in the tissues of the dog and its application in the assessment of fracture healing.

    PubMed

    Hughes, S

    1977-07-01

    Technetium-labelled ethane hydroxydiphosphonate (99mTc-EHDP) is a commonly used bone-scanning agent. After injection it leaves the circulation to enter bone and to be cleared by the kidney. The transcapillary exchange of 99mTc-EHDP in bone was examined and found to be low. The capillary movement was compared with that of sucrose, a freely diffusible substance, and it was found that the permeability ratio of 99mTc-EHDP to 14C-sucrose was similar to the diffusion coefficient ratio, suggesting that 99mTc-EHDP passes through the capillaries by the process of passive diffusion. The renal clearance of 99mTc-EHDP was 24 ml/min and was unaffected by the action of parathyroid hormone. After a fracture the bone blood flow increases, although the transcapillary extraction of 99mTc-EHDP does not change. This is because there is an increase, from recruitment and dilatation of capillaries, in the surface area available for exchange. Therefore the increased isotopic activity seen on a bone scan after a fracture is primarily related to an increase in bone blood supply from capillary enhancement within the cortex.

  17. Fate and Transport of Shale-derived, Biogenic Methane.

    PubMed

    Hendry, M Jim; Schmeling, Erin E; Barbour, S Lee; Huang, M; Mundle, Scott O C

    2017-07-07

    Natural gas extraction from unconventional shale gas reservoirs is the subject of considerable public debate, with a key concern being the impact of leaking fugitive natural gases on shallow potable groundwater resources. Baseline data regarding the distribution, fate, and transport of these gases and their isotopes through natural formations prior to development are lacking. Here, we define the migration and fate of CH 4 and δ 13 C-CH 4 from an early-generation bacterial gas play in the Cretaceous of the Williston Basin, Canada to the water table. Our results show the CH 4 is generated at depth and diffuses as a conservative species through the overlying shale. We also show that the diffusive fractionation of δ 13 C-CH 4 (following glaciation) can complicate fugitive gas interpretations. The sensitivity of the δ 13 C-CH 4 profile to glacial timing suggests it may be a valuable tracer for characterizing the timing of geologic changes that control transport of CH 4 (and other solutes) and distinguishing between CH 4 that rapidly migrates upward through a well annulus or other conduit and CH 4 that diffuses upwards naturally. Results of this study were used to provide recommendations for designing baseline investigations.

  18. Evaluation of δ2H and δ18O of water in pores extracted by compression method-effects of closed pores and comparison to direct vapor equilibration and laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Nakata, Kotaro; Hasegawa, Takuma; Oyama, Takahiro; Miyakawa, Kazuya

    2018-06-01

    Stable isotopes (δ2H and δ18O) of water can help our understanding of origin, mixing and migration of groundwater. In the formation with low permeability, it provides information about migration mechanism of ion such as diffusion and/or advection. Thus it has been realized as very important information to understand the migration of water and ions in it. However, in formation with low permeability it is difficult to obtain the ground water sample as liquid and water in pores needs to be extracted to estimate it. Compressing rock is the most common and widely used method of extracting water in pores. However, changes in δ2H and δ18O may take place during compression because changes in ion concentration have been reported in previous studies. In this study, two natural rocks were compressed, and the changes in the δ2H and δ18O with compression pressure were investigated. Mechanisms for the changes in water isotopes observed during the compression were then discussed. In addition, δ2H and δ18O of water in pores were also evaluated by direct vapor equilibration and laser spectrometry (DVE-LS) and δ2H and δ18O were compared with those obtained by compression. δ2H was found to change during the compression and a part of this change was found to be explained by the effect of water from closed pores extracted by compression. In addition, water isotopes in both open and closed pores were estimated by combining the results of 2 kinds of compression experiments. Water isotopes evaluated by compression that not be affected by water from closed pores showed good agreements with those obtained by DVE-LS indicating compression could show the mixed information of water from open and closed pores, while DVE-LS could show the information only for open pores. Thus, the comparison of water isotopes obtained by compression and DVE-LS could provide the information about water isotopes in closed and open pores.

  19. Isotopologue fractionation during N(2)O production by fungal denitrification.

    PubMed

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for resolving bacterial and fungal production. Our work further provides insight into the role that fungal and bacterial nitric oxide reductases have in determining site preference during N2O production. Copyright 2008 John Wiley & Sons, Ltd.

  20. The role of off-line mass spectrometry in nuclear fission.

    PubMed

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of samples from the Oklo Natural Reactor have enabled the nuclear parameters of the various reactor zones to be calculated, and the mobility/retentivity of a number of elements to be established in the reactor zones and the surrounding rocks. These isotopic studies have given valuable information on the geochemical behavior of natural geological repositories for radioactive waste containment. © 1997 John Wiley & Sons, Inc. Copyright © 1997 John Wiley & Sons, Inc.

  1. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.

  2. The Interstellar 7Li/6Li Ratio in the Diffuse Gas Near IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, A. M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2010-11-01

    Supernova remnants are believed to be the primary acceleration sites of Galactic cosmic rays (GCR), which are essential to gas-phase interstellar chemistry since they are a major source of ionization in both diffuse and dense environments. The interaction of accelerated particles with interstellar gas will also synthesize isotopes of the light elements Li, Be, and B through the spallation of CNO nuclei (producing all stable LiBeB isotopes) and through α+α fusion (yielding 6Li and 7Li, only). Type II supernovae may provide an additional source of 7Li and 11B during core collapse through neutrino-induced spallation in the He and C shells of the progenitor star (the ν-process). However, direct observational evidence for light element synthesis resulting from cosmic-ray or neutrino-induced spallation is rare. Here, we examine 7Li/6Li isotope ratios along four lines of sight through the supernova remnant IC 443 using observations of the Li I λ6707 doublet made with the Hobby-Eberly Telescope (HET) at McDonald Observatory. The 7Li/6Li ratio in the general interstellar medium is expected to be similar to the ratio of ~12 that characterizes solar system material. A local enhancement in the cosmic-ray flux will act to lower 7Li/6Li, yielding a ratio of ~2 when cosmic rays dominate Li synthesis. Gamma-ray emission from IC 443 provides strong evidence for the interaction of cosmic rays accelerated by the remnant with the ambient atomic and molecular gas. Yet this material has also been contaminated by the ejecta of a Type II supernova, which should be enriched in 7Li. We are seeking 7Li/6Li ratios that are either higher than the solar system ratio as a result of the ν-process or lower due to cosmic-ray spallation. Since the fine structure separation of the Li I doublet is comparable to the isotope shift (~7 km s-1) and each fine structure line is further split into hyperfine components, the velocity structure along the line of sight must be carefully constrained if meaningful 7Li/6Li ratios are to be determined. In our analysis, the strongest components seen in K I and CH are used to synthesize the complex Li I profiles. We will discuss the implications of our results on 7Li/6Li (and Li/K) ratios in the context of Li production by Type II supernovae.

  3. Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier

    NASA Astrophysics Data System (ADS)

    Kratz, J. V.; Schädel, M.; Gäggeler, H. W.

    2013-11-01

    Recent theoretical work has renewed interest in radiochemically determined isotope distributions in reactions of 238U projectiles with heavy targets that had previously been published only in parts. These data are being reexamined. The cross sections σ(Z) below the uranium target have been determined as a function of incident energy in thick-target bombardments. These are compared to predictions by a diffusion model whereby consistency with the experimental data is found in the energy intervals 7.65-8.30 MeV/u and 6.06-7.50 MeV/u. In the energy interval 6.06-6.49 MeV/u, the experimental data are lower by a factor of 5 compared to the diffusion model prediction indicating a threshold behavior for massive charge and mass transfer close to the barrier. For the intermediate energy interval, the missing mass between the primary fragment masses deduced from the generalized Qgg systematics including neutron pair-breaking corrections and the centroid of the experimental isotope distributions as a function of Z have been used to determine the average excitation energy as a function of Z. From this, the Z dependence of the average total kinetic-energy loss (TKEL¯) has been determined. This is compared to that measured in a thin-target counter experiment at 7.42 MeV/u. For small charge transfers, the values of TKEL¯ of this work are typically about 30 MeV lower than in the thin-target experiment. This difference is decreasing with increasing charge transfer developing into even slightly larger values in the thick-target experiment for the largest charge transfers. This is the expected behavior which is also found in a comparison of the partial cross sections for quasielastic and deep-inelastic reactions in both experiments. The cross sections for surviving heavy actinides, e.g., 98Cf, 99Es, and 100Fm indicate that these are produced in the low-energy tails of the dissipated energy distributions, however, with a low-energy cutoff at about 35 MeV. Excitation functions show that identical isotope distributions are populated independent of the bombarding energy indicating that the same bins of excitation energy are responsible for the production of these fissile isotopes. A comparison of the survival probabilities of the residues of equal charge and neutron transfers in the reactions of 238U projectiles with either 238U or 248Cm targets is consistent with such a cutoff as evaporation calculations assign the surviving heavy actinides to the 3n and/or 4n evaporation channels.

  4. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  5. Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.

    2011-02-01

    4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).

  6. Short-lived radium isotopes on the Scotian Shelf: Unique distribution and tracers of cross-shelf CO2 and nutrient transport

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth

    2013-04-01

    Radium (Ra) isotopes have become a common tool for investigating mixing rates on continental shelves, and more recently have been used to quantify the release of dissolved compounds enriched in pore-waters into the water column. We present results from Ra sampling of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean, which reveal cross-shelf Ra distributions that are unique compared to other coastal regions. We explain the observations of lower 224Ra activities near the coast, relatively high activities at large distances offshore (>100km), and gradients in both offshore and onshore directions by inferring the regional geomorphology, as well as shelf bathymetry and circulation patterns. Ra gradients are used to calculate individual estimates of eddy diffusion in both the cross-shelf (KX) and vertical (KZ) directions using 1-D eddy diffusion models. Enhanced vertical mixing above offshore banks allows for Ra enrichments in offshore surface waters, while horizontal dispersion of this bank-related signal can transport Ra off the shelf break in surface waters, and towards the shore beneath the surface mixed layer. Similar onshore gradients in CO2 and nutrient species combined with Ra-derived KX values can yield onshore carbon and nutrient fluxes in subsurface waters, which in turn supply the CO2 outgassing from the Scotian Shelf. Our results thus provide constraints for cross-shelf transports of carbon and nutrients on the Scotian Shelf in order to guide mass balance or model based budget approaches in future studies.

  7. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-04-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the soil profile. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This is where new research approaches should be aimed at.

  8. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox

    NASA Astrophysics Data System (ADS)

    Andersen, M. B.; Romaniello, S.; Vance, D.; Little, S. H.; Herdman, R.; Lyons, T. W.

    2014-08-01

    The abundance and isotope composition of redox sensitive elements in ancient sediments are increasingly used to understand the past ocean's geochemical state and the oxygenation history of the Earth. The redox transition of uranium (U) from soluble U+6 to relatively insoluble U+4 and its subsequent incorporation into reduced sediments has been used to deduce the redox state of the oceans in the past. Furthermore, recent analytical improvements have revealed significant 238U/235U fractionation during this redox transition, offering the potential for U isotopes to act as a redox proxy. However, the development of U isotopes as a geochemical tracer requires that U isotope systematics associated with redox changes, are well-characterized. This study focuses on U isotopes in recent sediments from the two largest modern anoxic ocean basins, the Black Sea and the Cariaco Basin, with the aim of advancing our understanding of the U isotope systematics in reducing marine environments. These anoxic sediments have high U accumulation rates and high 238U/235U ratios relative to seawater, in general agreement with a process that accumulates reduced U with a heavy isotopic composition. Using Al and Ca concentrations to correct for detrital and biogenic carbonate-bound U, we estimate the reduced authigenic U accumulated in the sediments and its 238U/235U. These results highlight the importance of isotopic mass balance constraints during diffusive transport and reaction of U from seawater and through pore-water, affecting the observed 238U/235U in sediments. Using these constraints, the average percentages of U depletion from top to bottom of the water column can be estimated, assuming batch-removal of U into anoxic sediments in a restricted basin. Using this framework, 238U/235U in modern anoxic sediments from the Black Sea imply U depletions in the water column of ∼30%, which is close to the observed ∼40% U depletion in the modern Black Sea water column at these depths. Similar U depletion in the water column is estimated from anoxic sediment samples of the Cariaco Basin. These recent anoxic sediments provide a basis for interpreting authigenic 238U/235U in ancient sediments. In particular, such analyses may offer insights, based on mass balance relationships, into whether particular ancient sediments were deposited in an open ocean or restricted basin. As such, this approach may provide key insight into the controls on local versus ocean-scale redox and, in that light, constraints the capacity of other proxies to capture global signals for anoxia/euxinia.

  9. Iron Isotope Systematics of the Bushveld Complex, South Africa: Initial Results

    NASA Astrophysics Data System (ADS)

    Stausberg, N.; Lesher, C. E.; Hoffmann-Barfod, G.; Glessner, J. J.; Tegner, C.

    2014-12-01

    Iron isotopes show systematic changes in igneous rocks that have been ascribed to fractional crystallization, partial melting, as well as, diffusion effects. Layered mafic intrusions, such as the Paleoproterozoic Bushveld Igneous Complex, are ideally suited to investigate stable isotope fractionation arising principally by fractional crystallization. The upper 2.1km of the Bushveld Complex (Upper and Upper Main Zone, UUMZ) crystallized from a basaltic magma produced by a major recharge event, building up a sequence of tholeiitic, Fe-rich, gabbroic cumulate rocks that display systematic variations in mineralogy and mineral compositions consistent with fractional crystallization. Within this sequence, magnetite joins the liquidus assemblage at ˜260m, followed by olivine at 460m and apatite at 1000m. Here, we present iron isotope measurements of bulk cumulate rocks from the Bierkraal drill core of UUMZ of the western limb. Iron was chemically separated from its matrix and analyzed for δ56Fe (relative to IRMM- 014) with a Nu plasma MC-ICPMS at the University of California, Davis, using (pseudo-) high resolution and sample-standard bracketing. The δ56Fe values for Bushveld cumulates span a range from 0.04‰ to 0.36‰, and systematically correlate with the relative abundance of pyroxene + olivine, magnetite and plagioclase. Notably, the highest δ56Fe values are found in plagioclase-rich cumulates that formed prior to magnetite crystallization. δ56Fe is also high in magnetite-rich cumulates at the onset of magnetite crystallization, while subsequent cumulates exhibit lower and variable δ56Fe principally reflecting fractionation of and modal variations in magnetite, pyroxene and fayalitic olivine. The overall relationships for δ56Fe are consistent with positive mineral - liquid Fe isotope fractionation factors for magnetite and plagioclase, and negative to near zero values for pyroxene and olivine. These initial results are being integrated into a forward model of the Bushveld liquid line of descent and will be compared to complementary work on the Skaergaard intrusion.

  10. Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions

    NASA Astrophysics Data System (ADS)

    Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.

    2018-05-01

    Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.

  11. A diatom record of CO2 decline since the late Miocene

    NASA Astrophysics Data System (ADS)

    Mejía, Luz María; Méndez-Vicente, Ana; Abrevaya, Lorena; Lawrence, Kira T.; Ladlow, Caroline; Bolton, Clara; Cacho, Isabel; Stoll, Heather

    2017-12-01

    Extratropical sea surface temperature records from alkenones record a dramatic cooling of up to 17 °C over the last ∼14 Ma, but the relationship between this cooling and greenhouse gas forcing has been elusive due to sparse and contrasting reconstructions of atmospheric CO2 for the time period. Alkenone carbon isotopic fractionation during photosynthesis has previously been used to estimate changes in pCO2 over this interval, but is complicated by significant changes in cell size of the alkenone-producing coccolithophorids over this time period. In this study, we reconstruct carbon isotopic fractionation during photosynthesis (εp) using organic compounds trapped within the frustules of pennate diatoms in sediments from the Eastern Equatorial Pacific Ocean at Ocean Drilling Program Site 846 over the last ∼13 Ma. Physical separation of pennate diatoms prior to measuring carbon isotopic fractionation enables us to obtain a record with constant cell geometry, eliminating this factor of uncertainty in our pCO2 reconstruction. In the past ∼11 Ma, εp declines from 15.5 to 10.3‰. Using the classic diffusive model and taking into account variations in opal content, alkenone concentration and coccolith Sr/Ca as indicators of past productivity and growth rate, and sea surface temperature records from the site, we estimate a decline in pCO2 from 454 (+ / - 41) to 250 (+ / - 15) ppmv between ∼11 and 6 Ma. Models accounting for changing the significance of active carbon uptake for photosynthesis, which likely produce more accurate CO2 estimates, suggest a significant larger pCO2 decline of up to twice that shown by the classic diffusive model (in average from 794 (+ / - 233) ppmv at ∼11 Ma to 288 (+/-25) ppmv at ∼6 Ma, considering growth rates varying between 0.5 and 1.7 day-1). Large uncertainties in the pCO2 estimated between ∼8 and 11 Ma using the active uptake model are related to the growth rate used for calculations. Together, these results suggest CO2 forcing for this period of steep decline in temperatures.

  12. Crystal Properties and Radiation Effects in Solid Molecular Hydrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioiziemski, B

    2000-09-01

    The crystal lattice structure, growth shapes and helium generated by beta-decay of solid deuterium-tritium (D-T) mixtures have been studied. Understanding of these D-T properties is important for predicting and optimizing the target design of the National Ignition Facility (NIF). Raman spectroscopy showed the D-T crystal structure is hexagonal close packed, common to the non-tritiated isotopes. The isotopic mixtures of both tritiated and non-tritiated species broadens the rotational transitions, especially of the lighter species in the mixture. The vibrational frequencies of each isotope is shifted to higher energy in the mixture than the pure components. The J = 1-0 population decreasesmore » exponentially with a 1/e time constant which rapidly increases above 10.5 K for both D{sub 2} and T{sub 2} in D-T. The conversion rate is nearly constant from 5 K to 10 K for both D{sub 2} and T{sub 2} at 7.1 hours and 2.1 hours, respectively. The smoothing of D-T layers by beta decay heating is limited by the crystal surface energy. Deuterium and hydrogen-deuteride crystals were grown at a number of temperatures below the triple point to determine the surface energy and roughening transition. Several distinct crystal shapes were observed on a number of different substrates. The a facet roughens between 0.9 T{sub TP} and T{sub TP}, while the c facet persists up to the melting temperature. This is very different from the behavior of the other rare gas crystals which grow completely rounded above 0.8 T{sub TP}. Helium bubbles formed as a product of the beta decay were observed using optical microscopy and the diffusion of smaller bubbles measured with dynamic light scattering. Bubble diffusion coefficients as high as 2.0 x 10{sup -16} m{sup 2}/s were measured for 10-50 nm bubbles. The bubbles move in response to a thermal gradient, with speeds between 1 {micro}m/hour and 100 {micro}m/hour for thermal gradients and temperatures appropriate to NIF targets.« less

  13. Diffuse degassing survey at the Higashi Izu monogenetic volcano field, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Pérez, Nemesio M.; Fujii, Naoyuki; Hernández, Pedro A.; Mori, Toshiya; Padrón, Eleazar; Melián, Gladys

    2016-04-01

    The Higashi-Izu monogenetic volcanic group, which consists of more than 60 volcanoes, overlies the polygenetic volcanoes in the eastern part of the Izu peninsula, Japan, which are distributed over the area of 350 km2. Some of the monogenetic volcanoes are located on northwest-southeast alignments, suggesting that they developed along fissures. Recent volcanic activity occurred offshore, e.g., at the Izu-Oshima volcano, which erupted in 1986 and a submarine eruption of the small new Teishi knoll off eastern Izu Peninsula in 1989 (Hasebe et al., 2001). This study was carried out to investigate the possible relationship of diffuse CO2 emission and the recent seismic activity recorded NE of Higashi Izu monogenetic volcanic field, to quantify the rate at which CO2 is diffusely degassed from the studied area including Omuroyama volcano and to identify the structures controlling the degassing process. Measurements were carried out over a three day period from 8-10 July 2013. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method and spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Soil gas samples were collected at 30-40 cm depth by withdrawal into 60 cc hypodermic syringes to characterize the chemical and isotopic composition of the soil gas. At Omurayama volcano, soil CO2 efflux values ranged from non-detectable to 97.5 g m-2 d-1, while at the seismic swarm zone ranged from 1.5 to 233.2 g m-2 d-1 and at the fault zone ranged from 5.7 to 101.2 g m-2 d-1. Probability-plot technique of all CO2 efflux data showed two different populations, background with a mean of 8.7 g m-2 d-1 and peak with a mean of 92.7 g m-2 d-1. In order to strength the deep seated contribution to the soil gases at the studied are, carbon isotopic analysis were performed in the CO2 gas. Soil gases (He, CO2 and N2) showed a clear mixing trend between air composition and a rich CO2 end member, suggesting the influence of a deep magmatic reservoir on the soil degassing at the studied area. To estimate the total diffuse CO2 output released from Omurayama, the average of 100 simulations was considered, giving an average of 22 ± 2 t d-1 of diffuse CO2 released by Miharayama. Regarding to the geochemical transects along the Amagi Road and perpendicular to the fault, CO2 efflux values >9xBackground were observed close to the location of the fault. These results show possible linear positive anomalies may be caused by the presence of the active fault which has a higher porosity than surrounding soils, allowing an increased flux of CO2 to reach the surface from depth. References: Hasebe et al., 2001. Bull. Volcanol., 63, 377.

  14. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry

    NASA Astrophysics Data System (ADS)

    Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.

    1984-10-01

    The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.

  15. Correlation of rates of tritium migration through porous concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukada, S.; Katayama, K.; Takeishi, T.

    In a nuclear facility when tritium leaks from a glovebox to room accidentally, an atmosphere detritiation system (ADS) starts operating, and HTO released is recovered by ADS. ADS starts when tritium activity in air becomes higher than its controlled level. Before ADS operates, the laboratory walls are the final enclosure facing tritium and are usually made of porous concrete coated with a hydrophobic paint. In the present study, previous data on the diffusivity and adsorption coefficient of concrete and paints are reviewed. Tritium penetrates and migrates into concrete by following 3 ways. First, gaseous HT or T{sub 2} easily penetratesmore » into porous concrete. Its diffusivity is almost equal to that of H{sub 2}. When a gaseous molecule diffuses through pores with a smaller diameter than a mean free path, its migration rate is described by the Knudsen diffusion formula. The second mechanism is H{sub 2}O vapor diffusion in pores. Concrete holds a lot of structural water. Therefore, H{sub 2}O or HTO vapor can diffuse inside concrete pores along with adsorption-desorption and isotopic exchange with structural water, which is the third mechanism. Literature shows that the diffusivity of HTO through the epoxy-resin paint is determined as D(HTO)=1.0*10{sup -16} m{sup 2}/s. We have used this data to set a model and we have applied it to estimate residual tritium in laboratory walls. We have considered 2 accidental cases and a normal case: first, ADS starts operating 1 hour after 100 Ci HTO is released in the room, secondly, ADS starts 24 hours after 100 Ci HTO release and thirdly, when the walls are exposed to HTO for 10 years of normal operation. It appears that the immediate start up of ADS is indispensable for safety.« less

  16. Occurrences of ikaite and pseudomorphs after ikaite in Patagonian lakes - crystal morphologies and stable isotope composition

    NASA Astrophysics Data System (ADS)

    Oehlerich, Markus; Mayr, Christoph; Griesshaber, Erika; Ohlendorf, Christian; Zolitschka, Bernd; Sánchez-Pastor, Nuria; Kremer, Barbara; Lücke, Andreas; Oeckler, Oliver; Schmahl, Wolfgang

    2010-05-01

    Ikaite (CaCO3•6H2O), a hydrated calcium carbonate mineral occasionally found in marine sediments, has so far rarely been reported from non-marine sites. Modern ikaite and calcitic pseudomorphs after ikaite were recently discovered in Patagonian Argentina at the polymictic lakes of Laguna Potrok Aike (51°57´S, 70°23´W) and Laguna Cháltel (49°57´S, 71°07´W), respectively. Both lakes are of volcanic origin and have phosphorous-rich, alkaline waters, but differ in altitude (790 m asl and 110 m asl for Laguna Cháltel and Laguna Potrok Aike, respectively) and water temperature. The aim of this study is (1) to investigate conditions for the formation of ikaite and its transformation to more stable, water-free carbonate pseudomorphs after ikaite and (2) to assess the potential of ikaite and calcite pseudomorphs after ikaite as a paleoenvironmental tool in freshwater lakes. Crystallographic, morphological and isotopic characteristics of the pseudomorphs were investigated. Ikaite crystals were found (in September 2008) primarily on aquatic macrophytes and cyanobacteria colonies at Laguna Potrok Aike. Ikaite crystals transformed quickly to calcite pseudomorphs after ikaite after recovery from the cool lake water (4°C). The crystal structure of ikaite was investigated with single crystal X-ray diffraction on samples that were permanently kept cold (in the lake water). At Laguna Cháltel calcite pseudomorphs after ikaite were discovered in littoral sediment cores from 25 m water depth. The mm-sized, porous, polycrystalline calcium carbonate aggregates from the 104 cm long sediment core of Laguna Cháltel are morphologically pseudomorphs after ikaite. SEM and XRD analyses highlight that these pseudomorphs consist of several µm-small calcite crystals in a calcitic matrix. The shape of these micro-crystals changes from rounded to fibrous with increasing sediment depth. Some specimens show casts of cyanobacteria trichomes. The oxygen isotopic composition of calcite pseudomorphs after ikaite from both lakes was analyzed. Calculating water temperatures during the ikaite precipitation assuming isotopic equilibrium for calcite and including modern water isotope ranges do not result in realistic estimates. Thus, either the calcite isotope fractionation factors are not applicable to these pseudomorphs, because e.g. the transformation to calcite pseudomorphs after ikaite caused isotope exchange or the carbonate precipitation occurred in disequilibrium. Nevertheless, the offset between oxygen isotope values of the sedimentary calcitic pseudomorphs from Laguna Cháltel and the modern ones from Laguna Potrok Aike corresponds to the differences present in lake water isotopic composition. Thus, calcite pseudomorphs after ikaite may serve as a proxy for paleo-lake water isotope variations. The crystallisation of ikaite in these lacustrine environments is presently simulated by different methods: (1) Evaporation from the lake water and (2) with modified diffusion silica gel experiments using the lake water and synthetic solutions.

  17. Rates of carbonate soil evolution from carbon, U- and Th-series isotope studies: Example of the Astian sands (SE France)

    NASA Astrophysics Data System (ADS)

    Barbecot, Florent; Ghaleb, Bassam; Hillaire-Marcel, Claude

    2015-04-01

    In carbonate rich soils, C-isotopes (14C, 13C) and carbonate mass budget may inform on centennial to millennial time scale dissolution/precipitation processes and weathering rates, whereas disequilibria between in the U- and Th-decay series provide tools to document high- (228Ra-228Th-210Pb) to low- (234U, 230Th, 231Pa, 226Ra) geochemical processes rate, covering annual to ~ 1Ma time scales, governing both carbonate and silicate soil fractions. Because lithology constitutes a boundary condition, we intend to illustrate the behavior of such isotopes in soils developed over Astian sands formation (up to ~ 30% carbonate) from the Béziers area (SE France). A >20 m thick unsaturated zone was sampled firstly along a naturally exposed section, then in a cored sequence. Geochemical and mineralogical analyses, including stable isotopes and 14C-measurements, were complemented with 228U, 234U, 230Th, 226Ra, 210Pb and 228Th, 232Th measurements. Whereas the upper 7 m depict geochemical and isotopic features forced by dissolution/precipitation processes leading to variable radioactive disequilibria, but overall deficits in more soluble elements of the decay series, the lower part of the sequence shows strong excesses in 234U and 230Th over parent isotopes (i.e., 238U and 234U, respectively). These features might have been interpreted as the result of successive phases of U-loss and gains. However, 226Ra and 230Th are in near-equilibrium, thus leading to conclude at a more likely slow enrichment process in both 234Th(234U) and 230Th, which we link to dissolved U-decay during groundwater recharge events. In addition, 210Pb deficits (vs parent 226Ra) are observed down to 12 m along the natural outcropping section and below the top-soil 210Pb-excess in the cored sequence, due to gaseous 222Rn-diffusion over the cliff outcrop. Based on C-isotope and chemical analysis, reaction rates at 14C-time scale are distinct from those estimates at the short- or long-lived U-series isotopes, but provide a specific insight into carbonate budgets when confronted with data on dissolved and gaseous phases as well as on solid matter, and possibly best integrate the overall soil behavior through time. It is concluded from this example that if first order estimates of long-term geochemical fluxes in soils can be obtained from disequilibria in the 238U-234U-230Th sequence or from C-isotope data. While insights into recent to "Anthropocene" processes require information on the shorter-lived isotopes of the U and Th series, adding specific information on physical and chemical erosion budgets from 232Th data. As also illustrated in the present example, a robust assessment of overall chemical and physical erosion rates must be based on measurements in cored sequences away from natural or recent man-made cuts.

  18. Sea-cave temperature measurements and amino acid geochronology of British Late Pleistocene Sea stands

    USGS Publications Warehouse

    Hollin, John T.; Smith, Franklin L.; Renouf, John T.; Jenkins, D. Graham

    1993-01-01

    ‘Calibrating’ amino acid ratios with uranium-series dates requires an accurate knowledge of current mean annual temperatures (CMATs) over the region studied. To measure these, test-tube sized ‘diffusion sensors’ were emplaced for 1 year (in 1984, 1985 and 1986), both outside and inside Minchin Hole sea-cave in South Wales and Belle Hougue sea-cave in Jersey, both of which have yielded Oxygen Isotope Substage 5e uranium-series ages on speleothems. Our outside temperatures agreed with meteorological ones. Our inside temperatures were over 1°C lower. To allow for this, a mean of ‘empirical’, ‘linear’ and ‘parabolic’ epimerisation calculations suggests that ratios from molluscs inside the caves should be multiplied by over 1.1 for comparison with outside ratios. This raises Bowen et al.'s ‘Pennard’ stage ratios from inside Minchin (and Bacon) Hole up towards the ‘Unnamed’ stage ratios outside, and suggests that the Unnamed sites are also from Oxygen Isotope Substage 5e, as proposed by Proctor and Smart. The same conclusion is reached more strongly by comparisons with the ratios and temperatures inside Belle Hougue to the south, and at Eemian (assumed 5e) sites in The Netherlands, Germany and Denmark to the east. The Pennard ratios from outside sites may provide further evidence for global sea stands close to the present level later in Oxygen Isotope Stage 5.

  19. Motion of W and He atoms during formation of W fuzz

    NASA Astrophysics Data System (ADS)

    Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; Schwarz-Selinger, T.; Zach, M.

    2018-06-01

    Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion of the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten ‘fuzz’. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. This supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.

  20. Motion of W and He atoms during formation of W fuzz

    DOE PAGES

    Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; ...

    2018-04-11

    Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion ofmore » the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten 'fuzz'. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. Lastly, this supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.« less

  1. Interpreting U-Pb data from primary and secondary features in lunar zircon

    NASA Astrophysics Data System (ADS)

    Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.

    2013-01-01

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.

  2. Oxygen Isotopic Fractionation During Evaporation of SiO2 in Vacuum and in H Gas

    NASA Astrophysics Data System (ADS)

    Nagahara, H.; Young, E. D.; Hoering, T. C.; Mysen, B. O.

    1993-07-01

    Chondritic components, chondrules, CAIs, and some parts of the matrix are believed to have formed and/or thermally processed in the solar nebula. If this scenario is the case, they should be fractionated for major and minor elements and isotopes according to the formation temperature. This is true for major and trace elements, but is not the case for isotopes. Differences in oxygen isotopic composition among meteorite groups are interpreted to be the results of mixing of gas and dust from different oxygen reservoirs, and the effect of isotopic fractionation is negligible for most meteorites except for rare CAIs. Davis et al. [1] studied the isotopic fractionation of SiO2, MgO, and forsterite and showed that oxygen isotopic fractionation from solid materials is very small, but that from liquid is significant. Evaporation in the solar nebula should, however, be in hydrogen gas, which is reactive with silicates. Therefore, the effect of hydrogen gas on the evaporation behaviors of silicates, including mode of evaporation, evaporation rate, and compositional and isotopic fractionation, should be studied. Nagahara [2] studied the evaporation rate of SiO2 in equilibrium, in constant evacuation (free evaporation), and in hydrogen, and showed that the rate in hydrogen gas is orders of magnitude larger than that in vacuum; the mode of evaporation also differs from that in vacuum. Oxygen isotopic fractionation during evaporation of SiO2 in constant evacuation and in hydrogen gas at two different total pressures are studied in the present study. The starting material is a single crystal of natural quartz, which should transform into high cristobalite at experimental conditions. The powdered starting material was kept in a graphite capsule without a cap and set in a vacuum chamber with and without hydrogen gas flow. Experimental temperature was 1600 degrees C. Oxygen isotopic compositions (^18O/^16O) were measured with the CO2laser heating fluorination technique. Oxygen isotope measurements, including ^17O and silicon isotope measurements, are now in progress, and some of the results are shown in this paper. Oxygen isotopic compositions of residues in vacuum and in hydrogen gas of total pressure of 2.6 x 10^-5 bar, which approximates the pressure of the solar nebula at the midplane at 2-3 AU, are shown in comparison with evaporation rate (Figs. 1 and 2). Oxygen isotopic fractionation is remarkable in a constant evacuation, but is negligible in hydrogen gas of 2.6 x 10^-5 bar total pressure. In vacuum, delta ^18O of solid residue increases with increasing degree of evaporation. The curve is best fit to delta ^18O = 0.00094x^2 + 0.00173x + 19.606 (r = 0.997), where x is the degree of evaporation in weight percent. The curve is fit to the Rayleigh fractionation curve with a constant fractionation factor (alpha(sub)vap-sol) of 0.9970. Figures 1 and 2 show that evaporation is significant but oxygen isotopic fractionation is insignificant in hydrogen gas in the approximate solar nebular condition. The high evaporation rate in hydrogen gas is due to the fact that evaporation is a decomposition reaction of an oxide, which should be accelerated in reducing condition. The rate, however, can be explained by an unknown diffusion process that is possible when hydrogen is reactive with silica [2]. In a fairly high hydrogen pressure, isotopic fractionation is suppressed. On the other hand, in vacuum, the evaporation rate is small but the degree of isotopic fractionation is significant. The results suggest that chondrules and CAIs without isotopic mass fractionation could have been formed in the solar nebula, but that mass loss during heating should have been significant. The CAIs with significant mass fractionation such as HAL could have been formed in vacuum. References: [1] Davis A. et al. (1990) Nature, 347, 655-658. [2] Nagahara H. (1993) LPS XXIV, 1045-1046. Fig. 1, which appears here in the hard copy, shows the evaporation rate of SiO2 heated at 1600 degrees C in vacuum and in hydrogen gas of 2.6 x 10^-5 bar as a function of time. Fig. 2, which appears here in the hard copy, shows oxygen isotopic composition (delta ^18O) of evaporation residue of SiO2.

  3. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific

    NASA Astrophysics Data System (ADS)

    Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka

    2016-10-01

    The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.

  4. Activity disequilibrium between 234U and 238U isotopes in natural environment.

    PubMed

    Boryło, Alicja; Skwarzec, Bogdan

    The aim of this work was to calculate the values of the 234 U/ 238 U activity ratio in natural environment (water, sediments, Baltic organisms and marine birds from various regions of the southern Baltic Sea; river waters (the Vistula and the Oder River); plants and soils collected near phosphogypsum waste heap in Wiślinka (Northern Poland) and deer-like animals from Northern Poland. On the basis of the studies it was found that the most important processes of uranium geochemical migration in the southern Baltic Sea ecosystem are the sedimentation of suspended material and the vertical diffusion from the sediments into the bottom water. Considerable values of the 234 U/ 238 U are characterized for the Vistula and Oder Rivers and its tributaries. The values of the 234 U/ 238 U activity ratio in different tissues and organs of the Baltic organisms, sea birds and wild deer are varied. Such a large variation value of obtained activity ratios indicates different behavior of uranium isotopes in the tissues and organisms of sea birds and wild animals. This value shows that uranium isotopes can be disposed at a slower or faster rate. The values of the 234 U/ 238 U activity ratio in the analyzed plants, soils and mosses collected in the vicinity of phosphogypsum dumps in Wiślinka are close to one and indicate the phosphogypsum origin of the analyzed nuclides. Uranium isotopes 234 U and 238 U are not present in radioactive equilibrium in the aquatic environment, which indicates that their activities are not equal. The inverse relationship is observed in the terrestrial environment, where the value of the of the 234 U/ 238 U activity ratio really oscillates around unity.

  5. A tentative record of the last 1,000 years of Greenland temperature from occluded air in the GISP2 ice core

    NASA Astrophysics Data System (ADS)

    Kobashi, T.; Severinghaus, J. P.; Barnola, J.; Kawamura, K.; Beaudette, R.

    2005-12-01

    Ice borehole temperature inversion has been used to reconstruct Greenland surface temperature during the last millennium (Dahl-Jensen et al, Science, 1998). However, this technique does not preserve high frequencies because of diffusion of heat in the ice. Here, we present a tentative reconstruction of the past 1,000 years of central Greenland temperature using nitrogen and argon isotopes from occluded air in the GISP2 ice core. This technique preserves decadal-to-centennial-scale temperature variations and complements the borehole technique. Nitrogen and argon isotopes in the porous snow layer (~80m) experience two isotopic fractionations by gravitation and temperature gradients (ΔT) between the top and bottom of the snow layer. The simultaneous analysis of argon and nitrogen isotopes allows us to separate these two effects, and obtain a history of ΔT in the layer. To a first approximation, ΔT change on decadal to centennial time scales is a surface temperature history because the heat conductivity of snow is much smaller than that of ice, and the heat capacity of the ice sheet is quite large. The preliminary ΔT history (20-year interval) shows a Medieval Warm Period in the 11th to 12th centuries and the Little Ice Age in the 15th to 19th centuries. Furthermore, the record shows a clear similarity with the Be-10 record (a proxy for solar activity) with Wolf, Sporer, Maunder, and Dalton minima clearly seen in the cold periods. This finding is consistent with the hypothesis that solar activity influenced Greenland temperature during the past 1000 years.

  6. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  7. Laboratory measurements of HDO/H2O isotopic fractionation during ice deposition in simulated cirrus clouds.

    PubMed

    Lamb, Kara D; Clouser, Benjamin W; Bolot, Maximilien; Sarkozy, Laszlo; Ebert, Volker; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth J

    2017-05-30

    The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122-127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H 2 O equilibrium fractionation between vapor and ice ([Formula: see text]) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of [Formula: see text], and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice-vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems.

  8. Laboratory measurements of HDO/H2O isotopic fractionation during ice deposition in simulated cirrus clouds

    PubMed Central

    Lamb, Kara D.; Clouser, Benjamin W.; Bolot, Maximilien; Sarkozy, Laszlo; Ebert, Volker; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth J.

    2017-01-01

    The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (−40 °C), conditions necessary to form cirrus clouds in the Earth’s atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122–127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H2O equilibrium fractionation between vapor and ice (αeq) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of αeq, and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice–vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems. PMID:28495968

  9. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  10. First results on the 32S+40, 48Ca reactions at 17.7A MeV studied with GARFIELD setup at LNL

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Valdré, S.; Barlini, S.; Casini, G.; Colonna, M.; Baiocco, G.; Bini, M.; Bruno, M.; Camaiani, A.; Cicerchia, M.; Cinausero, M.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Gramegna, F.; Kravchuck, V. L.; Mabiala, J.; Marchi, T.; Morelli, L.; Olmi, A.; Ottanelli, P.; Pasquali, G.; Pastore, G.

    2017-11-01

    The ^{32} S+ ^{40,48} Ca systems at 17A MeV have been characterized both for fusion and for peripheral events thanks to the GARFIELD setup, which covers a wide angular range and has high granularity; moreover, isotopic identification for forward emitted ions up to Z around 15 is obtained. The main evidences reported here concern pre-equilibrium emission, which was put into evidence in fusion-evaporation events, and isospin diffusion observed studying the average N/ Z of the Quasi-Projectile as a function of the target isospin.

  11. Trapped ion system for sympathetic cooling and non-equilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Doret, Charlie; Jubin, Sierra; Stevenson, Sarah

    2017-04-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and sympathetic cooling rates. We also discuss plans for future experiments in non-equilibrium statistical mechanics, including exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  12. In situ Pb-Pb dating of rutile from slowly cooled granulites by LA-MC-ICP-MS: confirmation of the high closure temperature (>=600°C) for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, J.; Baker, J.; Waight, T.

    2003-04-01

    We have analysed Pb isotopes in natural rutile crystals by laser ablation MC-ICP-MS to assess the potential of rapid Pb-Pb dating of rutile with this method. The rutile samples are from granulite-facies Mg- and Al-rich rocks from the Reynolds Range, Northern Territory, Australia. This metamorphic terrane has a well-constrained high-T cooling history (ca. 3^oC/Myr) defined by previous U-Pb dating of monazite and zircon (peak metamorphism at 1584 Ma), which we have supplemented with additional Rb-Sr dates of phlogopite, biotite and muscovite. The dated rutiles vary in size from 3 to 0.05 mm, have Pb concentrations of ca. 20 ppm, and were analysed with a 266 nm laser coupled to an AXIOM MC-ICP-MS (spot size of 200-50 μm). Individual larger crystals (>= 200 μm) exhibit sufficient Pb isotopic heterogeneity (206Pb/204Pb = 10000-80000) to perform isochron calculations on several short analyses of a single grain (30-60 s). The largest rutiles yielded Pb-Pb isochron ages of 1540-1555 Ma with typical uncertainties of ± 1 to 10 Ma. 207Pb/206Pb ages are typically within 1% of the Pb-Pb isochron ages testifying to the radiogenic nature of Pb in the rutile. A mean age for all the analysed rutiles was 1548.4 ± 9.1 Ma (n = 33). Comparable 207Pb/206Pb ages were also obtained from individual smaller crystals (50 μm) where the 204Pb ion beam could not be measured precisely. The results demonstrate that even small rutile crystals are extremely resistant to isotopic resetting, and that this mineral is a high-T chronometer. Phlogopite and muscovite Rb-Sr ages are <1454 and 1400-1480 Ma, respectively, with some of the phlogopite and biotite micas having been partially reset by later thermal events younger than 400 Ma. All the mica ages are considerably younger (100-70 My) than the rutile ages, which approach U-Pb ages for monazite and zircon overgrowths, even though the mica closure temperatures (350-500^oC) are comparable or slightly higher than earlier geological estimates [1] of the rutile closure temperature. Thus, our results confirm a recent experimental study [2] that suggested the closure temperature for Pb diffusion in rutile (e.g. 100 μm) is much higher (200^oC) than previously thought [1]. [1] Mezger et al., 1989. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. EPSL 96, 106-118. [2] Cherniak, 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol., 139, 198-207.

  13. Nutrient fluxes via radium isotopes from the coast to offshore and from the seafloor to upper waters after the 2009 spring bloom in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Su, Ni; Du, Jinzhou; Liu, Sumei; Zhang, Jing

    2013-12-01

    The horizontal and vertical transport of nutrient-rich water both from the coast and from the seafloor to the overlying water column should play an important role in supplying nutrients required for the periods of vegetative or reproductive growth of phytoplankton. In the present work, radium isotopes (223Ra, 224Ra and 226Ra) in the southern Yellow Sea were measured after a spring bloom in June 2009. The exponential-like decrease of 223Ra away from the coast to offshore waters yielded horizontal eddy diffusivities (Kh) of (2.93±1.47)×107 cm2 s-1 by neglecting the advection. This estimate was smaller than that with advection indicator by as much as 21% when using an analytic model for 223Ra and 226Ra. The corresponding horizontal nutrient fluxes were 1525 µmol m-2 d-1 (DIN), 15.9 µmol m-2 d-1 (DIP) and 826 µmol m-2 d-1 (DSi), which would supply around 16% of N and 3% of P requirements based on the primary productivity. The decrease of 224Ra and 223Ra activities from sediments to the upper water column suggests the vertical eddy diffusion coefficient (Kz) of 6.23±5.58 cm2 s-1 below the thermocline, which was within the Yellow Sea Cold Water Mass (YSCWM). The calculated vertical fluxes of nutrient were 4945 μmol m-2 d-1 (DIN), 236 μmol m-2 d-1 (DIP) and 5315 μmol m-2 d-1 (DSi), accounting for up to 52% of N and 40% of P requirements for the phytoplankton growth. These results demonstrate the role of YSCWM as a relative nutrient-rich pool for the supply of nutrient to the southern Yellow Sea via the vertical diffusion process relative to the horizontal process during the summer season. Such processes will be strengthened during the weak density stratification in spring when algal blooms occur.

  14. Impact of temperature during He+ implantation on deuterium retention in tungsten, tungsten with carbon deposit and tungsten carbide

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Sato, Misaki; Li, Xiaochun; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Uemura, Yuki; Hatano, Yuji; Yoshida, Naoaki; Ashikawa, Naoko; Sagara, Akio; Chikada, Takumi

    2016-02-01

    Temperature dependence on deuterium (D) retention for He+ implanted tungsten (W) was studied by thermal desorption spectroscopy (TDS) to evaluate the tritium retention behavior in W. The activation energies were evaluated using Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code and found to be 0.55 eV, 0.65 eV, 0.80 eV and 1.00 eV. The heating scenarios clearly control the D retention behavior and, dense and large He bubbles could work as a D diffusion barrier toward the bulk, leading to D retention enhancement at lower temperature of less than 430 K, even if the damage was introduced by He+ implantation. By comparing the D retention for W, W with carbon deposit and tungsten carbide (WC), the dense carbon layer on the surface enhances the dynamic re-emission of D as hydrocarbons, and induces the reduction of D retention. However, by He+ implantation, the D retention was increased for all the samples.

  15. Potassium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  16. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  17. Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake

    PubMed Central

    Kawagucci, Shinsuke; Yoshida, Yukari T.; Noguchi, Takuroh; Honda, Makio C.; Uchida, Hiroshi; Ishibashi, Hidenori; Nakagawa, Fumiko; Tsunogai, Urumu; Okamura, Kei; Takaki, Yoshihiro; Nunoura, Takuro; Miyazaki, Junichi; Hirai, Miho; Lin, Weiren; Kitazato, Hiroshi; Takai, Ken

    2012-01-01

    The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of 13C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses. PMID:22355782

  18. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  19. Oxygen vacancies: The origin of n -type conductivity in ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  20. Xenon adsorption on geological media and implications for radionuclide signatures.

    PubMed

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top