Science.gov

Sample records for isotopic equilibrium method

  1. Technical Note: A simple method for vaterite precipitation in isotopic equilibrium: implications for bulk and clumped isotope analysis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.

    2014-12-01

    Calcium carbonate (CaCO3) plays an important role in the natural environment as a major constituent of the skeleton and supporting structure of marine life and has high economic importance as additive in food, chemicals and medical products. Pure CaCO3 occurs in the three different polymorphs calcite, aragonite and vaterite, whereof calcite is the most abundant and best characterized mineral. In contrast, little is known about the rare polymorph vaterite, in particular with regard to the oxygen isotope fractionation between H2O and the mineral. Synthetic precipitation of vaterite in the laboratory typically involves rapid processes and isotopic non-equilibrium, which excludes isotope studies focused on characterization of vaterite at equilibrium conditions. Here, we used a new experimental approach that enables vaterite mineral formation from an isotopically equilibrated solution. The solution consists of a ~ 0.007 mol L-1 CaCO3 solution that is saturated with NaCl at room temperature (up to 6.5 mol L-1). Vaterite precipitated as single phase or major phase (≥ 94%) in experiments performed between 23 and 91 °C. Only at 80 °C was vaterite a minor phase with a relative abundance of 27%. The high mineral yield of up to 235 mg relative to a total dissolved CaCO3 amount of 370 mg enables an investigation of the oxygen isotope fractionation between mineral and water, and the determination of clumped isotope values in vaterite.

  2. Calculation of individual isotope equilibrium constants for geochemical reactions

    USGS Publications Warehouse

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    factors. The derivations can be extended to calculation of individual isotope equilibrium constants for ion pairs and equilibrium constants for isotopic species of other chemical elements. The individual isotope approach calculates the same phase isotopic compositions as existing methods, but also provides concentrations of individual species, which are needed in calculations of mass-dependent effects in transport processes. The equilibrium constants derived in this paper are used to calculate the example of gas-water equilibrium for CO2 in an acidic aqueous solution. ?? 2004 Elsevier Ltd.

  3. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  4. Isotopic equilibrium between shells and their environement.

    PubMed

    Mook, W G; Vogel, J C

    1968-02-23

    The carbon-isotopic composition of shell carbonate is shown to be in isotopic equilibrium with bicarbonate dissolved in the water. By measurement of both 13C and 18O in a series of brackish-water shells a mean growth temperature can be deduced.

  5. Path integral evaluation of equilibrium isotope effects

    NASA Astrophysics Data System (ADS)

    Zimmermann, Tomáš; Vaníček, Jiří

    2009-07-01

    A general and rigorous methodology to compute the quantum equilibrium isotope effect is described. Unlike standard approaches, ours does not assume separability of rotational and vibrational motions and does not make the harmonic approximation for vibrations or rigid rotor approximation for the rotations. In particular, zero point energy and anharmonicity effects are described correctly quantum mechanically. The approach is based on the thermodynamic integration with respect to the mass of isotopes and on the Feynman path integral representation of the partition function. An efficient estimator for the derivative of free energy is used whose statistical error is independent of the number of imaginary time slices in the path integral, speeding up calculations by a factor of ˜60 at 500 K and more at room temperature. We describe the implementation of the methodology in the molecular dynamics package AMBER 10. The method is tested on three [1,5] sigmatropic hydrogen shift reactions. Because of the computational expense, we use ab initio potentials to evaluate the equilibrium isotope effects within the harmonic approximation and then the path integral method together with semiempirical potentials to evaluate the anharmonicity corrections. Our calculations show that the anharmonicity effects amount up to 30% of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering et al., [J. Am. Chem. Soc. 128, 9080 (2006); J. Am. Chem. Soc.129, 2488 (2007)] confirming the accuracy of the most recent measurement on 2,4,6,7,9-pentamethyl-5-(5,5-H22)methylene-11,11a-dihydro-12H-naphthacene as well as concerns about compromised accuracy, due to side reactions, of another measurement on 2-methyl-10-(10,10-H22)methylenebicyclo[4.4.0]dec-1-ene.

  6. Calculation of individual isotope equilibrium constants for implementation in geochemical models

    USGS Publications Warehouse

    Thorstenson, Donald C.; Parkhurst, David L.

    2002-01-01

    Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.

  7. Theoretical prediction for several important equilibrium Ge isotope fractionation factors

    NASA Astrophysics Data System (ADS)

    Tang, M.; Li, X.; Liu, Y.

    2008-12-01

    As a newly emerging field, the stable isotope geochemistry of germanium (Ge) needs basic equilibrium fractionation factors to explore its unknown world. In this study, the Ge isotope fractionations between systems including the aqueous Ge(OH)4 and GeO(OH)3- which are the dominant Ge species in seawater, the Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), the quartz- (or opal- ), albite-, K-feldspar- and olivine- like mineral structures are studied. It is the first time that some geologically important equilibrium Ge isotope fractionation factors are reported. Surprisingly, up to 5 per mil large isotopic fractionations between these Ge isotope systems are found at 25 degree. These results suggest a potentially broad application for the Ge isotope geochemistry. Our theoretical calculations are based on the Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. The B3LYP/6-311+G(d,p) level quantum chemistry method and the explicit solvent model ("water droplet" method) are used. Many different conformers are also used for the aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The accuracy of our calculation of the Ge isotopic fractionations is estimated about 0.2 per mil. Our results show quartz-like or opal-like structure can enrich most heavy Ge isotopes. Relative to quartz (or opal), some Ge isotopic fractionations are (at 25 C): quartz-organic Ge = 4-5,quartz-Ge(OH)4 =0.9,quartz-GeO(OH)3- =1.5,quartz-albite=0.6,quartz-K-feldspar=0.4 and quartz-olivine=3.9 per mil. The large fractionations between inorganic Ge complexes and organic Ge ones could be used to distinguish the possible bio-involving processes. Our results suggest a good explanation to the experimental observations of Siebert et al. (2006) and Rouxel et al. (2006) and provide important constraints to the study of Ge cycle in ocean.

  8. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  9. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  10. Nuclear Volume Effects in Equilibrium Stable Isotope Fractionations of Hg, Tl and Pb Isotope Systems

    NASA Astrophysics Data System (ADS)

    Yang, S.; Liu, Y.

    2014-12-01

    Many evidences showed that heavy isotope systems could be significantly fractionated as the consequence of the nuclear volume effect (NVE) or so-called nuclear field shift effect. Here we investigate NVEs of Hg, Tl and Pb isotope systems by using quantum chemistry computational methods with careful evaluation on quantum relativistic effects via the Dirac's formalism of full-electron wavefunction. Our results generally agree with previous studies but with noticeable differences in many cases. With the unique NVE driving force, equilibrium 202Hg/198Hg and 205Tl/203Tl isotopes can be fractionated up to 3.94‰ and 2.78‰ at 0℃, respectively, showing potentially large equilibrium isotope fractionations can be expected for future studies of these two isotope systems. Moreover, the NVE causes large mass-independent fractionations (MIF) for odd-mass isotopes (e.g., ∆199NVHg and ∆201NVHg) and small MIFs for even-mass isotopes (e.g., ∆200NVHg). For Pb isotope system, NVEs induce isotope fractionations up to 1.62‰ (207Pb/206Pb) and 4.06‰ (208Pb/206Pb) at 0℃. However, contributions from classical mass-dependent driving force are small, about 0.1-0.5‰ for 207Pb/206Pb and 0.2-0.9‰ for 208Pb/206Pb. We find that Pb4+-bearing species can be significantly enriched heavy isotopes than Pb2+-bearing species. Comparing to Pb0, Pb2+-bearing species even enrich lighter Pb isotopes. A very strange and interesting thing is that the beta value of Pb2+-bearing species can be smaller than the unity (1.000). Similar thing has been found on Tl+-bearing species. This is an impossible and unexplained situation if only based on classical mass-dependent isotope fractionation theory (e.g., Bigeleisen-Mayer equation). The consequence is that the different direction of beta values of Pb2+-bearing species will let the Pb isotope fractionation even larger when they fractionate with Pb4+-bearing species. Moreover, NVEs also cause mass-independent fractionation (MIF) of odd 207Pb

  11. Kinetic and equilibrium Ba isotope fractionation during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Mavromatis, Vasileios; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2017-04-01

    Variations in stable isotope ratios recorded in carbonates are widely used to reconstruct the physicochemical conditions, e.g., pH, temperature and redox conditions, prevailing at the time of carbonate mineral formation. Knowledge of isotope fractionation factors during mineral precipitation under varying environmental conditions is irremissible for the interpretation of isotope variations in natural sedimentary archives. However, experimentally derived fractionation factors, of for instance Ca isotopes, are often ambiguous and incommensurable due to differences in experimental parameters. Here, Ba isotope fractionation during carbonate mineral formation was investigated [1]. Time-resolved experiments of witherite (BaCO3) precipitation revealed an initial kinetic isotope effect with increasing Δ137/134Ba values of the ambient solution, following Rayleigh fractionation (αwitherite-fluid = 0.99993 ± 0.00004). After precipitation, the witherite crystals remained in contact with the ambient solution for about nine days. During this time, chemical steady state was achieved between solution and witherite; however, the Δ137/134Ba values of the solution decreased. At isotopic equilibrium, the ambient solution and the witherite crystals exhibited identical δ137/134Ba values, within the analytical uncertainty of ±0.04 ‰Ṫhis observation is interpreted as the result of continuous exchange of Ba2+ ions between witherite and solution after initial preferential uptake of the lighter Ba isotopes in the precipitating carbonates. Mass balance calculations indicate that the ion exchange affects several subsurface layers of the crystals. In summary, Ba isotope exchange between carbonate and ambient solution occurs at chemical equilibrium, and pristine isotopic signatures in carbonates may thus be reset at low temperatures. [1] Mavromatis et al. (2016) Geochim. Cosmochim. Acta 190, 72-84.

  12. Devils Hole paleotemperatures and implications for oxygen isotope equilibrium fractionation

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Dublyansky, Yuri; Spötl, Christoph

    2014-08-01

    Subaqueous calcite in Devils Hole, Nevada, was growing continuously from slightly super-saturated groundwater, providing a 570 kyr-long δO18 paleoclimate record. Due to its very slow growth it has been assumed to have grown under conditions of isotopic equilibrium. However, its Holocene δO18 value is 1.5‰ higher than predicted by laboratory-precipitation-based oxygen isotope thermometer calibrations. The suggestion that Devils Hole calcite anchors the isotope thermometer to more 18O-enriched values has stirred a debate as to which paleothermometer calibration is relevant for paleoclimate and casts doubt on the validity of δO18-based paleotemperatures. We used clumped isotopes to test the assumptions of the Devils Hole alternative 18O-thermometer. Carbonate clumped isotopes are a temperature proxy that measures the abundance of 13Csbnd 18O bonds in CaCO3. This proxy is independent of the water composition and therefore gives independent estimates of temperatures when calcite forms at thermodynamic and isotopic equilibrium. We find that Devils Hole water paleotemperatures were constant at 30.6±2.6 °C between 27 and 180 ka, similarly to the modern groundwater temperature of 32.8-34.3 °C. The proximity of the Devils Hole clumped isotope data to values expected based on modern groundwater temperatures supports the notion that Devils Hole calcite grew under equilibrium conditions. Therefore, the commonly used laboratory-based δO18-temperature calibrations should be reconsidered. The constant water temperature over the glacial-interglacial cycles indicates that the long Devils Hole δO18 record reflects only variations in the groundwater δO18 values and as such, represents a valuable archive of paleoclimate and isotope paleohydrology.

  13. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    PubMed Central

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  14. Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.

    PubMed

    Kowalczyk, Piotr; MacElroy, J M D

    2006-08-03

    We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.

  15. First Principles Calculation on Equilibrium Si Isotope Fractionation Factors and its Implementation on Si Isotope Distributions in Earth Surface Environments

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H. T.; Zhu, C.

    2014-12-01

    Several important equilibrium Si isotope fractionation factors are calculated here. We use a so-called volume-variable-cluster-model (VVCM) method for solids and the "water-droplet" method for aqueous species for isotope fractionation calculation at the same quantum chemistry level. The calculation results show that several silicate minerals, such as quartz, feldspar, kaolinite, etc., all enrich heavy Si isotopes relative to aqueous H4SiO4 and can be up to 3.3‰ at 25°C, different from most field observations. Meanwhile stable organosilicon complexes can enrich even lighter Si isotopes than aqueous H4SiO4. For explaining the difference between the calculation results and field observations, we calculate the kinetic isotope effect (KIE) associated with the formation of amorphous silica, and find that amorphous silica will enrich extremely light Si isotopes. From amorphous silica to crystalline quartz, the structural adjustment & transition needs getting rid of small amount of Si to re-organize the structure. Light Si isotopes will be preferentially lost and let the final crystalline quartz with a little bit more heavy Si isotopes. However, such late-stage Si heavy isotope enrichment cannot erase the total isotopic signal, crystalline quartz still inherit much light Si isotopic composition from amorphous quartz. That is the reason for the discrepancy between the calculation results and the field observations, because the formation of amorphous quartz is under a non-equilibrium process but theoretical calculations are for equilibrium isotope fractionations. With accurate equilibrium fractionation factors provided here, Si isotope distributions in earth surface environments including soil, groundwater and plants can be further interpreted. We find that δ30Si variations in soil are mainly driven by secondary minerals precipitation and adsorption. Also, bulk soil δ30Si maybe have a parabolic distribution with soil age, with a minimum value at where allophane is

  16. The oxygen isotope equilibrium fractionation between sulfite species and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  17. Predicting equilibrium uranium isotope fractionation in crystals and solution

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2015-12-01

    Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22

  18. On the equilibrium isotopic composition of the thorium-uranium-plutonium fuel cycle

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2016-12-01

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium-uranium-plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  19. On the equilibrium isotopic composition of the thorium–uranium–plutonium fuel cycle

    SciTech Connect

    Marshalkin, V. Ye. Povyshev, V. M.

    2016-12-15

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium–uranium–plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  20. Quantum-mechanical equilibrium isotopic fractionation correction to radiocarbon dating: a theory study.

    PubMed

    Yuan, Jie; Liu, Yun

    This paper relates the quantum-mechanical equilibrium isotopic fractionation correction to the radiocarbon dating method by Eq. 9, and also shows the significant influence of temperature on the method. It is suggested that the correction is a function of the frequencies and temperature of a specific sample and these two variables can be evaluated theoretically by the ab initio quantum calculations and experimentally by analyzing the clumped-isotope ratios in it, respectively. This paper also suggests that the (14)C/(12)C ratio in the atmosphere in geological time can be calculated by Eq. 10.

  1. Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane

    NASA Astrophysics Data System (ADS)

    Webb, Michael A.; Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Miller, Thomas F.

    2017-01-01

    We combine path-integral Monte Carlo methods with a new intramolecular potential energy surface to quantify the equilibrium enrichment of doubly substituted ethane isotopologues due to clumped-isotope effects. Ethane represents the simplest molecule to simultaneously exhibit 13C-13C, 13C-D, and D-D clumped-isotope effects, and the analysis of corresponding signatures may provide useful geochemical and biogeochemical proxies of formation temperatures or reaction pathways. Utilizing path-integral statistical mechanics, we predict equilibrium fractionation factors that fully incorporate nuclear quantum effects, such as anharmonicity and rotational-vibrational coupling which are typically neglected by the widely used Urey model. The magnitude of the calculated fractionation factors for the doubly substituted ethane isotopologues indicates that isotopic clumping can be observed if rare-isotope substitutions are separated by up to three chemical bonds, but the diminishing strength of these effects suggests that enrichment at further separations will be negligible. The Urey model systematically underestimates enrichment due to 13C-D and D-D clumped-isotope effects in ethane, leading to small relative errors in the apparent equilibrium temperature, ranging from 5 K at 273.15 K to 30 K at 873.15 K. We additionally note that the rotameric dependence of isotopologue enrichment must be carefully considered when using the Urey model, whereas the path-integral calculations automatically account for such effects due to configurational sampling. These findings are of direct relevance to future clumped-isotope studies of ethane, as well as studies of 13C-13C, 13C-D, and D-D clumped-isotope effects in other hydrocarbons.

  2. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  3. Equilibrium Strontium Isotope Fractionation in Minerals and Solution

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.; Griffith, E. M.

    2011-12-01

    Recent interest in stable strontium isotope fractionation highlights our lack of understanding of the processes separating the isotopes of heavy elements in nature. Here we present thermodynamic calculations of equilibrium strontium isotope (88Sr/86Sr) fractionation in minerals and aqueous solution (by analogy to crystalline strontium hydrates). Strontium is among the ten most abundant dissolved ions seawater, and is unique in this group because it encompasses an extensively studied, long-lived radiogenic tracer (87Sr/86Sr) as well as three stable isotopes. Strontium is also widely distributed as a trace element in sedimentary minerals (especially carbonates and sulfates) and more broadly as a substituent for the major elements calcium, sodium and/or potassium in high-temperature igneous and metamorphic assemblages. However, we are aware of only a few theoretical or experimental studies of fractionation of strontium isotopes in crystals or solution (1). An important goal of our work is to provide a baseline for determining whether equilibrium isotope partitioning is important for generating observed signatures, which can be particularly difficult to establish experimentally in solid materials at ambient temperatures. Mass dependent fractionations are estimated for stoichiometric strontium-bearing crystals, including strontianite (SrCO3), celestine (SrSO4), strontia (SrO), and strontiofluorite (SrF2), as well as crystals with hydrated Sr2+-ions (e.g., SrCl2.6H2O, which contains a [Sr(H2O)9]2+ substructure) and strontium-substituted barite (Sr:BaSO4). Calculations are based on density functional perturbation theory models of the vibrational (phonon) densities of states of 86Sr- and 88Sr-substituted crystals. Most of the models of celestine indicate instability in the known orthorhombic structure - possibly because of shortcomings in pseudopotentials or density functionals. The models predict that fractionations between crystals tend to be small; strontia

  4. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    SciTech Connect

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas; Bi, Wenli; Tissot, Francois L. H.; Hu, Michael Y.; Zhao, Jiyong; Alp, Esen E.

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels. This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.

  5. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  6. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  7. First-principles models of equilibrium tellurium isotope fractionation

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, M. A.; Schauble, E. A.; Fornadel, A. P.; Spry, P. G.

    2013-12-01

    In this study, equilibrium mass-dependent isotopic fractionation among representative Te-bearing species is estimated with first-principles thermodynamic calculations. Tellurium is a group 16 element (along with O, S, and Se) with eight stable isotopes ranging in mass from 120Te to 130Te, and six commonly-occurring oxidation states: -II, -I, 0, +II, +IV, and +VI. In its reduced form, Te(-II), tellurium has a unique crystal-chemical role as a bond partner for gold and silver in epithermal and orogenic gold deposits, which likely form when oxidized Te species (e.g., H2TeO3, TeO32-) or perhaps polytellurides (e.g., Te22-) interact with precious metals in hydrothermal solution. Te(IV) is the most common oxidation state at the Earth's surface, including surface outcrops of telluride ore deposits, where tellurite and tellurate minerals form by oxidation. In the ocean, dissolved tellurium tends to be scavenged by particulate matter. Te(VI) is more abundant than Te(IV) in the ocean water (1), even though it is thought to be less stable thermodynamically. This variety of valence states in natural systems and range of isotopic masses suggest that tellurium could exhibit geochemically useful isotope abundance variations. Tellurium isotope fractionations were determined for representative molecules and crystals of varying complexity and chemistry. Gas-phase calculations are combined with supermolecular cluster models of aqueous and solid species. These in turn are compared with plane-wave density functional theory calculations with periodic boundary conditions. In general, heavyTe/lightTe is predicted to be higher for more oxidized species, and lower for reduced species, with 130Te/125Te fractionations as large as 4‰ at 100οC between coexisting Te(IV) and Te(-II) or Te(0) compounds. This is a much larger fractionation than has been observed in naturally occurring redox pairs (i.e., Te (0) vs. Te(IV) species) so far, suggesting that disequilibrium processes may control

  8. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: New insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Beard, Brian L.; Reddy, Thiruchelvi R.; Scherer, Michelle M.; Johnson, Clark M.

    2014-08-01

    The Fe isotope compositions of naturally occurring Fe oxide minerals provide insights into biogeochemical processes that occur in modern and ancient environments. Key to understanding isotopic variations in such minerals is knowledge of the equilibrium Fe isotope fractionation factors between common minerals and aqueous Fe species. Because experimental measurements of isotopic fractionation may reflect a combination of kinetic and equilibrium fractionations during rapid dissolution and precipitation, even in experiments that employ the three-isotope method, assessment of the attainment of equilibrium is often difficult. Here, we re-examine Fe isotope exchange, via a 57Fe tracer, and natural mass-dependent fractionation, through changes in initial 56Fe/54Fe ratios, between aqueous Fe(II) (Fe(II)aq) and goethite. This approach uses the three-isotope method, but is distinct in its evaluation of kinetic isotope fractionation and the attainment of equilibrium by: (i) employing a multi-direction approach to equilibrium at 22 °C via reaction of three Fe(II)aq solutions that had different initial 56Fe/54Fe ratios, (ii) conducting isotopic exchange experiments at elevated temperature (50 °C), and (iii) modifying the rate of isotopic exchange through a combination of trace-element substitutions and particle coarsening to evaluate corresponding temporal changes in fractionation trajectories that may reflect changing instantaneous fractionation factors. We find that rapid isotopic exchange produces kinetic isotope effects between Fe(II)aq and goethite, which shifts the 56Fe/54Fe ratios of Fe(II)aq early in reactions toward that of goethite, indicating that the instantaneous Fe(II)aq-goethite fractionation factor under kinetic conditions is small. Importantly, however, this kinetic fractionation is “erased” with continued reaction, and this is evident by the congruence for multiple-exchange trajectories of distinct initial Fe(II)aq solutions toward the same final value

  9. Redefining the utility of the three-isotope method

    NASA Astrophysics Data System (ADS)

    Cao, Xiaobin; Bao, Huiming

    2017-09-01

    The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.

  10. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Ellis, Andre S.

    2015-03-01

    We determined the equilibrium isotope fractionation between Cr(III) and Cr(VI), defined as Δ53CrVI-III = δ53Cr(VI) - δ53Cr(III), and the rates of isotopic exchange between the two redox species under different conditions. In high Cr concentration, low-pH experiments we determined the Δ53CrV-III between CrO42- and Cr(H2O)63+ to be 5.2 ± 0.3‰ and 5.5 ± 0.3‰ at 60 °C and 40 °C, respectively. At 25 °C, the system only progressed 25% toward isotopic equilibrium after 684 days. By extrapolating from the 60 °C and 40 °C experiments we estimated the Δ53CrVI-III between CrO42- and Cr(H2O)63+ to be 5.8 ± 0.5‰ at 25 °C. Isotope exchange rates between dissolved Cr(III) and dissolved Cr(VI) at 25 °C, 40 °C, and 60 °C were determined to be 3.13 × 10-5 M day-1, 6.83 × 10-4 M day-1, and 8.37 × 10-3 M day-1, respectively. In low concentration, neutral-pH experiments we determined the isotopic exchange rates between dissolved Cr(VI) and solid Cr(III) oxyhydroxide at 25 °C. In these experiments, significant isotopic exchange was found on time scales of months, though the magnitude of isotopic shifts was limited by the small mass of Cr(III) available for exchange on the surfaces of Cr(III) oxyhydroxide particles. Exchange rates were relatively fast, compared to rates obtained from high concentration, low-pH experiments. This faster isotopic exchange is attributed to adsorption of Cr(VI) to Cr(III) particle surfaces, which keeps Cr(III) and Cr(VI), and potentially intermediate species Cr(V), in close proximity long enough to allow multiple electron transfers. The isotopic exchange rate at neutral-pH was found to conform to the rate law R = k·[Cr(VI)]adsorbed, in which R is the isotopic exchange rate (M day-1); k is the rate constant, determined to be 0.00047 day-1; [CrO42-]adsorbed is the concentration of Cr(VI) adsorbed to Cr(III) oxyhydroxide (M). The impact of isotopic exchange on the 53Cr/52Cr ratio of the dissolved Cr(VI) depends on the relative masses

  11. Equilibrium carbon and hydrogen isotope fractionation in iron

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2009-12-01

    Recent theoretical and experimental studies (e.g., [1-3]) have suggested that Si- and Fe-isotopic signatures can be used to characterize the compositions and conditions of segregation of metallic cores in planetary interiors. This study expands the theoretical framework to include carbon and hydrogen, which may also be alloying elements. Hydrogen (D/H) and carbon (13C/12C) fractionations in iron-rich metallic melts are estimated by modeling analogous iron-rich crystals, i.e., dhcp-FeH and η-Fe2C. C- and H-atoms in these crystals are completely coordinated by iron. The driving energy for equilibrium fractionation is assumed to come from the reduction of vibrational frequencies when heavy isotopes are substituted for light ones; vibrations are assumed to be harmonic. This treatment is crude at high temperature, and for the relatively anharmonic vibrations typical of hydrogen-bearing substances, but may provide a reasonably accurate, semi-quantitative approximation of real fractionation behavior. Vibrational frequencies of all crystals are modeled with density functional theory, using gradient-corrected functionals and ultrasoft pseudopotentials. For both carbon and hydrogen, the models suggest that the metal phase will be strongly depleted in heavy isotopes. At 2000 K, 1 atm, η-Fe2C will have 3‰ lower 13C/12C than coexisting diamond. Combining this result with previous high-temperature theoretical and experimental studies (e.g., [4]), metal-graphite fractionation is expected to be very similar, while metal-CO2 fractionation will be almost twice as large, ca. -5‰. Deuterium/hydrogen fractionations are expected to be an order of magnitude larger, with 50-70‰ lower D/H in dhcp-FeH than in coexisting H2 gas at 2000 K, and approximately 100‰ lower D/H than water vapor. These fractionations are much larger than those inferred for silicon and iron, as expected given the differences in atomic mass. References: 1. Georg et al. (2007) Nature 447:1102; 2. Rustad & Yin

  12. Steps toward identifying a biogeochemical signal in non-equilibrium methane clumped isotope measurements

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.

    2016-12-01

    Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake

  13. A process-based model for non-equilibrium clumped isotope effects in carbonates

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Hunt, J. D.

    2015-12-01

    The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.

  14. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2015-09-01

    The nitrogen stable isotope ratio (15N/14N) of nitrogen oxides (NOx = NO + NO2) and its oxidation products (NOy = NOx + PAN (peroxyacetyl nitrate = C2H3NO5) + HNO3 + NO3 + HONO + N2O5 + ⋯ + particulate nitrates) has been suggested as a tool for partitioning NOx sources; however, the impact of nitrogen (N) equilibrium isotopic fractionation on 15N/14N ratios during the conversion of NOx to NOy must also be considered, but few fractionation factors for these processes have been determined. To address this limitation, computational quantum chemistry calculations of harmonic frequencies, reduced partition function ratios (15β), and N equilibrium isotope exchange fractionation factors (αA/B) were performed for various gaseous and aqueous NOy molecules in the rigid rotor and harmonic oscillator approximations using the B3LYP and EDF2 density functional methods for the mono-substitution of 15N. The calculated harmonic frequencies, 15β, and αA/B are in good agreement with available experimental measurements, suggesting the potential to use computational methods to calculate αA/B values for N isotope exchange processes that are difficult to measure experimentally. Additionally, the effects of solvation (water) on 15β and αA/B were evaluated using the IEF-PCM model, and resulted in lower 15β and αA/B values likely due to the stabilization of the NOy molecules from dispersion interactions with water. Overall, our calculated 15β and αA/B values are accurate in the rigid rotor and harmonic oscillator approximations and will allow for the estimation of αA/B involving various NOy molecules. These calculated αA/B values may help to explain the trends observed in the N stable isotope ratio of NOy molecules in the atmosphere.

  15. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  16. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  17. Method of separating boron isotopes

    SciTech Connect

    Jensen, R.J.; Cluff, C.L.; Hayes, J.K.; Thorne, J.M.

    1984-05-08

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  18. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Wang, Zheng-Rong; Li, Shu-Guang; Zhao, Zi-Fu

    2002-02-01

    Sm-Nd and oxygen isotope analyses were carried out for mineral separates of ultrahigh pressure eclogites from the Sulu terrane in eastern China. The results show a direct correspondence in equilibrium or disequilibrium state between the oxygen and Sm-Nd isotope systems of eclogite minerals. The omphacite-garnet pairs of oxygen isotope equilibrium at eclogite-facies conditions yield meaningful Triassic Sm-Nd isochron ages, whereas those of oxygen isotope disequilibrium give non-Triassic ages of geological meaninglessness. This can be reasonably interpreted by the fact that the rates of oxygen diffusion in garnet and pyroxene are lower than, or close to, those of Nd diffusion, and thus attainment of isotopic equilibrium in the omphacite-garnet O system suggests achievement of Nd isotope equilibrium in the same mineral pairs. The presence or absence of fluid in the eclogite protoliths is a major rate-controlling factor for isotopic equilibration during high-grade metamorphism. It appears that the state of oxygen isotope equilibrium between cogenetic minerals can provide a critical test for the validity of the Sm-Nd mineral chronometer. In addition, the exact timing of the ultrahigh pressure metamorphism in the Dabie-Sulu terranes is constrained at Early Triassic rather than Late Triassic.

  19. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  20. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  1. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg.

    PubMed

    Wiederhold, Jan G; Cramer, Christopher J; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-06-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Hg(II) chloride and nitrate solutions were equilibrated in parallel batches with varying amounts of thiol resin resulting in different fractions of thiol-bound and free Hg. Mercury isotope ratios in both fractions were analyzed by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). Theoretical equilibrium Hg isotope effects by mass-dependent fractionation (MDF) and nuclear volume fractionation (NVF) were calculated for 14 relevant Hg(II) species. The experimental data revealed that thiol-bound Hg was enriched in light Hg isotopes by 0.53 per thousand and 0.62 per thousand (delta(202)Hg) relative to HgCl(2) and Hg(OH)(2), respectively. The computational results were in excellent agreement with the experimental data indicating that a combination of MDF and NVF was responsible for the observed Hg isotope fractionation. Small mass-independent fractionation (MIF) effects (<0.1 per thousand) were observed representing one of the first experimental evidences for MIF of Hg isotopes by NVF. Our results indicate that significant equilibrium Hg isotope fractionation can occur without redox transition, and that NVF must be considered in addition to MDF to explain Hg isotope variations.

  2. Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications

    NASA Astrophysics Data System (ADS)

    Li, Xuefang; Zhao, Hui; Tang, Mao; Liu, Yun

    2009-09-01

    This study estimates equilibrium fractionation factors in the Ge isotope system, including the dominant aqueous Ge(OH) 4 and GeO(OH) 3- species in seawater, Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), and Ge in quartz- (or opal-), albite-, K-feldspar-, olivine- and sphalerite-like structures. Estimations are based on Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. All calculations are made at B3LYP/6-311 + G(d,p) theory level. Solvation effects are treated by explicit solvent model ("water-droplet" method), and mineral structures are simulated using cluster models, in which the clusters are cut from the X-ray structures of those minerals. In addition, a number of different conformers are used for aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The "salt effect" on GeO(OH) 3-(aq) species is also carefully evaluated. We estimate the accuracy of these fractionation calculations at about ± 0.3‰. Excitedly, very large isotope fractionations are found between many Ge isotope systems. The Ge-containing sulfides (e.g. sphalerite) can extremely enrich light Ge isotopes (more than 10‰) compared with 4-coordinated Ge-O compounds (e.g. Ge(OH) 4(aq) or quartz). The fractionations between Ge(OH) 4(aq) and 6-coordinated Ge-bearing organic complexes can be also up to 4‰ at 25 °C. These results give a good explanation for the experimental observations of Rouxel et al. (2006). It also suggests a great potential for broad application of Ge isotope method in various geological systems.

  3. Evaluation of the isotopic equilibrium between lactate and pyruvate

    SciTech Connect

    Wolfe, R.R.; Jahoor, F.; Miyoshi, H. )

    1988-04-01

    When an isotopic tracer is infused for the purpose of determining the rate of turnover or oxidation of a substrate, it is assumed that the resulting isotopic enrichment of the trace will reflect kinetics of only the pool of interest. However, this may not be the case when carbon-labeled lactate is infused, since rapid isotopic exchange with the intracellular pyruvate and alanine pools could potentially occur. Therefore the authors have determined the extent of isotopic exchange occurring during the infusion of (3-{sup 13}C)lactate into six anesthetized dogs. In the steady state, pyruvate enrichment was 91 {plus minus} 2.2% of the lactate enrichment, and alanine enrichment was 81 {plus minus} 3.3% of the pyruvate enrichment and 72 {plus minus} 2.6% of the lactate enrichment. In contrast, when (3-{sup 13}C)alanine was infused, pyruvate (and lactate) enrichment was 9.9% of the alanine enrichment. They therefore conclude that there is rapid isotopic equilibration between lactate and pyruvate but that interaction with alanine reflects the true metabolic flux rates, rather than isotopic exchange. Consequently, lactate kinetics, as traditionally determined, more accurately reflect whole body pyruvate kinetics.

  4. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  5. Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Lundstrom, Craig C.

    2015-06-01

    Measurements of the uranium (U) isotope ratio 238U/235U provide an emerging redox proxy in environmental and paleoredox studies, but many key parameters concerning U isotope fractionation are still poorly constrained. Here we report the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI), and rates of isotope exchange between solid-phase U(IV) and dissolved U(VI). We conducted one experiment at high concentration [35 mM U(IV) and 32 mM U(VI)] and low pH (0.2) in hydrochloric acid media at room temperature to determine the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI). Isotopic equilibrium was reached in about 19 days under such experimental conditions. The equilibrium isotope fractionation was determined to be 1.64 ± 0.16‰, with U(IV) being enriched in 238U relative to U(VI). Applicability of the determined equilibrium fractionation is discussed. We also conducted a set of experiments to determine isotopic exchange rates between dissolved U(VI) and nanouraninite U(IV) under conditions closer to those in natural system, with lower concentrations and neutral pH. The exchange rate was found to conform to the rate law R = k[U(VI)]adsorbed, in which R is the isotopic exchange rate (μM day-1); k is the rate constant determined to be 0.21 day-1; and [U(VI)]adsorbed is the concentration of U(VI) adsorbed to nanouraninite (μM). Our results, combined with consideration of the variables controlling U(VI)-U(IV) contact in natural settings, indicate that the timescale for significant isotope equilibration varies depending on environmental conditions, mostly uranium concentrations. In natural uncontaminated sediments with low uranium concentrations, equilibration is expected to occur on a timescale of hundreds to thousands of years. In contrast, in U-contaminated aquifers with high U concentrations, significant equilibration could occur on timescales of weeks to years.

  6. Silicon Isotopes doping experiments to measure quartz dissolution and precipitation rates at equilibrium and test the principle of detailed balance

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.

    2016-12-01

    The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.

  7. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  8. Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite

    NASA Astrophysics Data System (ADS)

    Rampone, Elisabetta; Hofmann, Albrecht W.; Raczek, Ingrid

    2009-11-01

    A widely used assumption of mantle geochemistry and the theory of partial melting at oceanic settings is the existence of isotopic equilibrium between mantle source and melt. Yet, recent diffusion studies and isotopic investigations of ophiolites, abyssal peridotites and associated MORBs have cast doubts on this assumption, by providing evidence for isotopic disequilibrium between residual peridotites and MORBs. Here we present Sr and Sm-Nd isotope data on mantle peridotites and gabbroic intrusions from the Mt. Maggiore (Alpine Corsica, France) Tethyan ophiolite, which document Nd isotopic homogeneity, implying isotopic equilibrium, on a 1-kilometer scale. The peridotites record multi-stage melt-rock interaction and melt intrusion occurring at different lithospheric depths. Samples studied are residual cpx-poor spinel lherzolites, reactive spinel harzburgites, impregnated plagioclase peridotites and related gabbronoritic veinlets, later gabbroic dykes. Strontium isotopes in peridotites and gabbros are highly variable, due to interaction with sea-water derived fluids, and cannot be used to test melt-residue isotopic equilibrium. In contrast, Nd isotopes are unaffected by sea-water alteration. Peridotites display present-day high 147Sm/ 144Nd (0.49-0.59) and 143Nd/ 144Nd (0.513367-0.513551) ratios, with no appreciable differences between residual and reactive spinel peridotites, and between spinel and plagioclase peridotites. Gabbroic dykes have present-day Nd isotopic compositions typical of MORB ( 143Nd/ 144Nd = 0.513122-0.513138). Internal (plag-whole rock-cpx) Sm-Nd isochrons for olivine gabbro dykes and a gabbronoritic veinlet yield Jurassic ages (162 ± 10 and 159 ± 15 Ma in ol-gabbros, 155 ± 6 Ma in gabbronorite), and initial ɛNd = 8.9-9.7 indicative of a MORB-type source. Sm-Nd isotopic compositions of peridotites conform to the linear array defined by the gabbroic rocks, and yield initial (160 Ma) ɛNd values of 7.6-8.9, again consistent with a MORB

  9. Non-canonical mass laws in equilibrium isotopic fractionations: Evidence from the vapor pressure isotope effect of SF6

    NASA Astrophysics Data System (ADS)

    Eiler, John; Cartigny, Pierre; Hofmann, Amy E.; Piasecki, Alison

    2013-04-01

    We report experimental observations of the vapor pressure isotope effect, including 33S/32S and 34S/32S ratios, for SF6 ice between 137 and 173 K. The temporal evolution of observed fractionations, mass-balance of reactants and products, and reversal of the fractionation at one temperature (155 K) are consistent with a subset of our experiments having reached or closely approached thermodynamic equilibrium. That equilibrium involves a reversed vapor pressure isotope effect; i.e., vapor is between 2‰ and 3‰ higher in 34S/32S than co-existing ice, with the difference increasing with decreasing temperature. At the explored temperatures, the apparent equilibrium fractionation of 33S/32S ratios is 0.551 ± 0.010 times that for 34S/32S ratios—higher than the canonical ratio expected for mass dependent thermodynamic fractionations (˜0.515). Two experiments examining exchange between adsorbed and vapor SF6 suggest the sorbate-vapor fractionation at 180-188 K is similar to that for ice-vapor at ˜150 K. In contrast, the liquid-vapor fractionation at 228-300 K is negligibly small (˜0.1‰ for 34S/32S; the mass law is ill defined due to the low amplitude of fractionation). We hypothesize that the observed vapor pressure isotope for SF6 ice and sorbate is controlled by commonly understood effects of isotopic substitution on vibrational energies of molecules, but leads to both an exotic mass law and reversed fractionation due to the competition between isotope effects on intramolecular vibrations, which promote heavy isotope enrichment in vapor, and isotope effects on intermolecular (lattice) vibrations, which promote heavy isotope enrichment in ice. This explanation implies that a variety of naturally important compounds having diverse modes of vibration (i.e., varying greatly in frequency and particularly, reduced mass) could potentially exhibit similarly non-canonical mass laws for S and O isotope fractionations. We examined this hypothesis using a density function

  10. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite

    NASA Astrophysics Data System (ADS)

    Skulan, Joseph L.; Beard, Brian L.; Johnson, Clark M.

    2002-09-01

    Application of the Fe isotope system to studies of natural rocks and fluids requires precise knowledge of equilibrium Fe isotope fractionation factors among various aqueous Fe species and minerals. These are difficult to obtain at the low temperatures at which Fe isotope fractionation is expected to be largest and requires careful distinction between kinetic and equilibrium isotope effects. A detailed investigation of Fe isotope fractionation between [Fe III(H 2O) 6] 3+ and hematite at 98°C allows the equilibrium 56Fe/ 54Fe fractionation to be inferred, which we estimate at 10 3lnα Fe(III)-hematite = -0.10 ± 0.20‰. We also infer that the slope of Fe(III)-hematite fractionation is modest relative to 10 6/T 2, which would imply that this fractionation remains close to zero at lower temperatures. These results indicate that Fe isotope compositions of hematite may closely approximate those of the fluids from which they precipitated if equilibrium isotopic fractionation is assumed, allowing inference of δ 56Fe values of ancient fluids from the rock record. The equilibrium Fe(III)-hematite fractionation factor determined in this study is significantly smaller than that obtained from the reduced partition function ratios calculated for [Fe III(H 2O) 6] 3+ and hematite based on vibrational frequencies and Mössbauer shifts by Polyakov (1997), Polyakov and Mineev (2000), and Schauble et al. (2001), highlighting the importance of experimental calibration of Fe isotope fractionation factors. In contrast to the long-term (up to 203 d) experiments, short-term experiments indicate that kinetic isotope effects dominate during rapid precipitation of ferric oxides. Precipitation of hematite over ˜12 h produces a kinetic isotope fractionation where 10 3lnα Fe(III)-hematite = +1.32 ± 0.12‰. Precipitation under nonequilibrium conditions, however, can be recognized through stepwise dissolution in concentrated acids. As expected, our results demonstrate that dissolution by

  11. Method for laser induced isotope enrichment

    DOEpatents

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  12. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Taylor, T.I.; Spindel, W.

    1960-02-01

    A method of concentrating N/sup 15/ in a liquid is described. Gaseous nitric oxide and at least one liquid selected from the group consisting of the aqueous oxyacids and oxides of nitrogen, wherein the atomic ratio of oxygen to nitrogen is greater than unity, are brought into intimate contact to cause an enrichment of the liquid and a depletion of the gas in N/sup 15/. The liquid is, thereafter, reacted with sulfur dioxide to produce a gas contuining nitric oxide. The gas contuining nitric oxide is then continuously passed in countercurrent contact with the liquid to cause further enrichment of the liquid.

  13. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  14. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria

    PubMed Central

    Kappler, A.; Johnson, C.M.; Crosby, H.A.; Beard, B.L.; Newman, D.K.

    2010-01-01

    Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)aq and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in 56Fe/54Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ56FeFe(OH)3 – Fe(II)aq fractionation factor of +3.0 ‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)aq and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)aq by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)aq oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)aq and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and

  15. First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wu, Zhongqing; Huang, Shichun; Wu, Fei

    2014-09-01

    Silicon isotope fractionation factors for mantle silicate minerals, including olivine, wadsleyite, ringwoodite, pyroxenes, garnet (pyrope), majorite, and Mg-perovskite, are calculated using density functional theory. Our results show that equilibrium fractionations of Si isotopes are negligible among pyroxenes, olivine, and pyrope, but are significant between olivine and its polymorphs (wadsleyite and ringwoodite). There is also significant Si isotope fractionations between mantle minerals with different Si coordination numbers (CN), such as Mg-perovskite (CN = 6) and olivine polymorphs (CN = 4). When in equilibrium with each other, 30Si/28Si decreases in the order of olivine > pyroxenes > wadsleyite > majorite > ringwoodite > Mg-perovskite. Our calculation predicts significant Si isotope fractionation between mantle minerals, e.g., perovskite vs. ringwoodite, majorite vs. pyroxene, and olivine vs. its polymorphs even at high pressure and temperature conditions of deep mantle. The Si CN in silicate melt increases with increasing pressure, implying that Si isotope fractionation between silicate and metal could be a function of pressure. Our results suggest that Si isotopic fractionation factor between silicate and metal may decrease with increasing pressure; consequently, Si isotopic fractionation factor obtained from low pressure experiments may not be applicable to Si isotope fraction during core formation which occurred at high pressure. Finally, Si isotopes could also be fractionated between perovskite-rich mantle and residual melt during magma-ocean cooling in the lower mantle because of their different Si CNs. If such primordial signature is not destroyed and partially preserved through the Earth's history, significant Si isotope heterogeneity could still exist between the upper and lower mantle.

  16. Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Liu, Yun

    2016-02-01

    High precision Δi values at equilibrium determined by theoretical methods are imperatively needed as references for the development of new clumped-isotope thermometers (or tracers). In this study, quantum chemistry methods with corrections beyond the harmonic approximation are used to obtain the clumped-isotope signatures at equilibrium of several gas-phase molecules (i.e., CH4, NH3, H2O, H2S, and SO2). Here, we consider as many corrections to the traditional Bigeleisen-Mayer equation as possible to obtain accurate Δi values at equilibrium and their temperature dependences. The corrections include anharmonic correction for zero-point energy, anharmonic correction for vibrational excited states, vibration-rotation coupling correction for zero-point energy, vibration-rotation coupling correction for vibrational excited states, quantum mechanical correction to rotation, and centrifugal distortion correction, which are important for theoretical understanding of clumped-isotope signals. Specifically, molecular constants are calculated via second-order perturbative analysis at the MP2/aug-cc-pVTZ level. The CCSD/6-311+G(3df,3pd) and CCSD/aug-cc-pVTZ levels are further employed to ensure the precision of harmonic frequencies of methane. For methane, a polynomial fit of ΔCH133D values over the temperature range of from 273.15 to 1000 K is obtained:

  17. Isotopic Dilution Analysis and Secular Equilibrium Study: Two Complementary Radiochemistry Experiments.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; Lipford, Levin C.

    1985-01-01

    Describes a complementary pair of radiochemistry experiments for instruction of isotopic dilution analysis and secular equilibrium. Both experiments use the readily available cesium-137 nuclide and the simple precipitation technique for cesium with the tetraphenylborate anion. Procedures used and typical results obtained are provided and…

  18. Equilibrium Tin Isotope Fractionation during Metal-Sulfide-Silicate Differentiation: A Nuclear Resonant Inelastic X-ray Scattering Approach

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Amet, Q.; Fitoussi, C.; Laporte, D.; Hu, M. Y.; Alp, E. E.

    2016-12-01

    Metal-silicate differentiation was recently addressed through the insight of the isotopic composition of siderophile elements (mainly Fe, Si and Cr isotopes) of planetary and extraterrestrial bodies. A key limitation of this approach is however the knowledge of equilibrium fractionation factors between coexisting phases (metal alloys, silicates and sulfides) used to interpret data on natural samples. These properties are difficult to determine experimentally. In this context, tin is generally classified as a chalcophile element but it is also siderophile and volatile. We applied a synchrotron-based method to circumvent difficulties related to determination of equilibrium isotope fractionation. The nuclear resonant inelastic x-ray scattering (NRIXS) was used to measure the phonon excitation spectrum and then to derive the force constant and finally the fractionation factors of Sn-bearing geomaterials. Spectroscopic measurements were carried out at room pressure at Sector 30-ID (APS, USA). A range of Fe-Ni alloys, rhyolitic and basaltic glasses and iron sulfides containing isotopically enriched 119Sn were synthesized. The tin content and the redox conditions prevailing during the synthesis were varied. The data evaluation was carried out using PHOENIX and SciPhon programs. A strong effect of both the redox state and the tin content was measured. In addition, the composition of the silicate glasses was found to be another important factor determining the tin isotope metal-silicate-sulfide fractionation factors. Our results are consistent with trends previously observed in the case of iron isotopes [1,2]. We will discuss the implications of our experimental results in terms of tin isotope planetary signatures. References: [1] Dauphas et al. (2014), EPSL, 398, 127-140; [2] Roskosz et al. (2015), GCA, 169, 184-199.

  19. Equilibrium simulations of Marine Isotope Stage 3 interstadial climate

    NASA Astrophysics Data System (ADS)

    Guo, Chuncheng; Nisancioglu, Kerim; Bentsen, Mats; Bethke, Ingo

    2017-04-01

    Marine Isotope Stage 3 (MIS3) was a period between approximately 60 ka to 30 ka BP that is characterised by abrupt climate transitions between cold, stadial and mild, interstadial climate conditions. The fluctuations are known as Dansgaard-Oeschger (D-O) events featured by a rapid warming from stadial to interstadial in a matter of a few decades, followed by a gradual cooling to stadial. We present fully coupled climate simulations of a pre-industrial control run and a MIS3 experiment at 38 ka, both integrated for 2000 years using the Norwegian Earth System Model (NorESM). With the recent model developments in the Bjerknes Centre for Climate Research (Norway), a new and efficient NorESM version (BCCR fast version) with 2 degrees atmosphere and 1 degree ocean is configured for paleo-modelling. BCCR fast version is capable of simulating Arctic sea ice and North Atlantic inflow well. We will present the large scale climate features in the MIS3 interstadial relative to today, such as the Atlantic Meridional Overturning Circulation, surface air temperature, etc. We also focus on the climate conditions in the Arctic and discuss the ocean circulations and sea ice conditions. In addition, sensitivity experiments with freshwater input into different regions (e.g., along the Norwegian coast, in the Nordic Seas, in the Labrador Sea, and in the region between 50 and 70 N) are performed; we will show the response of Arctic sea ice and Greenland temperature change from the freshwater perturbations and their implications for D-O events.

  20. Ab initio calculations of Li and B equilibrium isotope fractionation between high -P and -T minerals and aqueous fluids

    NASA Astrophysics Data System (ADS)

    Kowalski, P.; Jahn, S.; Wunder, B.

    2011-12-01

    Stable isotopes are excellent geochemical tracers widely used in petrology. Among them the isotopes of light elements such as Li or B strongly fractionate between minerals and aqueous fluids during fluid-rock interaction processes, which makes them excellent tracers of mass transfer processes in the subduction cycle. In order to use the full power of isotopes tracing methods the isotope fractionation mechanisms and fractionation factors between minerals and fluids of interest must be well known and characterized. One of the most important mechanisms leading to the formation of isotopic signatures is the equilibrium isotope fractionation, which nowadays can be modeled on the atomic scale by modern computational methods. However, due to high computational requirements the current works have been limited to calculations of simple materials only. In order to overcome these limitations we develop an efficient ab initio based computational approach for prediction of the equilibrium isotope fractionation factors between high pressure and temperature materials, including fluids, which would allow for efficient calculations of the isotope fractionation factors of complex minerals and fluids containing even hundreds of atoms in the supercell. We will show our results for the Li and B stable equilibrium isotope fractionation factors between complex Li/B-bearing crystalline solids (staurolite, spodumene, tourmaline, olenite and micas) and aqueous fluids. The fractionation factors were obtained in an efficient way by simplifying the consideration to calculations of the properties of fractionating atoms only. The comparison of the calculated fractionation factors, on the qualitative and quantitative levels, with the existing experimental data show the comparable to the in situ experimental techniques, predictive power of the computations. We show that with the atomistic scale modelling we are able to reproduce correctly the experimental isotope fractionation sequences

  1. First-principles Calculations of Equilibrium Calcium Isotope Fractionation among Ca-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Wang, W.; Kang, J.; Wu, Z.; Huang, F.

    2016-12-01

    Calcium isotope fractionation factors of Ca-bearing minerals are investigated with the first principle calculations based on density functional theory (DFT). The sequence of heavy Ca isotope enrichment is forsterite > grossular > butschliite > lime > fluorite > tremolite diopside > anhydrite dolomite titanite > anorthite > perovskite gehlenite aragonite richterite > akermanite > oldhamite. This order is consistent with variation of Ca-O bond lengths, indicating that Ca-O bond energy plays an overwhelming role on the fractionations of Ca isotopes. Our study provides important insights into the Ca isotopic data of meteorites. Our calculation predicts that oldhamites (CaS) are enriched in light Ca isotopes relative to silicate phase if they are in equilibrium, contrast with the observations in Valdes et al (2014). Therefore, oldhamite and silicate phase in the meteorites should be in disequilibrium for Ca isotopes. Our results can also be used to understand Ca isotopic composition of the Moon. Δ44/40Ca between olivine (with CaO content of 2.48 wt%) and diopside is up to 0.41‰ and Δ44/40Cagrossular-diopside is 0.26‰ at 1500K. Feng et al. (2014) calculated that Δ44/40Ca between opx with CaO content of 1.74 wt% and cpx is about 0.27‰ at 1500 K. According to the Lunar Magma Ocean (LMO) model, the modern Moon is chemically stratified (Snyder et al., 1992; Elardo et al., 2011). Assuming that the lower cumulate and upper residual melt are in isotopic equilibrium during the evolution of Lunar Magma Ocean where the cumulate may be mainly composed of olivine and orthopyroxene or garnet/spinel, δ44/40Ca of the Moon could be underestimated by 0.05‰ to 0.25‰ if the shallow lunar samples are used to represent the bulk Moon.

  2. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Natarajan, Suresh K.; Vuilleumier, Rodolphe; Mauri, Francesco

    2015-08-01

    The theoretical determination of the isotopic fractionation between an aqueous solution and a mineral is of utmost importance in Earth sciences. While for crystals, it is well established that equilibrium isotopic fractionation factors can be calculated using a statistical thermodynamic approach based on the vibrational properties, several theoretical methods are currently used to model ions in aqueous solution. In this work, we present a systematic study to determine the reduced partition function ratio (β-factor) of aqueous Mg2+ using several levels of theory within the simulations. In particular, using an empirical force field, we compare and discuss the performance of the exact results obtained from path integral molecular dynamics (PIMD) simulations, with respect to the more traditional methods based on vibrational properties and the cluster approximation. The results show the importance of including configurational disorder for the estimation of the equilibrium isotope fractionation factor. We also show that using the vibrational frequencies computed from snapshots taken from equilibrated classical molecular dynamics represents a good approximation for the study of aqueous ions. Based on these conclusions, the β-factor of aqueous Mg2+ have been estimated from a Car-Parrinello molecular dynamics (CPMD) simulation with an ab initio force field, and combined with the β-factors of carbonate minerals (magnesite, dolomite, calcite and aragonite). Mg β-factor of Mg-bearing aragonite, calculated here for the first time, displays a lower value than the three other carbonate minerals. This is explained by a strong distortion of the cationic site leading to a decrease of the coordination number during Ca-Mg substitution. Overall, the equilibrium magnesium isotope fractionation factors between aqueous Mg2+ and carbonate minerals that derive from this methodological study support the previous theoretical results obtained from embedded cluster models.

  3. Theoretical estimation of equilibrium sulfur isotope fractionations among aqueous sulfite species: Implications for isotope models of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Farquhar, J.; Guo, W.

    2015-12-01

    Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate

  4. A reassessment of isotopic equilibrium (Δ47 and δ18O) in the Laghetto Basso pool carbonates

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Drysdale, R.; Blamart, D.; Genty, D.; Zanchetta, G.

    2013-12-01

    To the best of our current knowledge, the overwhelming majority of modern speleothems have Δ47 values which differ significantly from those predicted for thermodynamic equilibrium. The extent to which these differences may vary temporally and spatially is still an open issue, precluding a straightforward application of clumped isotopes paleothermometry to speleothem records. Here we report on the recent results of a reassessment of isotopic equilibrium in the Laghetto Basso pool carbonates (Antro del Corchia cave, NW Italy), which offer excellent a priori conditions for equilibrium carbonate precipitation and provide a continuous or quasi-continuous isotopic record of the past million years.

  5. Computational study of the influence of solvent on (16)O/(18)O equilibrium isotope effects in phosphate deprotonation reactions.

    PubMed

    Kolmodin, Karin; Luzhkov, Victor B; Aqvist, Johan

    2002-08-28

    Results from theoretical calculations of (16)O/(18)O equilibrium isotope effects (EIEs) on deprotonation of phosphate and methyl phosphate monoanions as well as their deuterated counterparts are reported. The EIEs are calculated from the Bigeleisen equation using harmonic vibrational frequencies from several quantum mechanical methods (HF, DFT, MP2, and AM1). All methods correctly predict the qualitative trends in the EIEs related to the different isotope substitutions. However, the calculated gas-phase values are found to be systematically higher than those experimentally observed in aqueous solution. On the other hand, the addition of explicit solvent molecules (up to 24 waters) in the first solvation shells of the phosphate ion substantially improves the calculated EIE, which approaches the experimental value with increasing size of the water cluster. The large effects of surrounding water molecules on the phosphate deprotonation EIE can be explained by the strong solute-solvent interactions, which result in solvent coupled vibrational modes of the phosphate ions.

  6. Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium.

    PubMed

    Mora, Germán; Raich, James W

    2007-01-01

    The carbon-isotopic composition (delta13C) of soil-respired CO2 has been employed to evaluate soil carbon-cycling processes and the contribution of soil CO2 emissions to canopy and tropospheric air. These evaluations can be successful only when accurate isotope values of soil-respired CO2 are available. Here, we tested the robustness of delta13C values of soil-respired CO2 obtained after long incubations in static closed chambers that were initially flushed with soil air. The rationale of this approach is that the equilibrium carbon-isotope values of chamber-headspace CO2 are theoretically equal to those of CO2 produced within the soil. Static closed chambers were installed in replicated grass monocultures, and measurements of headspace CO2 concentrations and delta13C values were performed at regular time intervals for 24 h in July 2005. The results revealed no significant effects of grass species on headspace CO2 concentrations or delta13C values (repeated measures analysis of variance (ANOVA), P>0.1). As predicted by theory, isotope values asymptotically approached equilibrium conditions, which in our experimental setting occurred after 10 h. This good match between model predictions and our results suggests that an accurate determination of delta13C values of CO2 produced within soils is obtained through the isotopic measurement of chamber-headspace CO2 once equilibrium conditions have been reached with the underlying soils. An additional advantage of this approach is that only one sample per chamber is required, which, combined with the low uncertainties of these measurements, facilitates the investigation of the spatial (landscape) variability of soil-respired CO2.

  7. Computational and Experimental Evidence of Emergent Equilibrium Isotope Effects in Anion Receptor Complexes

    PubMed Central

    2017-01-01

    The measurement of a deuterium equilibrium isotope effect (EIE) for the aryl CH···Cl– interaction of anion receptor 1H/1D is reported. Computations corroborate the results of solution measurements for a small, normal EIE in the full complex (KaH/KaD = 1.019 ± 0.010). Interestingly, isotope effects involving fragments of the anion receptor (urea, aryl ring, etc.) are predicted to produce an inverse effect. This points to an unusual and subtle structural organization effect of the anion receptor complex that changes the nature of the combined interactions to a normal isotope effect. The reversal of EIE values suggests that overall architecture of the anion receptor can dramatically impact the nature of bonding in these complexes. PMID:28282134

  8. Transesterification thio effects of phosphate diesters: free energy barriers and kinetic and equilibrium isotope effects from density-functional theory.

    PubMed

    Liu, Yun; Gregersen, Brent A; Hengge, Alvan; York, Darrin M

    2006-08-22

    Primary and secondary kinetic and equilibrium isotope effects are calculated with density-functional methods for the in-line dianionic methanolysis of the native (unsubstituted) and thio-substituted cyclic phosphates. These reactions represent reverse reaction models for RNA transesterification under alkaline conditions. The effect of solvent is treated with explicit (single and double) water molecules and self-consistently with an implicit (continuum) solvation model. Singly substituted reactions at the nonbridging O(P1) position and bridging O(2)('), O(3)('), and O(5)(') positions and a doubly substituted reaction at the O(P1) and O(P2) positions were considered. Aqueous free energy barriers are calculated, and the structures and bond orders of the rate-controlling transition states are characterized. The results are consistent with available experimental data and provide useful information for the interpretation of measured isotope and thio effects used to probe mechanism in phosphoryl transfer reactions catalyzed by enzymes and ribozymes.

  9. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

    2014-06-01

    The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in

  10. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead

    NASA Astrophysics Data System (ADS)

    Yang, Sha; Liu, Yun

    2015-07-01

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac’s formalism of full-electron wave function. Equilibrium 202Hg/198Hg, 205Tl/203Tl, 207Pb/206Pb and 208Pb/206Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of vs. for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb4+-bearing species are found can enrich heavier Pb isotopes than Pb2+-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of 208Pb/206Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb2+-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., ) and odd-mass MIFs (i.e., ) are almost the same but with opposite signs.

  11. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead.

    PubMed

    Yang, Sha; Liu, Yun

    2015-07-30

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac's formalism of full-electron wave function. Equilibrium (202)Hg/(198)Hg, (205)Tl/(203)Tl, (207)Pb/(206)Pb and (208)Pb/(206)Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of [formula in text] for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb(4+)-bearing species are found can enrich heavier Pb isotopes than Pb(2+)-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of (208)Pb/(206)Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb(2+)-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., [formula in text]) and odd-mass MIFs (i.e., [formula in text) are almost the same but with opposite signs.

  12. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead

    PubMed Central

    Yang, Sha; Liu, Yun

    2015-01-01

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac’s formalism of full-electron wave function. Equilibrium 202Hg/198Hg, 205Tl/203Tl, 207Pb/206Pb and 208Pb/206Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of vs. for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb4+-bearing species are found can enrich heavier Pb isotopes than Pb2+-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of 208Pb/206Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb2+-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., ) and odd-mass MIFs (i.e., ) are almost the same but with opposite signs. PMID:26224248

  13. Using Beads and Divided Containers to Study Kinetic and Equilibrium Isotope Effects in the Laboratory and in the Classroom

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J.

    The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…

  14. METHOD AND APPARATUS FOR COLLECTING ISOTOPES

    DOEpatents

    Leyshon, W.E.

    1957-08-01

    A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

  15. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  16. [Dichotomizing method applied to calculating equilibrium constant of dimerization system].

    PubMed

    Cheng, Guo-zhong; Ye, Zhi-xiang

    2002-06-01

    The arbitrary trivariate algebraic equations are formed based on the combination principle. The univariata algebraic equation of equilibrium constant kappa for dimerization system is obtained through a series of algebraic transformation, and it depends on the properties of monotonic functions whether the equation is solvable or not. If the equation is solvable, equilibrium constant of dimerization system is obtained by dichotomy and its final equilibrium constant of dimerization system is determined according to the principle of error of fitting. The equilibrium constants of trisulfophthalocyanine and biosulfophthalocyanine obtained with this method are 47,973.4 and 30,271.8 respectively. The results are much better than those reported previously.

  17. High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Lazar, G. C.; Macris, C. A.; Manning, C. E.; Schauble, E. A.; Shahar, A.

    2013-12-01

    Experiments are crucial for validating our understanding of stable isotope fractionation at high temperatures. The three-isotope method has been applied with success in the Si, Mg, Fe, and Ni isotope systems to date. The results of these experiments can be compared with expectations from theory and measurements of natural samples. Qualitative insights into the partitioning of heavy and light isotopes between mineral phases are gained by treating the force constant for relevant bonds, Kf j, as electrostatic in origin. The ionic model, based on the mean bond strength as defined by Pauling, has obvious limitations but is useful for rationalizing structures and site occupancies in silicates and oxide minerals and is equally useful in formulating expectations for isotope fractionation between phases. In some cases, as in Fe isotopes in spinels, the expectations are contrary to predictions based on modeling but similar to observations in natural samples. Experimental verification is required. The force constant for a bond between cation i (Mg, Fe, etc.) and anion j (e.g., O) can be written in terms of mean bond strengths si and sj (as defined by Pauling) as Kf,ij = sisj e2 (1-n)/(4 π ɛο r3ij ) where ɛo is the electric constant (vacuum permittivity for simplicity), e is the charge of an electron, n is the exponent in the Born-Mayer formulation for ion repulsion (Born and Mayer 1932), and rij is the interatomic spacing. This equation shows explicitly that larger values for the force constant Kf correspond to smaller coordination numbers (via si and sj). We therefore expect an inverse relationship between isotope ratios (heavy/light) and coordination of its oxygen bond partners in silicate and oxides minerals and this is verified in mantle minerals. Our work with Fe isotope partitioning in mantle spinels suggests that coordination may be equally important as oxidation state, recognizing that these distinctions are not orthogonal. Recent work on the Mg isotopic

  18. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    PubMed Central

    Larsen, K.K.; Wielandt, D.; Schiller, M.; Bizzarro, M.

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr3+, CrCl2+ and CrCl2+) with equilibrium mass-dependent isotope fractionation spanning a range of ~1‰/amu and consistent with theory. The heaviest isotopes partition into Cr3+, intermediates in CrCl2+ and the lightest in CrCl2+/CrCl3°. Thus, for a typical reported loss of ~25% Cr (in the form of Cr3+) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected 53Cr/52Cr (μ53 Cr* of 5.2 ppm) and 54Cr/52Cr (μ54Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr3+ by >5 days exposure to HNO3 —H2O2 solutions at room temperature, resulting in >~98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that

  19. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    PubMed

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  20. Stable isotope labeling methods for DNA.

    PubMed

    Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A

    2016-08-01

    NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  2. Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data

    USGS Publications Warehouse

    Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.

    1976-01-01

    Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance

  3. Accelerator-based method of producing isotopes

    DOEpatents

    Nolen, Jr., Jerry A.; Gomes, Itacil C.

    2015-11-03

    The invention provides a method using accelerators to produce radio-isotopes in high quantities. The method comprises: supplying a "core" of low-enrichment fissile material arranged in a spherical array of LEU combined with water moderator. The array is surrounded by substrates which serve as multipliers and moderators as well as neutron shielding substrates. A flux of neutrons enters the low-enrichment fissile material and causes fissions therein for a time sufficient to generate desired quantities of isotopes from the fissile material. The radio-isotopes are extracted from said fissile material by chemical processing or other means.

  4. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  5. The early bird gets the shrimp: confronting assumptions of isotopic equilibrium and homogeneity in a wild bird population.

    PubMed

    Wunder, Michael B; Jehl, Joseph R; Stricker, Craig A

    2012-11-01

    1. Because stable isotope distributions in organic material vary systematically across energy gradients that exist in ecosystems, community and population structures, and in individual physiological systems, isotope values in animal tissues have helped address a broad range of questions in animal ecology. It follows that every tissue sample provides an isotopic profile that can be used to study dietary or movement histories of individual animals. Interpretations of these profiles depend on the assumption that metabolic pools are isotopically well mixed and in equilibrium with dietary resources prior to tissue synthesis, and they extend to the population level by assuming isotope profiles are identically distributed for animals using the same proximal dietary resource. As these assumptions are never fully met, studying structure in the variance of tissue isotope values from wild populations is informative. 2. We studied variation in δ(13) C, δ(15) N, δ(2) H and δ(18) O data for feathers from a population of eared grebes (Podiceps nigricollis) that migrate to Great Salt Lake each fall to moult feathers. During this time, they cannot fly and feed almost exclusively on superabundant brine shrimp (Artemia franciscana). The ecological simplicity of this situation minimized the usual spatial and trophic complexities often present in natural studies of feather isotope values. 3. Ranges and variances of isotope values for the feathers were larger than those from previously published studies that report feather isotopic variance, but they were bimodally distributed in all isotope dimensions. Isotope values for proximal dietary resources and local surface water show that some of the feathers we assumed to have been grown locally must have been grown before birds reached isotopic equilibrium with local diet or immediately prior to arrival at Great Salt Lake. 4. Our study provides novel insights about resource use strategies in eared grebes during migration. More generally

  6. The early bird gets the shrimp: Confronting assumptions of isotopic equilibrium and homogeneity in a wild bird population

    USGS Publications Warehouse

    Wunder, Michael B.; Jehl, Joseph R.; Stricker, Craig A.

    2012-01-01

    1. Because stable isotope distributions in organic material vary systematically across energy gradients that exist in ecosystems, community and population structures, and in individual physiological systems, isotope values in animal tissues have helped address a broad range of questions in animal ecology. It follows that every tissue sample provides an isotopic profile that can be used to study dietary or movement histories of individual animals. Interpretations of these profiles depend on the assumption that metabolic pools are isotopically well mixed and in equilibrium with dietary resources prior to tissue synthesis, and they extend to the population level by assuming isotope profiles are identically distributed for animals using the same proximal dietary resource. As these assumptions are never fully met, studying structure in the variance of tissue isotope values from wild populations is informative. 2. We studied variation in δ13C, δ15N, δ2H and δ18O data for feathers from a population of eared grebes (Podiceps nigricollis) that migrate to Great Salt Lake each fall to moult feathers. During this time, they cannot fly and feed almost exclusively on superabundant brine shrimp (Artemia franciscana). The ecological simplicity of this situation minimized the usual spatial and trophic complexities often present in natural studies of feather isotope values. 3. Ranges and variances of isotope values for the feathers were larger than those from previously published studies that report feather isotopic variance, but they were bimodally distributed in all isotope dimensions. Isotope values for proximal dietary resources and local surface water show that some of the feathers we assumed to have been grown locally must have been grown before birds reached isotopic equilibrium with local diet or immediately prior to arrival at Great Salt Lake. 4. Our study provides novel insights about resource use strategies in eared grebes during migration. More generally, it

  7. Determination and application of the equilibrium oxygen isotope effect between water and sulfite

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Bradley, Alexander S.; Eldridge, Daniel L.; Johnston, David T.

    2014-01-01

    The information encoded by the two stable isotope systems in sulfate (δ34SSO4 and δ18OSO4) has been widely applied to aid reconstructions of both modern and ancient environments. Interpretation of δ18OSO4 records has been complicated by rapid oxygen isotope equilibration between sulfoxyanions and water. Specifically, the apparent relationship that develops between δ18OSO4 and δ18Owater during microbial sulfate reduction is thought to result from rapid oxygen isotope equilibrium between intracellular water and aqueous sulfite - a reactive intermediate of the sulfate reduction network that can back-react to produce sulfate. Here, we describe the oxygen equilibrium isotope effect between water and sulfite (referring to all the sum of all S(IV)-oxyanions including sulfite and both isomers and the dimer of bisulfite). Based on experiments conducted over a range of pH (4.5-9.8) and temperature (2-95 °C), where ε = 1000 * (α - 1), we find εSO3-H2O=13.61-0.299∗pH-0.081∗T °C. Thus, at a pH (7.0) and temperature (25 °C) typifying commonly used experimental conditions for sulfate reducing bacterial cultures, sulfite is enriched in 18O by 9.5‰ (±0.8‰) relative to ambient water. We examine the implication of these results in a sulfate reduction network that has been revised to reflect our understanding of the reactions involving oxygen. By evaluating previously published data within this new architecture, our results are consistent with previous suggestions of high reversibility of the sulfate reduction biochemical network. We also demonstrate that intracellular exchange rates between SO32- and water must be on average 1-3 orders of magnitude more rapid than intracellular fluxes of sulfate reduction intermediates and that kinetic isotope effects upstream of SO32- are required to explain previous laboratory and environmental studies of δ18OSO4 resulting as a consequence of sulfate reduction.

  8. Density Functional Theory Study of Controls on Equilibrium Fe Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Kubicki, J. D.

    2006-12-01

    Previous molecular orbital/density functional theory (MO/DFT) calculations of Fe(III) and Fe(II) complexed with oxalate and catechol was used to predict and compare the equilibrium Fe isotope fractionation factors associated with changes to ligands bound to Fe and those associated with changes to the oxidation state of Fe. The predicted fractionation factors between Fe bound by different ligands was < 1.7‰ in vacuo and < 1.2‰ in solution. These values were consistently and significantly smaller than those for equilibrium between different oxidation states of Fe, predicted to be > 2.8‰ in vacuo and > 2.2‰ in solution. Curiously, a trend was originally found where 56Fe is partitioned into smaller ligands with lower Fe affinities and presumably weaker Fe-O bonds. This was the case for the ligands water, oxalate, and catechol, which show respectively increasing Fe affinities yet decreasing predicted 56Fe/^{54}Fe. Current research is using a model of a full siderophore to calculate the Fe isotope fractionation associated with organic complexation. Fractionation is more complicated upon the inclusion of the siderophore desferrioxamine B (DFOB). The high affinity of DFOB for Fe(III) results in the highest predicted fractionation for 56Fe of all the complexes studied, reversing the unexpected fractionation trend mentioned above. We present the results of a detailed analysis of the bonding between Fe(III) and the ligands bound to it. We use natural bond order (NBO) analysis to show why the smaller ligands result in a larger partitioning of 56Fe to smaller ligands, and why DFOB has the highest 56Fe partitioning. This study will help elucidate the molecular controls on Fe isotope fractionation, and as such will be useful in placing experimental work in theoretical context and in helping drive future research questions. Accordingly, the implications of our results for the use of Fe isotopes as a biomarker and as a tracer of ocean redox history will be discussed, as

  9. Feasibility of Isotopic Measurements: Graphite Isotopic Ratio Method

    SciTech Connect

    Wood, Thomas W.; Gerlach, David C.; Reid, Bruce D.; Morgan, W. C.

    2001-04-30

    This report addresses the feasibility of the laboratory measurements of isotopic ratios for selected trace constituents in irradiated nuclear-grade graphite, based on the results of a proof-of-principal experiment completed at Pacific Northwest National Laboratory (PNNL) in 1994. The estimation of graphite fluence through measurement of isotopic ratio changes in the impurity elements in the nuclear-grade graphite is referred to as the Graphite Isotope Ratio Method (GIRM). Combined with reactor core and fuel information, GIRM measurements can be employed to estimate cumulative materials production in graphite moderated reactors. This report documents the laboratory procedures and results from the initial measurements of irradiated graphite samples. The irradiated graphite samples were obtained from the C Reactor (one of several production reactors at Hanford) and from the French G-2 Reactor located at Marcoule. Analysis of the irradiated graphite samples indicated that replicable measurements of isotope ratios could be obtained from the fluence sensitive elements of Ti, Ca, Sr, and Ba. While these impurity elements are present in the nuclear-grade graphite in very low concentrations, measurement precision was typically on the order of a few tenths of a percent to just over 1 percent. Replicability of the measurements was also very good with measured values differing by less than 0.5 percent. The overall results of this initial proof-of-principal experiment are sufficiently encouraging that a demonstration of GIRM on a reactor scale basis is planned for FY-95.

  10. Ab initio path-integral calculations of kinetic and equilibrium isotope effects on base-catalyzed RNA transphosphorylation models.

    PubMed

    Wong, Kin-Yiu; Xu, Yuqing; York, Darrin M

    2014-06-30

    Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2'-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2'-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a "gold-standard" coupled-cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path-integral method, that is, automated integration-free path-integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis.

  11. In Equilibrium Stable Isotope Chemistry of The Deep Water Coral Stylaster Sp. From Rockall Trough: Paleoceanographic Implications

    NASA Astrophysics Data System (ADS)

    Mienis, F.

    Living corals, molluscs and associated water samples were collected from deep sea coral reefs along the margins of Rockall Trough (N. Atlantic). Oxygen (d18O) and carbon (d13C) isotope analyses of seawater and skeletal CaCO3 indicate that vari- ous organisms do not precipitate CaCO3 in isotopic equilibrium with host water. Par- ticularly the most abundant coral genera Lophelia sp and Madrepora sp fractionate markedly, as was already observed by a number of previous studies. However, our new data shows that the coral genus Stylaster, occuring in small numbers in the Rock- all Trough area, is in isotopic equilibrium with seawater. Like for the aragonitic bi- valves and gastropods inhabiting the same deep water reefs, microsampling of growth banded Stylaster specimens can be applied to obtain high resolution time series of in-equilibrium d13C and d18O data covering the life span of individual specimens.

  12. Explicit Integration of Extremely Stiff Reaction Networks: Partial Equilibrium Methods

    SciTech Connect

    Guidry, Mike W; Billings, J. J.; Hix, William Raphael

    2013-01-01

    In two preceding papers [1,2] we have shown that, when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that algebraically stabilized explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been feasible previously in a variety of fields.

  13. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Dideriksen, K.; Baker, J. A.; Stipp, S. L. S.

    2008-05-01

    In oxic oceans, most of the dissolved iron (Fe) exists as complexes with siderophore-like, strongly coordinating organic ligands. Thus, the isotope composition of the little amount of free inorganic Fe that is available for precipitation and preservation in the geological record may largely be controlled by isotope fractionation between the free and complexed iron. We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fe-desferrioxamine B (at pH 2). The two differently complexed Fe(III) pools were separated by addition of Na 2CO 3, which led to immediate precipitation of the inorganic Fe without causing significant dissociation of Fe-desferrioxamine complexes. Experiments using enriched 57Fe tracer showed that isotopic equilibration between the 57Fe-labelled inorganic species and the isotopically "normal" siderophore-bound Fe was rapid during the first few seconds and then became slower. Consequently, the data fitted poorly to first and second order reaction equations. However, with a two-stage reaction, the data fit perfectly with a first order equation for the slower stage, indicating that approximately 40% re-equilibration may take place during the separation of the two pools. To further test if the induced precipitation leads to experimental artefacts, the fractionation during precipitation of inorganic Fe was determined. Assuming a Rayleigh-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of α56Fe solution-solid = 1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable

  14. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    PubMed

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect.

  15. Accelerating equilibrium isotope effect calculations. I. Stochastic thermodynamic integration with respect to mass

    NASA Astrophysics Data System (ADS)

    Karandashev, Konstantin; Vaníček, Jiří

    2017-05-01

    Accurate path integral Monte Carlo or molecular dynamics calculations of isotope effects have until recently been expensive because of the necessity to reduce three types of errors present in such calculations: statistical errors due to sampling, path integral discretization errors, and thermodynamic integration errors. While the statistical errors can be reduced with virial estimators and path integral discretization errors with high-order factorization of the Boltzmann operator, here we propose a method for accelerating isotope effect calculations by eliminating the integration error. We show that the integration error can be removed entirely by changing particle masses stochastically during the calculation and by using a piecewise linear umbrella biasing potential. Moreover, we demonstrate numerically that this approach does not increase the statistical error. The resulting acceleration of isotope effect calculations is demonstrated on a model harmonic system and on deuterated species of methane.

  16. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines

    SciTech Connect

    Yang, Lin; Tan, Xiaohua; Wan, Xiang; Chen, Lei; Jin, Dazhi; Qian, Muyang; Li, Gongping

    2014-04-28

    Two Stark broadening parameters including FWHM (full width at half maximum) and FWHA (full width at half area) of isotope hydrogen alpha lines are simultaneously introduced to determine the electron density of a pulsed vacuum arc jet. To estimate the gas temperature, the rotational temperature of the C{sub 2} Swan system is fit to 2500 ± 100 K. A modified Boltzmann-plot method with b{sub i}-factor is introduced to determine the modified electron temperature. The comparison between results of atomic and ionic lines indicates the jet is in partial local thermodynamic equilibrium and the electron temperature is close to 13 000 ± 400 K. Based on the computational results of Gig-Card calculation, a simple and precise interpolation algorithm for the discrete-points tables can be constructed to obtain the traditional n{sub e}-T{sub e} diagnostic maps of two Stark broadening parameters. The results from FWHA formula by the direct use of FWHM = FWHA and these from the diagnostic map are different. It can be attributed to the imprecise FWHA formula form and the deviation between FWHM and FWHA. The variation of the reduced mass pair due to the non-equilibrium effect contributes to the difference of the results derived from two hydrogen isotope alpha lines. Based on the Stark broadening analysis in this work, a corrected method is set up to determine n{sub e} of (1.10 ± 0.08) × 10{sup 21} m{sup −3}, the reference reduced mass μ{sub 0} pair of (3.30 ± 0.82 and 1.65 ± 0.41), and the ion kinetic temperature of 7900 ± 1800 K.

  17. Theoretical estimation for equilibrium Mo isotope fractionations between dissolved Mo species and the adsorbed complexes on (Fe,Mn)-oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Tang, M.; Liu, Y.

    2009-12-01

    Although Mo isotopes have been increasingly used as a paleoredox proxy in the study of paleo-oceanographic condition changes (Barling et al., 2001; Siebert et al., 2003, 2005,2006; Arnold et al., 2004; Poulson et al., 2006), some very basic aspects of Mo isotopes geochemistry have not been obtained yet. First, although there are several previous studies on equilibrium Mo isotope fractionation factors(Tossell,2005; Weeks et al.,2007; Wasylenki et al.,2008), these studies were dealing with situations in vacuum and we find unfortunately the solvation effects for Ge species in solution cannot be ignored. Therefore, accurate Ge fractionation factors are actually not determined yet. Second, except the dominant dissolved Mo species in seawater which is known as molybdate ion (MoO42-), the forms of possible other minor species remain elusive. Third, the Mo removal mechanisms from seawater are only known for the anoxia and euxinic conditions (e.g. Helz et al., 1996; Zheng et al., 2000), the Mo removal mechanism under oxic condition are still arguing. Fourth, the adsorption effects on Mo isotope fractionation are almost completely unknown. Especially, without the adsorption fractionation knowledge, it is difficult to understand many distinct fractionations found in a number of geologic systems and it is difficult to explain the exceptionally long residence time of Mo in seawater. Urey model or Bigeleisen-Mayer equation based theoretical method and the super-molecule clusters are used to precisely evaluate the fractionation factors. The B3LYP/(6-311+G(2df,p),LANL2DZ) level method is used for frequencies calculation. 24 water molecules are used to form the supermolecues surrounding the Mo species. At least 4 different conformers for each supermolecule are used to prevent the errors from the diversity of configurations in solution. This study provides accurate equilibrium Mo isotope fractionation factors between possible dissolved Mo species and the adsorbed Mo species on the

  18. A Straightforward Method to Determine Equilibrium Constants from Spectrophotometric Data

    NASA Astrophysics Data System (ADS)

    Keszei, E.; Takács, M. G.; Vizkeleti, B.

    2000-07-01

    Spectrophotometry provides reliable information on the equilibrium concentration in chemically reacting mixtures. However, the widely used traditional linearized models to determine the equilibrium constant from spectrophotometric data do not provide optimal information and unnecessarily complicate data evaluation for students. In this paper we show an easy and straightforward inference method, which makes use only of Beer's Law and an elementary mathematical treatment of the problem. Though the resulting parameter estimation is nonlinear with respect to the equilibrium constant, the commercial availability of many nonlinear parameter estimation software packages eliminates the need for the student to bother with either mathematical or numerical details. Adding a suitable spectral shape function to the model describing equilibrium further facilitates the use of the proposed method and makes it an easy task to determine the components' spectra from equilibrium measurements. Three practical examples are treated in detail in the online version. They illustrate how the method works at different complexity levels and are easy to install in undergraduate physical chemistry labs.

  19. Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Kavner, Abby; Schauble, Edwin A.

    2011-02-01

    The goal of this study is to determine reduced partition function ratios for a variety of species of zinc, both as a metal and in aqueous solutions in order to calculate equilibrium stable isotope partitioning. We present calculations of the magnitude of Zn stable-isotope fractionation ( 66,67,68Zn/ 64Zn) between aqueous species and metallic zinc using measured vibrational spectra (fit from neutron scattering studies of metallic zinc) and a variety of electronic structure models. The results show that the reduced metal, Zn(0), will be light in equilibrium with oxidized Zn(II) aqueous species, with the best estimates for the Zn(II)-Zn(0) fractionation between hexaquo species and metallic zinc being Δ 66/64Zn aq-metal ˜ 1.6‰ at 25 °C, and Δ 66/64Zn aq-metal ˜ 0.8‰ between the tetrachloro zinc complex and metallic zinc at 25 °C using B3LYP/aug-cc-pVDZ level of theory and basis set. To examine the behavior of zinc in various aqueous solution chemistries, models for Zn(II) complex speciation were used to determine which species are thermodynamically favorable and abundant under a variety of different conditions relevant to natural waters, experimental and industrial solutions. The optimal molecular geometries for [Zn(H 2O) 6] 2+, [Zn(H 2O) 6]·SO 4, [ZnCl 4] 2- and [Zn(H 2O) 3(C 3H 5O(COO) 3)] - complexes in various states of solvation, protonation and coordination were calculated at various levels of electronic structure theory and basis set size. Isotopic reduced partition function ratios were calculated from frequency analyses of these optimized structures. Increasing the basis set size typically led to a decrease in the calculated reduced partition function ratios of ˜0.5‰ with values approaching a plateau using the aug-cc-pVDZ basis set or larger. The widest range of species were studied at the B3LYP/LAN2DZ/6-31G ∗ level of theory and basis-set size for comparison. Aqueous zinc complexes where oxygen is bound to the metal center tended to have the

  20. Stellarator expansion methods for MHD equilibrium and stability calculations

    SciTech Connect

    Lynch, V.E.; Charlton, L.A.; Hicks, H.R.; Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Garcia, L.

    1986-03-01

    Two methods for performing stellarator expansion, or average method, MHD calculations are described. The first method includes the calculation of vacuum, equilibrium, and stability, using the Greene and Johnson stellarator expansion in which the equilibrium is reduced to a 2-D problem by averaging over the geometric toroidal angle in real space coordinates. In the second method, the average is performed in a system of vacuum magnetic coordinates. Both methods are implemented to utilize realistic vacuum field information, making them applicable to configuration studies and machine design, as well as to basic research. Illustrative examples are presented to detail the sensitivities of the calculations to physical parameters and to show numerical convergence and the comparison of these methods with each other and with other methods.

  1. EQUILIBRIUM AND NONEQUILIBRIUM FOUNDATIONS OF FREE ENERGY COMPUTATIONAL METHODS

    SciTech Connect

    C. JARZYNSKI

    2001-03-01

    Statistical mechanics provides a rigorous framework for the numerical estimation of free energy differences in complex systems such as biomolecules. This paper presents a brief review of the statistical mechanical identities underlying a number of techniques for computing free energy differences. Both equilibrium and nonequilibrium methods are covered.

  2. Phase equilibrium and stable isotope constraints on the formation of metasomatic garnet-vesuvianite veins (SW Adamello, N Italy)

    NASA Astrophysics Data System (ADS)

    Abart, R.

    1995-11-01

    wall rock and metasomatic alteration. Vein garnet was precipitated in isotopic equilibrium with the metasomatic fluid. The isotopic composition of preexisting calcite was initially out of equilibrium with the vein-forming fluid and it was shifted towards equilibrium by surface-reaction controlled calcite-fluid isotopic exchange during calcite recrystallization. Due to the short lifetime of the metasomatic system, calcite-fluid isotopic equilibrium was generally not attained. Within the veins, oxygen and carbon transport was fast relative to mineral-fluid exchange of their isotopes and the geometry of the isotopic pattern is largely controlled by the kinetics of mineral-fluid exchange.

  3. Importance of a Fully Anharmonic Treatment of Equilibrium Isotope Fractionation Properties of Dissolved Ionic Species As Evidenced by Li(+)(aq).

    PubMed

    Dupuis, Romain; Benoit, Magali; Tuckerman, Mark E; Méheut, Merlin

    2017-07-18

    Equilibrium fractionation of stable isotopes is critically important in fields ranging from chemistry, including medicinal chemistry, electrochemistry, geochemistry, and nuclear chemistry, to environmental science. The dearth of reliable estimates of equilibrium fractionation factors, from experiment or from natural observations, has created a need for accurate computational approaches. Because isotope fractionation is a purely quantum mechanical phenomenon, exact calculation of fractionation factors is nontrivial. Consequently, a severe approximation is often made, in which it is assumed that the system can be decomposed into a set of independent harmonic oscillators. Reliance on this often crude approximation is one of the primary reasons that theoretical prediction of isotope fractionation has lagged behind experiment. A class of problems for which one might expect the harmonic approximation to perform most poorly is the isotopic fractionation between solid and solution phases. In order to illustrate the errors associated with the harmonic approximation, we have considered the fractionation of Li isotopes between aqueous solution and phyllosilicate minerals, where we find that the harmonic approximation overestimates isotope fractionation factors by as much as 30% at 25 °C. Lithium is a particularly interesting species to examine, as natural lithium isotope signatures provide information about hydrothermal processes, carbon cycle, and regulation of the Earth's climate by continental alteration. Further, separation of lithium isotopes is of growing interest in the nuclear industry due to a need for pure (6)Li and (7)Li isotopes. Moving beyond the harmonic approximation entails performing exact quantum calculations, which can be achieved using the Feynman path integral formulation of quantum statistical mechanics. In the path integral approach, a system of quantum particles is represented as a set of classical-like ring-polymer chains, whose interparticle

  4. Hybrid Method for Tokamak MHD Equilibrium Configuration Reconstruction

    NASA Astrophysics Data System (ADS)

    He, Hong-Da; Dong, Jia-Qi; Zhang, Jin-Hua; Jiang, Hai-Bin

    2007-02-01

    A hybrid method for tokamak MHD equilibrium configuration reconstruction is proposed and employed in the modified EFIT code. This method uses the free boundary tokamak equilibrium configuration reconstruction algorithm with one boundary point fixed. The results show that the position of the fixed point has explicit effects on the reconstructed divertor configurations. In particular, the separatrix of the reconstructed divertor configuration precisely passes the required position when the hybrid method is used in the reconstruction. The profiles of plasma parameters such as pressure and safety factor for reconstructed HL-2A tokamak configurations with the hybrid and the free boundary methods are compared. The possibility for applications of the method to swing the separatrix strike point on the divertor target plate is discussed.

  5. Simplified method for calculation of equilibrium plasma composition

    NASA Astrophysics Data System (ADS)

    Rydalevskaya, Maria A.

    2017-06-01

    In this work, a simplified method for the evaluation of equilibrium composition of plasmas consisted of monoatomic species is proposed. Multicomponent gas systems resulting from thermal ionization of spatially uniform mixtures are assumed enough rarefied to be treated as ideal gases even after multiple ionization steps. The method developed for the calculation of equilibrium composition of these mixtures makes use of the fundamental principles of statistical physics. Equilibrium concentrations of mixture components are determined by integration of distribution functions over the space of momentum and summation over electronic energy levels. These functions correspond to the entropy maximum. To determine unknown parameters, the systems of equations corresponding to the normalization conditions are derived. It is shown that the systems may be reduced to one algebraic equation if the equilibrium temperature is known. Numeral method to solve this equation is proposed. Special attention is given to the ionized mixtures, generated from the atoms of a single chemical species and the situations, when in the gas only the first- or the first- and second-order ionization are possible.

  6. Meshless method for solving fixed boundary problem of plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2015-07-01

    This study solves the Grad-Shafranov equation with a fixed plasma boundary by utilizing a meshless method for the first time. Previous studies have utilized a finite element method (FEM) to solve an equilibrium inside the fixed separatrix. In order to avoid difficulties of FEM (such as mesh problem, difficulty of coding, expensive calculation cost), this study focuses on the meshless methods, especially RBF-MFS and KANSA's method to solve the fixed boundary problem. The results showed that CPU time of the meshless methods was ten to one hundred times shorter than that of FEM to obtain the same accuracy.

  7. Study report on a double isotope method of calcium absorption

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Some of the pros and cons of three methods to study gastrointestinal calcium absorption are briefly discussed. The methods are: (1) a balance study; (2) a single isotope method; and (3) a double isotope method. A procedure for the double isotope method is also included.

  8. Precise calibration of equilibrium oxygen isotope fractionations between dissolved phosphate and water from 3 to 37 °C

    NASA Astrophysics Data System (ADS)

    Chang, Sae Jung; Blake, Ruth E.

    2015-02-01

    The stable oxygen isotope composition of orthophosphate (δ18OPO4) is a widely used (paleo)temperature indicator and more recently, a useful tracer of phosphorus-cycling. In natural aqueous systems (e.g., oceans, rivers, soil/ground water) the largest reactive phosphorus pool is dissolved inorganic phosphate. Here, we present a new experimentally-determined equation for thermodynamic equilibrium O-isotope fractionations between dissolved phosphate and water, catalyzed by the enzyme inorganic pyrophosphatase (PPase) between 3 and 37 °C;

  9. ISOTOPE CONVERSION DEVICE AND METHOD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-11

    Homogeneous nuclear reactors are discussed, and an apparatus and method of operation are descrlbed. The apparatus consists essentially of a reaction tank, a heat exchanger connected to the reaction tank and two separate surge tanks connected to the heat exchanger. An oscillating differential pressure is applied to the surge tanks so that a portion of the homogeneous flssionable solution is circulated through the heat exchanger and reaction tank while maintaining sufficient solution in the reaction tank to sustain a controlled fission chain reaction. The reaction tank is disposed within another tank containing a neutron absorbing material through which coolant fluid is circulated, the outer tank being provided with means to permit and cause rotation thereof due to the circulation of the coolant therethrough.

  10. High-Temperature Fractionation of Iron Isotopes During Metal Segregation From a Silicate Melt: Experimental Study of Kinetic and Equilibrium Fractionation

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Luais, B.; Watson, H.; Toplis, M. J.; Alexander, C. M.; Mysen, B. O.

    2005-12-01

    Advances in mass spectrometry make it possible to measure isotopic variations of iron in meteoritic and igneous materials. However, interpreting these data is hampered by a lack of theoretical and experimental knowledge concerning how Fe isotopes fractionate during magmatic processes. As a first step in this direction we have performed experiments in which metallic iron was reduced and segregated from a silicate melt at one bar as a function of f(O2) and time. The starting material was a glass of anorthite-diopside eutectic composition, to which 9 wt% Fe2O3 was added. Experiments were performed at 1500 circC and f(O2) in the range 10-0.7 to 10-8 bars. A proportion of this iron is extracted through formation of an alloy with the Pt-capsule in which the melt was held. The silicate and metallic portions were physically separated and bulk analyses of each fraction performed using standard MC-ICP-MS methods. Furthermore, a Cameca 6f ion microprobe was used to measure isotopic profiles in metallic samples, such that kinetic and equilibrium effects may be disentangled and quantified. Large isotopic variations are observed and attributed to kinetic fractionation during incorporation of iron into the initially Fe-free Pt-capsule. This process leads to the formation of isotopically light metal and a heavy silicate. For instance, in samples heat-treated for 24 hours, metal fractions have δ56Fe/54Fe from 0 to -2‰, whereas silicate fractions have δ56Fe/54Fe from 0 to 4.8‰. These values are positively correlated with the fraction of iron lost to the platinum. Ion-probe analyses and time-series experiments confirm that Fe isotopes are strongly fractionated during diffusion of Fe in the Pt,Fe alloy, and the observed profiles are used to calculate the diffusion coefficients of individual iron isotopes. With increasing time at fixed oxygen fugacity, iron in the alloy reaches a constant isotopic composition. At these conditions, assumed to represent equilibrium, iron in the

  11. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  12. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    NASA Astrophysics Data System (ADS)

    Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-01

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  13. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    SciTech Connect

    Nevinitsa, V. A. Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  14. Review of the magnetic isotope method for isotopic separation and enrichment

    SciTech Connect

    Turro, N.J.

    1985-01-01

    In the Progress Report of November 19, 1985 a detailed review of the theory of the magnetic isotope method for isotope separation and enrichment was presented. Here we present only the major qualitative features of the theory of the magnetic isotope effect, and we indicate how these aspects can be exploited to design experiments which demonstrate the feasibility and practicability of the magnetic isotope method.

  15. Primordial radionuclides in Canadian background sites: secular equilibrium and isotopic differences.

    PubMed

    Sheppard, S C; Sheppard, M I; Ilin, M; Tait, J; Sanipelli, B

    2008-06-01

    A literature review and field sampling were done to obtain information on primordial (natural-series) radionuclide concentrations in terrestrial environments in diverse locations across Canada. Of special interest was the degree of secular equilibrium among members of decay series. The analytes measured in soils and plants were (nat)U by neutron activation-delayed neutron counting, (228)Th, (230)Th, (232)Th, (226)Ra and (210)Po by alpha spectroscopy, (210)Pb by gas flow proportional counting, (228)Ra by beta counting and (137)Cs by gamma spectroscopy. In addition, ICP-MS was used to obtain concentrations of about 50 analytes including elemental U, Pb, and Th. Samples were from seven representative background sites with a total of 162 plant samples from 38 different species. These data were supplemented by a review that gathered a large portion of the similar data from published sources. The sites chosen were semi-natural, far from any nuclear industry, although several were specifically located in areas with slightly elevated natural U concentrations. As might be expected, there were many cases of non-detectable concentrations. However, certain trends were evident. The activity ratio (210)Po/(210)Pb was unity in soils and non-annual plant tissues such as lichens. It was about 0.6 in annual plant tissues. These results are consistent with the time required for ingrowth of (210)Po to reach secular equilibrium. There was evidence from several sources that (210)Pb in plants came predominantly from deposition of (210)Pb from air after the decay of airborne (222)Rn. This was expected. Somewhat unexpected was the observation that (228)Th seemed to be much more plant available than (232)Th, even though both are in the same decay series and should be chemically similar. The difference was attributed to the combined effects of ingrowth from (228)Ra in the plant and effects of alpha recoil in mobilizing (228)Th in the soil. In general, the results of this study will benefit

  16. Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites

    NASA Astrophysics Data System (ADS)

    Chernonozhkin, Stepan M.; Goderis, Steven; Costas-Rodríguez, Marta; Claeys, Philippe; Vanhaecke, Frank

    2016-08-01

    resolvable differences, similar in magnitude but opposite in sign (Δ56/54Femet-oliv of +0.178 ± 0.092‰ and Δ60/58Nimet-oliv of -0.212 ± 0.082‰, 2SD). As such, the heavier Fe isotope ratios for the metal (δ56/54Fe = +0.023‰ to +0.247‰) and lighter values for the corresponding olivines (δ56/54Fe = -0.155‰ to -0.075‰) are interpreted to reflect later-stage Fe isotopic re-equilibration between these phases, rather than a pristine record of mantle-core differentiation. In the case of mesosiderites, the similarly lighter Ni and Fe isotopic signatures found for the silicate phase (-0.149‰ to +0.023‰ for δ60/58Ni, -0.214‰ to -0.149‰ for δ56/54Fe) compared to the metal phase (+0.168‰ to +0.191‰ for δ60/58Ni, +0.018‰ to +0.120‰ for δ56/54Fe) likely result from Fe and Ni diffusion. Overall, the Fe and Ni isotopic compositions of iron-rich meteorites reflect multiple, often superimposed, processes of equilibrium or kinetic nature, illustrating convoluted parent body histories and late-stage interaction between early-formed planetesimal reservoirs.

  17. Isotopic ratio method for determining uranium contamination

    SciTech Connect

    Miles, R.E.; Sieben, A.K.

    1994-02-03

    The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort.

  18. Method for production of an isotopically enriched compound

    DOEpatents

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  19. Bayesian methods for examining Hardy-Weinberg equilibrium.

    PubMed

    Wakefield, Jon

    2010-03-01

    Testing for Hardy-Weinberg equilibrium is ubiquitous and has traditionally been carried out via frequentist approaches. However, the discreteness of the sample space means that uniformity of p-values under the null cannot be assumed, with enumeration of all possible counts, conditional on the minor allele count, offering a computationally expensive way of p-value calibration. In addition, the interpretation of the subsequent p-values, and choice of significance threshold depends critically on sample size, because equilibrium will always be rejected at conventional levels with large sample sizes. We argue for a Bayesian approach using both Bayes factors, and the examination of posterior distributions. We describe simple conjugate approaches, and methods based on importance sampling Monte Carlo. The former are convenient because they yield closed-form expressions for Bayes factors, which allow their application to a large number of single nucleotide polymorphisms (SNPs), in particular in genome-wide contexts. We also describe straightforward direct sampling methods for examining posterior distributions of parameters of interest. For large numbers of alleles at a locus we resort to Markov chain Monte Carlo. We discuss a number of possibilities for prior specification, and apply the suggested methods to a number of real datasets.

  20. Gravitational stability computed through the limit equilibrium method revisited

    NASA Astrophysics Data System (ADS)

    Tinti, Stefano; Manucci, Anna

    2006-01-01

    The stability of slopes is a problem of great relevance for geologists and geophysicists as well as for geotechnical and geoenvironmental engineers. The classical approaches are the method of limit equilibrium, and the finite-element and finite-difference analyses of deformations. Since the former is computationally simpler and less expensive, it is more widely used in common practice, though it has some weakness points from a theoretical point of view. Essential in this technique is the definition and computation of the factor of safety F for the slope, a parameter indicating that the slope is stable, if it is larger than unity. The method is known to have not a unique solution, but it is common belief that the safety factors associated with all the solutions fulfilling the basic equilibrium equations do not differ more than 5-10 per cent from each other, which is a range of variability considered acceptable by most. Here the non-uniqueness of the solution is discussed, and it is shown that the magnitude range of F can be so large as to undermine the meaning of the safety factor criterion. The classical limit equilibrium methods based on the assumptions of cutting the sliding body into a set of vertical slices are revised, and the new concept of minimum lithostatic deviation (MLD) is introduced as a means to mitigate the effect of non-uniqueness. The paper suggests that the proper solution to the problem is the one that satisfies the equilibrium equations and minimizes the lithostatic deviation that is defined here as the ratio of the average intensity of the interslice forces and the total weight of the body. Accordingly, the factor of safety F associated with such a solution is suggested to be the value appropriate to evaluate the stability of the slope. Remarkably, the MLD principle gives us the means to introduce a completely revolutionary approach to study stability. We derive expressions that account for gravitational loading, and for additional effects such

  1. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2007-05-01

    Equilibrium stable isotope fractionations of mercury and thallium are estimated for molecules, atoms and ions using first-principles vibrational frequency and electronic structure calculations. These calculations suggest that isotopic variation in nuclear volume is the dominant cause of equilibrium fractionation, driving 205Tl/ 203Tl and 202Hg/ 198Hg fractionations of up to 3‰ at room temperature. Mass-dependent fractionations are smaller, ca. 0.5-1‰ for the same isotopes. Both fractionation mechanisms tend to enrich the neutron-rich isotopes in oxidized mercury- and thallium-bearing phases (Tl 3+ and Hg 2+) relative to reduced phases (Tl + and Hg 0). Among Hg 2+-bearing species, inorganic molecules and complexes like HgCl 2, HgCl42- and Hg(HO)62+ will have higher 202Hg/ 198Hg than coexisting methylmercury species, suggesting a possible application of Hg-isotope measurements to understanding mercury methylation and increasing methylmercury concentrations at the top of the food chain. Estimated 205Tl/ 203Tl fractionation between Tl(HO)63+ and Tl(HO)3+ is in reasonable agreement with the fractionations previously observed between seawater and Fe-Mn crusts, supporting an equilibrium-like reduction/oxidation fractionation mechanism. More generally, nuclear-volume isotope fractionation will concentrate larger (heavier) nuclei in species where the electron density at the nucleus is small—due to lack of s-electrons (e.g., Hg 2+—[Xe]4f 145d 106s 0 vs. Hg 0—[Xe]4f 145d 106s 2) or enhanced s-electron screening by extra p, d, or f electrons (e.g., Tl 0—[Xe]4f 145d 106s 26p 1 vs. Tl +—[Xe]4f 145d 106s 26p 0). Nuclear-volume fractionations become much smaller for lighter elements, declining from ˜1‰/amu for thallium and mercury to ˜0.2‰/amu for ruthenium and ˜0.02‰/amu for sulfur.

  2. A Variational Method in Out-of-Equilibrium Physical Systems

    PubMed Central

    Pinheiro, Mario J.

    2013-01-01

    We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles. However, we use the fundamental equation of thermodynamics on differential forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. From this approach, a topological torsion current emerges of the form , where Aj and ωk denote the components of the vector potential (gravitational and/or electromagnetic) and where ω denotes the angular velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism of particular devices. PMID:24316718

  3. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    ERIC Educational Resources Information Center

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  4. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    ERIC Educational Resources Information Center

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  5. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  6. Effect of magnesium ions on the stable oxygen isotope equilibrium between dissolved inorganic carbon species and water.

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard

    2010-05-01

    Stable oxygen isotope (δ18O) values of foraminiferal calcites, which represent one of the most fundamental paleoceanographic tools to reconstruct ancient seawater temperatures, are influenced by seawater pH variations. Understanding the driving mechanism for such phenomenon requires precise knowledge of the equilibrium 18O fractionation factors between dissolved inorganic carbon (DIC) species and water. An experimental study by Beck et al. (2005) successfully refined the 18O fractionation factors between DIC components and water. Based on these results, the overall 18O fractionation between total DIC and water as a function of pH can be readily calculated (e.g., Zeebe, 2007). However, these calculations may not be applicable to seawater because the fractionation factors were measured in freshwater. Natural seawater contains numerous ionic species and other dissolved constituents, which may affect the fractionation factors. For example, it has been experimentally demonstrated that the presence of magnesium ions (Mg2+) in solutions affect equilibrium carbon isotope (13C) fractionation between aqueous CO2 and carbonate ions presumably due to the enrichment of 13C isotopes in Mg-CO30 complexes (Thode et al., 1965). This suggests that the presence of Mg2+ in solutions similarly affects the 18O fractionation factors between DIC species and water. On the other hand, Beck et al. (2005) concluded that the effect of ion pairs on the δ18O equilibrium appears to be negligible. However, this conclusion may not apply to ion paring in general, because experiments were not conducted for metal ions other than Na+. Given that Mg2+ has a marked effect on the equilibrium δ13C fractionation factors and Mg-CO30 is the most abundant form of metal-CO3-complexes in natural seawater, the potential effect of Mg2+ on the 18O fractionation factors between DIC components and water needs to be examined. Here, we will present preliminary results from quantitative carbonate precipitation

  7. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  8. Method for isotope replenishment in an exchange liquid used in a laser induced isotope enrichment process

    SciTech Connect

    Keyser, G.M.; Mader, D.L.; O'Neill, J.A.

    1986-11-04

    A method is described for deuterium or tritium isotope replenishment of an exchange liquid in a process for concentrating deuterium or tritium by means of a laser induced selective photodissociation of a deuterium or tritium containing working compound mixed with its protiated or deuterated analog. The working compound is selected from the group consisting of a dueterated or tritiated analog of a dihalomethane, a trihalomethane, a 1,2-dihaloethylene, a trihaloethylene, a tetrahaloethane, and a pentahaloethane. The method comprises: selectively laser photodissociating the working compound to give an isotope enriched compound and an isotope depleted working compound; contacting the isotope depleted working compound mixture countercurrently with an exchange liquid having approximately the isotope concentration of an external source feed stream of water of D/sub 2/O in a first contacting column. The countercurrent contacting provides an isotope replenishment of the working compound as it moves up the column and an isotope depletion of the exchange liquid as it moves down the column. The exchange liquid consists essentially of a mixture of water of D/sub 2/O and a strong base catalyst; removing isotope deplated exchange liquid from the bottom of the first column; contacting the isotope depleted exchange liquid countercurrently with the feed stream in a second contacting apparatus thereby providing isotope replenishment of the exchange liquid and isotope depletion of the feed stream without causing salting out of the base catalyst; and removing the isotope replenished exchange liquid from one end of the second apparatus for use in the first column and removing isotope depleted water of D/sub 2/O steam from the other end of the second apparatus.

  9. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  10. Method for isotope enrichment by photoinduced chemiionization

    DOEpatents

    Dubrin, James W.

    1985-01-01

    Isotope enrichment, particularly .sup.235 U enrichment, is achieved by irradiating an isotopically mixed vapor feed with radiant energy at a wavelength or wavelengths chosen to selectively excite the species containing a desired isotope to a predetermined energy level. The vapor feed if simultaneously reacted with an atomic or molecular reactant species capable of preferentially transforming the excited species into an ionic product by a chemiionization reaction. The ionic product, enriched in the desired isotope, is electrostatically or electromagnetically extracted from the reaction system.

  11. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    SciTech Connect

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-22

    Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  12. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures.

    PubMed

    Loyd, S J; Sample, J; Tripati, R E; Defliese, W F; Brooks, K; Hovland, M; Torres, M; Marlow, J; Hancock, L G; Martin, R; Lyons, T; Tripati, A E

    2016-07-22

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  13. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  14. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    PubMed Central

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  15. Wide reflective equilibrium as a method of justification in bioethics.

    PubMed

    Nichols, Peter

    2012-10-01

    Carson Strong has recently argued that wide reflective equilibrium (WRE) is an unacceptable method of justification in bioethics. In its place, Strong recommends a methodology in which certain foundational moral judgments play a central role in the justification of moral beliefs, and coherence plays a limited justificatory role in that the rest of our judgments are made to cohere with these foundational judgments. In this paper, I argue that Strong's chief criticisms of WRE are unsuccessful and that his proposed alternative is in fact just another version of WRE. In the course of doing so, I specify which theses are central to WRE and which are not, and thus, provide a response to an additional objection, advanced by Peter Singer, that WRE is vacuous. I conclude by arguing that there may be better prospects for advancing the debate regarding methodology in bioethics if we focus on restricted epistemic and methodological theses rather than broad approaches, such as WRE, that come in many different varieties.

  16. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  17. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: Methods, instruments, and uncertainties.

    PubMed

    Hansen, Lee D; Fellingham, Gilbert W; Russell, Donald J

    2011-02-15

    Calorimetric methods have been used to determine equilibrium constants since 1937, but no comprehensive review of the various calorimeters and methods has been done previously. This article reports methods for quantitative comparison of the capabilities of calorimeters for simultaneous determination of equilibrium constants and enthalpy changes, for determining optimal experimental conditions, and for assessing the effects of systematic and random errors on the accuracy and precision of equilibrium constants and enthalpy changes determined by this method.

  18. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils.

    PubMed

    Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing

    2016-12-01

    Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ(18)OP) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L(-1) NaHCO3 (pH = 8.5), 0.1 mol L(-1) NaOH and 1 mol L(-1) HCl) of agricultural soils from the Beijing area. The δ(18)OP results of the water extracts and NaHCO3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ(18)OP value of the water extracts and NaHCO3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ(18)OP values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ(18)OP values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ(18)Op values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.

  19. A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.

    2015-08-01

    Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results: The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.

  20. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    DOE PAGES

    Loyd, S. J.; Sample, J.; Tripati, R. E.; ...

    2016-07-22

    Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixingmore » of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.« less

  1. Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Brautigam, Chad A.; Ghirlando, Rodolfo; Schuck, Peter

    2013-01-01

    Significant progress in the interpretation of analytical ultracentrifugation (AUC) data in the last decade has led to profound changes in the practice of AUC, both for sedimentation velocity (SV) and sedimentation equilibrium (SE). Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in SV size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of AUC, such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multi-signal modeling and mass conservation approaches in SV and SE, in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multi-protein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current commentary is to supplement previous AUC protocols, Current Protocols in Protein Science 20.3 (1999) and 20.7 (2003), and 7.12 (2008), and provide an update describing the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE. PMID:23377850

  2. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  3. The Isotopologue Record of Repeat Vital Effect Offenders: Tracking (Dis)equilibrium Effects in Sea Urchins and Nannofossil Using Clumped Isotopes

    NASA Astrophysics Data System (ADS)

    John, C. M.; Davies, A.; Drury, A. J.

    2016-12-01

    Vital effects vary between species and affect various isotopic systems in unequal proportion. The magnitude of the response of different isotopic systems might thus be key in understanding biologically-mediated disequilibrium, especially in groups that show a tendency to be "repeat offenders" with regards to vital effects. Here we present carbon, oxygen, and clumped isotope data from echinoderm calcite and nannofossil ooze, both of which exhibit strong vital effects in bulk isotopes. Our study is the first to investigate the clumped isotope (dis)equilibrium of echinoids. Results from two echinoids, three marine gastropods and a bivalve mollusk from modern beach deposits of Bali, Indonesia, highlight a significant offset in clumped isotopes of a regular echinoid test from expected values, interpreted as evidence of a similar "vital effect" as observed in surface corals. This is in contrast to the test of an irregular "sand dollar" echinoid, with clumped isotope values within error of expected sea surface temperature. Furthermore, data on the inter-skeletal variability in the clumped isotopic composition of two regular echinoid species shows that the spines of the echinoids are in equilibrium with seawater with respect to clumped isotopes, but the test is not. For the nannofossil material, no clumped isotope vital effects are observed, consistent with previously published studies but at odds with strong vital effects in carbon and oxygen isotopes, often correlated with cell-size. In addition, we reveal that the <63 micron fraction of deep-sea ooze could constitute useful material for clumped isotope studies. An intriguing result of our study is that vital effects are mostly absent in clumped isotopes, even in phylums known for important isotopic effects. It remains to be explained why some parts of the echinoids show clear vital effects, notably enrichment in clumped isotopes of urchin tests. Mechanisms that could explain this include pH effects during calcification

  4. On anharmonic and pressure corrections to the equilibrium isotopic constants for minerals

    NASA Astrophysics Data System (ADS)

    Polyakov, Veniamin B.

    1998-09-01

    Specifies of the calculations of the reduced isotopic partition function ratios (β-factor) of minerals are discussed. Comparative calculations in the framework of the fully harmonic, quasi-harmonic, and intrinsic anharmonic approximations show minor anharmonic corrections to the harmonic values of the β-factor. In the case of calcite, the difference between the fully harmonic and intrinsic anharmonic values of 10 3lnβ varies from 0.60 at 300 K to 0.37 at 1200 K and is close to typical values of the anharmonic correction in gas molecules. A new treatment for calculating isotopic effects in molar volumes of minerals and pressure effects on their β-factors is developed on the basis of the Mie-Grüneisen equation of state. There is no significant difference between the quasi-harmonic and intrinsic harmonic values of (∂lnβ/∂ P) T. For calcite, the pressure derivative of the β-factor is positive, decreases monotonically with temperature, and becomes small at T ˜ 1000 K (10 3(∂lnβ/ ∂P) T ≈ 0.1-0.15 GPa -1). These results contradict the large anharmonic and pressure effects to the β-factor of calcite calculated by Gillet et al. (1996) as well as their conclusion that the pressure correction to the β-factor of calcite is negative at higher temperatures and increases in its absolute value with increasing temperature.

  5. Temperature dependency of the triple isotope fractionation relationship for equilibrium processes

    NASA Astrophysics Data System (ADS)

    Hayles, J. A.; Cao, X.; Bao, H.

    2015-12-01

    The use of an approximation to the Bigeleisen-Mayer-Urey model for isotope fractionation has led to the concept of a constant, and later constrained, mass fractionation law for multiple isotopes of the same element. This concept has brought new insights to investigation in photochemistry, radical chemistry, or the contribution of quantum tunneling to chemical and biological processes. Despite previous work indicating that these mass fractionation laws can be highly variable, the concept of a constant relationship remains common in these fields. Using the diatomic case as a first-order approximation, we demonstrate generically that the mass fractionation exponent, θ, can take any value for small fractionations but is less variable for large fractionations. The predicted variability is larger than both theoretical and analytical precision. These deviations from the traditional range of mass-dependence exponents are the largest under cross-over scenarios, but can occur for any scenario with small fractionations. We advocate the use of ∆∆‡M or "change in cap-delta", defined strictly with a slope of at the high-temperature limit, as a necessary, more reliable and more useful descriptor of mass-dependent fractionation. This work can bring new insights and a conventional explanation to low temperature experiments yielding traditionally unusual mass fractionation laws.

  6. Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: Insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Wenzhong; Qin, Tian; Zhou, Chen; Huang, Shichun; Wu, Zhongqing; Huang, Fang

    2017-07-01

    Naturally occurring carbonates have a wide variation in Mg and Ca contents. Using the density-functional-theory calculations, this study examines the effect of Mg and Ca concentrations on bond lengths and equilibrium fractionation factors of Mg-Ca isotopes among calcite-type carbonate minerals (MgxCa1-xCO3). Mg content x and Ca content (1-x) of the investigated carbonate minerals range from 1/12 to 1 and from 1/36 to 1, respectively. Concentration of Ca and Mg in carbonates have significant effects on Ca-O and Mg-O bond lengths when x is close to 0, 0.5 or 1. Because equilibrium isotope fractionation factors (103lnα) are mainly controlled by their relevant bond strengths, which can be measured using their average bond lengths, 103lnα of 26Mg/24Mg and 44Ca/40Ca between calcite-type carbonate minerals and dolomite also vary dramatically with Mg content, especially when x is close to 0 and 1. For instance, at 300 K, 103lnα of 26Mg/24Mg between Mg1/12Ca11/12CO3 and dolomite (x = 0.5) is ∼-4.3‰, while 103lnα of 44Ca/40Ca between Mg23/24Ca1/24CO3 and dolomite is ∼6‰. Dolomite is enriched in 26Mg but depleted in 44Ca relative to all other carbonate minerals, which is consistent with it having the shortest Mg-O bond length and the longest Ca-O bond lengths among all carbonates. At 300 K, a small change of x from 0.5 to 0.6 in dolomite could result in 1‰ variation in 103lnβ of 26Mg/24Mg. Therefore, the concentration effect in carbonate minerals should be taken into account when applying the isotope fractionation factors of carbonate minerals to understand geochemical processes.

  7. Relative Effects of Nonredox vs. Redox on Fe2+/Fe3+ Equilibrium Isotopic Fractionation in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Schauble, E. A.; Young, E. D.

    2008-12-01

    Previous studies have shown both theoretically and experimentally that nonredox effects (such as bond partner, bond length, and coordination number) may be as significant to equilibrium iron isotope fractionation as the effects of oxidation state [1, 2]. Since 56Fe/54Fe isotope fractionation in the geological record is often taken as an indicator of environmental redox conditions, it is important to understand the influence of nonredox factors (i.e., important ligands present in the environment as found in the solution chemistry of an aqueous solution such as a lake or the ocean) on this isotopic signal. To this end, we explored the relative effects of nonredox vs. redox effects on the iron isotope signature with both theoretical models and experiments, using the aqueous iron chloride system as an easily modeled proxy for potential iron bond-partners found in nature (e.g., sulfides, siderophores, small organic molecules, etc.). We developed ab initio models for the ferric and ferrous chloride complexes using both Unrestricted Hartree Fock and Density Functional Theory. Our experiments consist of a series of low pH solutions of both ferrous and ferric chlorides in varying ratios, combined with an equal amount of diethyl ether. We take advantage of the unique solubility of the Fe(III)Cl4- complex in ether to create a spectator phase against which variations in 56Fe/54Fe partitioning in the aqueous solution can be quantified. Extrapolation to Fe(II)/Fetotal=1 allows us to calculate the fractionation between the dominant ferric and ferrous complexes at a given chlorinity. We ran three series of experiments, extending the range of chlorinities examined to 5M. As the chlorinity of the solution increases, the dominant ferric and ferrous chloride species change, thus altering the nonredox effects of the solution, enabling us to monitor the changing fractionation between the ferric and ferrous species. The difference in δ56Fe(ferric) - δ56Fe(ferrous) is 3.3‰, 2.7

  8. Reconciling Empirical Carbonate Clumped Isotope Calibrations: A Comparison of Calcite Precipitation and Acid Digestion Methods

    NASA Astrophysics Data System (ADS)

    Kelson, J.; Huntington, K. W.; Schauer, A. J.; Saenger, C.; Lechler, A. R.

    2015-12-01

    An accurate empirical calibration is necessary to confidently apply the carbonate clumped isotope (Δ47) thermometer. Previous synthetic carbonate calibrations disagree in temperature sensitivity, with one group of calibrations displaying a shallow Δ47-temperature slope (e.g., Dennis & Schrag, GCA, 2010), and the other a steep slope (e.g., Zaarur et al., EPSL, 2013). These calibrations differ in both the method of mineral precipitation and the temperature of the phosphoric acid used to digest carbonates for analysis, making it difficult to isolate the cause of the discrepancy. Here, we precipitate synthetic carbonates at temperatures of 6-80ºC using 4 different precipitation methods, and analyze the samples using both 90 and 25°C acid digestion. Precipitation experiments varied the use of salts (NaHCO3 and CaCl2) vs. dissolved CaCO3 as a starting solution, the use of carbonic anhydrase to promote isotopic equilibrium among dissolved inorganic carbon species in solution, and the method by which CO2 degasses to force carbonate precipitation. Carbonates precipitated by using salts and allowing CO2 to passively degas produce a shallow calibration slope that we hypothesize to approach isotopic equilibrium. Precipitation methods that bubble CO2 into solution then degas that CO2 (either passively or actively by bubbling N2) produce carbonates with consistently lower Δ47 and higher δ18O values for a given growth temperature. We infer that these carbonates grew in disequilibrium during rapid CO2 degassing. Varying acid digestion temperature does not change the results; acid fractionation factor is not correlated with grain size, Δ47, or d47 values. No precipitation method produces a steep calibration slope. Our large sample set of >60 carbonates lend confidence to a shallow slope calibration, and inform interpretations of Δ47 and δ18O values of natural carbonates that grow under conditions of isotopic disequilibrium.

  9. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound.

    PubMed

    Baka, Edit; Comer, John E A; Takács-Novák, Krisztina

    2008-01-22

    The experimental conditions that affect equilibrium solubility values measured by the classical saturation shake-flask method have been examined, using hydrochlorothiazide as a model compound. Modifications in temperature, sedimentation time, composition of aqueous buffer and the technique of separation of solid and liquid phases were all found to influence the equilibrium solubility results strongly. However, variations in the amount of solid excess and stirring time were found to have less influence. In the light of these observations, a new, shorter protocol has been developed for measurements of equilibrium solubility, together with recommendations for good analytical practice. The equilibrium solubilities of five other drugs were measured to verify the new protocol.

  10. Method for isotopic analysis of chlorinated organic compounds

    DOEpatents

    Holt, Ben D.; Sturchio, Neil C.

    1999-01-01

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

  11. Method for isotopic analysis of chlorinated organic compounds

    DOEpatents

    Holt, B.D.; Sturchio, N.C.

    1999-08-24

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.

  12. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  13. Experimental determination of the equilibrium Fe isotope fractionation between Feaq2+ and FeS m (mackinawite) at 25 and 2 °C

    NASA Astrophysics Data System (ADS)

    Guilbaud, Romain; Butler, Ian B.; Ellam, Rob M.; Rickard, David; Oldroyd, Anthony

    2011-05-01

    We report the first experimentally-determined metal isotope equilibrium fractionation factors for a metal sulphide at ambient temperatures and pressures. Mackinawite, referred here as FeS m (where the subscript m indicates mackinawite), can be a reactive component in diagenetic pyrite formation and the extent of equilibration between FeS m and dissolved Fe(II) has direct implications the δ 56Fe signatures recorded in diagenetic pyrite. The measured equilibrium Fe isotope fractionation between Fe(II) aq and FeS m is Δ 56Fe Fe(II)-FeS = -0.52 ± 0.16‰ at 2 °C and Δ 56Fe Fe(II)-FeS = -0.33 ± 0.12‰ at 25 °C and pH 4. At the experimental pH the equilibrium fractionation factor between all dissolved Fe(II) species and FeS m (Δ 56Fe Fe(II)-FeS) equates to the fractionation factor between Feaq2+ and FeS m(Δ56FeFe-FeS). The measured fractionations are of the same order as other non-redox fractionations measured in low-temperature Fe-C-O systems. We show that at low temperature, the Fe(II) aq-FeS m system is slowly asymptotic to isotopic equilibrium and consequently, FeS m is likely to partially conserve kinetically derived isotopic signatures generated on precipitation. Combined with the range of published kinetic fractionations measured on FeS m precipitation, our data suggest that, subject to the degree of isotope exchange during equilibration, FeS m can display δ 56Fe compositions encompassing a range of ˜1.4‰.

  14. Out-of-equilibrium finite-size method for critical behavior analyses.

    PubMed

    Lulli, Matteo; Parisi, Giorgio; Pelissetto, Andrea

    2016-03-01

    We present a dynamic off-equilibrium method for the study of continuous transitions, which represents a dynamic generalization of the usual equilibrium cumulant method. Its main advantage is that critical parameters are derived from numerical data obtained much before equilibrium has been attained. Therefore, the method is particularly useful for systems with long equilibration times, like spin glasses. We apply it to the three-dimensional Ising spin-glass model, obtaining accurate estimates of the critical exponents and of the critical temperature with a limited computational effort.

  15. Out-of-equilibrium finite-size method for critical behavior analyses

    NASA Astrophysics Data System (ADS)

    Lulli, Matteo; Parisi, Giorgio; Pelissetto, Andrea

    2016-03-01

    We present a dynamic off-equilibrium method for the study of continuous transitions, which represents a dynamic generalization of the usual equilibrium cumulant method. Its main advantage is that critical parameters are derived from numerical data obtained much before equilibrium has been attained. Therefore, the method is particularly useful for systems with long equilibration times, like spin glasses. We apply it to the three-dimensional Ising spin-glass model, obtaining accurate estimates of the critical exponents and of the critical temperature with a limited computational effort.

  16. Revised method for calculating cloud densities in equilibrium models

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Atreya, S. K.; Kuhn, W. R.

    2013-12-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are simple but still useful for several reasons. They calculate the wet adiabatic lapse rate, they determine saturation-limited mixing ratios of condensing species, and they calculate the stabilizing effect of latent heat release and molecular weight stratification. Equilibrium cloud condensation models (ECCMs) also calculate a type of condensate density---a condensate "unit density"---that only equates to cloud density under specific circumstances, because microphysics and dynamics are not considered in ECCMs. Unit densities are calculated for every model altitude by requiring that condensed material remains at the level where it condenses. Many ECCMs in use trace their heritage to Weidenschilling and Lewis (1973; Icarus 20, 465--476; hereafter WL73), which contains an error that affects only the calculation of condensate unit density. The error led to densities too high by a factor of the atmospheric scale height divided by unit length, which is about 3x10^6 at Jupiter's ammonia cloud level. We will describe the condensate unit density calculation error in WL73, and provide a new algorithm based on the local change in vapor mixing ratio, rather than the difference between integrated column masses as in WL73. The new algorithm satisfies conservation of mass. Using a simple scaling law to parameterize dynamics in terms of updraft speed and duration, condensate unit densities from ECCMs can be converted to cloud densities. We validate the technique for the terrestrial case, by comparing model predictions with representative densities of cirrus and cumulus clouds. For cirrus and cumulus updraft parameters, respectively, we find cloud densities of 0.01--0.2 g m-3 and 0.8--7 g m-3, in excellent agreement with observations and models of terrestrial clouds of these types. Implications for models of planetary and exoplanetary atmospheres will be discussed. [This material is based upon

  17. Original isotopic composition of water in precipitation by different methods

    NASA Astrophysics Data System (ADS)

    Singh, B. P.

    2016-11-01

    Stable isotopes of 2H and 18O in precipitation are different globally and carry all information about water molecules movement in hydrosphere cycles. Isotopic composition is a function of temperature, relative humidity, and speed of evaporation at different latitudes, longitudes, and altitudes. On the basis of this, we observe local meteoric water line measurements in the plot of δ2H versus δ18O. It will be interesting to know the original isotopic composition (without any modification) in a transition from cloud down to earth in different environmental conditions. This had been done by plotting of slope versus intercept of Local Meteoric Water Line (LMWL) at different altitudes in different years of observations. Intercept of LMWL with Global Meteoric Water Line (GMWL) data taken from the hydrology frame work of Corsica was plotted and it was found that the isotopic composition of water in precipitation by all these methods is same.

  18. Estimating of equilibrium formation temperature by curve fitting method and it's problems

    SciTech Connect

    Kenso Takai; Masami Hyodo; Shinji Takasugi

    1994-01-20

    Determination of true formation temperature from measured bottom hole temperature is important for geothermal reservoir evaluation after completion of well drilling. For estimation of equilibrium formation temperature, we studied non-linear least squares fitting method adapting the Middleton Model (Chiba et al., 1988). It was pointed out that this method was applicable as simple and relatively reliable method for estimation of the equilibrium formation temperature after drilling. As a next step, we are studying the estimation of equilibrium formation temperature from bottom hole temperature data measured by MWD (measurement while drilling system). In this study, we have evaluated availability of nonlinear least squares fitting method adapting curve fitting method and the numerical simulator (GEOTEMP2) for estimation of the equilibrium formation temperature while drilling.

  19. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  20. Hg stable isotope analysis by the double-spike method.

    PubMed

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  1. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.

  2. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    NASA Astrophysics Data System (ADS)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  3. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures.

    PubMed

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2009-04-08

    Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D(2)/H(2) separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 Å exceeds 60 mmol cm(-3); for comparison, the liquid density of para-H(2) at 30 K and 30 MPa is 42 mmol cm(-3)). Finally, by direct comparison of simulation results with experimental data it is explained why 'ordinary' carbonaceous materials are not efficient quantum sieves.

  4. An aquaculture-based method for calibrated bivalve isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Wanamaker, Alan D.; Kreutz, Karl J.; Borns, Harold W.; Introne, Douglas S.; Feindel, Scott; Barber, Bruce J.

    2006-09-01

    To quantify species-specific relationships between bivalve carbonate isotope geochemistry (δ18Oc) and water conditions (temperature and salinity, related to water isotopic composition [δ18Ow]), an aquaculture-based methodology was developed and applied to Mytilus edulis (blue mussel). The four-by-three factorial design consisted of four circulating temperature baths (7, 11, 15, and 19°C) and three salinity ranges (23, 28, and 32 parts per thousand (ppt); monitored for δ18Ow weekly). In mid-July of 2003, 4800 juvenile mussels were collected in Salt Bay, Damariscotta, Maine, and were placed in each configuration. The size distribution of harvested mussels, based on 105 specimens, ranged from 10.9 mm to 29.5 mm with a mean size of 19.8 mm. The mussels were grown in controlled conditions for up to 8.5 months, and a paleotemperature relationship based on juvenile M. edulis from Maine was developed from animals harvested at months 4, 5, and 8.5. This relationship [T°C = 16.19 (±0.14) - 4.69 (±0.21) {δ18Oc VPBD - δ18Ow VSMOW} + 0.17 (±0.13) {δ18Oc VPBD - δ18Ow VSMOW}2; r2 = 0.99; N = 105; P < 0.0001] is nearly identical to the Kim and O'Neil (1997) abiogenic calcite equation over the entire temperature range (7-19°C), and it closely resembles the commonly used paleotemperature equations of Epstein et al. (1953) and Horibe and Oba (1972). Further, the comparison of the M. edulis paleotemperature equation with the Kim and O'Neil (1997) equilibrium-based equation indicates that M. edulis specimens used in this study precipitated their shell in isotopic equilibrium with ambient water within the experimental uncertainties of both studies. The aquaculture-based methodology described here allows similar species-specific isotope paleothermometer calibrations to be performed with other bivalve species and thus provides improved quantitative paleoenvironmental reconstructions.

  5. Estimation of equilibrium constants using automated group contribution methods.

    PubMed

    Forsythe, R G; Karp, P D; Mavrovouniotis, M L

    1997-10-01

    Group contribution methods are frequently used for estimating physical properties of compounds from their molecular structures. An algorithm for estimating Gibbs energies of formation through group contribution methods has been automated in an object-oriented framework. The algorithm decomposes compound structures according to a basis set of groups. It permits the use of wildcards and is able to distinguish between ring groups and chain groups that use similar search structures. Past methods relied on manual decomposition of compounds into constituent groups. The software is written in Common LISP and requires < 2 min to estimate Gibbs energies of formation for a database of 780 species of varying size and complexity. The software allows rapid expansion to incorporate different basis sets and to estimate a variety of other physical properties.

  6. Non-Equilibrium Allele Frequency Spectra Via Spectral Methods

    PubMed Central

    Hey, Jody; Chen, Kevin

    2011-01-01

    A major challenge in the analysis of population genomics data consists of isolating signatures of natural selection from background noise caused by random drift and gene flow. Analyses of massive amounts of data from many related populations require high-performance algorithms to determine the likelihood of different demographic scenarios that could have shaped the observed neutral single nucleotide polymorphism (SNP) allele frequency spectrum. In many areas of applied mathematics, Fourier Transforms and Spectral Methods are firmly established tools to analyze spectra of signals and model their dynamics as solutions of certain Partial Differential Equations (PDEs). When spectral methods are applicable, they have excellent error properties and are the fastest possible in high dimension; see [15]. In this paper we present an explicit numerical solution, using spectral methods, to the forward Kolmogorov equations for a Wright-Fisher process with migration of K populations, influx of mutations, and multiple population splitting events. PMID:21376069

  7. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  8. Teasing Cellulose Isotopic Signals Apart by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Sternberg, L. D.; Anderson, W. T.; Morrison, K.

    2002-12-01

    The δ18O and δD values of precipitation water correlates with changes in atmospheric circulation patterns and temperature. This has been the basis of many attempts to use fossil tree ring cellulose as a proxy for paleoclimate. Ideally by measuring δ18O and δD values of tree ring cellulose one would infer isotopic composition of water available for plant uptake, which presumably is the least isotopically altered from precipitation. Subsequently, paleo-temperatures or atmospheric circulation patterns at the time of cellulose formation could then be inferred. However, this goal is confounded by isotopic exchange processes occurring in the leaf. Our current understanding of the physiological/biochemical mechanisms operating during the labeling of carbohydrates by water during tree ring cellulose synthesis indicates that the isotopic composition of tree ring cellulose is a mixture of isotopic signals coming from source (CA 35 to 45%) and leaf (CA 55 to 65%) water. The isotopic composition of the latter component is radically modified from that of the original source water by factors such as relative humidity and leaf properties. Here we present a chemical method of derivatizing cellulose to tease these two signals apart. We analyze the isotopic composition of cellulose and its derivative and calculate the δ18O value of the oxygen attached to the second carbon of the glucose moieties in cellulose (2C-OH). A one to one relationship between δ18O values of this oxygen and that of water available for cellulose synthesis in seeds germinated in the presence of water having different δ18O values was observed. Indicating that 2C-OH undergoes complete exchange with water during the synthesis of cellulose from sucrose. This technique can potentially be an analytical tool in paleo-climatic and ecological studies, once the analytical techniques are refined so as to increase precision.

  9. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  10. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  11. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  12. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  13. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  14. Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene.

    PubMed

    Zimmermann, Tomáš; Vaníček, Jiří

    2010-11-01

    Recent experiments have confirmed the importance of nuclear quantum effects even in large biomolecules at physiological temperature. Here we describe how the path integral formalism can be used to describe rigorously the nuclear quantum effects on equilibrium and kinetic properties of molecules. Specifically, we explain how path integrals can be employed to evaluate the equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature dependence of the rate constant. The methodology is applied to the [1,5] sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature dependence of the rate constant confirm the importance of tunneling and other nuclear quantum effects as well as of the anharmonicity of the potential energy surface. Moreover, previous results on the KIE were improved by using a combination of a high level electronic structure calculation within the harmonic approximation with a path integral anharmonicity correction using a lower level method.

  15. New quasi-steady-state and partial-equilibrium methods for integrating chemically reacting systems

    NASA Astrophysics Data System (ADS)

    Mott, David Ray

    1999-11-01

    We present new quasi-steady-state (QSS) and partial- equilibrium (PE) methods for integrating systems of ordinary differential equations (ODEs) that arise from chemical reactions. These methods were developed for use in process-split reacting-flow simulations. The new QSS integrator is a second-order predictor- corrector method that is A-stable for linear equations. The method is accurate regardless of the timescales of the individual ODEs in the system and works well for problems typical of hydrocarbon combustion. The method has very low start-up costs, making it ideal for process- split reacting-flow simulations which require the solution of an initial-value problem in each computational cell in the flowfield for every global timestep. For problems of extreme stiffness, PE tools can be used in combination with the QSS integrator. PE methods remove the fastest reactions in the mechanism from the kinetic integration when their effects can be calculated using algebraic equilibrium constraints. Conservation constraints are used to write an ODE for the reaction's progress variable. The solution of this equation provides a new method for identifying reactions in equilibrium. A systematic method for finding a set of conserved scalars for an arbitrary group of reactions is presented, and this method is used to eliminate reactions that produce redundant equilibrium constraints. Since the equilibrium reactions must compensate for changes in the system that disturb their equilibrium, the equilibrium source terms are not forced identically to zero. Equilibrium is imposed by driving these source terms to the average value required to compensate for the perturbations caused by the other processes. Integration results for a cesium-air mechanism, a hydrogen-air mechanism, and a thermonuclear mechanism used in astrophysics are presented. One-dimensional flame and detonation results are presented for a single-step hydrogen mechanism and the thermonuclear mechanism, respectively

  16. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position.

    PubMed

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  17. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  18. Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex—Electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Paul, K. W.; Sparks, D. L.; Kubicki, J. D.

    2009-01-01

    This study presents molecular orbital/density functional theory (MO/DFT) calculations of the electronic structure, vibrational frequencies, and equilibrium isotope fractionation factors for iron desferrioxamine B (Fe-DFO-B) complexes in aqueous solution. In general, there was good agreement between the predicted properties of Fe(III)-DFO-B and previously published experimental and theoretical results. The predicted fractionation factor for equilibrium between Fe(III)-DFO-B and Fe(III)-catecholate at 22 °C, 0.68 ± 0.25‰, was in good agreement with a previously measured isotopic difference between bacterial cells and solution during the bacterial-mediated dissolution of hornblende [Brantley S. L., Liermann L. and Bullen T. D. (2001) Fractionation of Fe isotopes by soil microbes and organic acids. Geology29, 535-538]. Conceptually, this agreement is consistent with the notion that Fe is first removed from mineral surfaces via complexation with small organic acids (e.g., oxalate), subsequently sequestered by DFO-B in solution, and ultimately delivered to bacterial cells by Fe(III)-DFO-B complexes. The ability of DFO-B to discriminate between Fe(III) and Fe(II)/Al(III) was investigated with Natural Bond Orbital (NBO) analysis and geometry calculations of each metal-DFO-B complex. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-O covalent bonding.

  19. Derivation of acid fractionation factor for BaCO3: Implications for equilibrium oxygen isotope fractionations of the carbonic acid system

    NASA Astrophysics Data System (ADS)

    Uchikawa, J.; Zeebe, R. E.; Vennemann, T. W.; Spero, H. J.

    2010-12-01

    The acid fractionation factor (AFF) accounts for the oxygen isotope effect associated with the reaction of a carbonate mineral with phosphoric acid to liberate CO2. The AFF is mineral-specific and is a function of acid digestion temperature. Unlike other carbonate minerals (i.e., CaCO3), the AFF for BaCO3 has not been empirically well-constrained (particularly so at higher digestion temperatures). We note that the equilibrium oxygen isotope fractionation factors of the carbonic acid system were derived from quantitatively precipitated BaCO3, yet the AFF for BaCO3 in the original experimental data was not properly taken into account. This is an important issue in paleoceanographic context because these fractionation factors are critical for understanding the potential effects of seawater pH (and hence [CO32-]) variations on δ18O of marine biogenic carbonates. We will experimentally determine the AFF for BaCO3, which will be used to re-calculate equilibrium oxygen isotope fractionation factors of the carbonic acid systems. We will also present new experimental results to further validate these fractionation factors.

  20. Distance, Dialogue and Reflection: Interpersonal Reflective Equilibrium as Method for Professional Ethics Education

    ERIC Educational Resources Information Center

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support this claim. The first group of arguments focus on a…

  1. Multigrid method for the equilibrium equations of elasticity using a compact scheme

    NASA Technical Reports Server (NTRS)

    Taasan, S.

    1986-01-01

    A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.

  2. Distance, Dialogue and Reflection: Interpersonal Reflective Equilibrium as Method for Professional Ethics Education

    ERIC Educational Resources Information Center

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support this claim. The first group of arguments focus on a…

  3. Method for enriching a gaseous isotopic mixture with at least one isotope

    SciTech Connect

    de Mevergnies, M.N.; Fettweis, P.

    1982-02-02

    There is described a method for enriching a gas-like isotopic mixture with at least one isotope, in which a mixture of Cf2Cl2 and O2 is irradiated by means of a pulsed and focalized laser beam having an optical frequency corresponding to a wave number lying in the band from 920 to 945 cm-1 to enrich the residual Cf2Cl2 with 37Cl, in the band from 1050 to 1075 cm-1 to produce CoF2 enriched with 13C and/or in the band from 1080 to 1095 cm-1 to enrich the residual Cf2Cl2 with 35Cl and 13C.

  4. Opening opportunities for high-resolution isotope analysis - quantification of δ(15)NNO3 and δ(18)ONO3 in Diffusive Equilibrium in Thin-film passive samplers.

    PubMed

    Comer-Warner, Sophie A; Krause, Stefan; Gooddy, Daren C; Bennett, Sarah A; Wexler, Sarah Katrina; Kaiser, Jan

    2017-03-01

    The fate of nitrate transported across groundwater-surface water interfaces has been intensively studied in recent decades. The interfaces between aquifers and rivers or lakes have been identified as biogeochemical hotspots with steep redox gradients. However, a detailed understanding of the spatial heterogeneity and potential temporal variability of these hotspots, and the consequences for nitrogen processing, is still hindered by a paucity of adequate measurement techniques. A novel methodology is presented here, using Diffusive Equilibrium in Thin-film (DET) gels as high-spatial-resolution passive-samplers of The fate of nitrate transported across groundwater-surface water interfaces has been intensively studied in recent decades. The interfaces between aquifers and rivers or lakes have been identified as biogeochemical hotspots with steep redox gradients. However, a detailed understanding of the spatial heterogeneity and potential temporal variability of these hotspots, and the consequences for nitrogen processing, is still hindered by a paucity of adequate measurement techniques. A novel methodology is presented here, using Diffusive Equilibrium in Thin-film (DET) gels as high-spatial-resolution passive-samplers of δ(15)NNO3 and δ(18)ONO3 to investigate nitrogen cycling. Fractionation of δ(15)NNO3 and δ(18)ONO3 during diffusion of nitrate through the DET gel was determined using varying equilibrium times and nitrate concentrations. This demonstrated that nitrate isotopes of δ(15)NNO3 and δ(18)ONO3 do not fractionate when sampled with a DET gel. δ(15)NNO3 values from the DET gels ranged between 2.3±0.2 and 2.7±0.3‰ for a NO3- stock solution value of 2.7±0.4‰, and δ(18)ONO3 values ranged between 18.3±1.0 and 21.5±0.8‰ for a NO3- stock solution of 19.7±0.9‰. Nitrate recovery and isotope values were independent of equilibrium time and nitrate concentration. Additionally, an in-situ study showed that nitrate concentration and isotopes, provide

  5. Technical Note: A simple method for vaterite precipitation for isotopic studies: implications for bulk and clumped isotope analysis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.

    2015-06-01

    Calcium carbonate (CaCO3) plays an important role in the natural environment as a major constituent of the skeleton and supporting structure of marine life and has high economic importance as an additive in food, chemicals and medical products. Anhydrous CaCO3 occurs in the three different polymorphs calcite, aragonite and vaterite, whereof calcite is the most abundant and best characterized mineral. In contrast, little is known about the rare polymorph vaterite, in particular with regard to the oxygen isotope fractionation between H2O and the mineral. Synthetic precipitation of vaterite in the laboratory typically involves rapid processes and isotopic non-equilibrium, which excludes isotope studies focused on the characterization of vaterite under equilibrium conditions. Here, we used a new experimental approach that enables vaterite mineral formation from an isotopically equilibrated solution. The solution consists of a ~0.007 mol L-1 CaCO3 solution that is saturated with NaCl at room temperature (up to 6.4 mol L-1). Vaterite precipitated as single phase or major phase (≥94%) in experiments performed between 23 and 91 °C. Only at 80 °C was vaterite a minor phase with a relative abundance of 27%. The high mineral yield per experiment of up to 235 mg relative to the initially dissolved CaCO3 amount of on average 360 mg enables an investigation of the oxygen isotope fractionation between the mineral and water, and the determination of clumped isotope values in vaterite.

  6. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  7. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    SciTech Connect

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-15

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  8. Computational methods for multiphase equilibrium and kinetics calculations for geochemical and reactive transport applications

    NASA Astrophysics Data System (ADS)

    Leal, Allan; Saar, Martin

    2016-04-01

    Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.

  9. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  10. Isotope correlations for safeguards surveillance and accountancy methods

    SciTech Connect

    Persiani, P.J.; Kalimullah

    1982-01-01

    Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The ICT allows the verification of: fabricator's uranium and plutonium content specifications, shipper/receiver differences between fabricator output and reactor input, reactor plant inventory changes, reprocessing batch specifications and shipper/receiver differences between reactor output and reprocessing plant input. The investigation indicates that there exist predictable functional relationships (i.e. correlations) between isotopic concentrations over a range of burnup. Several cross-correlations serve to establish the initial fuel assembly-averaged compositions. The selection of the more effective correlations will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors through the correlations have been examined to identify the sensitivity of the isotope correlations to measurement errors, and to establish criteria for measurement accuracy in the development and selection of measurement methods. 6 figures, 3 tables.

  11. Determining osmotic pressure of drug solutions by air humidity in equilibrium method.

    PubMed

    Zhan, Xiancheng; Li, Hui; Yu, Lan; Wei, Guocui; Li, Chengrong

    2014-06-01

    To establish a new osmotic pressure measuring method with a wide measuring range. The osmotic pressure of drug solutions is determined by measuring the relative air humidity in equilibrium with the solution. The freezing point osmometry is used as a control. The data obtained by the proposed method are comparable to those by the control method, and the measuring range of the proposed method is significantly wider than that of the control method. The proposed method is performed in an isothermal and equilibrium state, so it overcomes the defects of the freezing point and dew point osmometries which result from the heterothermal process in the measurement, and therefore is not limited to diluted solutions.

  12. Fixed-point methods for computing the equilibrium composition of complex biochemical mixtures.

    PubMed Central

    Kuzmic, P

    1998-01-01

    The fixed-point algebraic method [Storer and Cornish-Bowden (1976) Biochem. J. 159, 1-5] for computing the concentrations at equilibrium of complex biochemical mixtures fails for many binding stoichiometries, especially those that include molecular self-association. A typical example is the monomer-dimer-tetramer equilibrium. This paper reports two main results. First, the above algorithm is analysed theoretically to predict for which binding stoichiometries it succeeds and for which it will fail. Secondly, an alternative algorithm is described for self-associating biochemical systems. Illustrative examples are based on the dimeric proteinase from HIV. PMID:9531499

  13. Semiexperimental equilibrium structure of the lower energy conformer of glycidol by the mixed estimation method.

    PubMed

    Demaison, Jean; Craig, Norman C; Conrad, Andrew R; Tubergen, Michael J; Rudolph, Heinz Dieter

    2012-09-13

    Rotational constants were determined for (18)O-substituted isotopologues of the lower energy conformer of glycidol, which has an intramolecular inner hydrogen bond from the hydroxyl group to the oxirane ring oxygen. Rotational constants were previously determined for the (13)C and the OD species. These rotational constants have been corrected with the rovibrational constants calculated from an ab initio cubic force field. The derived semiexperimental equilibrium rotational constants have been supplemented by carefully chosen structural parameters, including those for hydrogen atoms, from medium level ab initio calculations. The combined data have been used in a weighted least-squares fit to determine an equilibrium structure for the glycidol H-bond inner conformer. This work shows that the mixed estimation method allows us to determine a complete and reliable equilibrium structure for large molecules, even when the rotational constants of a number of isotopologues are unavailable.

  14. Triangular reflective equilibrium: a conscience-based method for bioethical deliberation.

    PubMed

    Barilan, Y Michael; Brusa, Margherita

    2011-07-01

    Following a discussion of some historical roots of conscience, we offer a systematized version of reflective equilibrium. Aiming at a comprehensive methodology for bioethical deliberation, we develop an expanded variant of reflective equilibrium, which we call 'triangular reflective equilibrium' and which incorporates insights from hermeneutics, critical theory and narrative ethics. We focus on a few distinctions, mainly between methods of justification in ethics and the social practice of bioethical deliberation, between coherence in ethical reasoning, personal integrity and consensus formation, and between political and moral deliberation. The ideal of deliberation is explicated as a sharing of conscience within a special commitment to sincerity and openness to persuasion. Personal growth in wisdom is an indirect by-product of the continuous practice of moral deliberation. This is explicated in the light of Sternberg's balance theory of wisdom and in the context of medicine as a profession embodying altruistic responsibilities of care in democratic and pluralistic societies. © 2010 Blackwell Publishing Ltd.

  15. A new method of tree xylem water extraction for isotopic analysis

    NASA Astrophysics Data System (ADS)

    Gierke, C.; Newton, B. T.

    2011-12-01

    waters (IW), allowing diffusive processes to proceed to equilibrium, measuring the composition of the resulting mixture or final water (FW) then, solving a simple mixing equation. To evaluate this method, we collected several twig samples from Douglas Firs in the Sacramento Mountains. Twig water was prepared for isotopic analysis both by cryogenic distillation and the mixing method. Soil in close proximity to these trees was also sampled and water was extracted by cryogenic distillation. Preliminary results show that the isotopic composition of distilled twig water and soil waters plot to the right of the local meteoric water line (LMWL) suggesting that trees are extracting shallow evaporated soil water. Twig water obtained from the mixing method plot near the LMWL within the range expected for local snow melt, suggesting a possibly deeper non-evaporated source. In general, distillation values are approximately 4% heavier with respect to delta 18O than waters obtained from the mixing method. It is possible that this difference is due to the contribution of the fractionated water of the twig phloem that is released during the distillation process. This difference is quite significant and can lead to very different interpretations. These results are being addressed with additional experiments.

  16. First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon

    NASA Astrophysics Data System (ADS)

    Qin, Tian; Wu, Fei; Wu, Zhongqing; Huang, Fang

    2016-11-01

    In this study, we used first-principles calculations based on density functional theory to investigate silicon and oxygen isotope fractionation factors among the most abundant major silicate minerals in granites, i.e., quartz and plagioclase (including albite and anorthite), and an important accessory mineral zircon. Combined with previous results of minerals commonly occurring in the crust and upper mantle (orthoenstatite, clinoenstatite, garnet, and olivine), our study reveals that the Si isotope fractionations in minerals are strongly correlated with SiO4 tetrahedron volume (or average Si-O bond length). The 30Si enrichment order follows the sequence of quartz > albite > anorthite > olivine ≈ zircon > enstatite > diopside, and the 18O enrichment follows the order of quartz > albite > anorthite > enstatite > zircon > olivine. Our calculation predicts that measurable fractionation of Si isotopes can occur among crustal silicate minerals during high-temperature geochemical processes. This work also allows us to evaluate Si isotope fractionation between minerals and silicate melts with variable compositions. Trajectory for δ30Si variation during fractional crystallization of silicate minerals was simulated with our calculated Si isotope fractionation factors between minerals and melts, suggesting the important roles of fractional crystallization to cause Si isotopic variations during magmatic differentiation. Our study also predicts that δ30Si data of ferroan anorthosites of the Moon can be explained by crystallization and aggregation of anorthite during lunar magma ocean processes. Finally, O and Si isotope fractionation factors between zircon and melts were estimated based on our calculation, which can be used to quantitatively account for O and Si isotope composition of zircons crystallized during magma differentiation.

  17. Prospects of lithium enrichment on 7Li isotope by method of controlled ions electro-migration

    NASA Astrophysics Data System (ADS)

    Martoyan, G. A.; Kalugin, M. M.; Gabrielyan, A. V.; Martoyan, A. G.

    2016-01-01

    This paper deals with a new electro-membrane method of enrichment of 7Li isotope. The data are presented on the importance and application fields regarding the use of 7Li isotopes. Existing methods and criteria of separation of lithium isotopes are discussed. The principle of new technology, regimes of enrichment experiments, and analysis details of obtained products are briefly described.

  18. A method for obtaining three-dimensional computation equilibrium of non-neutral plasmas using WARP

    SciTech Connect

    Wurtele, J.; Wurtele, J.; Friedman, A.; Grote, D.P.; Vay, J-L.; Gomberoff, K.

    2006-03-25

    Computer simulation studies of the stability and transport properties of trapped non-neutral plasmas require the numerical realization of a three-dimensional plasma distribution. This paper presents a new numerical method for obtaining, without an explicit model for physical collisions in the code, a low noise three-dimensional computational equilibrium distribution. This requires both the loading of particles into an idealized distribution and the relaxation from that distribution toward an approximate numerical equilibrium. The equilibrium can then be modified through a slow change of system parameters, to generate other equilibria. In the present work we apply this method to a UC Berkeley experiment on electron confinement in magnetic geometries appropriate for the ALPHA anti-hydrogen experiment, using the three-dimensional Particle-In-Cell code WARP. WARP's guiding center mover and its option to switch between different solvers during a simulation are highly valuable because they speed up the simulations; they enable the practical use of the new technique for generating numerical equilibrium states of trapped nonneutral plasmas.

  19. A method for obtaining three-dimensional computational equilibrium of non-neutral plasmas using WARP

    SciTech Connect

    Gomberoff, K. . E-mail: katia@physics.technion.ac.il; Wurtele, J.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-08-10

    Computer simulation studies of the stability and transport properties of trapped non-neutral plasmas require the numerical realization of a three-dimensional plasma distribution. This paper presents a new numerical method for obtaining, without an explicit model for physical collisions in the code, a low noise three-dimensional computational equilibrium distribution. This requires both the loading of particles into an idealized distribution and the relaxation from that distribution toward an approximate numerical equilibrium. The equilibrium can then be modified through a slow change of system parameters, to generate other equilibria. In the present, work we apply this method to a UC Berkeley experiment on electron confinement in magnetic geometries appropriate for the ALPHA anti-hydrogen experiment, using the three-dimensional particle-in-cell code WARP. WARP's guiding center mover and its option to switch between different solvers during a simulation are highly valuable because they speed up the simulations; they enable the practical use of the new technique for generating numerical equilibrium states of trapped non-neutral plasmas.

  20. Calculation of equilibrium constants by matrix method for complexes of gold(III).

    PubMed

    Kudrev, A G

    2008-04-15

    A new matrix approach is proposed to calculate the equilibrium constants of ligands substitution in a metal ion inner coordination sphere with fixed binding sites positions. The proposed method allows to reduce the number of independent variables, necessary for the titration curves fitting without deterioration in the description accuracy. The square planar complexes [MY(4-n)X(n)] n=0-4 formation in solution model includes three independent variables K , omega(cis) and omega(trans) (K -equilibrium constant of replacement of first ligand, omega(cis), omega(trans)-parameters of mutual influence) as an alternative to four stepwise equilibrium constants and two microconstants. In the present investigation experimental spectrophotometric data published in the literature for system {Au(3+)-Cl(-)-Br(-)} were analysed. With the help of the proposed method the equilibrium constants of chloride by bromide ion substitution in internal coordination sphere of Au(III) are calculated K =50; omega(cis)=1.3; omega(trans)=0.7.

  1. Method for enriching a middle isotope using vibration-vibration pumping

    DOEpatents

    Rich, Joseph W.; Homicz, Gregory F.; Bergman, Richard C.

    1989-01-01

    Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.

  2. LBM-DSMC Hybrid Method for Complex Out-of-Equilibrium Flows

    NASA Astrophysics Data System (ADS)

    di Staso, Gianluca; Clercx, Herman J. H.; Succi, Sauro; Toschi, Federico

    2016-11-01

    Many complex flows are characterized by the simultaneous presence of a range of non-equilibrium and rarefaction effects in different regions of the flow field. We recently developed a Direct Simulation Monte Carlo (DSMC)-Lattice Boltzmann Method (LBM) hybrid scheme, based on domain decomposition technique and on Grad's moments method, able to accurately and efficiently simulate such flows. While DSMC is employed to compute the flow field only where large non-equilibrium effects are present, the more computationally efficient LBM is employed wherever the non-equilibrium effects can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. Here we present the results on the application of the hybrid method to complex three-dimensional flows, in particular to the flow around a microsphere and through a disk-shaped expansion channel. The solutions provided by the hybrid method are compared against full DSMC simulations and the computational gain guaranteed by the application of the hybrid method over the full DSMC is also demonstrated.

  3. A refined method for calculating paleotemperatures from linear correlations in bamboo coral carbon and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Saenger, Casey; Watkins, James M.

    2016-06-01

    Bamboo corals represent an emerging paleoclimate archive with the potential to record variability at intermediate depths throughout much of the global ocean. Realizing this potential has been complicated by biologically mediated vital effects, which are evident in linear correlations of skeletal carbon (δ13C) and oxygen (δ18O) isotope composition. Previous efforts to develop a bamboo coral δ18O paleothermometer by accounting for such vital effects have not been completely successful as they still rely on empirical calibrations that are offset from the temperature dependence of abiogenic experiments. Here we describe an approach that better corrects for bamboo coral vital effects and allows paleotemperatures to be calculated directly from the abiogenic temperature dependence. The success of the method lies in calculating apparent equilibrium carbon and oxygen isotope fractionation at the temperature, pH, and growth rate of each coral, as well as in the use of model II regressions. Rigorous propagation of uncertainty suggests typical errors of ±2-3°C, but in select cases errors as low as ±0.65°C can be achieved for densely sampled and strongly correlated data sets. This lower limit approaches the value attributed to uncertainty in pH and growth rate estimates alone, as predicted by a series of pseudoproxy experiments. The incorporation of isotopically light metabolic CO2 appears to be negligible in most Pacific corals, but may be significant in Atlantic specimens, potentially requiring an additional correction. The success of the method therefore hinges on how well complex environmental systems and biomineralization strategies are constrained, with the most reliable temperatures occurring when calcifying fluid pH, growth rate, and incorporation of metabolic carbon into skeletal calcite are constrained using multiple geochemical proxies.

  4. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  5. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  6. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  7. An Analytical Investigation of Three General Methods of Calculating Chemical-Equilibrium Compositions

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.; Gordon, Sanford

    1960-01-01

    The Brinkley, Huff, and White methods for chemical-equilibrium calculations were modified and extended in order to permit an analytical comparison. The extended forms of these methods permit condensed species as reaction products, include temperature as a variable in the iteration, and permit arbitrary estimates for the variables. It is analytically shown that the three extended methods can be placed in a form that is independent of components. In this form the Brinkley iteration is identical computationally to the White method, while the modified Huff method differs only'slightly from these two. The convergence rates of the modified Brinkley and White methods are identical; and, further, all three methods are guaranteed to converge and will ultimately converge quadratically. It is concluded that no one of the three methods offers any significant computational advantages over the other two.

  8. Method of rapid determination of MHD equilibrium properties with the modified version of the SURFAS code

    SciTech Connect

    Lee, D.K.; Hirshman, S.P.; Okabayashi, M.; Reusch, M.F.; Sun, Y.C.

    1993-09-01

    Rapid determination of MHD eqilibrium properties of tokamak plasmas is carried out by means of an approximation method based on the use of database files. These are computed a priori from MHD equilibrium solutions obtained by performing reconstruction to match experimental measurements, which include motional Stark effect (MSE) data. The procedure carries out a single iteration of Newton`s method to determine the poloidal variation of the toroidal plasma current density in the equilibrium form j{sub {phi}} = {minus}2{pi}({mu}{sub 0}Rp{prime} + FF{prime}/R) by representing p{prime}({psi}) and F({psi})F{prime}({psi}) in series expansions of Chebyshev polynomials. The polynominal expansion coefficients are obtained through a least-squares data fitting process similar to that used in the equilibrium reconstruction. Knowing the current density j{phi} allows the determination of the internal q-profile from the MSE data. This important stability parameter is generally unavailable from a current filament model. Numerical results calculated in this approach are compared with those determined from an accurate solution of the Grad-Shafranov equation, subject to a similar set of magnetic and pressure measurement constraints.

  9. Real-time extraction of plasma equilibrium parameters in KSTAR tokamak using statistical methods

    NASA Astrophysics Data System (ADS)

    Na, Yong-Su; Jeon, Young-Mu; Hong, S. H.; Hwang, Y. S.

    2001-02-01

    To improve inherent shortcomings of statistical methods and apply them to the extraction of plasma equilibrium parameters in a fast timescale for real-time plasma control, new concepts of statistical methods such as principal component analysis-based neural network (NN), functional parametrization (FP)-based NN and double network are introduced by modifying NN and FP. These new methods are benchmarked and compared with the conventional techniques of NN and FP in a simple single-filament system. As a result of their applications to identification of plasma equilibrium parameters in the Korea Superconducting Tokamak Advanced Research tokamak, particularly, the double network concept among them has successfully achieved the improvement of drawbacks in the conventional methods. It is shown that more reliable results from the double network method can be obtained by combining several different statistical treatments as a primary network. Even in the case of nonoptimized methods united as a primary network, quite acceptable results can be achieved in the double network method.

  10. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, Mark W.; George, William A.

    1986-01-01

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

  11. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  12. Rotational spectra of rare isotopic species of fluoroiodomethane: Determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2012-07-01

    Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD2FI, as well as of the 13C-containing species, 13CH2FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH2FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011);, 10.1063/1.3583498 G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)], 10.1080/00268976.2011.609142 enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).

  13. Rotational spectra of rare isotopic species of fluoroiodomethane: determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2012-07-14

    Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD(2)FI, as well as of the (13)C-containing species, (13)CH(2)FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH(2)FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011); G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)] enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).

  14. Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203.

    PubMed

    Kimura, Yasuyuki; Siméon, Fabrice G; Zoghbi, Sami S; Zhang, Yi; Hatazawa, Jun; Pike, Victor W; Innis, Robert B; Fujita, Masahiro

    2012-02-01

    A new PET ligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile (18F-SP203) can quantify metabotropic glutamate subtype 5 receptors (mGluR5) in human brain by a bolus injection and kinetic modeling. As an alternative approach to a bolus injection, binding can simply be measured as a ratio of tissue to metabolite-corrected plasma at a single time point under equilibrium conditions achieved by administering the radioligand with a bolus injection followed by a constant infusion. The purpose of this study was to validate the equilibrium method as an alternative to the standard kinetic method for measuring 18F-SP203 binding in the brain. Nine healthy subjects were injected with 18F-SP203 using a bolus plus constant infusion for 300 min. A single ratio of bolus-to-constant infusion (the activity of bolus equaled to that of infusion over 219 min) was applied to all subjects to achieve equilibrium in approximately 120 min. As a measure of ligand binding, we compared total distribution volume (VT) calculated by the equilibrium and kinetic methods in each scan. The equilibrium method calculated VT by the ratio of radioactivity in the brain to the concentration of 18F-SP203 in arterial plasma at 120 min, and the kinetic method calculated VT by a two-tissue compartment model using brain and plasma dynamic data from 0 to 120 min. VT obtained via the equilibrium method was highly correlated with VT obtained via kinetic modeling. Inter-subject variability of VT obtained via the equilibrium method was slightly smaller than VT obtained via the kinetic method. VT obtained via the equilibrium method was ~10% higher than VT obtained via the kinetic method, indicating a small difference between the measurements. Taken together, the results of this study show that using the equilibrium method is an acceptable alternative to the standard kinetic method when using 18F-SP203 to measure mGluR5. Although small differences in the measurements obtained via the

  15. Spectrophotometric and thermodynamic study on the dimerization equilibrium of ionic dyes in water by chemometrics method

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Yazdanipour, Ateesa; Ghasemi, Jahanbakhsh; Kubista, Mikael

    2006-09-01

    The monomer-dimer equilibrium and thermodynamic of several ionic dyes (Neutral Red, Nile Blue A, Safranine T and Thionine) has been investigated by means of spectrophotometric and chemometrics methods. The dimerization constants of these ionic dyes have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-75 °C at concentrations of Neutral Red (1.73 × 10 -5 M), Nile Blue A (3.94 × 10 -5 M), Safranine (6.59 × 10 -5 M) and Thionine (6.60 × 10 -5 M). The monomer-dimer equilibrium of these dyes has been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed. The processing of the data carried out for quantitative analysis of undefined mixtures, based on simultaneous resolution of the overlapping bands in the whole set of absorption spectra. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants to the temperature (van't Hoff equation).

  16. Methods and limitations of 'clumped' CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry.

    PubMed

    Huntington, K W; Eiler, J M; Affek, H P; Guo, W; Bonifacie, M; Yeung, L Y; Thiagarajan, N; Passey, B; Tripati, A; Daëron, M; Came, R

    2009-09-01

    The geochemistry of multiply substituted isotopologues ('clumped-isotope' geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. (13)C(18)O(16)O, (18)O(18)O, (15)N(2), (13)C(18)O(16)O(2) (2-)). Such species form the basis of carbonate clumped-isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped-isotope analysis by dual-inlet gas-source isotope ratio mass spectrometry (IRMS). We demonstrate long-term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 10(12) ohm resistor on three Thermo-Finnigan 253 IRMS systems. Based on the analyses of heated CO(2) gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO(2) molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of approximately 0.01 per thousand are routinely achieved for measurements of the mass-47 anomaly (a measure mostly of the abundance anomaly of (13)C-(18)O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is approximately 5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically approximately 10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped-isotope thermometry of +/-1.2 degrees C and +/-2.4 degrees C, respectively. 2009 John Wiley & Sons, Ltd.

  17. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    PubMed

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds.

  18. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Vicars, W. C.; Savarino, J.; Morin, S.; Frey, M. M.; Frosini, D.; Vince, E.; Martins, J. M. F.

    2012-10-01

    Here we report the measurement of the comprehensive isotopic composition (δ15N, Δ17O and δ18O) of nitrate at the air-snow interface at Dome C, Antarctica (DC, 75° 06' S, 123° 19' E) and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. For each of the East Antarctic snow pits in most of which nitrate loss is observed, we derive apparent fractionation constants associated with this loss as well as asymptotic values of nitrate concentration and isotopic ratios below the photic zone. Nitrate collected from snow pits on the plateau have average apparent fractionation constants of (-59±10)‰, (+2.0±1.0)‰ and (+8.7±2.4)‰, for δ15N, Δ17O and δ18O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average apparent fractionation constants of (-16±14)‰, (-0.2±1.5)‰ and (+3.1±5.8)‰, for δ15N, Δ17O and δ18O, respectively. From a lab experiment carried out at DC in parallel to the field investigations, we find that the 15N/14N fractionation associated with the physical release of nitrate is (-8.5±2.5)‰, a value significantly different from the modelled estimate previously found for photolysis (-48‰, Frey et al., 2009) when assuming a Rayleigh-type process. Our observations corroborate that photolysis is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a close relationship between the Δ17O of atmospheric nitrate and Δ17O of nitrate in skin layer snow, suggesting a photolytically-driven isotopic equilibrium imposed by nitrate recycling at this interface. The 3-4 weeks shift observed for nitrate concentration in these two compartments may be explained by the different sizes of the nitrate reservoirs and by deposition from the atmosphere to the snow. Atmospheric nitrate

  19. Equilibrium Iron Isotope Fractionation Factors of Minerals: Reevaluation from the Data of Nuclear Inelastic Resonant X-ray Scattering and Mossbauer Spectroscopy

    SciTech Connect

    Polyakov, Dr. V. B.; Clayton, R. N.; Horita, Juske; Mineev, S. D.

    2007-01-01

    We have critically reevaluated equilibrium iron isotope fractionation factors for oxide and sulfide minerals using recently acquired data obtained by Moessbauer spectroscopy and inelastic nuclear resonant X-ray scattering (INRXS) synchrotron radiation. Good agreement was observed in the iron {beta}-factors of metallic iron ({alpha}-Fe) and hematite calculated using both Moessbauer- and INRXS-derived data, which supports the validity and reliability of the calculations. Based on this excellent agreement, we suggest the use of the present data on the iron {beta}-factors of hematite as a reference. The previous Moessbauer-derived iron {beta}-factor for magnetite has been modified significantly based on the Fe-sublattice density of states obtained from the INRXS experiments. This resolves the disagreement between naturally observed iron isotope fractionation factors for mineral pairs involving magnetite and those obtained from the calculated {beta}-factors. The correctness of iron {beta}-factor for pyrite has been corroborated by the good agreement with experimental data of sulfur isotope geothermometers of pyrite-galena and pyrite-sphalerite. A good correlation between the potential energy of the cation site, the oxidation state of iron and the iron {beta}-factor value has been established. Specifically, ferric compounds, which have a higher potential energy of iron than ferrous compounds, have higher {beta}-factors. A similar dependence of b-factors on the oxidation state and potential energy could be extended to other transition metals. Extremely low values of INRXS-derived iron {beta}-factors for troilite and Fe{sub 3}S significantly widen the range of iron b-factors for covalently bonded compounds.

  20. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  1. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  2. Using (18)O/(16)O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application.

    PubMed

    De Souza, Roger A; Martin, Manfred

    2008-05-07

    The use of an (18)O/(16)O exchange experiment as a means for probing surface space-charge layers in oxides is examined theoretically and experimentally. On the basis of a theoretical treatment, isotope penetration profiles are calculated for (18)O/(16)O exchange across a gas-solid interface and subsequent diffusion of the labelled isotope through an equilibrium space-charge layer depleted of mobile oxygen vacancies and into a homogeneous bulk phase. Profiles calculated for a range of conditions all have a characteristic shape: a sharp drop in isotope fraction close to the surface followed by a normal bulk diffusion profile. Experimental (18)O profiles in an exchanged (001) oriented single crystal of Fe-doped SrTiO(3) were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS). By extracting the space-charge potential from such profiles, we demonstrate that this method allows the spatially resolved characterization of space-charge layers at the surfaces of crystalline oxides under thermodynamically well-defined conditions.

  3. Application of optimization methods for finding equilibrium states of two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Evtushenko, Yu. G.; Lurie, S. A.; Posypkin, M. A.; Solyaev, Yu. O.

    2016-12-01

    A two-dimensional model of a multilayer material and a procedure for simulating its properties based on global optimization methods are proposed. This model is applied for the case of a two-dimensional crystal. Global minima of the interaction energy of the material's atoms are found, and geometric characteristics of its corresponding equilibrium states are described. The resulting lattices, in particular graphene's lattices, agree with experimental data, which confirms the validity of the proposed approach. This approach can be extended to a wider class of layered structures, and it can be used for determining the mechanical properties of materials.

  4. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer

    NASA Astrophysics Data System (ADS)

    Erbland, J.; Vicars, W. C.; Savarino, J.; Morin, S.; Frey, M. M.; Frosini, D.; Vince, E.; Martins, J. M. F.

    2013-07-01

    Here we report the measurement of the comprehensive isotopic composition (δ15N, Δ17O and δ18O) of nitrate at the air-snow interface at Dome C, Antarctica (DC, 75°06' S, 123°19' E), and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. In most of the snow pits, nitrate loss (either by physical release or UV photolysis of nitrate) is observed and fractionation constants associated are calculated. Nitrate collected from snow pits on the plateau (snow accumulation rate below 50 kg m-2 a-1) displays average fractionation constants of (-59±10) ‰, (+2.0±1.0) ‰ and (+8.7±2.4)‰ for δ15N, Δ17O and δ18O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average fractionation constants of (-16±14) ‰, (-0.2±1.5) ‰ and (+3.1±5.8) ‰, for δ15N, Δ17O and δ18O, respectively. Our observations corroborate that photolysis (associated with a 15N / 14N fractionation constant of the order of -48 ‰ according to Frey et al. (2009) is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a~close relationship between the Δ17O of atmospheric nitrate and Δ17O of nitrate in skin layer snow, suggesting a photolytically driven isotopic equilibrium imposed by nitrate recycling at this interface. Atmospheric nitrate deposition may lead to fractionation of the nitrogen isotopes and explain the almost constant shift of the order of 25 ‰ between the δ15N values in the atmospheric and skin layer nitrate at DC. Asymptotic δ15N(NO3-) values calculated for each snow pit are found to be correlated with the inverse of the snow accumulation rate (ln(δ15N as. + 1) = (5.76±0.47) ċ (kg m-2 a-1/ A) + (0.01±0.02)), confirming the strong relationship between the snow accumulation rate and the degree of isotopic

  5. Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate systems

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Guo, W.; Farquhar, J.

    2016-12-01

    We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40H2O clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148-0.5159, 36/34κ ≈ 1.89-1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3-T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS-(aq), SO42-(aq)/H2ST(aq), S2O32-(aq) (intramolecular), and S2O32-(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3-T/SO32- major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3

  6. Meshless Method for Solving Fixed Boundary Problem of Axisymmetric Plasma Equilibrium

    NASA Astrophysics Data System (ADS)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2013-10-01

    This study is to solve Grad-Shafranov (GS) equation with the fixed plasma boundary by utilizing the meshless method for the first time. The previous studies have utilized the finite element method (FEM) to solve the equilibrium inside the fixed separatrix. In order to avoid the difficulty of FEM (e.g. mesh problem, difficulty of coding, expensive calculation cost, etc.), this study proposes the new method to apply the meshless methods, especially RBF-MFS and Kansa's method to inhomogeneous and nonlinear partial differential equations (PDE). Although the RBF-MFS and Kansa's method are applicable to the inhomogeneous PDE, the application of these methods to the GS equation is not straight-forward. Since the current profile is usually parameterized by the normalized poloidal flux, the inhomogeneous term of the GS equation contains the normalized poloidal flux, not just a poloidal flux. This is the difficulty for solving the GS equation. Accuracy and calculation time of the meshless method and FEM are compared in the condition of the same total number of nodes. The results show that the error of magnetic field obtained by the meshless methods is one hundredth of that by FEM and that the calculation time of the meshless method is one tenth of that of FEM. Moreover, this study shows that the meshless methods can be easily accelerated by parallel computing.

  7. Fast convergence to equilibrium for long-chain polymer melts using a MD/continuum hybrid method.

    PubMed

    Senda, Yasuhiro; Fujio, Miyuki; Shimamura, Shuji; Blomqvist, Janne; Nieminen, Risto M

    2012-10-21

    Effective and fast convergence toward an equilibrium state for long-chain polymer melts is realized by a hybrid method coupling molecular dynamics and the elastic continuum. The required simulation time to achieve the equilibrium state is reduced compared with conventional equilibration methods. The polymers move on a wide range phase space due to large-scale fluctuation generated by the elastic continuum. A variety of chain structures is generated in the polymer melt which results in the fast convergence to the equilibrium state.

  8. An innovative method for extracting isotopic information from low-resolution gamma spectra

    SciTech Connect

    Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.

    1998-12-01

    A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, {sup 137}Cs, and {sup 133}Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied.

  9. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    as non-equilibrium processes under local constraint of mass and heat fluxes. In this work, we have extended RCB by adding another route for dissociation or reformation of CH4-hydrate towards CH4 into the aqueous phase and water. CH4-hydrate formation and dissociation is resolved by looking at supersaturation and undersaturation with respect to thermodynamics variables. Hydrate instability due to undersaturation of CH4 in the contacting water phase is also considered. A complete non-equilibrium thermodynamic package, developed in-house, was combined with RCB to account for competing phase transitions by considering the minimization of Gibb's free energy. The energy differences were calculated from variations in chemical potentials of hydrate and hydrate formers. Mass transport, heat transport and non-equilibrium thermodynamic effects were implemented through classical nucleation theory to model the kinetic rate of hydrate phase transitions. To illustrate our implementations we ran simulations covering time-spans in the order of hundred years. CH4 production was modelled using the depressurization method, where we employed the Messoyakha field data. We discuss our implementations, as well as results obtained from simulations utilizing our modifications.

  10. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    NASA Astrophysics Data System (ADS)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-11-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.

  11. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    NASA Astrophysics Data System (ADS)

    Do, Van-Nam

    2014-09-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes.

  12. Solute transport with multisegment, equilibrium-controlled reactions: A feed forward simulation method

    USGS Publications Warehouse

    Rubin, Jacob

    1990-01-01

    The feed forward method (FF method) is one of the ways of formulating operational equations which simulate transport of solutes influenced by equilibrium-controlled reaction networks. The FF method provides increased solution efficiency by adapting its formulations to some of the network's fundamental features. In this study the FF method is further developed by adapting and testing it for a variety of network conditions. Classes of homogeneous, classical heterogeneous, and ion exchange network segments are studied. Networks may contain only a single class of segments or they may involve two or three segment classes. The FF method is found applicable to all the cases tested. In only one of these cases, for the more complex configurations of network segments, the FF method does not attain all of its objectives. A systematic, stepwise approach to method development is employed. It reveals, for certain subnetworks, an a priori inadmissibility, irrespective of the method used, and, for some other networks, an a priori irrelevance to transport dynamics. It also demonstrates that when certain subnetworks, belonging to different segment classes, form a single network, synergism (or antagonism) may occasionally arise and decrease (or increase) the difficulty of solving the transport problem.

  13. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    NASA Astrophysics Data System (ADS)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime

  14. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces.

    PubMed

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-22

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation C(k)<=>mu(k) between the concentrations C(k) and the chemical potentials mu(k) of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation C(k)<=>mu(k) implies in fact two problems: a direct problem C(k)=>mu(k) and an inverse problem mu(k)=>C(k). Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 A thick gypsum interface. The major unexpected observation is the repulsion of SO(4) (2-) ions towards the reference solution and the attraction of Ca(2+) ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions

  15. Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations

    NASA Astrophysics Data System (ADS)

    Xu, Kun; He, Xin; Cai, Chunpei

    2008-07-01

    It is well known that for increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. For the high speed diatomic molecular flow in the transitional regime, the inaccuracies are partially attributed to the single temperature approximations in the Navier-Stokes equations. Here, we propose a continuum multiple temperature model based on the Bhatnagar-Gross-Krook (BGK) equation for the non-equilibrium flow computation. In the current model, the Landau-Teller-Jeans relaxation model for the rotational energy is used to evaluate the energy exchange between the translational and rotational modes. Due to the multiple temperature approximation, the second viscosity coefficient in the Navier-Stokes equations is replaced by the temperature relaxation term. In order to solve the multiple temperature kinetic model, a multiscale gas-kinetic finite volume scheme is proposed, where the gas-kinetic equation is numerically solved for the fluxes to update the macroscopic flow variables inside each control volume. Since the gas-kinetic scheme uses a continuous gas distribution function at a cell interface for the fluxes evaluation, the moments of a gas distribution function can be explicitly obtained for the multiple temperature model. Therefore, the kinetic scheme is much more efficient than the DSMC method, especially in the near continuum flow regime. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate, the computational results are validated in comparison with experimental measurements and DSMC solutions.

  16. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOEpatents

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  17. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.

    2006-03-01

    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  18. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics.

    PubMed

    Ren, Zhuyin; Pope, Stephen B; Vladimirsky, Alexander; Guckenheimer, John M

    2006-03-21

    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  19. Investigation of the Photochemical Method for Uranium Isotope Separation

    DOE R&D Accomplishments Database

    Urey, H. C.

    1943-07-10

    To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.

  20. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater

    USGS Publications Warehouse

    Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K.

    2001-01-01

    We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N2O) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and oxygen from nitrate are accessible in this way. In this first of two companion manuscripts, we describe the basic protocol and results for the nitrogen isotopes. The precision of the method is better than 0.2‰ (1 SD) at concentrations of nitrate down to 1 μM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced. For samples with 1 μM nitrate or more, the blank of the method is less than 10% of the signal size, and various approaches may reduce it further.

  1. LC-MS determination of bioactive molecules based upon stable isotope-coded derivatization method.

    PubMed

    Toyo'oka, Toshimasa

    2012-10-01

    Liquid chromatography (LC) coupled with mass spectrometry (MS) has been widely used for the analyses of various molecules in many research fields. The electrospray ionization of MS has contributed to the advancement of the LC-MS and LC-MS/MS methods. However, the detection sensitivity is not always sufficient in biological samples, in spite of the highly sensitive ionization method. To increase the sensitivity, chemical derivatization, providing ionization enhancement and avoiding the matrix effect, is effective for various functional groups in the target molecules. However, the accuracy and precision by the determination is sometimes insufficient, especially in complex matrices. In such a case, stable isotope-labeled analogs are often used as the internal standards for the determination of the analytes. When the target compound in samples is limited, a high accuracy and precision is usually obtained by the isotope dilution method. However, the use of individual isotope standards is very difficult for the analyses of multiple molecules in complex matrices. Instead of the use of an isotope analog of the analytes, the differential isotope labeling method based upon chemical derivatization (stable isotope-coded derivatization) (ICD) by both reagents possessing different isotopes is realized. The ICD technique utilizing mass-different isotope tags is known to be an efficient means for metabolite profiling analyses. Thus, the present paper reviews the ICD method reported in the past 10 years. The species of the ICD reagents, their features and the applications to biological specimens are also described in this review.

  2. A new method for the determination of equilibrium constants through binding capacity measurements.

    PubMed

    Di Cera, E; Gill, S J

    1988-12-01

    The recent discovery of the negligible contribution of the triply ligated species to the oxygenation process of human hemoglobin A0 (S.J. Gill, E. Di Cera, M.L. Doyle, G.A. Bishop and C.H. Robert, Biochemistry 26 (1987) 3995) has pointed out the high precision of differential binding measurements. These measurements closely approximate the binding capacity (E. Di Cera, S.J. Gill and J. Wyman, Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 449) of the system and can be used to calculate higher derivatives of the binding curve. We develop here a new method for the determination of equilibrium constants through binding capacity measurements by which the physical parameters expressing the optical properties of the system are eliminated in the data analysis.

  3. Reducing the matrix effects in chemical analysis: fusion of isotope dilution and standard addition methods

    NASA Astrophysics Data System (ADS)

    Pagliano, Enea; Meija, Juris

    2016-04-01

    The combination of isotope dilution and mass spectrometry has become an ubiquitous tool of chemical analysis. Often perceived as one of the most accurate methods of chemical analysis, it is not without shortcomings. Current isotope dilution equations are not capable of fully addressing one of the key problems encountered in chemical analysis: the possible effect of sample matrix on measured isotope ratios. The method of standard addition does compensate for the effect of sample matrix by making sure that all measured solutions have identical composition. While it is impossible to attain such condition in traditional isotope dilution, we present equations which allow for matrix-matching between all measured solutions by fusion of isotope dilution and standard addition methods.

  4. Improvement of 2,4-dinitrophenylhydrazine derivatization method for carbon isotope analysis of atmospheric acetone.

    PubMed

    Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu

    2006-01-01

    Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented.

  5. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  6. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  7. Method for separating different isotopes in compounds by means of laser radiation

    SciTech Connect

    Meyer-Kretschmer, G.; Jetter, H.; Toennies, P.

    1984-05-29

    A method is claimed for separating isotopes of a compound having molecules in the gaseous state which comprises exciting the gas with laser radiation having a frequency capable of exciting a selected isotope thereof, interacting the excited gas with electrons having an energy sufficient to form position ions therein and separating the ionized molecules from the other molecules in the gas.

  8. An efficient monte carlo method for calculating the equilibrium properties for a quantum system coupled strongly to a classical one

    NASA Astrophysics Data System (ADS)

    Carmeli, Benny; Metiu, Horia

    1987-02-01

    We calculate the equilibrium properties of a system consisting of two strongly interacting quantum and classical subsystems, by using a fast Fourier transform method to evaluate the quantum contribution and a Monte Carlo method to evaluate the contribution of the classical part. The method is applied to a model relevant to tunneling problems.

  9. A moving mesh finite difference method for equilibrium radiation diffusion equations

    SciTech Connect

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  10. General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models

    USGS Publications Warehouse

    Miller, David A.W.

    2012-01-01

    Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.

  11. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.

  12. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Geva, Eitan

    2016-06-01

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.

  13. Laboratory and field methods for stable isotope analysis in human biology.

    PubMed

    Reitsema, Laurie J

    2015-01-01

    Stable isotope analysis (SIA; carbon, hydrogen, nitrogen, sulfur, and oxygen) of human tissues offers a means for assessing diet among living humans. Stable isotope ratios of broad categories of food and drink food vary systematically, and stable isotope ratios in consumer tissues represent a composite of the isotopic ratios of food and drink consumed during an individual's life. Isotopic evidence for diet is independent of errors in informant recall, and accrues during time periods when researchers are absent. Beyond diet reconstruction, tissue stable isotope ratios are sensitive to excursions from homeostasis, such as starvation and rapid growth. Because of their relationship to diet, geographic location, hydration, and nutritional status, stable isotope signatures in human tissues offer a window into human biocultural adaptations, past and present. This article describes methods for SIA that may be usefully applied in studies of living humans, with emphasis placed on carbon and nitrogen. Some of the ecological, physiological, and evolutionary applications of stable isotope data among living humans are discussed. By incorporating SIA in research, human biologists facilitate a productive dialog with bioarchaeologists, who routinely use stable isotope evidence, mingling different perspectives on human biology and behavior.

  14. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    NASA Astrophysics Data System (ADS)

    Borysiuk, Maciek; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: 16O, 17O and 18O. We procured samples highly enriched with all three isotopes. Isotopes 16O and 18O were easily detected in the enriched samples, but no significant signal from 17O was detected in the same samples. The measured yield was too low to detect 18O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with 16O was clearly visible.

  15. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  16. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    SciTech Connect

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  17. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavoring products.

    PubMed

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-09-08

    For the implementation of EU legislation related to smoke flavourings used or intended for use in or on foods (Regulation (EC) No 2065/2003) a method based on solid phase micro extraction (SPME) GC/MS was developed for the chracterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimization. The best general conditions to quantitatively analyze the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, 60°C extraction temperature, 30 min of extraction time, 250°C desorption temperature, 180 sec of desorption time, agitation time of 15 sec and agitation speed of 250 rpm. Under the optimized condition 119 wood pyrolysis products including furan/pyran-derivatives, phenols, guaiacol, syringol, benzenediol and their derivatives, cyclic ketones and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% < 5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimized isotope dilution SPME-GC/MS based analytical method proved to be fit-for-purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavorings.

  18. Equilibrium and dynamic methods when comparing an English text and its Esperanto translation

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    2008-11-01

    A comparison of two English texts written by Lewis Carroll, one (Alice in Wonderland), also translated into Esperanto, the other (Through the Looking Glass) are discussed in order to observe whether natural and artificial languages significantly differ from each other. One dimensional time series like signals are constructed using only word frequencies (FTS) or word lengths (LTS). The data is studied through (i) a Zipf method for sorting out correlations in the FTS and (ii) a Grassberger-Procaccia (GP) technique based method for finding correlations in LTS. The methods correspond to an equilibrium and a dynamic approach respectively to human texts features. There are quantitative statistical differences between the original English text and its Esperanto translation, but the qualitative differences are very minutes. However different power laws are observed with characteristic exponents for the ranking properties, and the phase space attractor dimensionality. The Zipf exponent can take values much less than unity (∼0.50 or 0.30) depending on how a sentence is defined. This variety in exponents can be conjectured to be an intrinsic measure of the book style or purpose, rather than the language or author vocabulary richness, since a similar exponent is obtained whatever the text. Moreover the attractor dimension r is a simple function of the so called phase space dimension n, i.e., r=nλ, with λ=0.79. Such an exponent could also be conjectured to be a measure of the author style versatility, - here well preserved in the translation.

  19. A numerical method for retrieving high oxygen isotope temperatures from plutonic igneous rocks: An example from the Laramie Anorthosite Complex, Wyoming, USA

    SciTech Connect

    Farquhar, J.; Chacko, T. . Dept. of Geology); Frost, B.R. )

    1992-01-01

    The Sybille Pit is a late-stage magnetite-ilmenite-plagioclase-bearing differentiate of the Laramie Anorthosite with a wide range of grain sizes and modal mineralogy. This variability makes Sybille an ideal locality in which to study the factors that affect isotopic thermometry in plutonic environments. The authors have developed a numerical model based on isotope exchange trajectories that retrieves close to magmatic temperatures for samples from Sybille. This method is based on the premise that hand sample-scale sub-systems close to exchange with each other at temperatures that exceed those of the constituent minerals. The temperature of hand-sample scale closure is retrieved by back calculating the isotope exchange trajectories to the temperature at which two samples with widely different model compositions are in isotopic equilibrium. Application of these methods to samples from Sybille provides promising results. Whereas conventional isotopic thermometry of individual samples yields a wide range of temperatures ([approximately]600 to > 1000 C) depending on the mineral-pair chosen, application of this numerical model to multiple samples yields temperatures of 1,070 [+-] 100 C which corresponds closely to the inferred solidus for these rocks.

  20. Apparatus and method for monitoring of gas having stable isotopes

    DOEpatents

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  1. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    EPA Science Inventory

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  2. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    EPA Science Inventory

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  3. A liquid chromatography - mass spectrometry method to measure ¹³C-isotope enrichment for DNA stable-isotope probing.

    PubMed

    Auclair, Julie; Lépine, François; Villemur, Richard

    2012-03-01

    DNA stable-isotope probing (DNA-SIP) is a cultivation-independent technique that makes it possible to associate metabolic function and taxonomic identity in a wide range of terrestrial and aquatic environments. In DNA-SIP, DNA is labeled via the assimilation of a labeled growth substrate that is subsequently used to identify microorganisms involved in assimilation of the substrate. However, the labeling time has to be sufficient to obtain labeled DNA but not so long such that cross-feeding of ¹³C-labeled metabolites from the primary consumers to nontarget species can occur. Confirmation that the DNA is isotopically labeled in DNA-SIP assays can be achieved using an isotope ratio mass spectrometer. In this study, we describe the development of a method using liquid chromatography (HPLC) coupled to a quadrupole mass spectrometer (QMS) to measure the ¹³C enrichment of thymine incorporated into DNA in Escherichia coli cultures fed with [¹³C]acetate. The method involved the hydrolysis of DNA extracted from the cultures that released the nucleotides, followed by the separation of the thymine by HPLC on a reverse-phase C₈ column in isocratic elution mode and the detection and quantification of ¹³C-labeled thymine by QMS. To mimic a DNA-SIP assay, a DNA mixture was made using ¹³C-labeled E. coli DNA with DNA extracted from five bacterial species. The HPLC-MS method was able to measure the correct proportion of ¹³C-DNA in the mix. This method can then be used as an alternative to the use of isotope ratio mass spectrometry in DNA-SIP assays.

  4. Some Developments of the Equilibrium Particle Simulation Method for the Direct Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Macrossan, M. N.

    1995-01-01

    The direct simulation Monte Carlo (DSMC) method is the established technique for the simulation of rarefied gas flows. In some flows of engineering interest, such as occur for aero-braking spacecraft in the upper atmosphere, DSMC can become prohibitively expensive in CPU time because some regions of the flow, particularly on the windward side of blunt bodies, become collision dominated. As an alternative to using a hybrid DSMC and continuum gas solver (Euler or Navier-Stokes solver) this work is aimed at making the particle simulation method efficient in the high density regions of the flow. A high density, infinite collision rate limit of DSMC, the Equilibrium Particle Simulation method (EPSM) was proposed some 15 years ago. EPSM is developed here for the flow of a gas consisting of many different species of molecules and is shown to be computationally efficient (compared to DSMC) for high collision rate flows. It thus offers great potential as part of a hybrid DSMC/EPSM code which could handle flows in the transition regime between rarefied gas flows and fully continuum flows. As a first step towards this goal a pure EPSM code is described. The next step of combining DSMC and EPSM is not attempted here but should be straightforward. EPSM and DSMC are applied to Taylor-Couette flow with Kn = 0.02 and 0.0133 and S(omega) = 3). Toroidal vortices develop for both methods but some differences are found, as might be expected for the given flow conditions. EPSM appears to be less sensitive to the sequence of random numbers used in the simulation than is DSMC and may also be more dissipative. The question of the origin and the magnitude of the dissipation in EPSM is addressed. It is suggested that this analysis is also relevant to DSMC when the usual accuracy requirements on the cell size and decoupling time step are relaxed in the interests of computational efficiency.

  5. Accurate Ab Initio Calculation of the Isotopic Exchange Equilibrium 10B(OH)3 + 11B(OH)4- = 11B(OH)3 + 10B(OH)4- In Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2005-12-01

    For more than a decade the B isotopic compositions of marine carbonates have been used as paleo-pH proxies for seawater and to reconstruct paleo-[CO2] concentrations in the atmosphere. A necessary step is this process is the accurate determination of the equilibrium constant, K, for the reaction shown in the title above. This equilibrium constant has been recently calculated using ab initio quantum chemical methods applied to nanoclusters containing the solutes B(OH)3 and B(OH)4- coordinated by large numbers of explicit solvent molecules, a computationally difficult procedure. To obtain the most accurate possible value for K the calculated vibrational frequencies were scaled to best fit the limited experimental data available. The value of K obtained (@ 25°C) was 1.027 (significantly larger than the long used value of 1.0194). Even more recently a purely experimental value of K= 1.0265 ± 0.0015 has been obtained through an accurate spectrophotometric determination of the difference of pKa's of commercially available bulk samples of >99% enriched 10B(OH)3(s) and 11B(OH)3 (s). Since we now know the correct experimental value and have a calculation, admittedly a difficult and slightly parameterized one, which matches the experimental result (which was obtained after the calculation), it is worthwhile to analyze the steps in the theoretical calculation of K in more detail. We need to establish a general procedure which can yield accurate K values for other similar aqueous species even if we have no accurate experimental value for K and no vibrational spectral data. To this end we will examine the dependence of the calculated values of vibrational frequencies, isotopomer frequency differences and K values on a number of factors, including (a) the quantum mechanical level (basis set and treatment of electron correlation) used for the free solutes, (b) the incorporation of aqueous medium effects, (c) the effects of vibrational anharmonicity, (d) incorporation of the

  6. The Isotope Exchange Method for Measuring Saturated Vapor Pressure and Diffusion coefficients - USSR -

    DTIC Science & Technology

    1960-06-16

    The availability of convenient radioactive isotopes of almost all elements of the periodic table makes this method universally applicable to the practical study of any substance in its condensed state.

  7. Upwind methods for flows with non-equilibrium chemistry and thermodynamics

    NASA Astrophysics Data System (ADS)

    Grossman, B.; Cinnella, P.

    The numerical computation of gas flows with non-equilibrium thermodynamics and chemistry is considered. Several thermodynamic models are discussed, including an equilibrium model, a general non-equilibrium model and a simplified model based upon vibrational relaxation. The effects of the various models on the state equation and the homogeneity property of the Euler equations is described. Flux-splitting procedures are developed for the fully-coupled inviscid equations involving fluid dynamics, chemical production and internal energy relaxation processes. New forms of flux-vector split and flux-difference split algorithms valid for non-equilibrium flow, are embodied in a fully coupled, implicit, large-block structure. Several numerical examples in one space dimension are presented, including high-temperature nozzle flows with hydrogen-air chemistry.

  8. Application of kinetic Monte Carlo method to equilibrium systems: vapour-liquid equilibria.

    PubMed

    Ustinov, E A; Do, D D

    2012-01-15

    Kinetic Monte Carlo (kMC) simulations were carried out to describe the vapour-liquid equilibria of argon at various temperatures. This paper aims to demonstrate the potential of the kMC technique in the analysis of equilibrium systems and its advantages over the traditional Monte Carlo method, which is based on the Metropolis algorithm. The key feature of the kMC is the absence of discarded trial moves of molecules, which ensures larger number of configurations that are collected for time averaging. Consequently, the kMC technique results in significantly fewer errors for the same number of Monte Carlo steps, especially when the fluid is rarefied. An additional advantage of the kMC is that the relative displacement probability of molecules is significantly larger in rarefied regions, which results in a more efficient sampling. This provides a more reliable determination of the vapour phase pressure and density in case of non-uniform density distributions, such as the vapour-liquid interface or a fluid adsorbed on an open surface. We performed kMC simulations in a canonical ensemble, with a liquid slab in the middle of the simulation box to model two vapour-liquid interfaces. A number of thermodynamic properties such as the pressure, density, heat of evaporation and the surface tension were reliably determined as time averages. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Equilibrium isotherms of methane onto activated carbons using a static volumetric method.

    PubMed

    Kavitha, T; Kaliappan, S

    2009-07-01

    The aim of this research is to develop a technology for the storage of biogas. The present work pertains to the measurement of the adsorption capacity of methane onto activated carbons at room temperature at pressure range varying from 1 atm to 10 atm. The results were obtained with a static volumetric method. Adsorption isotherms for methane on Sorbonorit 4, Norit SX Plus, Sorbonorit B3, Norit PAC 200 XC were plotted. The equilibrium pressure data were analysed using Langmuir, Dubinin-Astakhov's (DA) and Dubinin-Radushkevich (DR) equations. The DA equation described the isotherm behavior better with the exponent n equals to 1.0 for Sorbonorit 4, Sorbonorit B3, Norit PAC 200 XC and 1.7 for Norit SX Plus than the other equations. The order of the adsorption capacity is as follows: Sorbonorit 4 (4.6 mmol/g) > Norit PAC 200 XC (3.81 mmol/g) > Sorbonorit B3 (3.52 mmol/g) > Norit SX Plus (3.51 mmol/g).

  10. Isotope methods for management of shared aquifers in northern Africa.

    PubMed

    Wallin, Bill; Gaye, Cheikh; Gourcy, Laurence; Aggarwal, Pradeep

    2005-01-01

    Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.

  11. Potential Effects of Speciation on Equilibrium Fe3+/Fe2+ Isotopic Fractionation, based on Ab Initio Models of Aqueous Fe-Cl and Fe-S Complexes

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Schauble, E. A.

    2009-12-01

    In previous studies we have examined the combined effects of nonredox attributes (such as bond partner and coordination number) on the overall Fe isotopic fractionation between ferric and ferrous species under different solution chemistries. In aqueous solutions of ferric and ferrous chlorides at different chlorinities, we found that changes in the speciation of the prevalent iron complexes could affect the redox isotopic fractionation by ~0.3‰ per M [Cl-]. These changes are the result of changes in the relative abundances of different complexes as solution chemistry varies. In the current study, we take a theoretical look at the relative effects of individual molecular attributes on differences in the overall Fe fractionation factor β (i.e., reduced partition function ratios, reported here as 1000 ln β), using ab initio models of ferric chloride, ferrous chloride, and ferrous sulfide complexes. Since 56Fe/54Fe isotope fractionation in the geological record is often taken as an indicator of environmental redox conditions, it is important to understand the influence of both redox and nonredox factors (e.g., ligands present in the environment) on the net observable isotopic signal. We examined the effect of differences in bond length, charge, oxidation state, coordination number, asymmetric stretching mode vibrational frequencies, and bond partner (i.e., effects of differences in the spectrochemical scale), all of which are related to differences in bond energy. We computed 4 sets of ab initio models, (combining Unrestricted Hartree Fock and Density Functional Theory methods with the 6-31G(d), 6-311G(d) and ATZ basis sets) for the series FeIII(H2O)63+ to FeIIICl63-, FeII(H2O)62+ to FeIICl4(H2O)42-, and FeII(H2O)62+ to FeII(SH2)62+, as well as some individual variations. Some of our observations follow: For the octahedral Fe-Cl complexes, a change from the ferric to the ferrous species (e.g., FeIIICl(H2O)52+ vs. FeIICl(H2O)5+) results in a 2.2 to 4.7‰ reduction

  12. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    PubMed

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  13. A Computational Method for Determining the Equilibrium Composition and Product Temperature in a LH2/LOX Combustor

    NASA Technical Reports Server (NTRS)

    Sozen, Mehmet

    2003-01-01

    In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.

  14. Inverse methods for estimating primary input signals from time-averaged isotope profiles

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Cerling, Thure E.; Schuster, Gerard T.; Robinson, Todd F.; Roeder, Beverly L.; Krueger, Stephen K.

    2005-08-01

    Mammalian teeth are invaluable archives of ancient seasonality because they record along their growth axes an isotopic record of temporal change in environment, plant diet, and animal behavior. A major problem with the intra-tooth method is that intra-tooth isotope profiles can be extremely time-averaged compared to the actual pattern of isotopic variation experienced by the animal during tooth formation. This time-averaging is a result of the temporal and spatial characteristics of amelogenesis (tooth enamel formation), and also results from laboratory sampling. This paper develops and evaluates an inverse method for reconstructing original input signals from time-averaged intra-tooth isotope profiles. The method requires that the temporal and spatial patterns of amelogenesis are known for the specific tooth and uses a minimum length solution of the linear system Am = d, where d is the measured isotopic profile, A is a matrix describing temporal and spatial averaging during amelogenesis and sampling, and m is the input vector that is sought. Accuracy is dependent on several factors, including the total measurement error and the isotopic structure of the measured profile. The method is shown to accurately reconstruct known input signals for synthetic tooth enamel profiles and the known input signal for a rabbit that underwent controlled dietary changes. Application to carbon isotope profiles of modern hippopotamus canines reveals detailed dietary histories that are not apparent from the measured data alone. Inverse methods show promise as an effective means of dealing with the time-averaging problem in studies of intra-tooth isotopic variation.

  15. A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel

    SciTech Connect

    DeHart, M.D.

    2001-08-24

    This report describes a novel approach developed at the Oak Ridge National Laboratory (ORNL) for the estimation of the uncertainty in the prediction of the neutron multiplication factor for spent nuclear fuel. This technique focuses on burnup credit, where credit is taken in criticality safety analysis for the reduced reactivity of fuel irradiated in and discharged from a reactor. Validation methods for burnup credit have attempted to separate the uncertainty associated with isotopic prediction methods from that of criticality eigenvalue calculations. Biases and uncertainties obtained in each step are combined additively. This approach, while conservative, can be excessive because of a physical assumptions employed. This report describes a statistical approach based on Monte Carlo sampling to directly estimate the total uncertainty in eigenvalue calculations resulting from uncertainties in isotopic predictions. The results can also be used to demonstrate the relative conservatism and statistical confidence associated with the method of additively combining uncertainties. This report does not make definitive conclusions on the magnitude of biases and uncertainties associated with isotopic predictions in a burnup credit analysis. These terms will vary depending on system design and the set of isotopic measurements used as a basis for estimating isotopic variances. Instead, the report describes a method that can be applied with a given design and set of isotopic data for estimating design-specific biases and uncertainties.

  16. The variability of standard artificial soils: cadmium and phenanthrene sorption measured by a batch equilibrium method.

    PubMed

    Bielská, Lucie; Hovorková, Ivana; Kuta, Jan; Machát, Jiří; Hofman, Jakub

    2017-01-01

    Artificial soil (AS) is used in soil ecotoxicology as a test medium or reference matrix. AS is prepared according to standard OECD/ISO protocols and components of local sources are usually used by laboratories. This may result in significant inter-laboratory variations in AS properties and, consequently, in the fate and bioavailability of tested chemicals. In order to reveal the extent and sources of variations, the batch equilibrium method was applied to measure the sorption of 2 model compounds (phenanthrene and cadmium) to 21 artificial soils from different laboratories. The distribution coefficients (Kd) of phenanthrene and cadmium varied over one order of magnitude: from 5.3 to 61.5L/kg for phenanthrene and from 17.9 to 190L/kg for cadmium. Variations in phenanthrene sorption could not be reliably explained by measured soil properties; not even by the total organic carbon (TOC) content which was expected. Cadmium logKd values significantly correlated with cation exchange capacity (CEC), pHH2O and pHKCl, with Pearson correlation coefficients of 0.62, 0.80, and 0.79, respectively. CEC and pHH2O together were able to explain 72% of cadmium logKd variability in the following model: logKd=0.29pHH2O+0.0032 CEC -0.53. Similarly, 66% of cadmium logKd variability could be explained by CEC and pHKCl in the model: logKd=0.27pHKCl+0.0028 CEC -0.23. Variable cadmium sorption in differing ASs could be partially treated with these models. However, considering the unpredictable variability of phenanthrene sorption, a more reliable solution for reducing the variability of ASs from different laboratories would be better harmonization of AS preparation and composition.

  17. Semiexperimental Equilibrium Structures for the Equatorial Conformers of N-Methylpiperidone and Tropinone by the Mixed Estimation Method

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Craig, Norman C.; Cocinero, Emilio J.; Grabow, Jens-Uwe; Lesarri, Alberto; Rudolph, H. D.

    2012-06-01

    N-methylpiperidone and tropinone, which contain a structural motif found in numerous alkaloids, are too large for determining an accurate equilibrium structure either by ab initio methods or by experiment. However, the ground state rotational constants of the parent species and of all isotopologues with a substituted heavy atom (13C, 15N, 18O) are known from microwave spectroscopy. These constants have been corrected for the rovibrational contribution calculated from an ab initio cubic force field. These semiexperimental equilibrium rotational constants have been supplemented by carefully chosen structural parameters from medium level ab initio calculations. In the mixed estimation method, the two sets of data have been used in a weighted least-squares fit to determine a reliable equilibrium structure for both molecules. This work shows that it is possible to determine reliable equilibrium structures for large molecules (34 degrees of freedom in the case of tropinone). The method could be applied without too much difficulty to still larger molecules. L. Evangelisti, A. Lesarri, M. K. Jahn, E. J. Cocinero, W. Caminati, J.-U. Grabow J. Phys. Chem. A 115, 9545-9551 (2011) E. J. Cocinero, A. Lesarri, P. Écija, J.-U. Grabow, J. A. Fernández, F. Castaño PCCP 12, 6076-6083 (2010)

  18. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-01

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  19. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    PubMed

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  20. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    SciTech Connect

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-10-20

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept.

  1. Nash equilibrium in differential games and the construction of the programmed iteration method

    SciTech Connect

    Averboukh, Yurii V

    2011-05-31

    This work is devoted to the study of nonzero-sum differential games. The set of payoffs in a situation of Nash equilibrium is examined. It is shown that the set of payoffs in a situation of Nash equilibrium coincides with the set of values of consistent functions which are fixed points of the program absorption operator. A condition for functions to be consistent is given in terms of the weak invariance of the graph of the functions under a certain differential inclusion. Bibliography: 18 titles.

  2. A method for obtaining equilibrium tautomeric mixtures of reducing sugars via glycosylamines using nonaqueous media.

    PubMed

    Allavudeen, Sikkander Sulthan; Kuberan, Balagurunathan; Loganathan, Duraikkannu

    2002-05-13

    Equilibrium tautomeric mixtures of several mono- and disaccharides are obtained in anhydrous form, without the use of water, by reacting the commercially available reducing sugars with ammonia gas in dry methanol, followed by the concentration of the resultant solution to dryness. Mutarotation and hydrolysis of the initially formed glycosylamine in the resultant medium account for the transformation. Equilibrium anomeric mixtures enriched in the beta-form of commercially available sugars such as alpha-D-glucose and alpha-lactose have not only vastly increased solubility, but are also synthetically valuable as these can be readily converted to the methyl/benzyl/trimethylsilyl ether and other derivatives for further transformations.

  3. A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.

    1959-01-01

    A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.

  4. Methods and devices for the separation of radioactive rare earth metal isotopes from their alkaline earth metal precursors

    SciTech Connect

    Wai, Chein M.

    1993-07-06

    A method is described for the separation of a radioactive rare earth metal isotope or a radioactive isotope of yttrium or scandium from its alkaline earth metal precursor comprising contacting a sample containing at least one of said isotopes and said precursor with an ionizable dibenzo ether derivative.

  5. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    USDA-ARS?s Scientific Manuscript database

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  6. Isotopic separation

    SciTech Connect

    Chen, C.

    1981-03-10

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential.

  7. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    NASA Astrophysics Data System (ADS)

    Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.

    2016-09-01

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  8. A new method of snowmelt sampling for water stable isotopes

    USGS Publications Warehouse

    Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.

    2014-01-01

    We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.

  9. Rapid fusion method for determination of plutonium isotopes in large rice samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-04-30

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

  10. An automated method for 'clumped-isotope' measurements on small carbonate samples.

    PubMed

    Schmid, Thomas W; Bernasconi, Stefano M

    2010-07-30

    Clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of earth sciences. Clumped-isotope thermometry allows reconstructing the temperature of formation of carbonate minerals without knowing the isotopic composition of the water from which they were formed. This feature enables new approaches in paleothermometry. The currently published method is, however, limited by sample weight requirements of 10-15 mg and because measurements are performed manually. In this paper we present a new method using an automated sample preparation device coupled to an isotope ratio mass spectrometer. The method is based on the repeated analysis (n = 6-8) of 200 microg aliquots of sample material and completely automated measurements. In addition, we propose to use precisely calibrated carbonates spanning a wide range in Delta(47) instead of heated gases to correct for isotope effects caused by the source of the mass spectrometer, following the principle of equal treatment of the samples and standards. We present data for international standards (NBS 19 and LSVEC) and different carbonates formed at temperatures exceeding 600 degrees C to show that precisions in the range of 10 to 15 ppm (1 SE) can be reached for repeated analyses of a single sample. Finally, we discuss and validate the correction procedure based on high-temperature carbonates instead of heated gases.

  11. Simple isotopic method using oral stable or radioactive tracers for estimating fractional calcium absorption in adult women.

    PubMed

    Lee, W H; McCabe, G P; Martin, B R; Weaver, C M

    2011-06-01

    We extended a simple oral method for estimating fractional calcium absorption determined by double isotopic methods using radioactive or stable isotope across wide age of adult women. Fractional calcium absorption can be estimated by using either a radioactive or stable oral isotope across the entire age spectrum of adult women. A method for estimating fractional calcium absorption using a single serum collection following a single oral radioactive isotopic tracer has been validated against a classical double isotopic tracer ratio method in adults. Our goal was to extend this simplified method to include use of stable isotopes and a broad age range. We used our database of 56 observations from 26 white adult women aged 19-67 years receiving either radioactive or stable isotopes. Reference values for fractional calcium absorption were determined from 24-h double isotopic ratios in serum and urine and from full kinetic modeling. Equations for estimating fractional calcium absorption were developed from isotopic enrichment in serum and urine from an oral tracer and measures of body size using the multiple linear regression analysis. Equations using a 4- to 6-h sample following an oral dose of either a stable or radioactive isotope corrected for body size were highly correlated with the reference values for fractional calcium absorption across different aged populations (r > 0.8, p < 0.001). Fractional calcium absorption can be estimated by a single oral tracer method using either radioactive or stable calcium isotopes across the entire age spectrum in healthy white adult women.

  12. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  13. A Simple Method to Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

    ERIC Educational Resources Information Center

    Vargas, Francisco M.

    2014-01-01

    The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…

  14. A Simple Method to Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

    ERIC Educational Resources Information Center

    Vargas, Francisco M.

    2014-01-01

    The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…

  15. Validation of a method for prediction of isotopic concentrations in burnup credit applications

    SciTech Connect

    DeHart, M.D.; Hermann, O.W.; Parks, C.V.

    1995-09-01

    Unlike fresh fuel assumptions typically employed in the criticality safety analysis of spent fuel configurations, burnup credit applications rely on depletion and decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in subsequent criticality calculations to assess the reduced worth of the spent fuel. To validate the codes and data used in depletion approaches, experimental measurements are compared with numerical predictions for relevant spent fuel samples. This paper describes a set of experimentally characterized pressurized-water-reactor (PWR) fuel samples and provides a comparison to results of SCALE-4 depletion calculations. An approach to determine biases and uncertainties between calculated and measured isotopic concentrations is discussed, together with a method to statistically combine these terms to obtain a conservative estimate of spent fuel isotopic concentrations.

  16. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method

    USGS Publications Warehouse

    Casciotti, K.L.; Sigman, D.M.; Hastings, M. Galanter; Böhlke, J.K.; Hilkert, A.

    2002-01-01

    We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate.1Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N2O analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N2O product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consistent within a given batch of analyses. The analysis of appropriate isotopic reference materials can thus be used to correct the measured 18O/16O ratios of samples for both effects. This is the first method tested for 18O/16O analysis of nitrate in seawater. Benefits of this method, relative to published freshwater methods, include higher sensitivity (tested down to 10 nmol and 1 μM NO3-), lack of interference by other solutes, and ease of sample preparation.

  17. Comparison of the Green-Kubo and homogeneous non-equilibrium molecular dynamics methods for calculating thermal conductivity

    NASA Astrophysics Data System (ADS)

    Dongre, B.; Wang, T.; Madsen, G. K. H.

    2017-07-01

    Different molecular dynamics methods like the direct method, the Green-Kubo (GK) method and homogeneous non-equilibrium molecular dynamics (HNEMD) method have been widely used to calculate lattice thermal conductivity ({κ }{\\ell }). While the first two methods have been used and compared quite extensively, there is a lack of comparison of these methods with the HNEMD method. Focusing on the underlying computational parameters, we present a detailed comparison of the GK and HNEMD methods for both bulk and vacancy Si using the Stillinger-Weber potential. For the bulk calculations, we find both methods to perform well and yield {κ }{\\ell } within acceptable uncertainties. In case of the vacancy calculations, HNEMD method has a slight advantage over the GK method as it becomes computationally cheaper for lower {κ }{\\ell } values. This study could promote the application of HNEMD method in {κ }{\\ell } calculations involving other lattice defects like nanovoids, dislocations, interfaces.

  18. Testing sequential extraction methods for the analysis of multiple stable isotope systems from a bone sample

    NASA Astrophysics Data System (ADS)

    Sahlstedt, Elina; Arppe, Laura

    2017-04-01

    Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.

  19. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    USGS Publications Warehouse

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  20. New calculation method for initial exciton numbers on nucleon induced pre-equilibrium reactions

    SciTech Connect

    Tel, E.; Sarer, B.; Aydin, A.; Kaplan, A.

    2008-05-15

    In this study, we investigate the pre-equilibrium effect by using new evaluated geometry dependent hybrid model for the {sup 208}Pb (p,xn) reaction at 25.5 and 62.9 MeV incident proton energies. We also suggest that the initial neutron and proton exciton numbers for the nucleon induced precompound reactions be calculated from the neutron and proton density by using an effective nucleon-nucleon interaction with Skyrme force. We calculate the initial exciton numbers obtained from SKM* and SLy4 for a proton induced reaction on target nuclei {sup 208}Pb. The obtained results have been investigated and compared with the pre-equilibrium calculations and experimental results.

  1. Of flux and flooding: the advantages and problems of different isotopic methods for quantifying protein turnover in vivo: I. Methods based on the dilution of a tracer.

    PubMed

    Reeds, P J; Davis, T A

    1999-01-01

    The advantages and problems, both practical and theoretical, of isotope dilution approaches to the determination of whole-body and tissue protein turnover are discussed. It was concluded that: (1) measurements made on the basis of the labelling of plasma and breath are well suited to the measurement of body amino acid oxidation and balance, but because of the problem of inhomogeneity of the body amino acid pools, this approach generally underestimates protein turnover; (2) in investigations of nutritional effects on whole-body amino acid turnover, closer attention should be paid to first-pass splanchnic amino acid metabolism; (3) the trans-organ tracer balance method, particularly if combined with the measurement of tissue amino acid labelling, is a potentially useful approach to the simultaneous and dynamic measurement of both protein synthesis and degradation; (4) leucine may be the most generally useful label for tracer level studies of both whole-body and muscle protein synthesis, as recent studies have shown quite close isotopic equilibrium between muscle-free and tRNA-bound leucine pools.

  2. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOEpatents

    Reiman, A.; Boozer, A.

    1984-10-31

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  3. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOEpatents

    Reiman, Allan; Boozer, Allen

    1987-01-01

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  4. Development of safe mechanism for surgical robots using equilibrium point control method.

    PubMed

    Park, Shinsuk; Lim, Hokjin; Kim, Byeong-sang; Song, Jae-bok

    2006-01-01

    This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs' equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.

  5. Isobaric Molecular Dynamics Version of the Generalized Replica Exchange Method (gREM): Liquid-Vapor Equilibrium.

    PubMed

    Małolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-10-22

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed to simulate first-order phase transitions. The properties of the isobaric gREM ensemble are discussed, and a study is presented for the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. Phase diagrams, critical parameters, and a law of corresponding states are obtained.

  6. Viscosity-Projection Method for a Family of General Equilibrium Problems and Asymptotically Strict Pseudocontractions in the Intermediate Sense

    PubMed Central

    Wen, Dao-Jun

    2013-01-01

    In this paper, a Meir-Keeler contraction is introduced to propose a viscosity-projection approximation method for finding a common element of the set of solutions of a family of general equilibrium problems and the set of fixed points of asymptotically strict pseudocontractions in the intermediate sense. Strong convergence of the viscosity iterative sequences is obtained under some suitable conditions. Results presented in this paper extend and unify the previously known results announced by many other authors. PMID:24285937

  7. A direct and rapid leaf water extraction method for isotopic analysis.

    PubMed

    Peters, L I; Yakir, D

    2008-09-01

    Isotopic measurements of leaf water have provided insights into a range of ecophysiological and biogeochemical processes, but require an extraction step which often constitutes the major analytical bottleneck in large-scale studies. Current standard procedures for leaf water analysis are based on cryogenic vacuum or azeotrophic distillation, and are laborious, require sophisticated distillation lines and the use of toxic materials. We report a rapid technique based on centrifugation/filtration of leaf samples pulverised in their original sampling tubes, using a specifically adapted, simple apparatus. The leaf water extracts produced are suitable for isotopic analysis via pyrolysis gas chromatography isotope ratio mass spectrometry (PYR/GC/IRMS). The new method was validated against cryogenic vacuum distillation and showed an overall accuracy of +/-0.5 per thousand (nine grouped comparisons, n = 110) over a range of 21 per thousand. Effects due to the presence of soluble carbohydrates were near the detection limits for most samples analysed, and these effects could be corrected for (the extracted soluble organics could also be used for isotopic analysis). The extraction time for a routine eight-sample subset was reduced from 4 h (cryogenic distillation) to 45 min, limited only by the size of the centrifuge(s) used. This method provides a rapid, low-cost and reliable alternative to conventional vacuum and other distillation methods that can alleviate current restrictions on ecosystem- and global-scale studies that require high-throughput leaf water isotopic analysis. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. Comparison of traditional and oxygen-isotope methods of storm hydrograph separation in two watersheds

    SciTech Connect

    Robinson, W.H.; Krothe, N.C.

    1985-01-01

    Two watershed in Indiana were chosen for the application and comparison of hydrometric and oxygen-isotope storm hydrograph analyses. One watershed is on urban/karst terrain in south-central Indiana and the other is on thick glacial drift in west-central Indiana. Traditional hydrometric methods of hydrograph analysis rely on qualitative assumptions regarding the nature of the interaction between surface and ground-water. Oxygen isotopes can serve as environmental traces that allow accurate quantification of storm-water (water derived from the rain event) and prestorm-water (water that was in storage in the ground-water zone prior to the rain event) contributions to stream flow. Results from storm events in the two study areas show differences between the contributions by stream flow components as determined by traditional and oxygen-isotope methods. For the glaciated basin, the oxygen-isotope separation technique shows a 70% prestorm-water component of the peak stream discharge. The Barnes separation technique indicates only a 10% base flow contribution to the peak. In the urban/karst watershed, oxygen isotopes indicate that peak flow consists almost entirely of storm-water, while traditional methods include the possibility of a significant base flow contribution.

  9. A coupled isotope tracer method to characterize input water to lakes

    NASA Astrophysics Data System (ADS)

    Yi, Yi; Brock, Bronwyn E.; Falcone, Matthew D.; Wolfe, Brent B.; Edwards, Thomas W. D.

    2008-02-01

    SummaryWe develop a new coupled isotope tracer method for characterizing the isotopic composition of input water to lakes, and apply it in the context of ongoing hydrological process studies in the Peace-Athabasca Delta, a large, remote, riparian ecosystem in the boreal region of western Canada. The region has a highly seasonal climate, with floodplain lakes typically receiving input only during the 4-6 month open-water season from varying proportions of spring snowmelt, summer rains and river flooding. These possible input sources have distinct ranges of isotopic compositions that are strongly constrained to a well-defined local meteoric water line, thus affording the opportunity to derive lake-specific estimates of the integrated isotopic composition of input waters after accounting for the effects of secondary evaporative isotopic enrichment. As shown by comparison of the results of isotopic surveys of delta lakes prior to freeze-up in 2000 and 2005, this isotopic characterization of input waters can be combined with other data and field observations to provide new insight into spatial and temporal variability in delta lake recharge processes. This includes evidence that summer rainfall in 2000 played an important role in replenishing shallow basins delta-wide, especially in the central low-lying region, compensating for below-average snow accumulation during the previous winter. In contrast, 2005 was marked by greater relative contributions from both snowmelt and river flooding because of high winter snow accumulation and a spring ice-jam that caused river floodwaters to enter some basins in the southern part of the delta. The method is readily transferable to investigations in other remote regions that are sparsely monitored by conventional hydrometric networks.

  10. Rapid Radiochemical Method for Isotopic Uranium in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  11. A stable isotope dilution method for measuring bioavailability of organic contaminants

    PubMed Central

    Delgado-Moreno, Laura; Gan, Jay

    2014-01-01

    Methods for determining bioavailability of organic contaminants suffer various operational limitations. We explored the use of stable isotope labeled references in developing an isotope dilution method (IDM) to measure the exchangeable pool (E) of pyrene and bifenthrin as an approximation of their bioavailability in sediments. The exchange of deuterated bifenthrin or pyrene with its native counterpart was completed within 48 h. The derived E was 38–82% for pyrene and 28–59% for bifenthrin. Regression between E and the sum of rapid and slow desorption fractions obtained from sequential desorption showed a slope close to 1.0. The ability of IDM to predict bioavailability was further shown from a strong relationship (r2 > 0.93) between E and bioaccumulation into Chironomus tentans. Given the abundance of stable isotope labeled references and their relatively easy analysis, the IDM has the potential to become a readily adoptable tool for estimating organic contaminants bioaccessibility in various matrices. PMID:23434573

  12. Methods for the Design and Analysis of Sedimentation Velocity and Sedimentation Equilibrium Experiments with Proteins

    PubMed Central

    Demeler, Borries

    2010-01-01

    Analytical ultracentrifugation experiments play an integral role in the solution phase characterization of recombinant proteins and other biological macromolecules. This unit discusses the design of sedimentation velocity and sedimentation equilibrium experiments performed with a Beckman Optima XL-A or XL-I analytical ultracentrifuge. Optimal instrument settings and experimental design considerations are explained, and strategies for the analysis of experimental data with the UltraScan data analysis software package are presented. Special attention is paid to the strengths and weaknesses of the available detectors, and guidance is provided on how to extract maximum information from analytical ultracentrifugation experiments. PMID:20393977

  13. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  14. The use of isotope effects to determine enzyme mechanisms.

    PubMed

    Cleland, W W

    2005-01-01

    Isotope effects are one of the most powerful kinetic tools for determining enzyme mechanisms. There are three methods of measurement. First, one can compare reciprocal plots with labeled and unlabeled substrates. The ratio of the slopes is the isotope effect on V/K, and the ratio of the vertical intercepts is the isotope effect on V(max). This is the only way to determine V(max) isotope effects, but is limited to isotope effects of 5% or greater. The second method is internal competition, where the labeled and unlabeled substrates are present at the same time and the change in their ratio in residual substrate or in product is used to calculate an isotope effect, which is that on V/K of the labeled reactant. This is the method used for tritium or (14)C, or with the natural abundances of (13)C, (15)N, or (18)O. The third method involves perturbations from equilibrium when a labeled substrate and corresponding unlabeled product are present at chemical equilibrium. This also gives just an isotope effect on V/K for the labeled reactant. The chemistry is typically not fully rate limiting, so that the isotope effect on V/K is given by: (x)(V/K)=((x)k+c(f)+c(r)(x)K(eq))/(1+c(f)+c(r)) where x defines the isotope (D, T, 13, 15, 18 for deuterium, tritium, (13)C, (15)N, or (18)O), and (x)(V/K), (x)k, and (x)K(eq) are the observed isotope effect, the intrinsic one on the chemical step, and the isotope effect on the equilibrium constant, respectively. The constants c(f) and c(r) are commitments in forward and reverse directions, and are the ratio of the rate constant for the chemical reaction and the net rate constant for release from the enzyme of the varied substrate (direct comparison) or labeled substrate (internal competition and equilibrium perturbation) for c(f), or the first product released or the one involved in the perturbation for c(r). The intrinsic isotope effect, (x)k, can be estimated by comparing deuterium and tritium isotope effects on V/K, or by comparing the

  15. Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.

    2016-10-01

    We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a

  16. Magnetic measurement based methods in determination of plasma equilibrium parameters in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Noori, E.; Sadeghi, Y.; Mehdian, H.

    2016-06-01

    Determination of plasma equilibrium parameters such as poloidal beta (βp) with half of plasma internal inductance (li) known as Shafranov parameter (asymmetry factor) (βp+𝔡li2) and edge safety factor plays very important role in primary equilibrium and stability analysis and control of tokamak plasma. In this study, the well known Shafranov semi-empirical model, based on external magnetic measurements is used to extract Shafranov parameter and effective edge safety factor in low-β operating regime of Damavand tokamak. The well known integral representation of βp+𝔡li2 was modified for non-circular tokamaks with ellipse-like cross section. After calibration of magnetic pick-up coils, Shafranov parameter was estimated with respect to the first and second Fourier harmonic of radial and poloidal components of magnetic field. The results were compared with approximate, semi-analytical determination of Shafranov parameter which is based on analytical solution of Grad-Shafranov equation (GSE). Founding evolution of Shafranov parameter, effective edge safety factor was obtained in terms of Shafranov parameter and compared with semi-empirical description. It was found that between the ramp-up and ramp-down domain of the plasma current, the result from Shafranov model is approximately in good agreement with the semi-analytical and semi-empirical benchmarks and the integral model provides more reliable trace of the Shafranov parameter in out of ramp domains of the discharge.

  17. Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods

    NASA Astrophysics Data System (ADS)

    Feisthauer, Stefan; Seidel, Martin; Bombach, Petra; Traube, Sebastian; Knöller, Kay; Wange, Martin; Fachmann, Stefan; Richnow, Hans H.

    2012-05-01

    Decisions to employ monitored natural attenuation (MNA) as a remediation strategy at contaminated field sites require a comprehensive characterization of the site-specific biodegradation processes. In the present study, compound-specific carbon and hydrogen isotope analysis (CSIA) was used to investigate intrinsic biodegradation of benzene and ethylbenzene in an aquifer with high levels of aromatic and aliphatic hydrocarbon contamination. Hydrochemical data and isotope fractionation analysis of sulfate and methane was used complementarily to elucidate microbial degradation processes over the course of a three year period, consisting of six sampling campaigns, in the industrial area of Weißandt-Gölzau (Saxony-Anhalt, Germany). Enrichment of 13C and 2H isotopes in the residual benzene and ethylbenzene pool downgradient from the pollution sources provided evidence of biodegradation of BTEX compounds at this site, targeting both compounds as the key contaminants of concern. The enrichment of heavy sulfur isotopes accompanied by decreasing sulfate concentrations and the accumulation of isotopically light methane suggested that sulfate-reducing and methanogenic processes are the major contributors to overall biodegradation in this aquifer. Along the contaminant plume, the oxidation of methane with δ13CCH4 values of up to + 17.5‰ was detected. This demonstrates that methane formed in the contaminant source can be transported along groundwater flow paths and be oxidized in areas with higher redox potentials, thereby competing directly with the pollutants for electron acceptors. Hydrochemical and isotope data was summarized in a conceptual model to assess whether MNA can be used as viable remediation strategy in Weißandt-Gölzau. The presented results demonstrate the benefits of combining different isotopic methods and hydrochemical approaches to evaluate the fate of organic pollutants in contaminated aquifers.

  18. A method for carbon stable isotope analysis of methyl halides and chlorofluorocarbons at pptv concentrations.

    PubMed

    Archbold, Marie E; Redeker, Kelly R; Davis, Simon; Elliot, Trevor; Kalin, Robert M

    2005-01-01

    A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air (13)C/(12)C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl(2)F(2)) and CFC-113 (C(2)Cl(3)F(3)). Significant, but consistent, isotopic shifts of -27.5 per thousand to -25.6 per thousand do occur within the system for CFC-11 (CCl(3)F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (isotope results similar to published values for (13)C/(12)C analysis of MeCl (-39.1 per thousand) and CFC-113 (-28.1 per thousand). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4 per thousand) and CFC-12 (-37.0 per thousand). Copyright (c) 2005 John Wiley & Sons, Ltd.

  19. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (KD) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the KD value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative KD values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The KD values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the KD values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stable isotope analyses-A method to distinguish intensively farmed from wild frogs.

    PubMed

    Dittrich, Carolin; Struck, Ulrich; Rödel, Mark-Oliver

    2017-04-01

    Consumption of frog legs is increasing worldwide, with potentially dramatic effects for ecosystems. More and more functioning frog farms are reported to exist. However, due to the lack of reliable methods to distinguish farmed from wild-caught individuals, the origin of frogs in the international trade is often uncertain. Here, we present a new methodological approach to this problem. We investigated the isotopic composition of legally traded frog legs from suppliers in Vietnam and Indonesia. Muscle and bone tissue samples were examined for δ(15)N, δ(13)C, and δ(18)O stable isotope compositions, to elucidate the conditions under which the frogs grew up. We used DNA barcoding (16S rRNA) to verify species identities. We identified three traded species (Hoplobatrachus rugulosus, Fejervarya cancrivora and Limnonectes macrodon); species identities were partly deviating from package labeling. Isotopic values of δ(15)N and δ(18)O showed significant differences between species and country of origin. Based on low δ(15)N composition and generally little variation in stable isotope values, our results imply that frogs from Vietnam were indeed farmed. In contrast, the frogs from the Indonesian supplier likely grew up under natural conditions, indicated by higher δ(15)N values and stronger variability in the stable isotope composition. Our results indicate that stable isotope analyses seem to be a useful tool to distinguish between naturally growing and intensively farmed frogs. We believe that this method can be used to improve the control in the international trade of frog legs, as well as for other biological products, thus supporting farming activities and decreasing pressure on wild populations. However, we examined different species from different countries and had no access to samples of individuals with confirmed origin and living conditions. Therefore, we suggest improving this method further with individuals of known origin and history, preferably including

  1. Method for the purification of polybrominated diphenyl ethers in sediment for compound-specific isotope analysis.

    PubMed

    Zeng, Yan-Hong; Luo, Xiao-Jun; Chen, Hua-Shan; Chen, She-Jun; Wu, Jiang-Ping; Mai, Bi-Xian

    2013-07-15

    A purification method for lower polybrominated diphenyl ethers (PBDEs, from tri- to hexa-BDE) in sediment for compound-specific isotope analysis (CSIA) was developed in this study. The compounds were extracted using a Soxhlet apparatus with addition of activated alumina and Florisil in the paper tube during the Soxhlet extraction provided for less complex extracts. Then, the extract was isolated from polar compounds using a multi-layer silica gel column, separated into different fractions using alumina/silica (Al/Si) gel columns and finally purified using a Florisil column. The mean recoveries of the major PBDE congeners in the spiked samples ranged from 76.2% to 82.4%. The purity of the samples was verified by GC-MS in full scan mode. The stable isotopic integrity of the spiked samples after the purification was tested by comparing the stable carbon isotope ratios (δ(13)C) of the processed and the unprocessed standard materials. The differences in the δ(13)C values for each compound between the processed and unprocessed standards were less than 0.5‰, with the exception of BDE100 (0.54‰). Finally, the purification and isotope analysis method was successfully applied to measure the δ(13)C of PBDEs in sediments. This application of the method indicated that CSIA seems to be a promising method for providing intrinsic characteristics for further environmental fate studies of PBDEs.

  2. RAPID AND PRECISE METHOD FOR MEASURING STABLE CARBON ISOTOPE RATIOS OF DISSOLVED INORGANIC CARBON

    EPA Science Inventory

    We describe a method for rapid preparation, concentration and stable isotopic analysis of dissolved inorganic carbon (d13C-DIC). Liberation of CO2 was accomplished by placing 100 ?l phosphoric acid and 0.9 ml water in an evacuated 1.7-ml gas chromatography (GC) injection vial. Fo...

  3. RAPID AND PRECISE METHOD FOR MEASURING STABLE CARBON ISOTOPE RATIOS OF DISSOLVED INORGANIC CARBON

    EPA Science Inventory

    We describe a method for rapid preparation, concentration and stable isotopic analysis of dissolved inorganic carbon (d13C-DIC). Liberation of CO2 was accomplished by placing 100 ?l phosphoric acid and 0.9 ml water in an evacuated 1.7-ml gas chromatography (GC) injection vial. Fo...

  4. Effect of deviation from local thermodynamic equilibrium on the Goldberg-Unno method. [turbulence effects on optical density in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Troyan, V. I.

    1974-01-01

    The dependence of turbulent velocity on optical depth was studied by use of the Goldberg-Unno method, with allowance made for the influence of deviation from the local thermodynamic equilibrium. It was found that allowance for deviation from local thermodynamic equilibrium displaces the curve of dependence of turbulent velocity on optical depth along two axes.

  5. A simplified method for obtaining high-purity perchlorate from groundwater for isotope analyses.

    SciTech Connect

    vonKiparski, G; Hillegonds, D

    2011-04-04

    Investigations into the occurrence and origin of perchlorate (ClO{sub 4}{sup -}) found in groundwater from across North America have been sparse until recent years, and there is mounting evidence that natural formation mechanisms are important. New opportunities for identifying groundwater perchlorate and its origin have arisen with the utilization of improved detection methods and sampling techniques. Additionally, application of the forensic potential of isotopic measurements has begun to elucidate sources, potential formation mechanisms and natural attenuation processes. Procedures developed appear to be amenable to enable high precision stable isotopic analyses, as well as lower precision AMS analyses of {sup 36}Cl. Immediate work is in analyzing perchlorate isotope standards and developing full analytical accuracy and uncertainty expectations. Field samples have also been collected, and will be analyzed when final qa/qc samples are deemed acceptable.

  6. Application of a New Method to Study the Spin Equilibrium of Aql X–1: The Possibility of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip

    2017-09-01

    Accretion via disks can make neutron stars in low-mass X-ray binaries (LMXBs) fast spinning, and some of these stars are detected as millisecond pulsars. Here we report a practical way to find out if a neutron star in a transient LMXB has reached the spin equilibrium by disk–magnetosphere interaction alone, and if not, to estimate this spin equilibrium frequency. These can be done using specific measurable source luminosities, such as the luminosity corresponding to the transition between the accretion and propeller phases, and the known stellar spin rate. Such a finding can be useful to test if the spin distribution of millisecond pulsars, as well as an observed upper cutoff of their spin rates, can be explained using disk–magnetosphere interaction alone, or additional spin-down mechanisms, such as gravitational radiation, are required. Applying our method, we find that the neutron star in the transient LMXB Aql X–1 has not yet reached the spin equilibrium by disk–magnetosphere interaction alone. We also perform numerical computations, with and without gravitational radiation, to study the spin evolution of Aql X–1 through a series of outbursts and to constrain its properties. While we find that the gravitational wave emission from Aql X–1 cannot be established with certainty, our numerical results show that the gravitational radiation from Aql X–1 is possible, with a 1.6× {10}37 g cm2 upper limit of the neutron star misaligned mass quadrupole moment.

  7. An equilibrium method for prediction of transverse shear stresses in a thick laminated plate

    NASA Technical Reports Server (NTRS)

    Chaudhuri, R. Z.

    1986-01-01

    First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.

  8. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    DOEpatents

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  9. Structural design using equilibrium programming

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1992-01-01

    Multiple nonlinear programming methods are combined in the method of equilibrium programming. Equilibrium programming theory has been appied to problems in operations research, and in the present study it is investigated as a framework to solve structural design problems. Several existing formal methods for structural optimization are shown to actually be equilibrium programming methods. Additionally, the equilibrium programming framework is utilized to develop a new structural design method. Selected computational results are presented to demonstrate the methods.

  10. Experimental evaluation of the isotopic exchange equilibrium 10B(OH) 3+ 11B(OH) 4-= 11B(OH) 3+ 10B(OH) 4- in aqueous solution

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Yao, Wensheng; Klochko, Kateryna; Tossell, John A.; Kaufman, Alan J.

    2006-04-01

    The precision of spectrophotometric measurements of indicator absorbance ratios is sufficient to allow evaluation of small isotopically induced differences in the dissociation constant of boric acid ( KB). The quotient of 11KB and 10KB, obtained using isotopically ⩾99% pure borate/boric acid buffers, provides an equilibrium constant for the reaction 10B(OH) 3+ 11B(OH) 4-⇔ 11B(OH) 3+ 10B(OH) 4- which heretofore had not been experimentally determined. Previous theoretical and semi-empirical evaluations of this equilibrium, which is important for assessments of the paleo-pH of seawater and the paleo- pCO 2 of the atmosphere, have yielded constants, 11-10KB= 10KB/ 11KB, that have ranged between 1.0194 and approximately 1.033. The experimentally determined value 11-10KB=1.028 5±0.001 6 (mean±95% confidence interval) obtained at 25 °C and 0.63 molal (mol kg -1 H 2O) ionic strength is in much better agreement with recent theoretical assessments of 11-10KB that have ranged between 1.026 and 1.033, than the much-cited original estimate (1.0194) of Kakihana et al. (1977) [Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of Chemical Society of Japan 50, 158-163]. Since the activity quotient for the fractionation reaction is almost equal to unity, it is expected that the 11-10KB value obtained in this study will be applicable over a wide range of solution compositions and ionic strengths.

  11. A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method

    NASA Astrophysics Data System (ADS)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed

    2016-10-01

    The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.

  12. Novel High Resolution Nitrate Isotope Method for Determination of Nutrient Fate in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Comer-Warner, S.; Krause, S.; Gooddy, D.

    2016-12-01

    The fate of nitrate transported and transformed across groundwater-surface water interfaces has been intensively studied over the past few decades. The interfaces between aquifers, and rivers or lakes, have been identified as biogeochemical hotspots with steep redox gradients. However, a detailed understanding of the spatial heterogeneity and potential temporal variability of redox reactive hotspots at those interfaces, and the consequences for nitrogen processing, is still hindered by a paucity of adequate measurement techniques. A novel methodology is presented here, using Diffusive Equilibrium in Thin-film (DET) gels as high spatial resolution passive samplers of δ15NNO3 and δ18ONO3 to investigate nitrogen processing. Fractionation of δ15NNO3 and δ18ONO3 during diffusion of nitrate through the DET gel was determined using varying equilibrium times and nitrate concentrations. The fractionation experiments demonstrated that nitrate isotopes of δ15NNO3 and δ18ONO3 do not fractionate when sampled with a DET gel. δ15NNO3 values from the DET gels ranged between 2.3±0.2 and 2.7±0.3‰ for a pure KNO3 stock solution value of 2.7±0.4‰, and δ18ONO3 values ranged between 18.3±1.0 and 21.5±0.8‰ for a pure KNO3 stock solution of 19.7±0.9‰. Nitrate recovery and δ15NNO3 and δ18ONO3 values were independent of both equilibrium time and nitrate concentration.

  13. Statistical equilibrium in simple exchange games I. Methods of solution and application to the Bennati-Dragulescu-Yakovenko (BDY) game

    NASA Astrophysics Data System (ADS)

    Scalas, E.; Garibaldi, U.; Donadio, S.

    2006-09-01

    Simple stochastic exchange games are based on random allocation of finite resources. These games are Markov chains that can be studied either analytically or by Monte Carlo simulations. In particular, the equilibrium distribution can be derived either by direct diagonalization of the transition matrix, or using the detailed balance equation, or by Monte Carlo estimates. In this paper, these methods are introduced and applied to the Bennati-Dragulescu-Yakovenko (BDY) game. The exact analysis shows that the statistical-mechanical analogies used in the previous literature have to be revised.

  14. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    SciTech Connect

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  15. In vitro interaction study of retinoic acid isomers with telmisartan and amlodipine by equilibrium dialysis method using UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Varghese, Susheel John; Johny, Sojimol K.; Paul, David; Ravi, Thengungal Kochupappy

    2011-07-01

    The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37 ± 0.5 °C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out.

  16. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE PAGES

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  17. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  18. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  19. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  20. Development of an identification method of pressure anisotropy based on equilibrium analysis and magnetics

    SciTech Connect

    Asahi, Y.; Suzuki, Y.; Watanabe, K. Y.; Cooper, W. A.

    2013-02-15

    We evaluate the fluxes measured by the magnetic flux loops installed in LHD by using a three dimensional MHD equilibrium analysis code, ANIMEC, which enable us to directly determine the calibration function between the anisotropic pressure and the measured fluxes for the non-axisymmetric plasmas for the first time. The result indicates that the diamagnetic flux represents a nearly single-valued function of the beta perpendicular with respect to the field, and the saddle loop flux represents a nearly single-valued function of an equally weighted average of the beta values parallel and perpendicular to the field, regardless of the pressure anisotropy or the amount of energetic trapped particles. The values of the beta perpendicular to the field and the equal weighting averaged beta estimated by the single-valued functions (calibration functions) are investigated in order to clarify the magnitude of deviation from those original values, and the range of anisotropy where the beta value evaluated by the magnetic flux measurement is calculated within a 10% error.

  1. Toroidal figures of equilibrium from a second-order accurate, accelerated SCF method with subgrid approach

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.

    2017-02-01

    We compute the structure of a self-gravitating torus with polytropic equation of state (EOS) rotating in an imposed centrifugal potential. The Poisson solver is based on isotropic multigrid with optimal covering factor (fluid section-to-grid area ratio). We work at second order in the grid resolution for both finite difference and quadrature schemes. For soft EOS (i.e. polytropic index n ≥ 1), the underlying second order is naturally recovered for boundary values and any other integrated quantity sensitive to the mass density (mass, angular momentum, volume, virial parameter, etc.), i.e. errors vary with the number N of nodes per direction as ˜1/N2. This is, however, not observed for purely geometrical quantities (surface area, meridional section area, volume), unless a subgrid approach is considered (i.e. boundary detection). Equilibrium sequences are also much better described, especially close to critical rotation. Yet another technical effort is required for hard EOS (n < 1), due to infinite mass density gradients at the fluid surface. We fix the problem by using kernel splitting. Finally, we propose an accelerated version of the self-consistent field (SCF) algorithm based on a node-by-node pre-conditioning of the mass density at each step. The computing time is reduced by a factor of 2 typically, regardless of the polytropic index. There is a priori no obstacle to applying these results and techniques to ellipsoidal configurations and even to 3D configurations.

  2. FEM-BEM coupling methods for Tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Heumann, Holger

    2017-08-01

    Incorporating boundary conditions at infinity into simulations on bounded computational domains is a repeatedly occurring problem in scientific computing. The combination of finite element methods (FEM) and boundary element methods (BEM) is the obvious instrument, and we adapt here for the first time the two standard FEM-BEM coupling approaches to the free-boundary equilibrium problem: the Johnson-Nédélec coupling and the Bielak-MacCamy coupling. We recall also the classical approach for fusion applications, dubbed according to its first appearance von-Hagenow-Lackner coupling and present the less used alternative introduced by Albanese, Blum and de Barbieri in [2]. We show that the von-Hagenow-Lackner coupling suffers from undesirable non-optimal convergence properties, that suggest that other coupling schemes, in particular Johnson-Nédélec or Albanese-Blum-de Barbieri are more appropriate for non-linear equilibrium problems. Moreover, we show that any of such coupling methods requires Newton-like iteration schemes for solving the corresponding non-linear discrete algebraic systems.

  3. Seismic stability analysis of expanded MSW landfills using pseudo-static limit equilibrium method.

    PubMed

    Choudhury, Deepankar; Savoikar, Purnanand

    2011-02-01

    Capacity expansion of existing landfills is the most economical alternative to constructing new landfills where cost of land is prohibitive. From the safety point of view, the stability analyses of existing landfills expanded either vertically and/or laterally are required for different stages of construction, operation and during closure of a landfill. In the present study, a pseudo-static limit equilibrium seismic stability analysis was performed for a typical side-hill type municipal solid waste (MSW) landfill expanded using an engineered berm. Seismic stability analyses were performed for the two critical cases, namely when the failure surface passes below the berm (under berm) and when the failure surface passes over the back slope of the berm (over berm). Close-form solutions were developed for the upper bound and lower bound factor of safety and the yield acceleration of such slopes under both failure conditions. From parametric analyses it was observed that as the height of the berm increased, the factor of safety for both the over-berm failure and the under-berm failure conditions also increased. The average factor of safety and yield acceleration coefficient were found and the under-berm failure condition became critical for a back slope steeper than 1.7H : 1V. The average factor of safety decreased as both horizontal and vertical seismic accelerations increased. Comparisons between the present results and those in the literature for the static case showed good agreement and the present results of the pseudo-static seismic case were found to be of particular importance.

  4. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOEpatents

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  5. Methods of lipid-normalization for multi-tissue stable isotope analyses in tropical tuna.

    PubMed

    Sardenne, Fany; Ménard, Frédéric; Degroote, Maxime; Fouché, Edwin; Guillou, Gaël; Lebreton, Benoit; Hollanda, Stephanie J; Bodin, Nathalie

    2015-07-15

    The bias associated with lipid contents in fish tissues is a recalcitrant topic for trophic studies using stable isotopes. Lipids are depleted in the heavy carbon isotope ((13)C) and the lipid content varies considerably among species, tissues and in both time and space. We have applied and assessed different correction methods for tropical tuna tissues. We tested two types of normalization methods to deal with variable lipid content in liver, gonads, and white and red muscles of yellowfin, bigeye and skipjack tuna: a chemical extraction using dichloromethane and a mathematical correction based on three modeling approaches (linear, non-linear and mass balance models). We measured isotopic ratios of bulk and lipid-free tissues and assessed the predictive ability of the correction models with the lipid-free measurements. The parameters of the models were estimated from our dataset and from results from published studies on other species. Comparison between bulk, lipid-free and lipid-corrected isotopic ratios demonstrated that (1) chemical extraction using dichloromethane did not affect δ(15)N values; (2) the change in δ(13)C values after extraction was tissue-specific; (3) lipid-normalization models using published parameter estimates failed to predict lipid-corrected δ(13)C values; and (4) linear and non-linear models using parameters estimated for each tissue from our dataset provided accurate δ(13)C predictions for all tissues, and mass balance model for white muscle only. Models using published estimates for parameters from other species cannot be used. Based on a range of lipid content that do not exceed 45%, we recommend the linear model to correct the bulk δ(13)C values in the investigated tissues but the parameters have to be estimated from a proportion of the original data for which chemical extraction is required and the isotopic values of bulk and lipid-free tissues are measured. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Method and apparatus for noble gas atom detection with isotopic selectivity

    SciTech Connect

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Parks, J.E.

    1984-01-17

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10[sup [minus]8] Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described. 4 figs.

  7. A new method for calibrating a boron isotope paleo-pH proxy using massive Porites corals

    NASA Astrophysics Data System (ADS)

    Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Suzuki, Atsushi

    2015-09-01

    The boron isotope ratio (δ11B) of marine biogenic carbonates can reconstruct pH and pCO2 of seawater, and potentially CO2 concentration in the atmosphere. To date, δ11B-pHSW calibration has been proposed via culturing experiments, where calcifying organisms are cultured under artificially acidified seawater. However, in scleractinian corals, reconstructed pH values using culture-based calibrations do not agree well with actual observations of seawater CO2 chemistry. Thus, another approach is needed to establish a more reliable calibration method. In this study, we established field-based calibrations for Chichijima and Tahiti, both located in subtropical gyres where surface seawater is close to CO2 equilibrium. We suggest a new approach to calibration of δ11B-pH in which the long-term δ11B variation of massive Porites corals is compared with the decreasing pH trend (i.e., ocean acidification) that has occurred since the Industrial Revolution. This calibration will offer a new avenue for studying seawater CO2 chemistry using coral δ11B in diverse settings, such as upwelling regions, coral reefs, and coastal areas.

  8. A method to predict the equilibrium solubility of drugs in solid polymers near room temperature using thermal analysis.

    PubMed

    Bellantone, Robert A; Patel, Piyush; Sandhu, Harpreet; Choi, Duk Soon; Singhal, Dharmendra; Chokshi, H; Malick, A Waseem; Shah, Navnit

    2012-12-01

    A method is presented for determining the equilibrium solubility of a drug in a solid polymer at or near room temperature, which represents a typical storage temperature. The method is based on a thermodynamic model to calculate the Gibbs energy change ΔG(SS) associated with forming a binary drug-polymer solid solution from the unmixed polymer and solid drug. The model includes contributions from heat capacity differences between the solid solution and the corresponding unmixed components, breaking up of the solid drug structure, and drug-polymer mixing. Calculation of ΔG(SS) from thermal analysis data is demonstrated, and it is shown that minima of plots of ΔG(SS) versus the dissolved drug concentration represent the equilibrium drug solubility in the polymer. Solid solutions were produced for drug-polymer systems (griseofulvin, indomethacin, itraconazole; PVP K30, Eudragit L100, Eudragit E100) in drug weight fractions up to ∼25%. At 25°C, it was seen that heat capacity effects were important in determining the drug solubility. It was concluded that drug solubilities in solid polymers can be determined using thermal analysis, and must include heat capacity effects when evaluated near room temperature.

  9. A METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  10. A METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  11. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  12. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  13. A new method and application for determining the nitrogen isotopic composition of NOx

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Miller, D. J.; Wojtal, P.; O'Connor, M.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry, air quality, and radiative forcing, and contribute to nitric acid deposition. Sources of NOx include both natural and anthropogenic emissions, which vary significantly in space and time. NOx isotopic signatures offer a potentially valuable tool to trace source impacts on atmospheric chemistry and regional acid deposition. Previous work on NOx isotopic signatures suggests large ranges in values, even from the same emission source, as well as overlapping ranges amongst different sources, making it difficult to use the isotopic composition as a quantitative tracer of source influences. These prior measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, and testing of some of these methods (including active and passive collections) reveal inconsistencies in efficiency of collection, as well as issues related to changes in conditions such as humidity, temperature, and NOx fluxes. A recently developed method allows for accurately measuring the nitrogen isotopic composition of NOx (NOx = NO + NO2) after capturing the NOx in a potassium permanganate/sodium hydroxide solution as nitrate (Fibiger et al., Anal. Chem., 2014). The method has been thoroughly tested in the laboratory and field, and efficiently collects NO and NO2 under a variety of conditions. There are several advantages to collecting NOx actively, including the ability to collect over minutes to hourly time scales, and the ability to collect in environments with highly variable NOx sources and concentrations. Challenges include a nitrate background present in potassium permanganate (solid and liquid forms), accurately deriving ambient NOx concentrations based upon flow rate and solution concentrations above this variable background, and potential interferences from other nitrogen species. This method was designed to collect NOx in environments with very different

  14. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  15. Treatment methods for the determination of delta2H and delta18O of hair keratin by continuous-flow isotope-ratio mass spectrometry.

    PubMed

    Bowen, Gabriel J; Chesson, Lesley; Nielson, Kristine; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    The structural proteins that comprise approximately 90% of animal hair have the potential to record environmentally and physiologically determined variation in delta2H and delta18O values of body water. Broad, systematic, geospatial variation in stable hydrogen and oxygen isotopes of environmental water and the capacity for rapid, precise measurement via methods such as high-temperature conversion elemental analyzer/isotope ratio mass spectrometry (TC/EA-IRMS) make these isotope systems particularly well suited for applications requiring the geolocation of hair samples. In order for such applications to be successful, however, methods must exist for the accurate determination of hair delta2H and delta18O values reflecting the primary products of biosynthesis. Here, we present the results of experiments designed to examine two potential inaccuracies affecting delta2H and delta18O measurements of hair: the contribution of non-biologic hydrogen and oxygen to samples in the form of sorbed molecular water, and the exchange of hydroxyl-bound hydrogen between hair keratin and ambient water vapor. We show that rapid sorption of molecular water from the atmosphere can have a substantial effect on measured delta2H and delta18O values of hair (comprising approximately 7.7% of the measured isotopic signal for H and up to approximately 10.6% for O), but that this contribution can be effectively removed through vacuum-drying of samples for 6 days. Hydrogen exchange between hair keratin and ambient vapor is also rapid (reaching equilibrium within 3-4 days), with 9-16% of the total hydrogen available for exchange at room temperature. Based on the results of these experiments, we outline a recommended sample treatment procedure for routine measurement of delta2H and delta18O in mammal hair.

  16. An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells.

    PubMed

    Argus, Joseph P; Yu, Amy K; Wang, Eric S; Williams, Kevin J; Bensinger, Steven J

    2017-02-01

    Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Javaux, Mathieu

    2017-05-01

    Plant root water uptake (RWU) has been documented for the past five decades from water stable isotopic analysis. By comparing the (hydrogen or oxygen) stable isotopic compositions of plant xylem water to those of potential contributive water sources (e.g., water from different soil layers, groundwater, water from recent precipitation or from a nearby stream), studies were able to determine the relative contributions of these water sources to RWU. In this paper, the different methods used for locating/quantifying relative contributions of water sources to RWU (i.e., graphical inference, statistical (e.g., Bayesian) multi-source linear mixing models) are reviewed with emphasis on their respective advantages and drawbacks. The graphical and statistical methods are tested against a physically based analytical RWU model during a series of virtual experiments differing in the depth of the groundwater table, the soil surface water status, and the plant transpiration rate value. The benchmarking of these methods illustrates the limitations of the graphical and statistical methods while it underlines the performance of one Bayesian mixing model. The simplest two-end-member mixing model is also successfully tested when all possible sources in the soil can be identified to define the two end-members and compute their isotopic compositions. Finally, the authors call for a development of approaches coupling physically based RWU models with controlled condition experimental setups.

  18. DoE optimization of a mercury isotope ratio determination method for environmental studies.

    PubMed

    Berni, Alex; Baschieri, Carlo; Covelli, Stefano; Emili, Andrea; Marchetti, Andrea; Manzini, Daniela; Berto, Daniela; Rampazzo, Federico

    2016-05-15

    By using the experimental design (DoE) technique, we optimized an analytical method for the determination of mercury isotope ratios by means of cold-vapor multicollector ICP-MS (CV-MC-ICP-MS) to provide absolute Hg isotopic ratio measurements with a suitable internal precision. By running 32 experiments, the influence of mercury and thallium internal standard concentrations, total measuring time and sample flow rate was evaluated. Method was optimized varying Hg concentration between 2 and 20 ng g(-1). The model finds out some correlations within the parameters affect the measurements precision and predicts suitable sample measurement precisions for Hg concentrations from 5 ng g(-1) Hg upwards. The method was successfully applied to samples of Manila clams (Ruditapes philippinarum) coming from the Marano and Grado lagoon (NE Italy), a coastal environment affected by long term mercury contamination mainly due to mining activity. Results show different extents of both mass dependent fractionation (MDF) and mass independent fractionation (MIF) phenomena in clams according to their size and sampling sites in the lagoon. The method is fit for determinations on real samples, allowing for the use of Hg isotopic ratios to study mercury biogeochemical cycles in complex ecosystems.

  19. New optimization method for intermolecular potentials: Optimization of a new anisotropic united atoms potential for olefins: Prediction of equilibrium properties

    NASA Astrophysics Data System (ADS)

    Bourasseau, Emeric; Haboudou, Mehalia; Boutin, Anne; Fuchs, Alain H.; Ungerer, Philippe

    2003-02-01

    In this study, we propose a new global procedure to perform optimization of semiempirical intermolecular potential parameters on the basis of a large reference database. To obtain transferable parameters, we used the original method proposed by Ungerer [Ungerer et al., J. Chem. Phys. 112, 5499 (2000)], based on the minimization of a dimensionless error criterion. This method allows the simultaneous optimization of several parameters from a large set of reference data. However, the computational cost of such a method limits its application, because it implies the calculation of an important number of partial derivatives, calculated by finite differences between the results of several different simulations. In this work, we propose a new method to evaluate partial derivatives, in order to reduce the computing time and to obtain more consistent derivatives. This method is based on the analysis of statistical fluctuations during a single simulation. To predict equilibrium properties of olefins, we optimize the Lennard-Jones potential parameters of the unsaturated hydrocarbon groups using the anisotropic united atoms description. The resulting parameters are consistent with those previously determined for linear and branched alkanes. Test simulations have been performed at temperatures ranging from 150 to 510 K for several α-olefins (ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-octene), several β-olefins (trans-2-butene, cis-2-butene, trans-2-pentene), isobutene, and butadiene. Equilibrium properties are well predicted, and critical properties can be evaluated with a good accuracy, despite the fact that most of the results constitute pure predictions. It is concluded that the AUA potential, due to a relevant physical meaning, can be transferred to a large range of olefins with good success.

  20. Isotopic Dilution GC/MS Method for Methionine Determination in Biological Media

    NASA Astrophysics Data System (ADS)

    Horj, Elena; Iordache, Andreea; Culea, Monica

    2011-10-01

    The isotopic dilution mass spectrometry technique is the method of choice for sensitive and accurate determination of analytes in biological samples. The aim of this work was to establish a sensitive analytical method for the determination of methionine in different biological media. Quantitation of methionine from the resultant tracer spectrum requires deconvolution of the enrichment of the isotopomers. Deconvolution of the ion abundance ratios to yield tracer-to-tracee ratio for the isotopomer was done using Brauman's least squares approach. Comparison with regression curve calculation method is presented. The method was applied for amino-acids determination in beef, pork and fish meat.

  1. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    PubMed

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could

  2. Determination of the Galaxy age by the method of uranium-thorium-plutonium isotopic ratios

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Lutostansky, Yu. S.; Eichler, M.; Thielemann, F.-K.

    2017-07-01

    The dependence of the Galaxy age ( T G), as determined by the method of uranium-thorium isotopic ratios, on the parameters of the nucleosynthesis model is studied within the theory of galactic nucleosynthesis. It is shown that TG depends strongly both on the scenario of the production of nuclei in the r-process and those features of neutron-rich nuclei that are used in the respective analysis and on galactic-nucleosynthesis parameters. The effect of a sudden nucleosynthesis spike before the formation of a solar system on the Galaxy age is evaluated. The region of admissible values of the parameters of galacticnucleosynthesis theory is discussed. The method of uranium-thorium isotopic ratios is supplemented with the 244Pu/238U ratio for yet another cosmochronometer pair, and the Galaxy age is estimated on the basis of the model modified in this way.

  3. Trigonometric and hyperbolic functions method for constructing analytic solutions to nonlinear plane magnetohydrodynamics equilibrium equations

    SciTech Connect

    Moawad, S. M.

    2015-02-15

    In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics.

  4. On-line Differential Thermal Isotope Analysis: A New Method for Measuring Oxygen and Hydrogen Isotopes of Hydration Water in Minerals

    NASA Astrophysics Data System (ADS)

    Bauska, T.; Hodell, D. A.; Walters, G.

    2016-12-01

    Oxygen (16O,17O,18O) and hydrogen (H,D) isotopes of hydration water in minerals provide a rich source of information about the conditions under which hydrated minerals form on Earth and other planetary bodies (e.g. Mars). We have developed a new method for measuring different types of bonded water (e.g., molecular, hydroxyl) contained in hydrated minerals by coupling a thermal gravimeter (TG) and a cavity ringdown laser spectrometer (CRDS). The method involves step heating a mineral sample, precisely measuring the weight loss and enthalpy as the sample undergoes dehydration and dehydroxylation, whilst simultaneously determining the oxygen and hydrogen isotopes of the water vapor evolved from the mineral sample by cavity ring-down laser spectroscopy (CRDS). Nitrogen carrier gas is used to transfer the sample from the TG to the CRDS via a heated line and interface box. The interface includes the capability of (i) cryogenic trapping discrete types of water for samples containing small amounts of water; (ii) injecting small quantities of water of known isotopic value for calibration; and (iii) converting volatile organic compounds to nascent amounts of water using a catalyst. The CRDS continually measures water vapor concentration in the optical cavity and hydrogen and oxygen isotope ratios. Isotopic values are calculated by integrating the product of the water amount and its isotopic value for the separated peaks after correcting for background. Precision of the method was estimated by comparing isotope results of total water for gypsum measured by DTIA with our conventional method of extraction and analysis (Gázquez et al., 2015. Rapid Communications in Mass Spectrometry, 29, 1997-2006). Errors for the isotopic values of total hydration water vary between ±0.08 and ±0.34 ‰ for δ18O and between ±0.16 and ±0.86 ‰ for δD. We demonstrate the application of the DTIA method to a variety of hydrous minerals and mineraloids including gypsum, clays, and amorphous

  5. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  6. 2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)

    2000-01-01

    The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.

  7. Equilibrium solubility measurement of compounds with low dissolution rate by Higuchi's Facilitated Dissolution Method. A validation study.

    PubMed

    Takács-Novák, Krisztina; Urac, Maria; Horváth, Péter; Völgyi, Gergely; Anderson, Bradley D; Avdeef, Alex

    2017-08-30

    Incubation time plays a critical role in the accurate measurement of equilibrium solubility of compounds. Substances which dissolve very slowly generally need long incubation times (days or weeks) to reach equilibrium. However, long times may pose several problems, such as decomposition of solute, molding of buffer, and drifting of pH. Higuchi in 1979 proposed the Facilitated Dissolution Method (FDM) to dramatically reduce incubation time. It employs a small volume of water-immiscible organic solvent to partly solubilize the sample and thereby increase the surface area available for dissolution. The method has been used only rarely. In this study we performed a systematic validation of FDM using progesterone as model compound. The reference solubility value, 7.95±0.21μg/mL (p<0.05, n=5), was determined in Britton-Robinson buffer solution (pH7.4) at 25.0°C by the standardized protocol of Saturation Shake-Flask (SSF) method. Also, the solubility was measured by the FDM approach under varied experimental conditions (e.g., type and volume of organic solvent, time of agitation, and amount of solid excess), and compared to the reference value. It was demonstrated that the small amount of organic solvent used in the FDM does not impact the measured solubility, compared to the reference value. Additionally, four compounds of low dissolution rate (dexamethasone, digoxin, haloperidol and cosalane) were used to demonstrate that FDM can reduce the long equilibration time to the standardized 24h (6h stirring and 18h sedimentation). The time dependence of solubility equilibrium was measured by SSF, and the results were compared with those obtained by FDM. Our study, based on >200 solubility experiments, supports the validity of Higuchi's method. In this study we propose a standardized protocol for the FDM, where 1% v/v of organic solvent is used. Octane (or isooctane) was found to be suitable for highly hydrophobic compounds. Alternatively, octanol or 1,2-dichloroethane can

  8. Evaluation of Isotope 32P Method to Mark Culex pipiens (Diptera: Culicidae) in a Laboratory

    PubMed Central

    Zhang, Chongxing; Shi, Guihong; Zhao, Yuqiang; Yan, Dongmei; Li, Huaiju; Liu, Hongmei; Wiwatanaratanabutr, Itsanun; Gong, Maoqing

    2016-01-01

    Background: The aim of the current study was to develop a marking technique as an internal marker to mark post blood meal mosquitoes by using stable phosphate isotope 32P and determine the optimal concentration of it. Methods: An isotonic physiological saline solution, containing different concentration of radioactive isotope 32P-labeled disodium phosphate (Na2H32PO4) was injected into rabbits via the jugular vein in the laboratory. Emerged Cx. pipiens were marked after feeding on rabbit. At the same time, the labeled conditions of emerged Cx. pipiens were also measured by placing feces of No. 6 rabbit into containers with mosquito larvae and pupae inside. Results: According to the label condition of Cx. pipiens after taking blood and the effect of different dosage Na2H32PO4 on rabbit health, the optimal concentration of radioactive isotope was determined, that is, 0.1211 mCi/kg. By placing feces of No. 6 rabbit into containers with mosquito larvae and pupae inside, the emerged mosquitoes were also labeled. Therefore, feeding mosquitoes on the animal injected with radioactive Na2H32PO4 was more practical for detecting and tracing mosquitoes. Conclusion: The method was less time-consuming, more sensitive and safer. This marking method will facilitate post-bloodmeal studies of mosquitoes and other blood-sucking insects. PMID:27308279

  9. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  10. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    NASA Technical Reports Server (NTRS)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  11. Evaluating gull diets: A comparison of conventional methods and stable isotope analysis

    USGS Publications Warehouse

    Weiser, E.L.; Powell, A.N.

    2011-01-01

    Samples such as regurgitated pellets and food remains have traditionally been used in studies of bird diets, but these can produce biased estimates depending on the digestibility of different foods. Stable isotope analysis has been developed as a method for assessing bird diets that is not biased by digestibility. These two methods may provide complementary or conflicting information on diets of birds, but are rarely compared directly. We analyzed carbon and nitrogen stable isotope ratios of feathers of Glaucous Gull (Larus hyperboreus) chicks from eight breeding colonies in northern Alaska, and used a Bayesian mixing model to generate a probability distribution for the contribution of each food group to diets. We compared these model results with probability distributions from conventional diet samples (pellets and food remains) from the same colonies and time periods. Relative to the stable isotope estimates, conventional analysis often overestimated the contributions of birds and small mammals to gull diets and often underestimated the contributions of fish and zooplankton. Both methods gave similar estimates for the contributions of scavenged caribou, miscellaneous marine foods, and garbage to diets. Pellets and food remains therefore may be useful for assessing the importance of garbage relative to certain other foods in diets of gulls and similar birds, but are clearly inappropriate for estimating the potential impact of gulls on birds, small mammals, or fish. However, conventional samples provide more species-level information than stable isotope analysis, so a combined approach would be most useful for diet analysis and assessing a predator's impact on particular prey groups. ?? 2011 Association of Field Ornithologists.

  12. Physical and Mathematical Methods for Removing Organic Interference from Optical Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Hsiao, G.; Chappellet-Volini, L.; Vu, D.

    2012-12-01

    Portable high precision isotope analyzers using CRDS technology have greatly increased the use of stable isotopes in hydrological, oceanographic, and ecological studies over the past five years. However studies of some water samples yielded incorrect isotopic values indicating some form of spectroscopic interference. Subsequent work has shown that waters derived from some plants containing interfering alcohols but meteoric waters are not affected. The initial approach to handling such samples was to use spectroscopic anomalies to identify and flag affected samples for later analysis by non-optical methods. This presentation will examine the approaches developed within the past year to allow for accurate analysis of such samples by optical methods. The first approach uses an advanced spectroscopic model to identify and quantify alcohols present in the sample. The alcohol signal is incorporated into the overall fit of the measure spectra to calculate the concentration of the individual isotopes. It was found that the δ18O value could be calculated with high accuracy, the result for the δ2H value was sufficient for many applications. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The liquid sample is injected into a flash vaporizer then the vapor travels through a cartridge for physical treatment prior to analysis by CRDS. Inside the cartridge the organic molecules undergo oxidation at high temperature in the air carrier gas when exposed to the catalyst. This approach is highly effective for ethanol solutions as high as 5% as well as for the complex mixtures of alcohols found in plants. Comparison of the results of both of these methods will be compared with tertiary techniques such as IRMS where possible.

  13. A method for the rapid radiochemical analysis of uranium and thorium isotopes in impure carbonates.

    PubMed

    Elyahyaoui, A; Zarki, R; Chiadli, A

    2003-01-01

    A simple method combining solvent extraction and electrodeposition procedures is described for the determination of the isotopic composition and content of uranium and thorium in travertine samples. The actinide elements are extracted with diethyl ether from a calcium nitrate solution. The isolation of the elements and the alpha source preparation are performed in two steps after the sample digestion. The acid leaching of samples is performed using both partial and total dissolution methods. High recoveries of both uranium and thorium and good alpha-spectra are obtained with both partial and total dissolution methods. Copyright 2002 Elsevier Science Ltd.

  14. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  15. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  16. A New Method of Separating 210Pb from Ra-DEF for a Radioactive Equilibrium Experiment.

    ERIC Educational Resources Information Center

    Wai, C. M.; Lo, J. M.

    1984-01-01

    Background information, procedures, and results are provided for an experiment in which lead-210 is separated from bismuth-210 and polonium-210 by means of solvent extraction of their diethyldithiocarbamate complexes. The method involves a simple extraction procedure which allows complete separation of lead-210 from commercially available…

  17. A New Method of Separating 210Pb from Ra-DEF for a Radioactive Equilibrium Experiment.

    ERIC Educational Resources Information Center

    Wai, C. M.; Lo, J. M.

    1984-01-01

    Background information, procedures, and results are provided for an experiment in which lead-210 is separated from bismuth-210 and polonium-210 by means of solvent extraction of their diethyldithiocarbamate complexes. The method involves a simple extraction procedure which allows complete separation of lead-210 from commercially available…

  18. A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.

    PubMed

    Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R

    2017-07-01

    The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using (236)Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. NMR method for measuring carbon-13 isotopic enrichment of metabolites in complex solutions.

    PubMed

    Lewis, Ian A; Karsten, Ryan H; Norton, Mark E; Tonelli, Marco; Westler, William M; Markley, John L

    2010-06-01

    Isotope-based methods are commonly used for metabolic flux analysis and metabolite quantification in biological extracts. Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool for these studies because NMR can unambiguously identify compounds and accurately measure (13)C enrichment. We have developed a new pulse sequence, isotope-edited total correlation spectroscopy (ITOCSY), that filters two-dimensional (1)H-(1)H NMR spectra from (12)C- and (13)C-containing molecules into separate, quantitatively equivalent spectra. The ITOCSY spectra of labeled and unlabeled molecules are directly comparable and can be assigned using existing bioinformatics tools. In this study, we evaluate ITOCSY using synthetic mixtures of standards and extracts from Escherichia coli . We show that ITOCSY has low technical error (6.6% for metabolites ranging from 0.34 to 6.2 mM) and can detect molecules at concentrations less than 10 muM. We propose ITOCSY as a practical NMR strategy for metabolic flux analysis, isotope dilution experiments, and other methods that rely on carbon-13 labeling.

  20. NMR Method for Measuring Carbon-13 Isotopic Enrichment of Metabolites in Complex Solutions

    PubMed Central

    2010-01-01

    Isotope-based methods are commonly used for metabolic flux analysis and metabolite quantification in biological extracts. Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool for these studies because NMR can unambiguously identify compounds and accurately measure 13C enrichment. We have developed a new pulse sequence, isotope-edited total correlation spectroscopy (ITOCSY), that filters two-dimensional 1H−1H NMR spectra from 12C- and 13C-containing molecules into separate, quantitatively equivalent spectra. The ITOCSY spectra of labeled and unlabeled molecules are directly comparable and can be assigned using existing bioinformatics tools. In this study, we evaluate ITOCSY using synthetic mixtures of standards and extracts from Escherichia coli. We show that ITOCSY has low technical error (6.6% for metabolites ranging from 0.34 to 6.2 mM) and can detect molecules at concentrations less than 10 μM. We propose ITOCSY as a practical NMR strategy for metabolic flux analysis, isotope dilution experiments, and other methods that rely on carbon-13 labeling. PMID:20459129

  1. Preservation Methods Alter Carbon and Nitrogen Stable Isotope Values in Crickets (Orthoptera: Grylloidea)

    PubMed Central

    Jesus, Fabiene Maria; Pereira, Marcelo Ribeiro; Rosa, Cassiano Sousa; Moreira, Marcelo Zacharias; Sperber, Carlos Frankl

    2015-01-01

    Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ15N, δ13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ13C and δ15N and C/N atomic values. Chemical preservatives caused δ13C enrichment as great as 1.5‰, and δ15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ15N depletion up to 1.8‰. Freezing depleted δ13C and δ15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets. PMID:26390400

  2. Preservation Methods Alter Carbon and Nitrogen Stable Isotope Values in Crickets (Orthoptera: Grylloidea).

    PubMed

    Jesus, Fabiene Maria; Pereira, Marcelo Ribeiro; Rosa, Cassiano Sousa; Moreira, Marcelo Zacharias; Sperber, Carlos Frankl

    2015-01-01

    Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ15N, δ13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ13C and δ15N and C/N atomic values. Chemical preservatives caused δ13C enrichment as great as 1.5‰, and δ15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ15N depletion up to 1.8‰. Freezing depleted δ13C and δ15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets.

  3. Finite-Temperature Non-equilibrium Quasicontinuum Method based on Langevin Dynamics

    SciTech Connect

    Marian, J; Venturini, G; Hansen, B; Knap, J; Ortiz, M; Campbell, G

    2009-05-08

    The concurrent bridging of molecular dynamics and continuum thermodynamics presents a number of challenges, mostly associated with energy transmission and changes in the constitutive description of a material across domain boundaries. In this paper, we propose a framework for simulating coarse dynamic systems in the canonical ensemble using the Quasicontinuum method (QC). The equations of motion are expressed in reduced QC coordinates and are strictly derived from dissipative Lagrangian mechanics. The derivation naturally leads to a classical Langevin implementation where the timescale is governed by vibrations emanating from the finest length scale occurring in the computational cell. The equations of motion are integrated explicitly via Newmark's ({beta} = 0; {gamma} = 1/2) method, leading to a robust numerical behavior and energy conservation. In its current form, the method only allows for wave propagations supported by the less compliant of the two meshes across a heterogeneous boundary, which requires the use of overdamped dynamics to avoid spurious heating due to reflected vibrations. We have applied the method to two independent crystallographic systems characterized by different interatomic potentials (Al and Ta) and have measured thermal expansion in order to quantify the vibrational entropy loss due to homogenization. We rationalize the results in terms of system size, mesh coarseness, and nodal cluster diameter within the framework of the quasiharmonic approximation. For Al, we find that the entropy loss introduced by mesh coarsening varies linearly with the element size, and that volumetric effects are not critical in driving the anharmonic behavior of the simulated systems. In Ta, the anomalies of the interatomic potential employed result in negative and zero thermal expansion at low and high temperatures, respectively.

  4. An improved method of right ventricular gated equilibrium blood pool radionuclide ventriculography

    SciTech Connect

    Morrison, D.; Marshall, J.; Wright, A.L.; Daly, M.; Henry, R.

    1982-11-01

    Gated blood pool radionuclide ventriculography provides a means for obtaining repeated studies of both cardiac ventricles with a single dose of radionuclide. Quantitative assessment of right ventricular (RV) function using this technique has been complicated by several technical problems. We describe a new method of RV blood pool analysis which attempts to solve these problems using well-established concepts for left ventricular (LV) blood pool analysis: (1) variable regions of interest; (2) computer edge detection with operator intervention; and (3) computer selected background. Results showed a strong linear correlation between gated first pass RV ejection fraction (RVEF) and the gated blood pool RVEF (n . 22; r . 0.93; blood pool RVEF . 0.03 + 0.89 X first pass RVEF; Sy.x . 0.04). There was also a strong linear correlation between LV and RV stroke counts in patients without valvular regurgitation, intracardiac shunts, or ventricular aneurysms (n . 19; r .0.86; RV counts . 72 + 0.94 X LV counts; Sy.x . 116). In terms of both of these validation standards this method proved superior to three published methods of RV blood pool analysis that used hand-drawn regions, and is suitable for analysis of rest, exercise, and intervention studies of RV function.

  5. Detection of Human Sewage in Urban Stormwater Using DNA Based Methods and Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    McLellan, S. L.; Malet, N.; Sauer, E.; Mueller-Spitz, S.; Borchardt, M.

    2008-12-01

    related to the mixed organic matter sources in polluted stormwater runoff, and that this signal will distinct from untreated sanitary sewage. Stable isotope signatures of stormwater and untreated sewage were determined and compared with the rivers. Isotopic values of stormwater was delta 15N = 1.1 ± 2 %; delta 13C = -25.5 ± 3 % and sewage was delta 15N = -1.9 ± 0.2 %; delta 13C = -23.6 ± 0.3. Suspended particular organic matter (SPOM) of Milwaukee River showed depleted delta 13C (-28.6 ± 1.6 %) and enriched delta 15N (7.7 ± 1.9 %) values. SPOM of the KK River exhibited the most depleted delta 15N (0.2 ± 1.6 %) and enriched delta 13C (-24.8 ± 1.8 %) isotopic values. Menomonee River SPOM showed intermediate isotopic values. The delta 13C values of each river and the estuary enriched significantly throughout the summer storm periods. The isotope signals in the KK and Menomonee were indicative of stormwater runoff and sewage contamination. These results suggest that unrecognized sewage inputs are chronically present and may be delivered through urban stormwater systems. DNA based methods combined with isotope analysis may provide a useful tool for urban watershed assessments and to identify sewage inputs. Delineating the relative contribution of stormwater and sewage to overall degraded water quality might give the first indication of the impact of these sources on the Michigan Lake waters.

  6. Uranium and Calcium Isotope Ratio Measurements using the Modified Total Evaporation Method in TIMS

    NASA Astrophysics Data System (ADS)

    Richter, S.; Kuehn, H.; Berglund, M.; Hennessy, C.

    2010-12-01

    A new version of the "modified total evaporation" (MTE) method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS), with high analytical performance and designed in a more user-friendly and routinely applicable way, is described in detail. It is mainly being used for nuclear safeguards measurements of U and Pu and nuclear metrology, but can readily be applied to other scientific tasks in geochemistry, e.g. for Sr, Nd and Ca, as well. The development of the MTE method was organized in collaboration of several "key nuclear mass spectrometry laboratories", namely the New Brunswick Laboratory (NBL), the Institute for Transuranium Elements (ITU), the Safeguards Analytical Laboratory (now Safeguards Analytical Services, SGAS) of the International Atomic Energy Agency (IAEA) and the Institute for Reference Materials and Measurements (IRMM), with IRMM taking the leading role. The manufacturer of the TRITON TIMS instrument, Thermo Fisher Scientific, integrated this method into the software of the instrument. The development has now reached its goal to become a user-friendly and routinely useable method for uranium isotope ratio measurements with high precision and accuracy. Due to the use of the “total evaporation” (TE) method the measurement of the "major" uranium isotope ratio 235U/238U is routinely being performed with a precision of 0.01% to 0.02%. The use of a (certified) reference material measured under comparable conditions is emphasized to achieve an accuracy at a level of 0.02% - depending on the stated uncertainty of the certified value of the reference material. In contrast to the total evaporation method (TE), in the MTE method the total evaporation sequence is interrupted on a regular basis to allow for correction for background from peak tailing, internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, and ion source re-focusing. Therefore, the most significant improvement using the

  7. EPA Method EMSL-33: Isotopic Determination of Plutonium, Uranium, and Thorium in Water, Soil, Air, and Biological Tissue

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of isotopic plutonium, uranium and thorium, together or individually, in drinking water, aqueous/liquid, soil/sediment, surface wipe and/or air filter samples by alpha spectrometry.

  8. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  9. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  10. A numerical method for generating rapidly rotating bipolytropic structures in equilibrium

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Motl, Patrick M.; Frank, Juhan; Clayton, Geoffrey C.; Marcello, Dominic C.

    2016-10-01

    We demonstrate that rapidly rotating bipolytropic (composite polytropic) stars and toroidal discs can be obtained using Hachisu's self-consistent field technique. The core and the envelope in such a structure can have different polytropic indices and also different average molecular weights. The models converge for high T/|W| cases, where T is the kinetic energy and W is the gravitational energy of the system. The agreement between our numerical solutions with known analytical as well as previously calculated numerical results is excellent. We show that the uniform rotation lowers the maximum core mass fraction or the Schönberg-Chandrasekhar limit for a bipolytropic sequence. We also discuss the applications of this method to magnetic braking in low-mass stars with convective envelopes.

  11. When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods

    PubMed Central

    Tremblay, Raymond L.; Raventos, Josep; Ackerman, James D.

    2015-01-01

    Background and Aims Evaluation of population projection matrices (PPMs) that are focused on asymptotically based properties of populations is a commonly used approach to evaluate projected dynamics of managed populations. Recently, a set of tools for evaluating the properties of transient dynamics has been expanded to evaluate PPMs and to consider the dynamics of populations prior to attaining the stable-stage distribution, a state that may never be achieved in disturbed or otherwise ephemeral habitats or persistently small populations. This study re-evaluates data for a tropical orchid and examines the value of including such analyses in an integrative approach. Methods Six small populations of Lepanthes rubripetala were used as a model system and the R software package popdemo was used to produce estimates of the indices for the asymptotic growth rate (lambda), sensitivities, reactivity, first-time step attenuation, maximum amplification, maximum attenuation, maximal inertia and maximal attenuation. The response in lambda to perturbations of demographic parameters using transfer functions and multiple perturbations on growth, stasis and fecundity were also determined. The results were compared with previously published asymptotic indices. Key Results It was found that combining asymptotic and transient dynamics expands the understanding of possible population changes. Comparison of the predicted density from reactivity and first-time step attenuation with the observed change in population size in two orchid populations showed that the observed density was within the predicted range. However, transfer function analysis suggests that the traditional approach of measuring perturbation of growth rates and persistence (inertia) may be misleading and is likely to result in erroneous management decisions. Conclusions Based on the results, an integrative approach is recommended using traditional PPMs (asymptotic processes) with an evaluation of the diversity of dynamics

  12. A rapid method for the sampling of atmospheric water vapour for isotopic analysis.

    PubMed

    Peters, Leon I; Yakir, Dan

    2010-01-01

    Analysis of the stable isotopic composition of atmospheric moisture is widely applied in the environmental sciences. Traditional methods for obtaining isotopic compositional data from ambient moisture have required complicated sampling procedures, expensive and sophisticated distillation lines, hazardous consumables, and lengthy treatments prior to analysis. Newer laser-based techniques are expensive and usually not suitable for large-scale field campaigns, especially in cases where access to mains power is not feasible or high spatial coverage is required. Here we outline the construction and usage of a novel vapour-sampling system based on a battery-operated Stirling cycle cooler, which is simple to operate, does not require any consumables, or post-collection distillation, and is light-weight and highly portable. We demonstrate the ability of this system to reproduce delta(18)O isotopic compositions of ambient water vapour, with samples taken simultaneously by a traditional cryogenic collection technique. Samples were collected over 1 h directly into autosampler vials and were analysed by mass spectrometry after pyrolysis of 1 microL aliquots to CO. This yielded an average error of < +/-0.5 per thousand, approximately equal to the signal-to-noise ratio of traditional approaches. This new system provides a rapid and reliable alternative to conventional cryogenic techniques, particularly in cases requiring high sample throughput or where access to distillation lines, slurry maintenance or mains power is not feasible.

  13. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    SciTech Connect

    Gamba, Irene M. Tharkabhushanam, Sri Harsha

    2009-04-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S{sup d-1}. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ()]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst

  14. A new method for stable carbon isotope analysis of chlorofluorocarbons in contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Horst, Axel; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2015-04-01

    Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) have been widely used as refrigerants, propellants, solvents, foaming agents and are important intermediates in the production of anesthetics and other fluorinated compounds. Due to their ozone depletion potential, production was banned for most uses under the Montreal Protocol (1987) and its amendments and atmospheric mixing ratios have started to decrease. In addition to the atmosphere, CFCs and HCFCs have been detected in groundwater, and emissions from various sources such as landfill sites are still ongoing. Previous studies have shown that both abiotic and biotic transformation of CFCs may occur under certain conditions. To investigate degradation that may take place in soils and groundwaters, a purge and trap method (P&T) has been developed to measure the stable carbon isotopic composition of CFCs and HCFCs extracted from waters. A set of pure phase working standards (HCFC-22, CFC-11, CFC-113) has been prepared offline and characterized by sealed tube combustion dual inlet mass spectrometry. Comparison between isotopic standards and CFCs extracted by our method demonstrates the sample P&T extraction steps do not induce significant δ13C fractionation (lt;0.5 per mill). Standards characterized by continuous flow CSIA (compound specific isotope analysis) after extraction agree with offline characterized values. Evaporation experiments were carried out to investigate any isotope effects due to volatile loss that might occur either due to sampling methods or sample handling in the lab. Monitoring δ13C values during progressive evaporation showed small isotopic fractionation associated with evaporation. Enrichment factors, obtained from Rayleigh plots, showed inverse isotope fractionation i.e depletion in 13C in the remaining compound. Notably, this effect is in the opposite direction to the fractionation (13C enrichment) that is likely to be associated with abiotic or biotic transformation effects

  15. A New, Rapid, Precise and Sensitive Method for Chlorine Stable Isotope Analysis of Chlorinated Aliphatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    van Acker, M. R.; Shahar, A.; Young, E. D.; Coleman, M. L.

    2005-12-01

    Chlorinated aliphatic hydrocarbons (CAH) are recognized common groundwater contaminants. Because of their physico-chemical properties, their lifespan in groundwater is in the order of decades (Pankow and Cherry, 1996). Stable isotopes can play a role in determining the rate and extent of CAH attenuation (Slater, 2003). The use of chlorine has been hampered by the current time consuming and insensitive analytical methods. We present a new analytical procedure to measure chlorine stable isotope values using a gas chromatograph coupled to a multi-collector inductively coupled mass spectrometer (GC-MC-ICP-MS). The GC has a Porapack Q packed column. The carrier gas was helium and the temperature was constant at 160°C. The GC was coupled to the MC-ICP-MS by heated stainless steel tubing. Our high resolution spectra showed that 37Cl is free of its main interference 36Ar-H over a range of 0.004 amu. Two pure CAH, trichloroethene (TCE) and tetrachloroethene (PCE), were used for zero enrichment (sample relative to itself) and standard-sample difference measurements. Integrations and background corrections of transient signals were performed using Microsoft Excel after import of the raw data from the MC-ICPMS acquisition software. Zero enrichment tests with TCE and PCE yielded δ37Cl of -0.04±0.16‰ and -0.03±0.17‰, respectively, results for sample injections of 0.12 to 0.02 microliters. Accuracy was tested by injecting 0.24 microliters of a 50/50 mixture of TCE and PCE of known isotopic compositions as the difference between the two solvents was of paramount interest. The δ37Cl(TCE) value of PCE was -1.99±0.16‰. A highly satisfactory comparison with the conventional method is shown by published values for TCE and PCE, -2.04±0.12‰ and -0.30±0.14‰, respectively (Jendrzejewski et al., 2001), giving a δ37Cl(TCE) value for PCE of -2.34±0.18‰. These tests of the GC-MC-ICP-MS method showed that we can obtain reproducible and accurate Cl isotope values using an

  16. Growth of 18O isotopically enriched ZnO nanorods by two novel VPT methods

    NASA Astrophysics Data System (ADS)

    Gray, Ciarán; Trefflich, Lukas; Röder, Robert; Ronning, Carsten; Henry, Martin O.; McGlynn, Enda

    2017-02-01

    We have developed two novel vapour phase transport methods to grow ZnO nanorod arrays isotopically enriched with 18O. Firstly, a three-step process used to grow natural and Zn-enriched ZnO nanorods has been further modified, by replacing the atmospheric O2 with enriched 18O2, in order to grow 18O-enriched ZnO nanorods using this vapour-solid method on chemical bath deposited buffer layers. In addition, 18O-enriched ZnO nanorods were successfully grown using 18O isotopically enriched ZnO source powders in a vapour-liquid-solid growth method. Scanning electron microscopy studies confirmed the success of both growth methods in terms of nanorod morphology, although in the case of the vapour-liquid-solid samples, the nanorods' c-axes were not vertically aligned due to the use of a non-epitaxial substrate. Raman and PL studies indicated clearly that O-enrichment was successful in both cases, although the results indicate that the enrichment is at a lower level in our samples compared to previous reports with the same nominal enrichment levels. The results of our studies also allow us to comment on both levels of enrichment achieved and on novel effects of the high temperature growth environment on the nanorod growth, as well as suggesting possible mechanisms for such effects. Very narrow photoluminescence line widths, far narrower than those reported previously in the literature for isotopically enriched bulk ZnO, are seen in both the vapour-solid and vapour-liquid-solid nanorod samples demonstrating their excellent optical quality and their potential for use in detailed optical studies of defects and impurities using low temperature photoluminescence.

  17. Ammonia volatilization from artificial dung and urine patches measured by the equilibrium concentration technique (JTI method)

    NASA Astrophysics Data System (ADS)

    Saarijärvi, K.; Mattila, P. K.; Virkajärvi, P.

    The aim of this study was to investigate the dynamics of ammonia (NH 3) volatilization from intensively managed pastures on a soil type typical of the dairy production area in Finland and to clarify the effect of rainfall on NH 3 volatilization. The study included two experiments. In Experiment 1 the total amount of NH 3-N emitted was calculated based on the annual surface coverage of dung (4%) and urine (17%). The application rate of total N in the simulated dung and urine patches was approximately 47 g N m -2 and 113 g N m -2, respectively. In Experiment 1 the general level of NH 3 emissions from the urine patches was high and the peak volatilization rate was 0.54 g NH 3-N m -2 h -1. As expected, emissions from the dung pats were clearly lower with a maximum rate of 0.10 g NH 3-N m -2 h -1. The total emission calculated for the whole pasture area (stocking rate four cows ha -1 y -1, urine coverage 17% and dung coverage 4%) was 16.1 kg NH 3-N ha -1. Approximately 96% of the total emission originated from urine. In Experiment 2 we measured the emissions from urine only and the treatments on the urine patches were: (1) no irrigation, (2) 5+5 mm and (3) 20 mm irrigation. The peak emission rates were 0.13, 0.09 and 0.04 g NH 3-N m -2 h -1 and the total emissions were 6.9, 3.0 and 1.7 kg NH 3-N ha -1, for treatments (1), (2) and (3), respectively. In both measurements over 80% of the total emission occurred during the first 48 h and there was a clear diurnal rhythm. Increasing rainfall markedly decreased NH 3 emission. Volatilization was highest with dry and warm soil. The JTI method appeared to be suitable for measuring NH 3 volatilization in this kind of experiment. According to our results, the importance of pastures as a source of NH 3 emission in Finland is minor.

  18. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  19. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    SciTech Connect

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, with total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.

  20. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    DOE PAGES

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less

  1. Installations for separation of hydrogen isotopes by the method of chemical isotopic exchange in the `water-hydrogen` system

    SciTech Connect

    Andreev, B.M.; Sakharovsky, Y.A.; Rozenkevich, M.B.; Magomedbekov, E.P.; Park, Y.S.; Uborskiy, V.V.; Trenin, V.D.; Alekseev, I.A.; Fedorchenko, O.A.; Karpov, S.P.; Konoplev, K.A.

    1995-10-01

    The paper presents the results of more than a year of running a pilot setup for separation of hydrogen isotopes using catalytic isotopic exchange between hydrogen and liquid water. The setup is 5 m high, has the inner diameter of 28 mm, and is equipped with upper and lower reflux devices. The experimental values of HETP vary from 15 cm at T=333 K to 38 cm at T=293 K. The setup is capable of upgrading diluted heavy water with 85-90% deuterium content up to [D{sub 2}O] > 99.95 at.%, yielding daily 4 kg of the product. We also report on the progress in constructing a similar setup for eliminating tritium and an industrial setup, for which the one reported is a prototype. 10 refs., 1 fig., 3 tabs.

  2. STUDIES ON OSMOTIC EQUILIBRIUM AND ON THE KINETICS OF OSMOSIS IN LIVING CELLS BY A DIFFRACTION METHOD

    PubMed Central

    Lucké, Balduin; Larrabee, Martin G.; Hartline, H. Keffer

    1935-01-01

    1. Osmotic equilibrium and kinetics of osmosis of living cells (unfertilized eggs of Arbacia punctulata) have been studied by a diffraction method. This method consists of illuminating a suspension of cells by parallel monochromatic light and measuring, by means of telescope and scale, the angular dimensions of the resulting diffraction pattern from which the average volume of the cells may be computed. The method is far less laborious and possesses several advantages over direct measurement of individual cells. The average size of a large number of cells is obtained from a single measurement of the diffraction pattern and thus individual variability is averaged out. The observations can be made at intervals of a few seconds, permitting changes in volume to be followed satisfactorily. During the measurements the cells are in suspension and are constantly stirred. 2. Volumes of cells in equilibrium with solutions of different osmotic pressure have been determined. In agreement with our previous experiments, based upon direct microscope measurements, we have confirmed the applicability of the law of Boyle-van't Hoff to these cells; that is to say, the product of volume and pressure has been found to be approximately constant if allowance be made for the volume of osmotically inactive material of the cell contents. The volume of osmotically inactive material was found to be, on the average, 12 per cent of the initial cell volume; in eggs from different animals this value ranged from 6 to 20 per cent. 3. Permeability to water of the Arbacia egg has been found to average, at 22°C., 0.106 cubic micra of water per square micron of cell surface, per minute, per atmosphere of difference in osmotic pressure. 4. Permeability to ethylene glycol has been found to average, at 24°C., 4.0 x 10–15 mols, per square micron of cell surface, per minute, for a concentration difference of 1 mol per liter. This is in agreement with the values reported by Stewart and Jacobs. PMID

  3. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOEpatents

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  4. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka

    2014-03-01

    The quantum-number projected generator coordinate method (GCM) is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  5. Independent Verification of Research Reactor Operation (Analysis of the Georgian IRT-M Reactor by the Isotope Ratio Method)

    SciTech Connect

    Cliff, John B.; Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Little, Winston W.; Reid, Bruce D.; Tsiklauri, Georgi V.; Abramidze, Sh; Rostomashvili, Z.; Kiknadze, G.; Dzhavakhishvily, O.; Nabakhtiani, G.

    2010-08-11

    The U.S. Department of Energy’s Office of Nonproliferation and International Security (NA-24) develops technologies to aid in implementing international nuclear safeguards. The Isotope Ratio Method (IRM) was successfully developed in 2005 – 2007 by Pacific Northwest National Laboratory (PNNL) and the Republic of Georgia’s Andronikashvili Institute of Physics as a generic technology to verify the declared operation of water-moderated research reactors, independent of spent fuel inventory. IRM estimates the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of trace impurity elements in non-fuel reactor components.The Isotope Ratio Method is a technique for estimating the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of impurity elements in non-fuel reactor components.

  6. Clumped isotope thermometry and catagenesis

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Clog, M. D.; Dallas, B.; Douglas, P. M.; Piasecki, A.; Sessions, A. L.; Stolper, D. A.

    2014-12-01

    Clumped- and site-specific isotopic compositions of organic compounds can constrain their formation temperatures, sources, and chemical reaction histories. The large number of isotopologues of organic molecules may allow for the isotopic composition of a single compound to illuminate many processes. For example, it is possible that clumping or site specific effects in different parts of the same molecule will differ in blocking temperature, such that a molecule's full isotopic structure could simultaneously constrain conditions of biosynthesis, catagenic 'cracking', and storage in the crust. Recent innovations in high-resolution mass spectrometry and methods of IR and NMR spectroscopy make it possible to explore these questions. Methane is the first organic molecule to have its clumped isotope geochemistry analyzed in a variety of natural environments and controlled experiments. Methane generated through catagenic cracking of kerogen and other organic matter forms in equilibrium with respect to isotopic clumping, and preserves that state through later storage or migration, up to temperatures of ~250 ˚C. This kinetic behavior permits a variety of useful geological applications. But it is unexpected because the bulk stable isotope composition of thermogenic methane is thought to reflect kinetic isotope effects on irreversible reactions. Our observations imply a new interpretation of the chemical physics of catagenic methane formation. Additional instrument and methods developments are currently extending the measurement of isotopic clumping and position specific effects to larger alkanes, other hydrocarbon compounds, and amino acids. These measurements will ultimately expand our capacity to understand the formational conditions and fates of organic molecules in high- and low-temperature environments through geological time.

  7. EPA Method: Rapid Radiochemical Method for Americium-241, Radium-226, Plutonium-238/-239, Radiostronium, and Isotopic Uranium in Water for Environmental Restoration Following Homeland Security Events

    EPA Pesticide Factsheets

    SAM lists this method for the qualitative determination of Americium-241, Radium-226, Plutonium-238, Plutonium-239 and isotopic uranium in drinking water samples using alpha spectrometry and radiostrontium using beta counting.

  8. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  9. Rapid Method for the Determination of the Stable Oxygen Isotope Ratio of Water in Alcoholic Beverages.

    PubMed

    Wang, Daobing; Zhong, Qiding; Li, Guohui; Huang, Zhanbin

    2015-10-28

    This paper demonstrates the first successful application of an online pyrolysis technique for the direct determination of oxygen isotope ratios (δ(18)O) of water in alcoholic beverages. Similar water concentrations in each sample were achieved by adjustment with absolute ethyl alcohol, and then a fixed GC split ratio can be used. All of the organic ingredients were successfully separated from the analyte on a CP-PoraBond Q column and subsequently vented out, whereas water molecules were transferred into the reaction furnace and converted to CO. With the system presented, 15-30 μL of raw sample was diluted and can be analyzed repeatedly; the analytical precision was better than 0.4‰ (n = 5) in all cases, and more than 50 injections can be made per day. No apparent memory effect was observed even if water samples were injected using the same syringe; a strong correlation (R(2) = 0.9998) was found between the water δ(18)O of measured sample and that of working standards. There was no significant difference (p > 0.05) between the mean δ(18)O value and that obtained by the traditional method (CO2-water equilibration/isotope ratio mass spectrometry) and the newly developed method in this study. The advantages of this new method are its rapidity and straightforwardness, and less test portion is required.

  10. Adaptation of the doubly labeled water method for subjects consuming isotopically enriched water.

    PubMed

    Gretebeck, R J; Schoeller, D A; Socki, R A; Davis-Street, J; Gibson, E K; Schulz, L O; Lane, H W

    1997-02-01

    The use of doubly labeled water (DLW) to measure energy expenditure is subject to error if the background abundance of the oxygen and hydrogen isotope tracers changes during the test period. This study evaluated the accuracy and precision of different methods by which such background isotope changes can be corrected, including a modified method that allows prediction of the baseline that would be achieved if subjects were to consume water from a given source indefinitely. Subjects in this study were eight women (4 test subjects and 4 control subjects) who consumed for 28 days water enriched to resemble drinking water aboard the United States space shuttle. Test subjects and control subjects were given a DLW dose on days 1 and 15, respectively. The change to an enriched water source produced a bias in expenditure calculations that exceeded 2.9 MJ/day (35%), relative to calculations from intake-balance. The proposed correction based on the predicted final abundance of 18O and deuterium after equilibration to the new water source eliminated this bias, as did the traditional use of a control group. This new modified correction method is advantageous under field conditions when subject numbers are limited.

  11. Isotope dilution gas chromatography/mass spectrometry method for determination of pyrethroids in apple juice.

    PubMed

    Wong, Siu-kay; Yu, Kwok-chiu; Lam, Chi-ho

    2010-03-01

    This paper presents the development of a highly precise and accurate analytical method for the determination of three matrix-bound pyrethroids, namely, cypermethrin, permethrin, and bifenthrin, using an isotope dilution gas chromatography/mass spectrometry technique. Identification of the analytes was confirmed under selective ion monitoring mode by the presence of two dominant ion fragments within specific time windows and matching of relative ion intensities of the ions concerned in samples and calibration standards. Quantitation was based on the measurement of concentration ratios of the natural and isotope analogues in the sample and calibration blends. Intraday and interday repeatabilities of replicate analyses of the pyethroids in an apple juice sample were below 0.5%. The expanded relative uncertainty ranged from 3 to 6%, which was significantly lower than the range obtained using internal or external calibration methods. As a labeled analogue is not available for bifenthrin, bifenthrin was determined using labeled cis-permethrin as the internal standard. The results were counterchecked by a gas chromatography-electron capture detection technique using PCB 209 as the internal standard. The method developed was applied to a recent pilot study organized by CCQM and the results were consistent with those of other participants.

  12. Use of Isotope Dilution Method To Predict Bioavailability of Organic Pollutants in Historically Contaminated Sediments

    PubMed Central

    2015-01-01

    Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of 13C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R2 = 0.86) was found between E and the sum of rapid (Fr) and slow (Fs) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (Ce) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes. PMID:24946234

  13. Use of isotope dilution method to predict bioavailability of organic pollutants in historically contaminated sediments.

    PubMed

    Jia, Fang; Bao, Lian-Jun; Crago, Jordan; Schlenk, Daniel; Gan, Jay

    2014-07-15

    Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of 13C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R2=0.86) was found between E and the sum of rapid (Fr) and slow (Fs) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (Ce) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes.

  14. A robust method for ammonium nitrogen isotopic analysis in freshwater and seawater at natural abundance levels

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Altabet, M. A.; Wu, T.; Hadas, O.

    2006-12-01

    Natural ammonium N isotopic abundance has been increasingly used in studies of marine and freshwater biogeochemistry. However, current methods are time-consuming, subject to interference from DON, and not reliable at low concentrations. Our new method for determining the δ15N of ammonium overcomes these difficulties by employing the oxidation of ammonium to nitrite followed by conversion of nitrite to nitrous oxide. In the first step, ammonium is quantitatively oxidized by hypobromite at pH~12. After the addition of sodium arsenite to consume excess hypobromite, yield is verified by colorimetric NO2-measurement using sulfanilamide and naphthyl ethylenediamine (NED). Nitrite is further reduced to N2O by a 1:1 sodium azide and acetic acid buffer solution using previously established procedures. Buffer concentration can be varied according to sample matrix to ensure that a reaction pH between 2 and 4 is reached. The product nitrous oxide is then isotopically analyzed using a continuous flow purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. Reliable δ15N values (±0.31‰) are obtained over a concentration range of 0.5 μM to 20 μM using 20 ml volumes of either fresh or seawater samples. Reagent blanks are very low, about 0.05 μM. There is no interference from any of the nitrogen containing compounds tested except short chain aliphatic amino acid (i.e. glycine) which typically are not present at sufficiently high environmental concentrations to pose a problem.

  15. Effect of cohesion and fill amplification on seismic stability of municipal solid waste landfills using limit equilibrium method.

    PubMed

    Savoikar, Purnanand; Choudhury, Deepankar

    2010-12-01

    Municipal solid waste (MSW) landfills in seismic zones are subjected to the seismic forces both in the horizontal and vertical directions. The stability of landfills against these seismic forces was evaluated by computing the factor of safety of landfills with different modes of failure among which failures of landfills due to translation are very common. Conventionally, the seismic stability of landfill is evaluated by using pseudo-static limit equilibrium method. In the present study, seismic stability of landfills is evaluated by both the conventional pseudo-static and modern pseudo-dynamic method. The pseudo-dynamic method is superior as it takes into account the effect of duration and frequency of earthquake motion and corresponding body waves in addition to the variation of earthquake accelerations along depth and time. In the present study, the effects of cohesion and fill amplification on seismic stability of landfill are also taken into account. It was noticed that, neglecting cohesion of fill material as well as liner material, results in a lower factor of safety and, hence, a very conservative/uneconomic design. Also, fill amplification is found to reduce the factor of safety values computed only by using the pseudo-dynamic method, showing its advantage. Generalized expressions are developed for factor of safety and yield acceleration against translational failure, which can be used for evaluating the seismic stability of MSW landfills. Comparisons of results under static condition with existing, similar methodology show a very good agreement. However, the present study seems to provide unique results for the seismic case.

  16. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    SciTech Connect

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q{sub 2}) must be separated from an inert gas such as He, Ar and N{sub 2}. Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q{sub 2} from N{sub 2}. Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q{sub 2} pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies.

  17. Hydrogen isotope exchange in tungsten: Discussion as removal method for tritium

    NASA Astrophysics Data System (ADS)

    Roth, J.; Schwarz-Selinger, T.; Alimov, V. Kh.; Markina, E.

    2013-01-01

    Hydrogen isotope exchange in re-crystallized polycrystalline tungsten was investigated at 320 and 450 K. In a first step the tungsten samples were loaded with deuterium to a fluence of 1024 D/m2 from a low-temperature plasma at 200 eV/D particle energy. In a second step, H was implanted at the same particle energy and similar target temperature with a mass-separated ion beam at different ion fluences ranging from 2 × 1020 to 7.5 × 1023 H/m2. The analytic methods used were nuclear reaction analysis with D(3He,p)α reaction and elastic recoil detection analysis with 4He. In order to determine the D concentration at depths of up to 7.4 μm the 3He energy was varied from 0.5 to 4.5 MeV. It was found that already at an H fluence of 2 × 1020 H/m2, i.e. at 1/5000 of the initial D fluence, about 30% of the retained D was released. Depth profiling of D without and with subsequent H implantation shows strong replacement close to the surface at 320 K, but extending to all analyzable depths at 450 K especially at high fluences, leading to higher release efficiency. The reverse sequence of hydrogen isotopes allowed the analysis of the replacing isotope and showed that the release of D is balanced by the uptake of H. It also shows that hydrogen does not diffuse through a region of filled traps into a region were unfilled traps can be encounter but transport is rather a dynamic process of trapping and de-trapping even at 320 K. Initial D retention in H loaded W is an order of magnitude higher than in pristine W, indicating that every H-containing trap is a potential trap for D. In consequence, hydrogen isotope exchange is not a viable method to significantly enhance the operation time before the tritium inventory limit is reached but should be considered an option to reduce the tritium inventory in ITER before major interventions at the end of an operation period.

  18. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    NASA Astrophysics Data System (ADS)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  19. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    NASA Astrophysics Data System (ADS)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.

  20. Titration of the plasma effect site equilibrium rate constant of propofol; a link method of 'Concentration-Probability-Time'

    PubMed Central

    Kim, Jong-Yeop; Park, Sung-Yong; Park, Sun-Kyung; Kim, Jin-Soo

    2010-01-01

    Background The plasma effect-site equilibrium rate constant (ke0) of propofol has been reported in various pharmacodynamic studies; however, it is not desirable to apply ke0 for the link with pharmacokinetic models that were separately investigated. Thus, we titrated ke0 for the pharmacokinetic model, which is known as the multiple covariates adjusted model of propofol. Methods Ninety female patients scheduled for gynecologic surgery were randomly assigned to three groups targeting different plasma concentrations of 5.4, 8.1, and 10.8 µg/ml. Target-controlled infusions (TCI) were provided by a computer-assisted continuous infusion system. Time to loss of responsiveness (LOR) was measured by a blind investigator; effect-site concentrations (Ce) for LOR were then calculated with simulation of TCI using different ke0s. We determined the ke0 minimizing total discrepancy (TD) between the inputted and calculated ke0 from the t1/2ke0s for a given probability of LOR of the Ce, and also obtained the ke0 for the minimal TD between the median Ce, which were compared to the known ke0. Results Ke0s from these two methods were 0.3692 and 0.3788/min. Ces for LOR with these ke0s were significantly different from those with Schnider's ke0. Conclusions We proposed a method for titration of the ke0 of propofol. The ke0s of propofol was lower than Schnider's ke0. An adequate ke0 for the specific pharmacokinetic model and a certain population would be useful for prediction of an accurate Ce, and could be used for calculation of accurate dosing during targeting of the effect site. PMID:20498770

  1. A Robust and Fully-Automated Chromatographic Method for the Quantitative Purification of Ca and Sr for Isotopic Analysis

    NASA Astrophysics Data System (ADS)

    Smith, H. B.; Kim, H.; Romaniello, S. J.; Field, P.; Anbar, A. D.

    2014-12-01

    High throughput methods for sample purification are required to effectively exploit new opportunities in the study of non-traditional stable isotopes. Many geochemical isotopic studies would benefit from larger data sets, but these are often impractical with manual drip chromatography techniques, which can be time-consuming and demand the attention of skilled laboratory staff. Here we present a new, fully-automated single-column method suitable for the purification of both Ca and Sr for stable and radiogenic isotopic analysis. The method can accommodate a wide variety of sample types, including carbonates, bones, and teeth; silicate rocks and sediments; fresh and marine waters; and biological samples such as blood and urine. Protocols for these isotopic analyses are being developed for use on the new prepFAST-MCTM system from Elemental Scientific (ESI). The system is highly adaptable and processes up to 24-60 samples per day by reusing a single chromatographic column. Efficient column cleaning between samples and an all Teflon flow path ensures that sample carryover is maintained at the level of background laboratory blanks typical for manual drip chromatography. This method is part of a family of new fully-automated chromatographic methods being developed to address many different isotopic systems including B, Ca, Fe, Cu, Zn, Sr, Cd, Pb, and U. These methods are designed to be rugged and transferrable, and to allow the preparation of large, diverse sample sets via a highly repeatable process with minimal effort.

  2. An isotope-dilution standard GC/MS/MS method for steroid hormones in water

    USGS Publications Warehouse

    Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Lindley, Chris E.; Losche, Scott A.

    2013-01-01

    An isotope-dilution quantification method was developed for 20 natural and synthetic steroid hormones and additional compounds in filtered and unfiltered water. Deuterium- or carbon-13-labeled isotope-dilution standards (IDSs) are added to the water sample, which is passed through an octadecylsilyl solid-phase extraction (SPE) disk. Following extract cleanup using Florisil SPE, method compounds are converted to trimethylsilyl derivatives and analyzed by gas chromatography with tandem mass spectrometry. Validation matrices included reagent water, wastewater-affected surface water, and primary (no biological treatment) and secondary wastewater effluent. Overall method recovery for all analytes in these matrices averaged 100%; with overall relative standard deviation of 28%. Mean recoveries of the 20 individual analytes for spiked reagent-water samples prepared along with field samples analyzed in 2009–2010 ranged from 84–104%, with relative standard deviations of 6–36%. Detection levels estimated using ASTM International’s D6091–07 procedure range from 0.4 to 4 ng/L for 17 analytes. Higher censoring levels of 100 ng/L for bisphenol A and 200 ng/L for cholesterol and 3-beta-coprostanol are used to prevent bias and false positives associated with the presence of these analytes in blanks. Absolute method recoveries of the IDSs provide sample-specific performance information and guide data reporting. Careful selection of labeled compounds for use as IDSs is important because both inexact IDS-analyte matches and deuterium label loss affect an IDS’s ability to emulate analyte performance. Six IDS compounds initially tested and applied in this method exhibited deuterium loss and are not used in the final method.

  3. A validated method for the quantitation of 1,1-difluoroethane using a gas in equilibrium method of calibration.

    PubMed

    Avella, Joseph; Lehrer, Michael; Zito, S William

    2008-10-01

    1,1-Difluoroethane (DFE), also known as Freon 152A, is a member of a class of compounds known as halogenated hydrocarbons. A number of these compounds have gained notoriety because of their ability to induce rapid onset of intoxication after inhalation exposure. Abuse of DFE has necessitated development of methods for its detection and quantitation in postmortem and human performance specimens. Furthermore, methodologies applicable to research studies are required as there have been limited toxicokinetic and toxicodynamic reports published on DFE. This paper describes a method for the quantitation of DFE using a gas chromatography-flame-ionization headspace technique that employs solventless standards for calibration. Two calibration curves using 0.5 mL whole blood calibrators which ranged from A: 0.225-1.350 to B: 9.0-180.0 mg/L were developed. These were evaluated for linearity (0.9992 and 0.9995), limit of detection of 0.018 mg/L, limit of quantitation of 0.099 mg/L (recovery 111.9%, CV 9.92%), and upper limit of linearity of 27,000.0 mg/L. Combined curve recovery results of a 98.0 mg/L DFE control that was prepared using an alternate technique was 102.2% with CV of 3.09%. No matrix interference was observed in DFE enriched blood, urine or brain specimens nor did analysis of variance detect any significant differences (alpha = 0.01) in the area under the curve of blood, urine or brain specimens at three identical DFE concentrations. The method is suitable for use in forensic laboratories because validation was performed on instrumentation routinely used in forensic labs and due to the ease with which the calibration range can be adjusted. Perhaps more importantly it is also useful for research oriented studies because the removal of solvent from standard preparation eliminates the possibility for solvent induced changes to the gas/liquid partitioning of DFE or chromatographic interference due to the presence of solvent in specimens.

  4. Enhanced Method for Molybdenum Separation and Isotopic Determination in Geological Samples and Uranium-Rich Materials

    NASA Astrophysics Data System (ADS)

    Migeon, V.; Bourdon, B.; Pili, E.

    2014-12-01

    Molybdenum (Mo) shares analogous geochemical properties with uranium. Mo ispresent as a minor or a trace element in uranium ores under two main oxidation states: +IVand +VI. Mo has seven stable isotopes (92, 94, 95, 96, 97, 98 and 100). In natural systems,Mo and Mo isotopes were shown to fractionate during redox reactions. Because Morepresents an impurity difficult to separate in the nuclear fuel cycle, it has the potential to beused as an indicator of the origins of uranium concentrates, in the framework of nuclearforensics. This work focuses on developing an enhanced separation method for Mo from auranium-rich matrix (uranium ore, uranium concentrate) in order to analyze the massfractionation induced by processes typical of the nuclear fuel cycle. Purification of Mo forisotope ratio measurements is performed with a three-step separation on ion-exchange resins,with yields between 45 and 82%. Matrix and isobaric interferences (Zr, Ru) were reduced ingeological and uranium standards, such as U/Mo ≤ 2*10-4, Zr/Mo ≤ 1*10-3, Ru/Mo ≤ 6*10-4and Fe/Mo ≤ 4*10-3. Mo isotopic compositions were measured on a Neptune Plus MC-ICPMSequipped with Jet cones, for a concentration of 30 ng/ml. The achieved sensitivity is~1200-1800 V/ppm with interferences below 10 mV and an overall reproducibility of 0.02 ‰on the δ98Mo values. A double spike, with 97Mo and 100Mo, was added to the samples beforethe purification. It allows for correction of the chemical and instrumental mass fractionations,without requiring a quantitative yield. For igneous rocks, δ98Mo values range between -0.55and -0.03 ‰, relative to the NIST-SRM 3134 molybdenum standard. Fractionation amonguranium ore concentrates is higher, with δ98Mo ranging between 0.02 and -2.84 ‰.

  5. Informational Equilibrium.

    DTIC Science & Technology

    1982-09-01

    that for variouis standard types of equilibria* they hold. In particular, if one uses the teaporary equilibrium framework one can use the standard ...T, the integral converges toward f’ia(da) f fU(b~dc)6(a,b,c)T( asdm ) A B C which is fR (da) f d(lib,c) U0 T (cab) A BxC Me converse Is obvious

  6. Method and apparatus for isotope-selectively exciting gaseous or vaporous uranium hexafluoride molecules

    SciTech Connect

    Fill, E.E.; Jetter, H.L.; Volk, R.

    1981-06-09

    A method of isotope-selectively exciting gaseous or vaporous uranium hexafluoride molecules by subjecting them to the action of a monochromatic iodine laser beam, the frequency of which can be adjusted and tuned to an absorption band of the molecules to be excited, the laser beam being scattered by liquid and/or solid nitrogen to obtain a triple raman-scattering. In a preferred embodiment, the laser has an emission frequency of 7600 to 7610 cm-1 and the tuning is effected by means of a magnetic field. An apparatus suitable for carrying out such a method comprises a high-performance iodine laser and an optical resonator into which the emission beam or pulses of the laser are focused, one or more dewar vessels filled with liquid or solid nitrogen being located within the optical resonator. In a preferred embodiment, the laser beam tube is located between the poles of an electromagnet.

  7. Assay of tyrosol and hydroxytyrosol in olive oil by tandem mass spectrometry and isotope dilution method.

    PubMed

    Mazzotti, Fabio; Benabdelkamel, Hicham; Di Donna, Leonardo; Maiuolo, Loredana; Napoli, Anna; Sindona, Giovanni

    2012-12-01

    Hydroxytyrosol and tyrosol, the strong antioxidant present in large amount in virgin olive oil have been assayed by LC-MS/MS under MRM condition and isotope dilution method, using d(2)-labelled internal standards obtained by simple synthetic procedures. The assay has been performed under MRM condition monitoring two transitions for each analyte to improve the specificity. This paper deals with a modern approach for assaying the content of this polyphenols in virgin olive oil down to a limit of a few hundreds of parts per billion. Tyrosol and hydroxytyrosol ranged from 10 to 47ppm and from 5 to 25ppm in commercial olive oil, respectively. The accuracy (98-107%) and analytical parameters values confirm the reliability of the proposed approach. The method can be extended to any natural matrices, including mill wastes, after a simple step of sample preparation.

  8. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  9. Extraction of gadolinium from high flux isotope reactor control plates. [Alternative method

    SciTech Connect

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced /sup 153/Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for /sup 153/Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the /sup 153/Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (greater than or equal to60% enriched in /sup 152/Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of /sup 153/Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed.

  10. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOEpatents

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  11. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  12. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  13. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods

    NASA Astrophysics Data System (ADS)

    Trayler, Robin B.; Kohn, Matthew J.

    2017-02-01

    Oxygen isotope and major element zoning patterns of several disparate ungulate teeth were collected to evaluate the timing and geometry of enamel formation, records of isotope zoning, and tooth enamel sampling strategies. Isotopic zoning in mammalian tooth enamel encodes a sub-annual time series of isotopic variation of an animal's body water composition, with a damping factor that depends on the specifics of how enamel mineralizes. Enamel formation comprises two stages: precipitation of appositional enamel with a high CO3:PO4 ratio, followed by precipitation of maturational enamel with a lower CO3:PO4. If appositional and maturational enamel both contribute to isotope compositions (but with different CO3:PO4), and if isotope compositions vary seasonally, paired δ18O values from CO3 and PO4 profiles should show a spatial separation. CO3 isotope patterns should be shifted earlier seasonally than PO4 isotope patterns. Such paired profiles for new and published data show no resolvable shifts, i.e. CO3 and PO4 δ18O profiles show coincident maxima and minima. This coincidence suggests that enamel maturation reequilibrates appositional isotope compositions. If enamel maturation establishes enamel isotope compositions, the geometry of maturation, not apposition, should be considered when devising sampling protocols. X-ray maps of Ca zoning show that the majority of enamel (inner and middle layers) mineralizes heavily at a high angle to the external tooth surface and the enamel-dentine junction over length scales of 2-4 mm, while the outer enamel surface mineralizes more slowly. These data suggest that isotopic sampling strategies should parallel maturational geometry and focus on interior enamel to improve data fidelity. The magnitude of isotopic damping is also smaller than implied in previous studies, so tooth enamel zoning more closely reflects original body water isotopic variations than previously assumed.

  14. Comparison of isotope dilution and excretion methods for determining the half-life of ascorbic acid in the guinea pig

    SciTech Connect

    Kipp, D.E.; Rivers, J.M.

    1984-08-01

    The half-life of ascorbic acid (AA) in guinea pigs was investigated by the isotope dilution and excretion methods. The dilution method measures (1-14C)AA disappearance from the plasma, whereas the excretion method measures the elimination of (1-14C)AA and the metabolites from the body. Two groups of animals underwent both isotope studies in reverse order. Animals were conditioned to the experimental procedures and fed 2.5 mg AA/100 g body weight orally to maintain a daily intake of the vitamin independent of food consumption. The two isotope procedures imposed similar stress on the animals, as determined by plasma cortisol levels and body weight changes. The AA half-life calculations of the rapidly exchangeable pool by the isotope dilution method yielded values of 1.23 and 0.34 hours for the two groups, respectively. The half-life of the slowly exchangeable pool for the two groups was 60.2 and 65.8 hours, respectively. The half-life of AA in the rapidly exchangeable pool, as measured by the excretion studies, was 4.57-8.75 hours. For the slowly exchangeable pool, it was 146-149 hours. The longer half-life of both pools obtained with the excretion method indicates that the isotope is disappearing from the plasma more rapidly than it is being excreted. This suggests that a portion of the (1-14C)AA leaving the plasma is removed to a body pool that is not sampled by the isotope excretion method.

  15. A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations

    NASA Astrophysics Data System (ADS)

    Hiremath, Varun; Pope, Stephen B.

    2013-04-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method is a thermodynamic based dimension reduction method which enables representation of chemistry involving n s species in terms of fewer n r constraints. Here we focus on the application of the RCCE method to Lagrangian particle probability density function based computations. In these computations, at every reaction fractional step, given the initial particle composition (represented using RCCE), we need to compute the reaction mapping, i.e. the particle composition at the end of the time step. In this work we study three different implementations of RCCE for computing this reaction mapping, and compare their relative accuracy and efficiency. These implementations include: (1) RCCE/TIFS (Trajectory In Full Space): this involves solving a system of n s rate-equations for all the species in the full composition space to obtain the reaction mapping. The other two implementations obtain the reaction mapping by solving a reduced system of n r rate-equations obtained by projecting the n s rate-equations for species evaluated in the full space onto the constrained subspace. These implementations include (2) RCCE: this is the classical implementation of RCCE which uses a direct projection of the rate-equations for species onto the constrained subspace; and (3) RCCE/RAMP (Reaction-mixing Attracting Manifold Projector): this is a new implementation introduced here which uses an alternative projector obtained using the RAMP approach. We test these three implementations of RCCE for methane/air premixed combustion in the partially-stirred reactor with chemistry represented using the n s=31 species GRI-Mech 1.2 mechanism with n r=13 to 19 constraints. We show that: (a) the classical RCCE implementation involves an inaccurate projector which yields large errors (over 50%) in the reaction mapping; (b) both RCCE/RAMP and RCCE/TIFS approaches yield significantly lower errors (less than 2%); and (c) overall the RCCE

  16. Methods for the stable isotopic analysis of chlorine in chlorate and perchlorate compounds.

    PubMed

    Ader, M; Coleman, M L; Doyle, S P; Stroud, M; Wakelin, D

    2001-10-15

    Chlorate and perchlorate compounds, used as herbicides, solid fuel propellants, and explosives, are increasingly recognized as pollutants in groundwater. Stable isotope characterization would permit both environmental monitoring of extent of remediation and forensic characterization. Stoichiometric reduction to chloride (greater than 98% yield), by Fe(II) for chlorate and alkaline fusion-decomposition for perchlorate, allows analysis by standard methods to give highly reproducible and accurate delta37Cl results (0.05/1000, 2 x standard error). Analysis of various compounds from different suppliers yielded delta37Cl values for chlorate samples near to +0.2/1000 (SMOC), but one has within-sample heterogeneity of 0.5/1000, possibly due to crystallization processes during manufacture. Results for perchlorate samples also are generally near +0.2/1000, but one is +2.3/1000 (SMOC). The initial results suggest that both forensic and environmental applications might be feasible.

  17. Radiometric method for determining concentration of naturally occurring isotopes and device therefor

    SciTech Connect

    Yakubovich, S.L.; Gerling, V.E.; Golubnichy, V.V.; Kotsen, M.E.; Stepanov, J.N.

    1984-10-09

    The proposed method essentially consists in that a sample of a substance is placed between two scintillators in immediate contact therewith whereupon said sample is hermetically sealed. Arranged in close proximity to each scintillator is a photomultiplier tube recording ionizing ..cap alpha..- and b-radiation. A selector is utilized to select pulses corresponding to ..cap alpha..- and b-particles, and delayed coincidence circuits of a recording element separate and record b-..cap alpha.. and ..cap alpha..-..cap alpha.. cascade pairs of delayed coincidences of RaC, ThC, and AcA radionuclides. Flows are measured twice at a predetermined time interval to account for emanation build-up tendency and concentration of isotopes of radium is determined from a formula.

  18. Boundary-layer isotope dilution/mass balance methods for measurement of nocturnal methane emissions from grazing sheep

    NASA Astrophysics Data System (ADS)

    Harvey, M. J.; Brailsford, G. W.; Bromley, A. M.; Lassey, K. R.; Mei, Z.; Kristament, I. S.; Reisinger, A. R.; Walker, C. F.; Kelliher, F. M.

    Following advances with methods for 13C/ 12C isotopic analysis of methane in small (⩽4 L) air samples, new isotope dilution techniques are proposed for measurement of methane emissions at the paddock scale from grazing ruminant animals. These techniques combine measurement of the isotopic δ13CH 4 composition of air samples with a non-intrusive mass balance method applied in the nocturnal boundary layer. Flux estimates from trials using the isotope dilution techniques are compared with estimates based on scaling up individual animal emission measurements using a rumen gas tracer technique. The methane flux assessed by the latter technique ranged from 35 to 70 mg (CH 4) m -2 d -1 with a stocking density between 10 and 20 sheep ha -1. The isotope dilution based nocturnal boundary-layer estimates generally agreed to better than a factor of 2 and usually to within 20% of the average of individual animal emission rate per unit area of paddock. Both static and advecting mass balance methods are developed. In the advecting case, the upwind/downwind contrast in δ13C was typically 0.2-0.5‰. Care was necessary with air sampling to avoid error in this small contrast contributing to error in the flux. Agreement between concentration- and isotope-based nocturnal boundary layer methods and the sheep breath measurements indicated that sample representativeness was generally good. Factors which affect the accuracy of the method are examined and include variability in nocturnal mixing height, the assumed δ13CH 4 composition of the source sheep breath and diurnal patterns in sheep emission. This paper establishes new techniques useful in the paddock to landscape scale although widespread application awaits further development of technology for rapid and repeatable field analysis of δ13CH 4 in small samples.

  19. Using isotope methods to study alpine headwater regions in the Northern Caucasus and Tien Shan

    NASA Astrophysics Data System (ADS)

    Rets, Ekaterina; Chizhova, Julia N.; Loshakova, Nadezhda; Tokarev, Igor; Kireeva, Maria B.; Budantseva, Nadine A.; Vasil'chuk, Yurij K.; Frolova, Natalia; Popovnin, Viktor; Toropov, Pavel; Terskaya, Elena; Smirnov, Andrew M.; Belozerov, Egor; Karashova, Maria

    2017-09-01

    High mountain areas provide water resources for a large share of the world's population. The ongoing deglaciation of these areas is resulting in great instability of mountainous headwater regions, which could significantly affect water supply and intensify dangerous hydrological processes. The hydrological processes in mountains are still poorly understood due to the complexity of the natural conditions, great spatial variation and a lack of observation. A knowledge of flow-forming processes in alpine areas is essential to predict future possible trends in hydrological conditions and to calculate river runoff characteristics. The goal of this study is to gain detailed field data on various components of natural hydrological processes in the alpine areas of the North Caucasus and Central Tien Shan, and to investigate the possibility that the isotopic method can reveal important regularities of river flow formation in these regions. The study is based on field observations in representative alpine river basins in the North Caucasus (the Dzhankuat river basin) and the Central Tien Shan (the Chon-Kyzyl-Suu river basin) during 2013-2015. A mixing-model approach was used to conduct river hydrograph separation. Isotope methods were used to estimate the contribution of different nourishment sources in total runoff and its regime. d18O, dD and mineralization were used as indicators. Two equation systems for the study sites were derived: in terms of water routing and runoff genesis. The Dzhankuat and Chon-Kyzyl-Suu river hydrographs were separated into 4 components: liquid precipitation/meltwaters, surface routed/subsurface routed waters.

  20. Subjective Well-Being: Revisions to Dynamic Equilibrium Theory Using National Panel Data and Panel Regression Methods

    ERIC Educational Resources Information Center

    Headey, Bruce

    2006-01-01

    This paper partly revises the dynamic equilibrium (DE) theory of subjective well-being (SWB), sometimes termed set point theory. Results from four national panel surveys show that correlations among measures of SWB diminish over time, and that the SWB set points of a minority of individuals substantially change. These results mean that DE theory…

  1. Better characterization of young and old groundwater systems through improved groundwater dating by isotope methods

    NASA Astrophysics Data System (ADS)

    Aggarwal, Pradeep; Suckow, Axel; Newman, Brent; Araguas, Luis; Groening, Manfred; Voss, Clifford; Vitvar, Tomas; Froehlich, Klaus; Kurttas, Turker

    2010-05-01

    . The combined use of radioactive tracers such as carbon-14, chlorine-36 and krypton-81, and numerical hydrodynamic modelling showed inconsistencies in residence time estimates made before the extensive use of accelerator mass spectrometry (AMS) dating methods. Most of the inconsistencies in the use of radiocarbon were the result of contamination with atmospheric CO2 during sampling by the conventional precipitation method. Duplicate analysis of radiocarbon by both sampling methods in selected large aquifers showed consistent differences, up to 10 pMC. The lack of radiocarbon in some deep groundwaters has been confirmed by other long-lived radioisotopes. We have re-evaluated groundwater ages of several of these aquifers coupled with 3-D groundwater models. Our study has demonstrated the usefulness of conservative long-lived radioisotopes for assessing groundwater dynamics of large aquifers containing fossil groundwaters, such as the Nubian Sandstone Aquifer System in Africa and the Guarani aquifer in South America. This presentation will discuss these and related IAEA initiatives in the field of isotope age dating of both young and old groundwaters under various climatic conditions.

  2. Evaluation of a Stable Isotope Method to Mark Naturally-Breeding Larval Mosquitoes for Adult Dispersal Studies

    PubMed Central

    HAMER, GABRIEL L.; DONOVAN, DANIELLE J.; HOOD-NOWOTNY, REBECCA; KAUFMAN, MICHAEL G.; GOLDBERG, TONY L.; WALKER, EDWARD D.

    2014-01-01

    Understanding mosquito dispersal is critically important for vector-borne disease control and prevention. Mark–release–recapture methods using various marking techniques have made substantial contributions to the study of mosquito biology. However, the ability to mark naturally breeding mosquitoes noninvasively and with life-long retention has remained problematic. Here, we describe a method to mark naturally breeding mosquitoes with stable isotopes. Culexpipiens f. molestus mosquitoes were provisioned as larvae in laboratory experiments with 15N-labeled potassium nitrate and 13C-labeled glucose. Larval enrichment was sufficient to differentiate marked adult mosquitoes from unmarked control mosquitoes and the natural source population from Chicago Illinois, using either δ15N or δ13C. Isotopic retention lasted for at least 55 d for adult male and females mosquitoes. There were no consistent effects of isotopic enrichment on immature mosquito survival or adult mosquito body size. We then applied this marking technique to naturally breeding Culex pipiens mosquitoes in suburban Chicago, IL, and for the first time, report successful isotopic enrichment of mosquitoes in the field. This stable isotope marking technique will facilitate studies of mosquito dispersal. PMID:22308772

  3. Multi-mycotoxin stable isotope dilution LC-MS/MS method for Fusarium toxins in cereals.

    PubMed

    Habler, Katharina; Rychlik, Michael

    2016-01-01

    A multi-mycotoxin stable isotope dilution LC-MS/MS method was developed for 14 Fusarium toxins including modified mycotoxins in cereals (deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, HT2-toxin, T2-toxin, enniatin B, enniatin B1, enniatin A1, enniatin A, beauvericin, fusarenone X, nivalenol, deoxynivalenol-3-glucoside, and zearalenone). The chromatographic separation of the toxins with particular focus on deoxynivalenol and deoxynivalenol-3-glucoside was achieved using a C18-hydrosphere column. An expedient sample preparation method was developed that uses solid-phase extraction for the purification of trichothecenes combined with zearalenone, enniatins, and beauvericin and provides excellent validation data. Linearity, intra-day precision, inter-day precision, and recoveries were ≥0.9982, 1-6%, 5-12%, and 79-117%, respectively. Method accuracy was verified by analyzing certified reference materials for deoxynivalenol, HT2-toxin, and T2-toxin with deviations below 7%. The results of this method found barley malt samples from 2012, 2013, and 2014 frequently contaminated with high concentrations of enniatin B, deoxynivalenol, and its modified mycotoxin deoxynivalenol-3-glucoside. Samples from 2012 were especially contaminated. Fusarenone X was not detected in any of the analyzed samples.

  4. Comparison of cellulose extraction methods for analysis of stable-isotope ratios of carbon and oxygen in plant material.

    PubMed

    Cullen, Louise E; Macfarlane, Craig

    2005-05-01

    The Jayme-Wise and diglyme-HCl methods for extracting cellulose from plant material for stable-isotope analysis differ considerably in ease of use, with the latter requiring significantly less time and specialized equipment. However, the diglyme-HCl method leaves a small lignin residue in the crude cellulose that may affect stable-isotope values, whereas alpha-cellulose produced by the Jayme-Wise method is relatively pure. We examined whether adding a bleaching step to the diglyme-HCl method could produce cellulose of comparable purity to alpha-cellulose by comparing the yield, percent carbon, and carbon (delta13C) and oxygen (delta18O) stable isotope ratios of the two celluloses. We tested each method on the wood of five species that differ in ease of delignification, Eucalyptus maculata Hook., E. botryoides Sm., E. resinifera Sm., Pinus pinaster Ait. and Callitris glaucophylla J. Thompson & L.A.S. Johnson, as well as the foliage of C. glaucophylla. For hardwoods such as the eucalypts, the diglyme-HCl method without bleaching produced cellulose with delta13C and delta18O ratios similar to alpha-cellulose. For the softwood, C. glaucophylla, 3 h of bleaching with acidified chlorite following treatment with diglyme-HCl produced cellulose with delta13C and delta18O ratios similar to alpha-cellulose. Bleached and unbleached crude celluloses and alpha-cellulose of P. pinaster were similar in delta18O, but not delta13C. Both types of crude cellulose produced from the foliage of C. glaucophylla had significantly different isotope ratios from alpha-cellulose. Overall, the diglyme-HCl method, with or without bleaching, appears to be a simple, fast method for extracting alpha-cellulose from hardwoods for stable-isotope analyses, but its suitability for softwoods and foliage needs to be evaluated depending on the species.

  5. Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Vervoort, Jeffery D.; DuFrane, S. Andrew

    2014-01-01

    The "laser ablation split stream" (LASS) technique is a powerful tool for mineral-scale isotope analyses and in particular, for concurrent determination of age and Hf isotope composition of zircon. Because LASS utilizes two independent mass spectrometers, a large range of masses can be measured during a single ablation, and thus, the same sample volume can be analyzed for multiple geochemical systems. This paper describes a simple analytical setup using a laser ablation system coupled to a single-collector (for U-Pb age determination) and a multicollector (for Hf isotope analyses) inductively coupled plasma mass spectrometer (MC-ICPMS). The ability of the LASS for concurrent Hf + age technique to extract meaningful Hf isotope compositions in isotopically zoned zircon is demonstrated using zircons from two Proterozoic gneisses from northern Idaho, USA. These samples illustrate the potential problems associated with inadvertently sampling multiple age and Hf components in zircons, as well as the potential of LASS to recover meaningful Hf isotope compositions. We suggest that such inadvertent sampling of differing age and Hf components can be a significant cause of excess scatter in Hf isotope analyses and demonstrate that the LASS approach offers a robust solution to these issues. The veracity of the approach is demonstrated by accurate analyses of 10 reference zircons with well-characterized age and Hf isotopic composition, using laser spot diameters of 30 and 40 µm. In order to expand the database of high-precision Lu-Hf isotope analyses of reference zircons, we present 27 new isotope dilution-MC-ICPMS Lu-Hf isotope measurements of five U-Pb zircon standards: FC1, Temora, R33, QGNG, and 91500.

  6. A field and laboratory method for monitoring the concentration and isotopic composition of soil CO2.

    PubMed

    Breecker, Dan; Sharp, Zachary D

    2008-01-01

    The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.

  7. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  8. Comparative evaluation of quantitative glomerular filtration rate measured by isotopic and nonisotopic methods

    SciTech Connect

    Balachandran, S.; Toguri, A.G.; Petrusick, T.W.; Abbott, L.C.

    1981-04-01

    Good correlation of glomerular filtration rate measured isotopically from plasma disappearance of Tc-99m-DTPA was shown with inulin clearance, creatinine clearance, and graded radionuclide imaging. The isotopic GFR is a simple, urineless technique not requiring continuous infusion that enables one to perform simultaneous renal imaging with one radiotracer.

  9. Comparative evaluation of quantitative glomerular filtration rate measured by isotopic and nonisotopic methods

    SciTech Connect

    Balachandran, S.; Toguri, A.G.; Petrusick, T.W.; Abbott, L.C.

    1981-04-01

    Good correlation of glomerular filtration rate (GFR) measured isotopically from plasma disappearance of Tc-99m-DTPA (Sn) was shown with inulin clearance, creatinine clearance, and graded radionuclide imaging. The isotopic GFR is a simple, urineless technique not requiring continuous infusion that enables one to perform simultaneous renal imaging with one radiotracer.

  10. Stable isotope ratio method for the characterisation of the poultry house environment.

    PubMed

    Skipitytė, Raminta; Mašalaitė, Agnė; Garbaras, Andrius; Mickienė, Rūta; Ragažinskienė, Ona; Baliukonienė, Violeta; Bakutis, Bronius; Šiugždaitė, Jūratė; Petkevičius, Saulius; Maruška, Audrius Sigitas; Remeikis, Vidmantas

    2017-06-01

    Stable isotope analysis was applied to describe the poultry house environment. The poultry house indoor environment was selected for this study due to the relevant health problems in animals and their caretakers. Air quality parameters including temperature, relative humidity, airflow rate, NH3, CO2 and total suspended particles, as well as mean levels of total airborne bacteria and fungi count, were measured. Carbon isotope ratios ((13)C/(12)C) were obtained in size-segregated aerosol particles. The carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotope ratios were measured in feed, litter, scrapings from the ventilation system, feathers and eggs. Additionally, the distribution of δ(13)C and δ(15)N values in different tissues of the chicken was examined. The airborne bacteria and fungi extracted from the air filters collected from poultry farms were grown in the laboratory in media with known isotope values and measured for stable isotope ratios. Analysis of isotope fractionation between microorganisms and their media indicated the applicability of stable isotope analysis in bulk samples for the identification of source material. The analysed examples imply that stable isotope analysis can be used to examine the indoor environment along with its biology and ecology, and serve as an informative bioanalytical tool.

  11. Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry

    NASA Technical Reports Server (NTRS)

    Lee, G. H.

    1967-01-01

    Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.

  12. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    SciTech Connect

    Hakala, Jacqueline Alexandra

    2016-11-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  13. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    SciTech Connect

    Wall, Andrew J.; Capo, Rosemary C.; Stewart, Brian W.; Phan, Thai T.; Jain, Jinesh C.; Hakala, Alexandra; Guthrie, George D.

    2016-09-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  14. Multi-mycotoxin stable isotope dilution LC-MS/MS method for Fusarium toxins in beer.

    PubMed

    Habler, Katharina; Gotthardt, Marina; Schüler, Jan; Rychlik, Michael

    2017-03-01

    A stable isotope dilution LC-MS/MS multi-mycotoxin method was developed for 12 different Fusarium toxins including modified mycotoxins in beer (deoxynivalenol-3-glucoside, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyl-deoxynivalenol, HT2-toxin, T2-toxin, enniatin B, B1, A1, A, beauvericin and zearalenone). As sample preparation and purification of beer a combined solid phase extraction for trichothecenes, enniatins, beauvericin and zearalenone was firstly developed. The validation of the new method gave satisfying results: intra-day and inter-day precision and recoveries were 1-5%, 2-8% and 72-117%, respectively. In total, 61 different organic and conventional beer samples from Germany and all over the world were analyzed by using the newly developed multi-mycotoxin method. In summary, deoxynivalenol, deoxynivalenol-3-glucoside, 3-acetyldeoxynivaleneol and enniatin B were quantified in rather low contents in the investigated beer samples. None of the other monitored Fusarium toxins like 15-acetyldeoxynivalenol, HT2- and T2-toxin, zearalenone, enniatin B1, A1, A or beauvericin were detectable.

  15. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  16. Applications of the two-photon doppler-free method: Hyperfine interactions and isotope shift measurements

    NASA Astrophysics Data System (ADS)

    Cagnac, B.

    1985-08-01

    The hyperfine structures are generally of the same order of magnitude as the Doppler broadening of optical transitions and so are the isotopic shifts in the case of heavy elements. When these structures are too small, one must use Doppler-free methods. Among these methods, the two-photon spectroscopy has obtained good results in highly excited levels. In our laboratory in Paris, we did measurements on neon and helium by two-photon excitation from metastable levels. The precision of the measurements is of the order of one MHz, which permits a precise comparison with theory. We compare the measurements on neon with the theory by Liberman and we obtain a good fit in the first approximation, but must introduce mixing of wave functions for an exact explanation. In the case of helium, we obtain a good fit with the theoretical values obtained from the wave functions by Accad, Pekeris and Schiff. We also give an example where another technique by polarization measurements permits us to obtain experimentally a hyperfine structure smaller than the natural width. We also present a short review of the measurements done by the two-photon method in other laboratories on other elements, Pb, Tl, In and alkaline earths Ca, Sr. Ba.

  17. Equilibrium Fermi's Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-05-19

    In this article, we present a comprehensive comparison between the linearized semiclassical expression for the equilibrium Fermi's golden rule rate constant and the progression of more approximate expressions that lead to the classical Marcus expression. We do so within the context of the canonical Marcus model, where the donor and acceptor potential energy surface are parabolic and identical except for a shift in both the free energies and equilibrium geometries, and within the Condon region. The comparison is performed for two different spectral densities and over a wide range of frictions and temperatures, thereby providing a clear test for the validity, or lack thereof, of the more approximate expressions. We also comment on the computational cost and scaling associated with numerically calculating the linearized semiclassical expression for the rate constant and its dependence on the spectral density, temperature, and friction.

  18. Online induction heating for determination of isotope composition of woody stem water with laser spectrometry: a methods assessment.

    PubMed

    Lazarus, Brynne E; Germino, Matthew J; Vander Veen, Jessica L

    2016-06-01

    Application of stable isotopes of water to studies of plant-soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.

  19. Online induction heating for determination of isotope composition of woody stem water with laser spectrometry: A methods assessment

    USGS Publications Warehouse

    Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.

    2016-01-01

    Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.

  20. A simple method for estimating equilibrium constants for serum testosterone binding resulting in an optimal free testosterone index for use in elderly men.

    PubMed

    Ross, H Alec; Meuleman, Eric J; Sweep, Fred C G J

    2005-01-01

    An algorithm was developed to evaluate equilibrium constants for testosterone (Te) and sex hormone-binding globulin (SHBG) or albumin from serum free testosterone (FTe) measurements performed in a panel of 30 healthy elderly men by means of a near-reference method, i.e., symmetric dialysis (affinity constants: SHBG-Te, 1.13 x 10(9) L/mol; albumin-Te, 4.4 x 10(4) L/mol). Using these estimates, a free testosterone index (FTeI) was calculated from total Te and SHBG concentrations in a further 35 elderly men. This FTeI perfectly matches with actually measured free testosterone concentrations by symmetric dialysis in this second group, with a mean ratio index/measurement of 0.998+/-0.016 (SEM). The efficacy of the algorithm, which represents a simple alternative to previous cumbersome methods for estimation of equilibrium constants, is thereby demonstrated.

  1. Source apportionment of methane using a triple isotope approach - Method development and application in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan

    2015-04-01

    We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.

  2. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Brasser, Jurian; de Ruiter, Gerjan; Houtekamer, Marco; Bolhuis, Henk; Stal, Lucas J; Boschker, Henricus T S

    2014-06-30

    Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios ((13)C/(12)C) in biological metabolites, at their natural abundance. However, until now this technique could not be applied for the analysis of nucleic acids, the building blocks of the carriers of genetic information in living cells and viruses, DNA and RNA. Mixed-mode chromatography (MMC) was applied to obtain the complete separation of nine nucleotides (eight originating from DNA/RNA and one nucleotide (inosine monophosphate) that may serve as an internal standard) in a single run using LC/IRMS. We also developed and validated a method for DNA and RNA extraction and an enzymatic hydrolysis protocol for natural samples, which is compatible with LC/IRMS analysis as it minimizes the carbon blank. The method was used to measure the concentration and stable carbon isotope ratio of DNA and RNA nucleotides in marine sediment and in the common marine macro alga (Ulva sp.) at natural abundance levels as well as for (13)C-enriched samples. The detection limit of the LC/IRMS method varied between 1.0 nmol for most nucleotides and 2.0 nmol for late-eluting compounds. The intraday and interday reproducibility of nucleotide concentration measurements was better than, respectively, 4.1% and 8.9% and for δ(13)C measurements better than, respectively, 0.3‰ and 0.5‰. The obtained nucleic acid concentrations and nucleic acid synthesis rates were in good agreement with values reported in the literature. This new method gives reproducible results for the concentration and δ(13)C values of nine nucleotides. This solvent-free chromatographic method may also be used for other purposes, such as for instance to determine nucleotide concentrations using spectrophotometric detection. This sensitive method offers a new avenue for the study of DNA and RNA biosynthesis that can be applied in various

  3. A routine high-precision method for Lu-Hf isotope geochemistry and chronology

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1981-01-01

    A method for chemical separation of Lu and Hf from rock, meteorite and mineral samples is described, together with a much improved mass spectrometric running technique for Hf. This allows (i) geo- and cosmochronology using the176Lu???176Hf+??- decay scheme, and (ii) geochemical studies of planetary processes in the earth and moon. Chemical yields for the three-stage ion-exchange column procedure average 90% for Hf. Chemical blanks are <0.2 ng for Lu and Hf. From 1 ??g of Hf, a total ion current of 0.5??10-11 Ampere can be maintained for 3-5 h, yielding 0.01-0.03% precision on the ratio176Hf/177Hf. Normalisation to179Hf/177Hf=0.7325 is used. Extensive results for the Johnson Matthey Hf standard JMC 475 are presented, and this sample is urged as an international mass spectrometric standard; suitable aliquots, prepared from a single batch of JMC 475, are available from Denver. Lu-Hf analyses of the standard rocks BCR-1 and JB-1 are given. The potential of the Lu-Hf method in isotope geochemistry is assessed. ?? 1980 Springer-Verlag.

  4. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. A New Method for Evaluating the Carbon Isotope Characteristics of Carbonate Formed Under Cryogenic Conditions Analogous to Mars

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Socki, R. A.; Hredzak, P. L.

    2007-01-01

    soil or dust. This study demonstrates an innovative new method for measuring the isotopic composition of gas evolved from the freezing of carbonate solutions in real time, which allows for a much clearer view of the chemical processes involved. This method now sets the stage for detailed analysis of the chemical and isotopic mechanisms that produce cryogenic carbonates.

  6. Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment

    USGS Publications Warehouse

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    The High Plains aquifer underlying the semiarid Southern High Plains of Texas and New Mexico, USA was used to illustrate solute and isotopic methods for evaluating recharge fluxes, runoff, and spatial and temporal distribution of recharge. The chloride mass-balance method can provide, under certain conditions, a time-integrated technique for evaluation of recharge flux to regional aquifers that is independent of physical parameters. Applying this method to the High Plains aquifer of the Southern High Plains suggests that recharge flux is approximately 2% of precipitation, or approximately 11 ± 2 mm/y, consistent with previous estimates based on a variety of physically based measurements. The method is useful because long-term average precipitation and chloride concentrations in rain and ground water have less uncertainty and are generally less expensive to acquire than physically based parameters commonly used in analyzing recharge. Spatial and temporal distribution of recharge was evaluated by use of δ2H, δ18O, and tritium concentrations in both ground water and the unsaturated zone. Analyses suggest that nearly half of the recharge to the Southern High Plains occurs as piston flow through playa basin floors that occupy approximately 6% of the area, and that macropore recharge may be important in the remaining recharge. Tritium and chloride concentrations in the unsaturated zone were used in a new equation developed to quantify runoff. Using this equation and data from a representative basin, runoff was found to be 24 ± 3 mm/y; that is in close agreement with values obtained from water-balance measurements on experimental watersheds in the area. Such geochemical estimates are possible because tritium is used to calculate a recharge flux that is independent of precipitation and runoff, whereas recharge flux based on chloride concentration in the unsaturated zone is dependent upon the amount of runoff. The difference between these two estimates yields the amount

  7. A Method for Measuring Metabolism in Sorted Subpopulations of Complex Cell Communities Using Stable Isotope Tracing.

    PubMed

    Roci, Irena; Gallart-Ayala, Hector; Watrous, Jeramie; Jain, Mohit; Wheelock, Craig E; Nilsson, Roland

    2017-02-04

    Mammalian cell types exhibit specialized metabolism, and there is ample evidence that various co-existing cell types engage in metabolic cooperation. Moreover, even cultures of a single cell type may contain cells in distinct metabolic states, such as resting or cycling cells. Methods for measuring metabolic activities of such subpopulations are valuable tools for understanding cellular metabolism. Complex cell populations are most commonly separated using a cell sorter, and subpopulations isolated by this method can be analyzed by metabolomics methods. However, a problem with this approach is that the cell sorting procedure subjects cells to stresses that may distort their metabolism. To overcome these issues, we reasoned that the mass isotopomer distributions (MIDs) of metabolites from cells cultured with stable isotope-labeled nutrients are likely to be more stable than absolute metabolite concentrations, because MIDs are formed over longer time scales and should be less affected by short-term exposure to cell sorting conditions. Here, we describe a method based on this principle, combining cell sorting with liquid chromatography-high resolution mass spectrometry (LC-HRMS). The procedure involves analyzing three types of samples: (1) metabolite extracts obtained directly from the complex population; (2) extracts of "mock sorted" cells passed through the cell sorter instrument without gating any specific population; and (3) extracts of the actual sorted populations. The mock sorted cells are compared against direct extraction to verify that MIDs are indeed not altered by the cell sorting procedure itself, prior to analyzing the actual sorted populations. We show example results from HeLa cells sorted according to cell cycle phase, revealing changes in nucleotide metabolism.

  8. Evaluation of the "“Olson equation"”, an isotope dilution method for estimating vitamin A stores.

    PubMed

    Green, Michael H

    2014-01-01

    Isotope dilution methods have been successfully used to estimate vitamin A status in human populations as well as to evaluate the impact of vitamin A interventions. The most commonly applied isotope dilution method is the retinol isotope dilution technique, which is based on the 1989 "“Olson equation"” for estimating total body vitamin A stores (sometimes equated to liver vitamin A) after an oral dose of labeled vitamin A. The equation relies on several factors related to absorption and retention of the dose, the equilibration of label in plasma vs. liver, and timing of a blood sample for measurement of labeled vitamin A. Here, the assumptions underlying these factors are discussed, and new results based on applying model-based compartmental analysis [specifically, the Simulation, Analysis and Modeling software (WinSAAM)] to data on retinol kinetics in humans are summarized. A simplification of the Olson equation, in which plasma tracer is measured 3 days after administration of the oral dose and several factors are eliminated, is presented. The potential usefulness of the retinol isotope dilution technique for setting vitamin A requirements and assessing vitamin A status in children, as well as the confounding effects of inflammation and likely variability in vitamin A absorption, are also discussed.

  9. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide.

    PubMed

    Wu, Lingling; Beard, Brian L; Roden, Eric E; Johnson, Clark M

    2011-03-01

    Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si-HFO coprecipitate, to determine an equilibrium Fe(II)-HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si-HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)-HFO (56)Fe/(54)Fe fractionation factors of -3.17 ± 0.08 (2σ)‰ and -2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si-HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)-HFO (56)Fe/(54)Fe fractionation factor in the absence of silica may be ∼-3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.

  10. Fast methods for determination of antropogenic actinides and U/Th-series isotopes in aqueous samples.

    PubMed

    Eikenberg, J; Bajo, S; Beer, H; Hitz, J; Ruethi, M; Zumsteg, I; Letessier, P

    2004-01-01

    Rapid and simple methods are applied at the PSI radioanalytical laboratory for determining anthropogenic actinides in waste and nuclear reactor waters (U, Pu, Am, Cm) as well as for analysis of naturally occurring alpha-emitters in continental river and ground water. Anion exchange chromatography followed by alpha-spectrometry as well as alpha/beta-LSC is applied for the reactor coolant waters. To avoid alpha-spectrum interference between 238Pu and 241Am at 5.5 MeV, the Pu-fraction is purified using anion exchange resin. Prior to the separation of the Pu-fraction, all actinides (U, Pu, Am, Cm) are adsorbed batch-wise under stirring onto Actinide Resin and subsequent decomposition of the reagent. The residue is then re-dissolved in a sulfate buffer solution for electrolytic deposition. In tabular water samples isotopes of Ra and Po are analyzed additionally via sorption onto manganese coated discs (Ra) and deposition on silver discs (Po). For counting times of 1 day and use of 0.1-1l sample aliquots, detection limits of a few mBql(-1) can be obtained easily.

  11. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  12. The method of life extension for the High Flux Isotope Reactor vessel

    NASA Astrophysics Data System (ADS)

    Chang, Shib-Jung

    1995-02-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 F.

  13. Molecular and stable isotope methods to detect and measure anaerobic ammonium oxidation (anammox) in aquatic ecosystems.

    PubMed

    Song, Bongkeun; Tobias, Craig R

    2011-01-01

    Numerous microbial processes transform nitrogen (N) but three anaerobic respiratory pathways remove fixed N from the environment: denitrification (nitrate conversion to N(2)), anaerobic ammonium oxidation (anammox; ammonium plus nitrite conversion to N(2)), and nitrite dependent methane oxidation (nitrite conversion to N(2)). Nitrification becomes a part of N removal processes as a supplier of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) to anammox and denitrifying bacteria in anoxic water and sediments. It is important to detect and measure anammox and denitrification to understand biogeochemical N cycle and to estimate N removal potential in aquatic ecosystems. Denitrification has been extensively studied in many ecosystems to examine diversity and spatial and temporal dynamics of denitrifying communities as well as to understand its importance in regional and global N cycles. Nitrite dependent methane oxidation was recently discovered as a new pathway of removing fixed N and just started to examine its importance in different ecosystems. Anammox has undergone limited examination, although the number of studies is continuously increasing. There are many questions remaining in order to understand the factors controlling activities and community structures of anammox bacteria in different ecosystems. This chapter reviews both molecular and stable isotope methods to detect and measure anammox in anoxic sediments and water. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Artifactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods

    SciTech Connect

    Gu, Lianhong; Sun, Ying

    2013-01-01

    Studies with the variable J method have reported that mesophyll conductance (gm) rapidly decreases with increasing intercellular CO2 partial pressures (Ci) or decreasing irradiance. Similar responses have been suggested with the online isotope discrimination method, although with less consistency. Here we show that even when the true gm is constant, the variable J method can produce an artifactual dependence of gm on Ci or irradiance similar to those reported in previous studies for any of the following factors: day respiration and chloroplastic CO2 photocompensation point are estimated with Laisk method; Ci or electron transport rate is positively biased; net photosynthetic rate is negatively biased; insufficient NADPH is assumed while insufficient ATP limits RuBP regeneration. The isotopic method produces similar artifacts if fractionation of carboxylation or Ci are positively biased or 13 negatively biased. A nonzero chloroplastic resistance to CO2 movement results in a qualitatively different dependence of gm on Ci or irradiance and this dependence is only sensitive at low Ci. We thus cannot rule out the possibility that previously reported dependence of gm on Ci or irradiance is a methodological artifact. Recommendations are made to take advantage of sensitivities of the variable J and isotopic methods for estimating gm.

  15. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite.

    PubMed

    Grimes, Vaughan; Pellegrini, Maura

    2013-02-15

    The integrity of the biological phosphate oxygen isotope (δ(18)O(p) ) signal is thought to be contingent upon the complete removal of competing sources of oxygen such as associated organic matter. A range of pretreatment methods to purify phosphate material from competing sources of oxygen has been reported, with contradictory evidence on the usefulness and efficiency of one or another. Yet, a systematic comparison of these techniques for bioapatite phosphate has not been conducted. Chemical and thermal pretreatment techniques were tested for their effectiveness at removing organic matter and the likelihood that they modify original δ(18)O values. The test was performed in inorganic (synthetic apatite and a phosphorite rock) and organic (bone and tooth tissues) phosphate materials for which we had an expectation of the actual original δ(18)O(p) value. Analysis of nitrogen content (wt.%), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were employed. We detected variable efficiency at removing organic matter between pretreatment methods with no correlation to any specific structural change. The δ(18)O(p) results showed considerable variation between samples pretreated with the different methods and the untreated samples, with a compositional range of up to 4.5 ‰ in the bone samples. Variations of the δ(18)O(p) values within error were found for tooth enamel, phosphorite rock and inorganic apatite. We recommend a cautious approach when interpreting and comparing δ(18)O(p) data from bone samples treated with different pretreatment protocols. In general, the untreated samples seem to show δ(18)O(p) values closer to the expected ones. According to our results, pretreatment is completely unnecessary in highly mineralized tissues. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Isotope geochemistry in 1990s

    SciTech Connect

    Billo, S.M.

    1995-12-31

    The intense interest in radioactive minerals as a source of atomic energy, and their application in searching for ore deposits and also in gamma-ray and neutron logging oil wells, have opened new vistas in every science. Many minerals containing elements of high atomic weight are radioactive, and emit a radiation which affects a photographic plate and may be detected by means of a sensitive phosphorescent screen. Most of the elements as found in nature are a mixture of isotopes. isotopes are atoms of one element which have different masses. Uranium, thorium, potassium, and rubidium isotopes are also used to date minerals and rocks. Organic materials that have been in equilibrium with CO{sub 2}-photosynthetic cycle during the past 50,000 years are dated by carbon-14 method. The stable isotopes of H{sub 2}, C, N{sub 2}, O{sub 2}, and S are intimately associated with the atmosphere, hydrosphere, and lithosphere and are used in probing water resources.

  17. Forebody and base region real gas flow in severe planetary entry by a factored implicit numerical method. II - Equilibrium reactive gas

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Green, M. J.; Lombard, C. K.

    1981-01-01

    The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.

  18. Determination of Henry`s law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method

    SciTech Connect

    Allen, J.M.; Balcavage, W.X.; Ramachandran, B.R.; Shrout, A.L.

    1998-07-01

    Currently, a great deal of interest exists in developing quantitative descriptions of the transport behavior for organic chemical compounds in the environment. Transport between water and air is of particular significance in this regard. A new method for measurement of thermodynamic Henry`s law constants (H) is reported. In this method, the optical absorbance of a dilute aqueous solution containing an organic compound is followed with time as the compound partitions into the air above the solution in a sealed vessel. The change in optical absorbance and the vapor to liquid volume ratio of the vessel are then used to calculate the value for H. The concentration of the organic compound in the aqueous and vapor phases need not be known. This method allows the approach to equilibrium to be observed in real time so that attainment of equilibrium is readily apparent. This method works particularly well for water-soluble compounds having low vapor pressures. The applicability of this method is limited to compounds that exhibit significant optical absorbance in the ultraviolet and visible regions of the electromagnetic spectrum. Values for H and their temperature dependencies measured using this new method are reported for methacrolein, methyl vinyl ketone, benzaldehyde, and acetophenone. Values for H are also reported for benzene, toluene, and ethylbenzene at 298 K. All reported H data are compared with previously reported values.

  19. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid i