Science.gov

Sample records for isotopic mass chain

  1. Chiral two- and three-nucleon forces along medium-mass isotope chains

    NASA Astrophysics Data System (ADS)

    Somà, V.; Cipollone, A.; Barbieri, C.; Navrátil, P.; Duguet, T.

    2014-06-01

    Ab initio calculations have shown that chiral two- and three-nucleon interactions correctly reproduce binding energy systematics and neutron drip lines of oxygen and nearby isotopes. Exploiting the novel Gorkov-Green's function approach applicable to genuinely open-shell nuclei, we present the first ab initio investigation of Ar, K, Ca, Sc, and Ti isotopic chains. In doing so, stringent tests of internucleon interaction models are provided in the medium-mass region of the nuclear chart. Leading chiral three-nucleon interactions are shown to be mandatory to reproduce the trend of binding energies throughout these chains and to obtain a good description of two-neutron separation energies. At the same time, nuclei in this mass region are systematically overbound by about 40 MeV. While the fundamental N =20 and 28 magic numbers do emerge from basic internucleon interactions, the former is shown to be significantly overestimated, which points to deficiencies of state-of-the-art chiral potentials. The present results demonstrate that ab initio many-body calculations can now access entire medium-mass isotopic chains including degenerate open-shell nuclei and provide a critical testing ground for modern theories of nuclear interactions.

  2. The Precise Radio Observation of the 13C Isotopic Fractionation for Carbon Chain Molecule HC3N in the Low-Mass Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-06-01

    We observed the three 13C isotopic species of HC3N with the high signal-to-noise ratios in L1527 using Green Bank 100 m telescope and Nobeyama 45 m telescope to explore the production scheme of HC3N, where L1527 is the low-mass star forming region in the phase of a warm carbon chain chemistry region. The spectral lines of the J = 5--4, 9--8, 10--9, and 12--11 transitions in the 44-109 GHz region were used to measure isotopic ratios. The abundance of HCCCN was determined from the line intensities of the two weak hyperfine components of the J = 5-4 transition. The isotopic ratios were precisely determined to be 1.00 : 1.01 : 1.35 : 86.4 for [H13CCCN] : [HC13CCN] : [HCC13CN] : [HCCCN]. It was found that the abundance of H13CCCN is equal to that of HC13CCN, and it was implied that HC3N is mainly formed by the reaction schemes via C2H2 and C2H2+ in L1527. This would suggest a universality of dicarbide chemistry producing HC3N irrespective of evolutional phases from a starless dark cloud to a warm carbon chain chemistry region. Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008, ApJ, 672, 371 Takano, S., Masuda, A., Hirahara, Y., et al. 1998, A&A, 329, 1156

  3. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  4. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  5. Dye laser chain for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  6. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  7. Evaluation of on-line pyrolysis coupled to isotope ratio mass spectrometry for the determination of position-specific (13)C isotope composition of short chain n-alkanes (C6-C12).

    PubMed

    Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro

    2016-06-01

    We measured (13)C intramolecular isotopic composition of commercially available short-chain hydrocarbons (n-C6-n-C12) using (13)C-NMR. Results show that the main variation is between the terminal and the sub-terminal C-atom positions. Site-preference (difference in δ(13)C values between terminal and sub-terminal C-atom positions) among all the samples varies between -12.2‰ and +8.4‰. Comparison of these results with those obtained using on-line pyrolysis coupled with GC-C-IRMS show that the thermal cracking of hydrocarbons occurs with a good isotopic fidelity between terminal and sub-terminal C-atom positions of the starting material and the related pyrolysis products (methane and ethylene). On-line pyrolysis coupled with GC-C-IRMS can thus be used for tracing hydrocarbons biogeochemical processes.

  8. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  9. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  10. High-precision lead isotopes and stripy plumes: Revisiting the Society chain in French Polynesia

    NASA Astrophysics Data System (ADS)

    Cordier, Carole; Chauvel, Catherine; Hémond, Christophe

    2016-09-01

    An increasing number of geochemical studies looked for spatial organization of the isotopic variations along Pacific volcanic island chains (e.g., Hawaii, Marquesas, Samoa and Society Islands) in order to discuss the possible zoning of the plume conduits. Here, we reexamine the occurrence of isotopic stripes in the Society archipelago in French Polynesia, using new Sr-Nd-Hf-Pb isotope ratios of sixty-six lavas from six islands (Mehetia, Moorea, Maupiti, Huahine, Raiatea, Bora-Bora). We demonstrate that the Pb isotope variability observed using literature data is an analytical artifact related to the poor control of mass fractionation during Pb measurements by conventional TIMS technique. New MC-ICP-MS Pb data demonstrate that the isotopic stripes as previously defined disappear. They rather show that individual islands cover a significant part of the entire isotopic range of the chain. We suggest, therefore, that the dominant characteristic of the Society plume is small-scale heterogeneities, evenly distributed within the plume conduit. At a global scale, we show that some ocean island chains with similar geochemical and isotopic characteristics, such as Samoa and Society Islands, define different arrays when variations of Nd with high-precision Pb isotopes are considered. We proposed that this puzzling observation might record differences in recycling age of the basalt + sediment mixture subducted into the mantle and sampled by mantle plume.

  11. Isotope ratio mass spectrometry in nutrition research

    SciTech Connect

    Luke, A.H.

    1994-12-31

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then used as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.

  12. Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Schauble, Edwin A.

    2016-06-01

    Isotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar

  13. Iron, copper and zinc isotopic fractionation up mammal trophic chains

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Pons, Marie-Laure; Balter, Vincent

    2013-07-01

    There is a growing body of evidence that some non-traditional elements exhibit stable isotope compositions that are distinct in botanical and animal products, providing potential new tracers for diet reconstructions. Here, we present data for iron (Fe), copper (Cu) and zinc (Zn) stable isotope compositions in plants and bones of herbivores and carnivores. The samples come from trophic chains located in the Western Cape area and in the Kruger National Park in South Africa. The Fe, Cu and Zn isotope systematics are similar in both parks. However, local Cu, and possibly Zn, isotopic values of soils influence that of plants and of higher trophic levels. Between plants and bones of herbivores, the Zn isotope compositions are 66Zn-enriched by about 0.8‰ whereas no significant trophic enrichment is observed for Fe and Cu. Between bones of herbivores and bones of carnivores, the Fe isotope compositions are 56Fe-depleted by about 0.6‰, the Cu isotope compositions are 65Cu-enriched by about 1.0‰, and the Zn isotope compositions are slightly 66Zn-depleted by about 0.2‰. The isotopic distributions of the metals in the body partly explain the observed trophic isotopic systematics. However, it is also necessary to invoke differential intestinal metal absorption between herbivores and carnivores to account for the observed results. Further studies are necessary to fully understand how the Fe, Cu and Zn isotope values are regulated within the ecosystem's trophic levels, but the data already suggests significant potential as new paleodietary and paleoecological proxies.

  14. Isotope ratio analysis by Orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/∆M in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of

  15. Penning trap mass measurements on nobelium isotopes

    SciTech Connect

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-06-15

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes {sup 252-254}No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a {sup 48}Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  16. Penning trap mass measurements on nobelium isotopes

    NASA Astrophysics Data System (ADS)

    Dworschak, M.; Block, M.; Ackermann, D.; Audi, G.; Blaum, K.; Droese, C.; Eliseev, S.; Fleckenstein, T.; Haettner, E.; Herfurth, F.; Heßberger, F. P.; Hofmann, S.; Ketelaer, J.; Ketter, J.; Kluge, H.-J.; Marx, G.; Mazzocco, M.; Novikov, Yu. N.; Plaß, W. R.; Popeko, A.; Rahaman, S.; Rodríguez, D.; Scheidenberger, C.; Schweikhard, L.; Thirolf, P. G.; Vorobyev, G. K.; Wang, M.; Weber, C.

    2010-06-01

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  17. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  18. Isotopic trace analysis by atomic mass spectrometry

    SciTech Connect

    Stoffels, J.J.

    1993-12-01

    All the production facilities at Hanford are now shut down. However, the legacy from half a century of plutonium production includes 177 underground storage tanks of up to one million gallons each containing the largest accumulation of high-level radioactive waste in what used to be called ``the free world.`` Hanford`s new mission, in addition to a spectrum of ongoing research and development, is radioactive waste management and environmental restoration. Isotope-ratio mass spectrometry will continue to be an essential tool in monitoring the progress of that mission.

  19. Mass Distributions of Linear Chain Polymers

    PubMed Central

    Hubler, Shane L.; Craciun, Gheorghe

    2012-01-01

    Biochemistry has many examples of linear chain polymers, i.e., molecules formed from a sequence of units from a finite set of possibilities; examples include proteins, RNA, single-stranded DNA, and paired DNA. In the field of mass spectrometry, it is useful to consider the idea of weighted alphabets, with a word inheriting weight from its letters. We describe the distribution of the mass of these words in terms of a simple recurrence relation, the general solution to that relation, and a canonical form that explicitly describes both the exponential form of this distribution and its periodic features, thus explaining a wave pattern that has been observed in protein mass databases. Further, we show that a pure exponential term dominates the distribution and that there is exactly one such purely exponential term. Finally, we illustrate the use of this theorem by describing a formula for the integer mass distribution of peptides and we compare our theoretical results with mass distributions of human and yeast peptides. PMID:23024448

  20. Comparison of aquatic food chains using nitrogen isotopes.

    PubMed

    Cabana, G; Rasmussen, J B

    1996-10-01

    Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs.

  1. Comparison of aquatic food chains using nitrogen isotopes.

    PubMed Central

    Cabana, G; Rasmussen, J B

    1996-01-01

    Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs. Images Fig. 4 PMID:8855268

  2. Site-specific carbon isotope analysis of aromatic carboxylic acids by elemental analysis/pyrolysis/isotope ratio mass spectrometry.

    PubMed

    Oba, Yasuhiro; Naraoka, Hiroshi

    2006-01-01

    Site-specific carbon isotope composition of organic compounds can provide useful information on their origin and history in natural environments. Site-specific isotope analyses of small amounts of organic compounds (sub-nanomolar level), such as short-chain carboxylic acids and amino acid analogues, have been performed using gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/pyrolysis/IRMS). These analyses were previously limited to volatile compounds. In this study, site-specific carbon isotope analysis has been developed for non-volatile aromatic carboxylic acids at sub-micromolar level by decarboxylation using a continuous flow elemental analysis (EA)/pyrolysis/IRMS technique. Benzoic acid, 2-naphthylacetic acid and 1-pyrenecarboxylic acid were pyrolyzed at 500-1000 degrees C by EA/pyrolysis/IRMS to produce CO2 for delta13C measurement of the carboxyl group. These three aromatic acids were most efficiently pyrolyzed at 750 degrees C. Conventional sealed-tube pyrolysis was also conducted for comparison. The delta13C values of CO2 generated by the continuous flow technique were within 1.0 per thousand of those performed by the conventional technique, indicating that the new continuous flow technique can accurately analyze the carbon isotopic composition of the carboxyl group in aromatic carboxylic acids. The new continuous flow technique is simple, rapid and uses small sample sizes, so this technique will be useful for characterizing the isotopic signature of carboxyl groups in organic compounds. Copyright 2006 John Wiley & Sons, Ltd.

  3. The Mass-Dependence of Cadmium Isotope Fractionation During Evaporation

    NASA Astrophysics Data System (ADS)

    Rehkamper, M.; Wombacher, F.; Mezger, K.; Wiechert, U.

    2002-12-01

    Isotope fractionation laws relate the isotope fractionation factor αA of one isotope ratio to the fractionation factor αB of a second isotope ratio of the same element with a fractionation exponent β, such that αA = αBβ. In a recent paper, Young et al. (GCA 66, 1095-1104 (2002)) inferred that kinetic and equilibrium isotope fractionations are characterized by different mass functions, such that βkin is not equal to βeq. As a consequence, kinetic isotope fractionation is expected to produce fractionation lines in three isotope space that are different from those generated by equilibrium fractionation processes. Young et al. furthermore stated that the variability in mass-dependent fractionation laws may be sufficient to account for the negative Δ17O of tropospheric O2 and the Δ17O anomalies of minerals in SNC meteorites. Such variations have otherwise been interpreted as evidence of non-mass dependant isotope fractionations (Luz et al., Nature 400, 547-550 (1999); Farquhar et al., Science 280, 1589-1582 (1998)). In the present study, we investigated the mass-dependence of isotope fractionation by evaluating the results of evaporation experiments that produced very large differences in Cd isotope compositions (up to about 100‰ ). In these experiments, liquid Cd was evaporated into a vacuum at a temperature of about 200°C. The metal residues remaining after evaporation were analyzed for their Cd isotope composition by multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS) relative to the unfractionated starting material. The precision of the measurements is sufficient to clearly distinguish between different fractionation mechanisms. In linearized three-isotope space, the residual Cd metals plot on fractionation lines (e.g., with a slope β = 2.049 +/- 2 for 106}Cd/{114Cd vs. 110}Cd/{114Cd) that are intermediate between the kinetic (β = 2.036) and the equilibrium (β = 2.075) fractionation lines. This can be explained by an

  4. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards.

    PubMed

    Basu, Sankha S; Blair, Ian A

    2011-12-08

    Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [(13)C(3)(15)N]-pantothenate (vitamin B(5)), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2-3 weeks.

  5. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards

    PubMed Central

    Basu, Sankha S; Blair, Ian A

    2013-01-01

    Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [13C315N]-pantothenate (vitamin B5), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2–3 weeks. PMID:22157971

  6. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  7. SIPT--An Ultrasensitive Mass Spectrometer for Rare Isotopes

    NASA Astrophysics Data System (ADS)

    Ringle, Ryan

    2014-09-01

    Over the last few decades, advances in radioactive beam facilities like the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) have made short-lived, rare-isotope beams available for study in various science areas, and new facilities, like the Facility for Rare Isotope Beams (FRIB) under construction at MSU, will provide even more exotic rare isotopes. The determination of the masses of these rare isotopes is of utmost importance since it provides a direct measurement of the binding energy of the nucleons in the atomic nucleus. For this purpose we are currently developing a dedicated Single-Ion Penning Trap (SIPT) mass spectrometer at NSCL to handle the specific challenges posed by rare isotopes. These challenges, which include short half-lives and extremely low production rates, are dealt with by employing the narrowband FT-ICR detection method under cryogenic conditions. Used in concert with the 9.4-T time-of-flight mass spectrometer, the 7-T SIPT system will ensure that the LEBIT mass measurement program at MSU will make optimal use of the wide range of rare isotope beams provided by the future FRIB facility, addressing such topics as nuclear structure, nuclear astrophysics, and fundamental interactions. Over the last few decades, advances in radioactive beam facilities like the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) have made short-lived, rare-isotope beams available for study in various science areas, and new facilities, like the Facility for Rare Isotope Beams (FRIB) under construction at MSU, will provide even more exotic rare isotopes. The determination of the masses of these rare isotopes is of utmost importance since it provides a direct measurement of the binding energy of the nucleons in the atomic nucleus. For this purpose we are currently developing a dedicated Single-Ion Penning Trap (SIPT) mass

  8. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  9. High Resolution Double-Focusing Isotope Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Radke, J.; Deerberg, M.; Hilkert, A.; Schlüter, H.-J.; Schwieters, J.

    2012-04-01

    In recent years isotope ratio mass spectrometry has extended to the capability of quantifying very small isotope signatures related with low abundances and simultaneously detecting molecular masses such as isotopomers and isotopologues containing clumped isotopes. Some of those applications are limited by molecular interferences like different gas molecules with the same nominal mass, e.g. Ar/O2, adducts of the same molecule or of different molecules, and very small isotope abundances. The Thermo Scientific MAT 253 ULTRA is the next generation of high precision gas isotope ratio mass spectrometry, which combines a 10 KV gas ionization source (Thermo Scientific MAT 253) with a double focusing multi-collector mass analyzer (Thermo Scientific Neptune) and reduces those limitations by measuring isotope ratios on a larger dynamic range with high precision. Small ion beam requirements and high sensitivity are achieved by signal-to-noise improvements through enhanced ion beam amplification in faraday cups and ion counters. Interfering backgrounds, e.g. interfering isotopologues or isobaric ions of contaminants, are dramatically decreased by a dynamic range increase combined with high evacuation leading to undisturbed ion transmission through the double-focusing analyser. Furthermore, automated gain calibration for mathematical baseline corrections, switchable detector arrays, ion source control, analyser focusing and full data export is controlled under Isodat data control. New reference/sample strategies are under investigation besides incorporation of the continuous-flow technique and its versatile inlet devices. We are presenting first results and applications of the MAT 253 Ultra.

  10. Mass spectrometry and isotopes: a century of research and discussion.

    PubMed

    Budzikiewicz, Herbert; Grigsby, Ronald D

    2006-01-01

    In 1815, the British physician William Prout had advanced the theory that the molecular masses of elements were multiples of the mass of hydrogen. This "whole number rule" (and especially deviations from it) played an important role in the discussion whether elements could be mixtures of isotopes. F. Soddy's discovery (1910) that lead obtained by decay of uranium and of thorium differed in mass was considered a peculiarity of radioactive materials. The question of the existence of isotopes came up when the instruments developed by J.J. Thomson and by W. Wien to study cathode and canal rays by deflection in electric and magnetic fields were steadily improved. In 1913, Thomson mentioned a weak line at mass 22 accompanying the expected one at mass 20 when he analyzed the mass spectrum of neon. Subsequently Aston obtained the mass spectrum of chlorine with masses at 35 and 37. Still in 1921, Thomson objected heavily to the idea of isotopes. The isotope problem was finally settled, but more accurate mass measurements showed that even isotopic weights differed to some extent from the whole numbers. Based on earlier ideas of P. Langevin and J.-L. Costa, F.W. Aston and A.J. Dempster developed the idea of packing fractions and mass defects due to the transformation of a portion of the matter comprising the atomic nucleus into energy. While the determination of the exact isotopic masses had improved over the years, the accurate determination of isotopic abundances remained a problem as long as photographic recording was used. Here especially A.O. Nier pioneered using dual collectors and compensation measurements. This was the prerequisite for the discovery that isotopic ratios varied somewhat in nature. M. Dole discovered the fractionation of oxygen isotopes by photosynthesis and respiration. Today 13C/12C-ratios are employed to detect adulterations of food and in doping analysis, and 14C/13C-ratios obtained by accelerator mass spectrometry are used for dating historical

  11. Mass-dependent fractionation of nickel isotopes in meteoritic metal

    NASA Astrophysics Data System (ADS)

    Cook, David L.; Wadhwa, Meenakshi; Clayton, Robert N.; Dauphas, Nicolas; Janney, Philip E.; Davis, Andrew M.

    We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non-magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ≈0.4‰ amu-1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (≈0.0 to ≈0.3‰ amu-1) and chondrites (≈0.0 to ≈0.2‰ amu-1) are similar, whereas the range in pallasite metal (≈-0.1 to 0.0‰ amu-1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (≈0.0 to ≈0.3‰ amu-1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ≈0.4‰ amu-1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe-Ni alloy and the development of the Widmanstätten pattern.

  12. An isotopic mass effect on the intermolecular potential

    SciTech Connect

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologue thermodynamics.

  13. Mono-isotope Prediction for Mass Spectra Using Bayes Network

    PubMed Central

    Li, Hui; Rwebangira, Mugizi Robert; Burge, Legand

    2015-01-01

    Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity. PMID:25620856

  14. Solvent extraction, ion chromatography, and mass spectrometry of molybdenum isotopes.

    PubMed

    Dauphas, N; Reisberg, L; Marty, B

    2001-06-01

    A procedure was developed that allows precise determination of molybdenum isotope abundances in natural samples. Purification of molybdenum was first achieved by solvent extraction using di(2-ethylhexyl) phosphate. Further separation of molybdenum from isobar nuclides was obtained by ion chromatography using AG1-X8 strongly basic anion exchanger. Finally, molybdenum isotopic composition was measured using a multiple collector inductively coupled plasma hexapole mass spectrometer. The abundances of molybdenum isotopes 92, 94, 95, 96, 97, 98, and 100 are 14.8428(510), 9.2498(157), 15.9303(133), 16.6787(37), 9.5534(83), 24.1346(394), and 9.6104(312) respectively, resulting in an atomic mass of 95.9304(45). After internal normalization for mass fractionation, no variation of the molybdenum isotopic composition is observed among terrestrial samples within a relative precision on the order of 0.00001-0.0001. This demonstrates the reliability of the method, which can be applied to searching for possible isotopic anomalies and mass fractionation.

  15. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  16. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  17. Masses of exotic calcium isotopes pin down nuclear forces.

    PubMed

    Wienholtz, F; Beck, D; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K

    2013-06-20

    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes (40)Ca and (48)Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of (51)Ca and (52)Ca have been validated by direct measurements, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes (53)Ca and (54)Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our theoretical calculations. These results increase our understanding of neutron-rich matter and pin down the subtle components of nuclear forces that are at the forefront of theoretical developments constrained by quantum chromodynamics.

  18. Diagnosis of medium chain acyl-CoA dehydrogenase deficiency by stable isotope dilution analysis of urinary acylglycines: Retrospective and prospective studies, and comparison of its accuracy to acylcarnitine identification by FAB/mass spectrometry

    SciTech Connect

    Rinaldo, P.; O'Shea, J.J.; Welch, R.D.; Tanaka, K. )

    1990-01-01

    In summary, we have demonstrated that the accurate quantitation of urinary HG and PPG by stable isotope dilution analysis is currently the most reliable method for the diagnosis of MCAD deficiency. This method is particularly useful for testing random samples from asymptomatic patients without any provocative test, and it is suitable to widely survey a fairly large population, such as patients with episodic manifestations and families with a history of SIDS.

  19. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  20. Fe and Cu isotope mass balances in the human body

    NASA Astrophysics Data System (ADS)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  1. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry.

    PubMed

    Steinhauser, Matthew L; Lechene, Claude P

    2013-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans.

  2. Mass measurements on radioactive isotopes with a Penning trap mass spectrometer

    SciTech Connect

    Bollen, G.; Ames, F.; Schark, E.; Audi, G.; Lunney, D.; Saint Simon, M. de; Beck, D.; Herfurth, F.; Kluge, H.-J.; Kohl, A.; Schwarz, S.; Moore, R. B.; Szerypo, J.

    1999-01-15

    Penning trap mass measurements on short-lived isotopes are performed with the ISOLTRAP mass spectrometer at the radioactive beam facility ISOLDE/CERN. In the last years the applicability of the spectrometer has been considerably extended by the installation of an RFQ trap ion beam buncher and a new cooler Penning trap, which is operated as an isobar separator. These improvements allowed for the first time measurements on isotopes of rare earth elements and on isotopes with Z=80-85. In all cases an accuracy of {delta}m/m{approx_equal}1{center_dot}10{sup -7} was achieved.

  3. Changes in nuclear structure along the Mn isotopic chain studied via charge radii

    NASA Astrophysics Data System (ADS)

    Heylen, H.; Babcock, C.; Beerwerth, R.; Billowes, J.; Bissell, M. L.; Blaum, K.; Bonnard, J.; Campbell, P.; Cheal, B.; Day Goodacre, T.; Fedorov, D.; Fritzsche, S.; Garcia Ruiz, R. F.; Geithner, W.; Geppert, Ch.; Gins, W.; Grob, L. K.; Kowalska, M.; Kreim, K.; Lenzi, S. M.; Moore, I. D.; Maass, B.; Malbrunot-Ettenauer, S.; Marsh, B.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Rossel, R.; Rothe, S.; Sánchez, R.; Tsunoda, Y.; Wraith, C.; Xie, L.; Yang, X. F.; Yordanov, D. T.

    2016-11-01

    The hyperfine spectra of 51,53 -64Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic 3 d54 s25/2 6S →3 d54 s 4 p 3/2 6P and ionic 3 d54 s 5S2→3 d54 p 5P3 transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear structure changes from N =25 across N =28 up to N =39 . A clear development of deformation is observed towards N =40 , confirming the conclusions of the nuclear moments studies. From a Monte Carlo shell-model study of the shape in the Mn isotopic chain, it is suggested that the observed development of deformation is not only due to an increase in static prolate deformation but also due to shape fluctuations and triaxiality. The changes in mean-square charge radii are well reproduced using the Duflo-Zuker formula except in the case of large deformation.

  4. Mass Spectrometric Measurement of Martian Krypton and Xenon Isotopic Abundance

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Mauersberger, K.

    1993-01-01

    The Viking gas chromatograph mass spectrometer experiment provided significant data on the atmospheric composition at the surface of Mars, including measurements of several isotope ratios. However, the limited dynamic range of this mass spectrometer resulted in marginal measurements for the important Kr and Xe isotopic abundance. The Xe-129 to Xe-132 ratio was measured with an uncertainty of 70%, but none of the other isotope ratios for these species were obtained. Accurate measurement of the Xe and Kr isotopic abundance in this atmosphere provides an important data point in testing theories of planetary formation and atmospheric evolution. The measurement is also essential for a stringent test for the Martian origin of the SNC meteorites, since the Kr and Xe fractionation pattern seen in gas trapped in glassy nodules of an SNC (EETA 79001) is unlike any other known solar system resevoir. Current flight mass spectrometer designs combined with the new technology of a high-performance vacuum pumping system show promise for a substantial increase in gas throughput and the dynamic range required to accurately measure these trace species. Various aspects of this new technology are discussed.

  5. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  6. Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain

    NASA Astrophysics Data System (ADS)

    Cipollone, A.; Barbieri, C.; Navrátil, P.

    2015-07-01

    Background: Three-nucleon forces (3NFs) have nontrivial implications on the evolution of correlations at extreme proton-neutron asymmetries. Recent ab initio calculations show that leading-order chiral interactions are crucial to obtain the correct binding energies and neutron driplines along the O, N, and F chains [A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013), 10.1103/PhysRevLett.111.062501]. Purpose: Here we discuss the impact of 3NFs along the oxygen chain for other quantities of interest, such has the spectral distribution for attachment and removal of a nucleon, spectroscopic factors, and radii. The objective is to better delineate the general effects of 3NFs on nuclear correlations. Methods: We employ self-consistent Green's function (SCGF) theory which allows a comprehensive calculation of the single-particle spectral function. For the closed subshell isotopes, 14O, 16O, 22O, 24O, and 28O, we perform calculations with the Dyson-ADC(3) method, which is fully nonperturbative and is the state of the art for both nuclear physics and quantum chemistry applications. The remaining open-shell isotopes are studied using the newly developed Gorkov-SCGF formalism up to second order. Results: We produce complete plots for the spectral distributions. The spectroscopic factors for the dominant quasiparticle peaks are found to depend very little on the leading-order (NNLO) chiral 3NFs. The latter have small impact on the calculated matter radii, which, however, are consistently obtained smaller than experiment. Similarly, single-particle spectra tend to be too spread with respect to the experiment. This effect might hinder, to some extent, the onset of correlations and screen the quenching of calculated spectroscopic factors. The most important effect of 3NFs is thus the fine tuning of the energies for the dominant quasiparticle states, which governs the shell evolution and the position of driplines. Conclusions: Although present chiral

  7. Nitrogen isotope and mass balance approach in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  8. Stable isotope values of North Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje

    2013-04-01

    A comprehensive study of seawater stable isotope properties in the mid-latitude North Atlantic is still missing, especially for the intermediate and deep-water masses. To fill this gap seawater samples were collected since 2006 along various transects in the Northeast Atlantic. During the Atlantic Meridional Transect (AMT) 18 expedition the upper 300 m were sampled between 46.6 and 24.7°N. RV Poseidon cruises POS334, POS349, POS377, and POS383 to the Azores Front region (38.3-30°N; 22-20°W) generally yielded samples down to 2000 m. High-resolution sampling over the whole water column was performed during the OVIDE 2010 (Portugal to Reykjanes ridge) and KN199-4 cruises. Cruise KN199-4 implemented the section from Lisbon to the Cape Verde Islands of the US GEOTRACES North Atlantic transect. Additional stations collected samples along the Iberian margin during the EUROFLEETS Iberia-Forams cruise on RV Garcia del Cid in September 2012. The isotope results clearly indicate the different water masses and hydrographic fronts, although variability in some regions is higher than expected, potentially an affect of the different years and seasons sampled and/ or meandering of the Azores Current. Higher isotope values are observed in the surface waters of the central subtropical gyre and on the southern side of the Azores Front, i.e. within the Azores Current. Lower isotope values are observed in the North Atlantic Deep Water and the Antarctic Intermediate Water upwelled off NW Africa. Mediterranean Outflow Water is best depicted in the Deuterium values because the salinity signal is less rapidly diluted than temperature. Combining the isotope with the respective station's CTD data will allow establishing regional relationships between isotope and temperature/ salinity.

  9. Exploring Mass Perception with Markov Chain Monte Carlo

    ERIC Educational Resources Information Center

    Cohen, Andrew L.; Ross, Michael G.

    2009-01-01

    Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…

  10. Exploring Mass Perception with Markov Chain Monte Carlo

    ERIC Educational Resources Information Center

    Cohen, Andrew L.; Ross, Michael G.

    2009-01-01

    Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…

  11. Reporting and measurement of mass-dependent and mass-independent fractionation of mercury isotopes

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Blum, J. D.

    2007-12-01

    Hg isotope analysis by MC-ICP-MS is an important new approach for fingerprinting Hg sources and monitoring Hg redox reactions and bioaccumulation, especially with the recent discovery of mass independent Hg isotope fractionation. Unfortunately research groups have adopted different standards, definitions of delta values, and methods of isotopic measurement. We suggest that a single standard, NIST SRM 3133, be adopted for reporting the isotopic variability of Hg isotopes. Isotope ratios should be determined by sample-standard bracketing (SSB) during analysis and reported as permil (‰) deviation from SRM 3133. For the highest precision and accuracy, a Tl internal standard along with SSB should be used to correct instrumental mass bias. Measurement routines should also include on-peak zero corrections and matching of concentration and matrix between the samples and bracketing standard. For samples that display mass-dependent fractionation (MDF), only one delta value needs to be reported (δ202/198Hg). Mass-independent fractionation (MIF) (Jackson et al., 2006; Bergquist et al., 2006; Bergquist and Blum, submitted) requires additional nomenclature, and we suggest reporting MIF as the deviation in isotope ratios from the theoretical mass dependent kinetic isotope fractionation (Δxxx/198Hg)¬. External reproducibility should be monitored by analysis of secondary standards. For studies of MDF, we use an in-house secondary standard solution made from metallic Hg mined from Almaden Spain and obtain a δ202Hg of -0.55 ±0.06‰ (2SD). For studies of MIF, we use NRCC CRM DORM-2 (dogfish muscle) and obtain a mean value of δ202Hg of +0.19 ±0.13‰ (2SD), Δ201Hg of +0.89 ±0.07‰ (2SD) , and Δ199Hg of +1.07 ±0.08‰ (2SD).

  12. Searching critical-point nuclei in Te- and Xe-isotopic chains using sextic oscillator potential

    SciTech Connect

    Kharb, S.; Chand, F.

    2012-02-15

    We have identified the nuclei in the Te- and Xe-isotopic chains lying close to the critical point, through which the shape phase transition occurs, by using the sextic oscillator potential formalism. It has been found that {sup 110}Te, {sup 124}Te, and {sup 124}Xe isotopes are the most promising candidates for the critical-point nuclei slightly above the Z = 50 proton shell closure.

  13. PYRO: New capability for isotopic mass tracking in pyroprocess simulation

    SciTech Connect

    Liaw, J.R.; Ackerman, J.P.

    1990-01-01

    A new computational code package called PYRO has been developed to support the IFR fuel recycle demonstration project in the HFEF/S facility at ANL-W. The basic pyrochemical code PYRO1-1 models the atomic mass flows and phase compositions of 48 essential chemical elements involved in the pyroprocess. It has been extended to PYRO1-2 by linking with the ORIGEN code to track more than 1000 isotopic species, their radioactive decays, and related phenomena. This paper first describes the pyroprocess to be modeled and the pyrochemical capability that has been implemented in PYRO1-1, and then gives a full account on the algorithm of extending it to PYRO1-2 for isotopic mass tracking. Results from several scoping and simulation runs will be discussed to illustrate the significance of modeling in-process radioactive decays. 16 refs., 8 figs., 2 tabs.

  14. Multi-collector Isotope Ratio Mass Spectrometer -- Operational Performance Report

    SciTech Connect

    Appelhans, Anthony D; Olson, John E; Watrous, Matthew G; Ward, Michael B.; Dahl, David A.

    2010-12-01

    This report describes the operational testing of a new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously. The instrument includes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently to allow a full-sized discrete dynode pulse counting multiplier to be used to measure each isotope beam. The performance of the instrument was measured using SRM 996 (244Pu spike) at loadings of 2.4 and 12 fg on resin beads and with SRM 4350B Columbia River Sediment samples. The measured limit of detection (3s) for 240Pu was 3.4 attograms for SRM 996. The limit of quantitation (LOQ), defined as 10 s, was 11.2 attograms. The measured concentration of 239Pu in the CRS standard was 152 ± 6 fg/g.

  15. Stable isotope, site-specific mass tagging for protein identification

    DOEpatents

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  16. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    SciTech Connect

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  17. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data.

    PubMed

    Pyle, Lacey A; Hockaday, William C; Boutton, Thomas; Zygourakis, Kyriacos; Kinney, Timothy J; Masiello, Caroline A

    2015-12-15

    Charcoal plays a significant role in the long-term carbon cycle, and its use as a soil amendment is promoted as a C sequestration strategy (biochar). One challenge in this research area is understanding the heterogeneity of charcoal properties. Although the maximum reaction temperature is often used as a gauge of pyrolysis conditions, pyrolysis duration also changes charcoal physicochemical qualities. Here, we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in charcoal chemical properties with variation in CI. We find two types of responses to CI: either linear or threshold relationships. Mass yield decreases linearly with CI, while a threshold exists across which % C, % N, and δ(15)N exhibit large changes. This CI threshold co-occurs with an increase in charcoal aromaticity. C isotopes do not change from original biomass values, supporting the use of charcoal δ(13)C signatures to infer paleoecological conditions. Fractionation of N isotopes indicates that fire may be enriching soils in (15)N through pyrolytic N isotope fractionation. This influx of "black N" could have a significant impact on soil N isotopes, which we show theoretically using a simple mass-balance model.

  18. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  19. Calcium isotope constraints on the end-Permian mass extinction

    PubMed Central

    Payne, Jonathan L.; Turchyn, Alexandra V.; Paytan, Adina; DePaolo, Donald J.; Lehrmann, Daniel J.; Yu, Meiyi; Wei, Jiayong

    2010-01-01

    The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction. PMID:20421502

  20. Calcium isotope constraints on the end-Permian mass extinction.

    PubMed

    Payne, Jonathan L; Turchyn, Alexandra V; Paytan, Adina; Depaolo, Donald J; Lehrmann, Daniel J; Yu, Meiyi; Wei, Jiayong

    2010-05-11

    The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (delta(13)C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (delta(44/40)Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report delta(44/40)Ca across the Permian-Triassic boundary from marine limestone in south China. The delta(44/40)Ca exhibits a transient negative excursion of approximately 0.3 per thousand over a few hundred thousand years or less, which we interpret to reflect a change in the global delta(44/40)Ca composition of seawater. CO(2)-driven ocean acidification best explains the coincidence of the delta(44/40)Ca excursion with negative excursions in the delta(13)C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average delta(13)C of CO(2) released was heavier than -28 per thousand and more likely near -15 per thousand; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction.

  1. Issues and opportunities in accelerator mass spectrometry for stable isotopes.

    PubMed

    Matteson, Sam

    2008-01-01

    Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development.

  2. Mass-imbalanced ionic Hubbard chain

    NASA Astrophysics Data System (ADS)

    Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.

    2017-07-01

    A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U Uc they have different signs, and for U =Uc one gap parameter jumps from a positive to a negative value. The weakly first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system is reluctant to restore a symmetry that has been broken explicitly.

  3. Mass dependent molybdenum isotope fractionation in iron meteorites

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.; Halliday, A. N.

    2016-12-01

    We report the mass dependent fractionation of molybdenum (Mo) isotopes for 23 magmatic iron meteorites from Groups IC, IIAB, IIIAB, IIIF and IVA. The δ98/95MoSRM3134 values vary from -0.24±0.06 to 0.28±0.04‰ with a chondritic average (-0.14±0.18‰). Most iron meteorites have δ98/95MoSRM3134 of -0.24 to -0.10‰, which is similar to the compositions of bulk ordinary and CI carbonaceous chondrites. Replicate dissolutions for five of the meteorites yield consistent data but Sikhote-Alin (IIAB) and Gibeon (IVA) display small differences between aliquots suggesting that the Mo isotopic composition can vary within a single iron meteorite. This is likely due to Mo isotopes fractionating between different phases. The IVA irons (10 meteorites) demonstrate the Mo isotopes become heavier at high indices of fractional crystallization such as As or Au concentration. The heaviest, Duel Hill, has an extremely heavy δ98/95MoSRM3134 of 0.28±0.04‰. The Mo/Au ratios provide supporting evidence that Mo is being removed during core differentiation.

  4. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Colman, Albert; Olack, Gerard; Waniek, Joanna J.; Hodell, David

    2015-06-01

    Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 δ18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (δ18O: -0.1 to 0.5‰; δD: -1 to 4‰) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0

  5. Photochemical mass-independent sulfur isotopes in achondritic meteorites.

    PubMed

    Rai, Vinai K; Jackson, Teresa L; Thiemens, Mark H

    2005-08-12

    Sulfides from four achondrite meteorite groups are enriched in 33S (up to 0.040 per mil) as compared with primitive chondrites and terrestrial standards. Stellar nucleosynthesis and cosmic ray spallation are ruled out as causes of the anomaly, but photochemical reactions in the early solar nebula could produce the isotopic composition. The large 33S excess present in oldhamite from the Norton County aubrite (0.161 per mil) suggests that refractory sulfide minerals condensed from a nebular gas with an enhanced carbon-oxygen ratio, but otherwise solar composition is the carrier. The presence of a mass-independent sulfur effect in meteorites argues for a similar process that could account for oxygen isotopic anomalies observed in refractory inclusions in primitive chondrites.

  6. Traveling waves for the mass in mass model of granular chains

    SciTech Connect

    Kevrekidis, Panayotis G.; Stefanov, Atanas G.; Xu, Haitao

    2016-06-03

    In this work, we consider the mass in mass (or mass with mass) system of granular chains, namely, a granular chain involving additionally an internal (or, respectively, external) resonator. For these chains, we rigorously establish that under suitable “anti-resonance” conditions connecting the mass of the resonator and the speed of the wave, bell-shaped traveling-wave solutions continue to exist in the system, in a way reminiscent of the results proven for the standard granular chain of elastic Hertzian contacts. Finally, we also numerically touch upon settings, where the conditions do not hold, illustrating, in line also with recent experimental work, that non-monotonic waves bearing non-vanishing tails may exist in the latter case.

  7. Traveling waves for the mass in mass model of granular chains

    SciTech Connect

    Kevrekidis, Panayotis G.; Stefanov, Atanas G.; Xu, Haitao

    2016-06-03

    In this work, we consider the mass in mass (or mass with mass) system of granular chains, namely, a granular chain involving additionally an internal (or, respectively, external) resonator. For these chains, we rigorously establish that under suitable “anti-resonance” conditions connecting the mass of the resonator and the speed of the wave, bell-shaped traveling-wave solutions continue to exist in the system, in a way reminiscent of the results proven for the standard granular chain of elastic Hertzian contacts. Finally, we also numerically touch upon settings, where the conditions do not hold, illustrating, in line also with recent experimental work, that non-monotonic waves bearing non-vanishing tails may exist in the latter case.

  8. Traveling waves for the mass in mass model of granular chains

    DOE PAGES

    Kevrekidis, Panayotis G.; Stefanov, Atanas G.; Xu, Haitao

    2016-06-03

    In this work, we consider the mass in mass (or mass with mass) system of granular chains, namely, a granular chain involving additionally an internal (or, respectively, external) resonator. For these chains, we rigorously establish that under suitable “anti-resonance” conditions connecting the mass of the resonator and the speed of the wave, bell-shaped traveling-wave solutions continue to exist in the system, in a way reminiscent of the results proven for the standard granular chain of elastic Hertzian contacts. Finally, we also numerically touch upon settings, where the conditions do not hold, illustrating, in line also with recent experimental work, thatmore » non-monotonic waves bearing non-vanishing tails may exist in the latter case.« less

  9. Mass spectrometric measurements of the isotopic anatomies of molecules (Invited)

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Krumwiede, D.; Schlueter, H.

    2013-12-01

    Site-specific and multiple isotopic substitutions in molecular structures potentially provide an extraordinarily rich set of constraints on their sources, conditions of formation, reaction and transport histories, and perhaps other issues. Examples include carbonate ';clumped isotope' thermometry, clumped isotope measurements of CO2, O2, and, recently, methane, ethane and N2O; site-specific 15N measurements in N2O and 13C and D analyses of fatty acids, sugars, cellulose, food products, and, recently, n-alkanes. Extension of the principles behind these tools to the very large number of isotopologues of complex molecules could potentially lead to new uses of isotope chemistry, similar to proteomics, metabolomics and genomics in their complexity and depth of detail (';isotomics'?). Several technologies are potentially useful for this field, including ';SNIF-NMR', gas source mass spectrometry and IR absorption spectroscopy. However, all well established methods have restrictive limits in the sizes of samples, types of analyzes, and the sorts of isotopologues that can be measured with useful precision. We will present an overview of several emerging instruments and techniques of high-resolution gas source mass spectrometry that may enable study of a large proportion of the isotopologues of a wide range of volatile and semi-volatile compounds, including many organics, with precisions and sample sizes suitable for a range of applications. A variety of isotopologues can be measured by combining information from the Thermo 253 Ultra (a new high resolution, multi-collector gas source mass spectrometer) and the Thermo DFS (a very high resolution single collector, but used here on a novel mode to achieve ~per mil precision ratio measurements), sometimes supplemented by conventional bulk isotopic measurements. It is possible to design methods in which no one of these sources of data meaningfully constrain abundances of specific isotopologues, but their combination fully and

  10. Rotation and instabilities for isotope and mass separation

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Gueroult, R.

    2016-10-01

    Rotating plasmas have the potential to offer unique capabilities for isotope and mass separation. Among the various electric and magnetic field configurations offering mass separation capabilities, rotating plasmas produced through static or oscillating fields are shown to be a leading candidate for tackling the unsolved problem of large-scale plasma separation. The successful development and deployment of industrial-scale plasma separation technologies could, among many other applications, provide an innovative path towards advanced sustainable nuclear energy. In this context, the potential and versatility of plasma rotation induced by rotating magnetic fields is uncovered and analysed. Analytical stability diagrams are derived from rotating ion orbits as a function of ion mass. Based on these findings, the basic principles of a rotating field plasma separator are then introduced. In light of these results, challenges associated with this original separation process are underlined, and the main directions for a future research program aimed at this important unsolved problem of applied plasma physics are identified.

  11. Flame ionization mass spectrometry--Isotope ratio determinations for potassium

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.; Koirtyohann, S.R.

    1991-01-01

    The air/acetylene flame provides a convenient ion source for the determination of potassium isotopic ratios by mass spectrometry. Unlike the argon inductively coupled plasma (ICP), the flame provides low background in the mass region of interest. Ion production is quite satisfactory for isotope ratio measurements at the micrograms per milliliter (μg/mL) level and slightly below, with 1 μg/mL potassium giving about 105counts/second at a nominal mass-to-charge ratio of 39. The detection limit for potassium was 2-3 nanograms per milliliter (ng/mL). The ratio of 41K/39K was measured with 0.5-1% relative standard deviation, and a 41K spike representing 0.2% of the total potassium was readily detected. Both signal levels and signal stability were improved by adding a second easily ionized element such as cesium to samples and standards. Alternatively, a cesium solution could be aspirated for about 1 minute between sample measurements to ensure signal stability.

  12. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions.

    PubMed

    Baroni, Mélanie; Thiemens, Mark H; Delmas, Robert J; Savarino, Joël

    2007-01-05

    The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Delta33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.

  13. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  14. Exploring mass perception with Markov chain Monte Carlo.

    PubMed

    Cohen, Andrew L; Ross, Michael G

    2009-12-01

    Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants' perceptions of different collision mass ratios. The results reveal interparticipant differences and a qualitative distinction between the perception of 1:1 and 1:2 ratios. The results strongly suggest that participants' perceptions of 1:1 collisions are described by simple heuristics. The evidence for 1:2 collisions favors heuristic perception models that are sensitive to the sign but not the magnitude of perceived mass differences.

  15. Mechanisms of Mass-independent Fractionation of Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.

    2006-05-01

    Sulfur mass-independent fractionation (MIF) is believed to arise from gas-phase atmospheric reactions involving SO2 and H2S [1]. However, a quantitative understanding of the mechanisms remains elusive. Here I will discuss two MIF mechanisms for sulfur isotopes, and use existing laboratory data to place constraints on these mechanisms. The relevant laboratory data includes the following: 1) Photolysis of H2S [2]; 2) spark discharge of SO2 [3]; 3) SO2 photolysis from 190-210 nm [3]; 4) SO2 photolysis at wavelengths > 220 nm [4]. Experiments 1 and 2 yielded elemental sulfur (Sel) that exhibited primarily mass-dependent fractionation, while experiment 3 produced Sel with a large MIF signature, and experiment 4 yielded sulfate with a smaller MIF signature. One likely MIF mechanism is intramolecular disequilibrium (or non-RRKM) effects, as proposed for O + O2 -- > O3 [5]. The isoelectronic sulfur reaction, S + S2 --> S3, may also exhibit non-RRKM effects, but for several reasons that I will discuss such effects may either be reduced in magnitude or of negligible importance. A second possible source of MIF is isotope-selective photodissociation during predissociation. This process is likely in SO and SH, may occur in SO2, and unlikely in H2S, but in all cases depends on wavelength. SO2 dissociation is also likely to depend on the oxygen isotopes present, because an O isotope substitution will change SO2 symmetry. Although this may produce a MIF signature in oxygen isotopes, it's not clear that this would be accompanied by a MIF effect in S. I will present kinetics simulations of the above H2S and SO2 photolysis experiments, and show how it is possible to use the results of these experiments to constrain the mechanism of MIF for atmospheric sulfur species. For example, simulations of Sel formation by H2S photolysis predict little MIF in experiments, but possible MIF in the atmosphere. [1] J. Farquhar et al. (2000) Science 289 756-758. [2] J. Farquhar et al. (2000) Nature

  16. Large deviations in the alternating mass harmonic chain

    NASA Astrophysics Data System (ADS)

    Fogedby, Hans C.

    2014-08-01

    We extend the work of Kannan et al and derive the cumulant generating function (CGF) for the alternating mass harmonic chain consisting of N particles and driven by heat reservoirs. The main result is a closed expression for the (CGF) in the thermodynamic large N limit. This expression is independent of N, but depends on whether the chain consists of an even or odd number of particles, in accordance with the results obtained by Kannan et al for the heat current. This result is in accordance with the absence of local thermodynamic equilibrium in a linear system.

  17. Isotope ratio monitoring gas chromatography/Mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry.

    PubMed

    Hilkert; Douthitt; Schlüter; Brand

    1999-07-01

    Of all the elements, hydrogen has the largest naturally occurring variations in the ratio of its stable isotopes (D/H). It is for this reason that there has been a strong desire to add hydrogen to the list of elements amenable to isotope ratio monitoring gas chromatography/mass spectrometry (irm-GC/MS). In irm-GC/MS the sample is entrained in helium as the carrier gas, which is also ionized and separated in the isotope ratio mass spectrometer (IRMS). Because of the low abundance of deuterium in nature, precise and accurate on-line monitoring of D/H ratios with an IRMS requires that low energy helium ions be kept out of the m/z 3 collector, which requires the use of an energy filter. A clean mass 3 (HD(+.)) signal which is independent of a large helium load in the electron impact ion source is essential in order to reach the sensitivity required for D/H analysis of capillary GC peaks. A new IRMS system, the DELTA(plus)XL(trade mark), has been designed for high precision, high accuracy measurements of transient signals of hydrogen gas. It incorporates a retardation lens integrated into the m/z 3 Faraday cup collector. Following GC separation, the hydrogen bound in organic compounds must be quantitatively converted into H(2) gas prior to analysis in the IRMS. Quantitative conversion is achieved by high temperature conversion (TC) at temperatures >1400 degrees C. Measurements of D/H ratios of individual organic compounds in complicated natural mixtures can now be made to a precision of 2 per thousand (delta notation) or, better, with typical sample amounts of approximately 200 ng per compound. Initial applications have focused on compounds of interest to petroleum research (biomarkers and natural gas components), food and flavor control (vanillin and ethanol), and metabolic studies (fatty acids and steroids). Copyright 1999 John Wiley & Sons, Ltd.

  18. Seven Channel Multi-collector Isotope Ratio Mass Spectrometer

    SciTech Connect

    Anthony D. Appelhans

    2008-07-01

    A new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously has been designed, constructed and is in preliminary testing. The instrument utilizes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently (35 mm) to allow a full-sized discrete dynode pulse counting multiplier to be used for each beam. The ion dispersion lens is a two element electrostatic 90 degree sector device that causes the beam-to-beam dispersion to increase faster than the intra-beam dispersion. Each multiplier is contained in an isolated case with a deflector/condenser lens at the entrance. A 9-sample filament cartridge is mounted on a micro-manipulator two-axis stage that enables adjustment of the filament position with 10 micron resolution within the ion lens. Results of initial testing with actinides will be presented.

  19. Mass Independent Fractionation of Hg Isotopes Preserved in the Precambrian

    NASA Astrophysics Data System (ADS)

    Thibodeau, A. M.; Bergquist, B. A.; Kah, L. C.; Ono, S.; Ghosh, S.; Hazen, R. M.

    2013-12-01

    Mercury (Hg) is a photochemically active, redox-sensitive, chalcophilic metal with complex biogeochemistry that displays a wide range of mass-dependent (MDF) and mass-independent (MIF) stable isotopic fractionation. In the past decade, Hg isotopes have emerged as important tracers of both the sources and cycling of Hg in the modern environment. However, their utility as environmental proxies in ancient rocks remains largely unexplored. The potential of Hg isotopes to inform Precambrian environments derives from the observation that Hg isotopes with odd atomic mass numbers (199Hg and 201Hg) undergo large MIF by the magnetic isotope effect (MIE) and smaller MIF through the nuclear volume effect (NVE). Small MIF produced via NVE has been observed for numerous transformations and is characterized by MIF ratios (Δ199Hg/Δ201Hg) of about 1.6. Large Hg-MIF driven by MIE has been observed during photochemical transformations and is characterized by Δ199Hg/Δ201Hg ratios between 1 and 1.3. This MIF signal is sensitive to a range of environmental conditions, including the amount and type of solar radiation, the presence and type of complexing organic ligands, and the Hg/dissolved organic carbon (DOC) ratio. Thus, it is hoped that Hg-MIF signals may indirectly record changes in atmospheric composition or seawater chemistry if preserved in marine sedimentary records. Previous work has clearly demonstrated that Hg-MIF signals are preserved in Archean and Paleoproterozoic marine shales and massive sulfide deposits. Here, we present evidence that such signals are also preserved in marine shales of mid-Proterozoic age, including the ~1.3 Ga Sulky formation (Dismal Lakes Group, NW Arctic), the ~1.45 Ga Greyson Shale (Belt Basin, Montana), and the ~1.5 Ga Katalsy formation (Kypry Group, Eastern European Platform). We observe that the Greyson shale and shales within the Sulky formation yield negative Hg-MIF with Δ199Hg/Δ201Hg ratios close to 1 and that Kaltasy group sediments

  20. Accurate mass determination of short-lived isotopes by a tandem Penning-trap mass spectrometer

    SciTech Connect

    Stolzenberg, H.; Becker, S.; Bollen, G.; Kern, F.; Kluge, H.; Otto, T.; Savard, G.; Schweikhard, L. ); Audi, G. ); Moore, R.B. ); The ISOLDE Collaboration

    1990-12-17

    A mass spectrometer consisting of two Penning traps has been set up for short-lived isotopes at the on-line mass separator ISOLDE at CERN. The ion beam is collected and cooled in the first trap. After delivery to the second trap, high-accuracy direct mass measurements are made by determining the cyclotron frequency of the stored ions. Measurements have been performed for {sup 118}Cs--{sup 137}Cs. A resolving power of over 10{sup 6} and an accuracy of 1.4{times}10{sup {minus}7} have been achieved, corresponding to about 20 keV.

  1. High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer

    SciTech Connect

    Kellerbauer, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; Herlert, A.; Schweikhard, L.

    2007-10-15

    The atomic masses of the neutron-deficient radioactive rubidium isotopes {sup 74-77,79,80,83}Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from 1.6x10{sup -8} to 5.6x10{sup -8} were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide {sup 74}Rb, with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these measurements for a check of the conserved-vector-current hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa matrix is discussed.

  2. Theory analysis of mass spectra of long-chain isocyanates.

    PubMed

    Liu, Dongliang; Hao, Ce; Zhang, Hua; Qiao, Weihong; Li, Zongshi; Yu, Guanghui; Yan, Kelu; Guo, Yuliang; Cheng, Lvbo

    2008-07-01

    Electron impact mass spectra of four long-chain isocyanates, lauryl isocyanate, tetradecyl isocyanate, hexadecyl isocyanate and octadecyl isocyanate, were obtained with a GCT high-resolution time-of-flight mass spectrometer. The four isocyanates studied gave a common base peak of m/z 99, which suggested the formation of a stable six-membered ring structure to decentralize the positive charge. Quantum-mechanical energy calculation justified that the six-membered ring base peak had the lowest energy. The positive charge assigned during the fragmentation of the radical cation, and the relative intensity of the fragment ion peaks, were explained by quantum-mechanical calculations as well.

  3. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  4. Cooling of radioactive isotopes for Schottky mass spectrometry

    SciTech Connect

    Steck, M.; Beckert, K.; Eickhoff, H.; Franzke, B.; Nolden, F.; Reich, H.; Schlitt, B.; Winkler, T.

    1999-01-15

    Nuclear masses of radioactive isotopes can be determined by measurement of their revolution frequency relative to the revolution frequency of reference ions with well-known masses. The resolution of neighboring frequency lines and the accuracy of the mass measurement is dependent on the achievable minimum longitudinal momentum spread of the ion beam. Electron cooling allows an increase of the phase space density by several orders of magnitude. For high intensity beams Coulomb scattering in the dense ion beam limits the beam quality. For low intensity beams a regime exists in which the diffusion due to intrabeam scattering is not dominating any more. The minimum momentum spread {delta}p/p=5x10{sup -7} which is observed by Schottky noise analysis is considerably higher than the value expected from the longitudinal electron temperature. The measured frequency spread results from fluctuations of the magnetic field in the storage ring magnets. Systematic mass measurements have started and can be presently used for ions with half-lives of some ten seconds. For shorter-lived nuclei a stochastic precooling system is in preparation.

  5. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  6. Isotopic mass and alpha heating effects in TFTR DT plasmas

    SciTech Connect

    Budny, R.V.; Bell, M.G.; Mansfield, D.K.

    1994-09-01

    Sets of similar TFTR discharges with varying amounts of D and T are compared. The T content is altered by varying the mix of D and T NBI at approximately constant total NBI power. The total plasma current, toroidal field, central Z{sub eff}, and wall conditions are very similar in each set. The electron density profiles are approximately similar. The sets contain pairs of discharges with D-only and DT-NBI. Several sets also contain discharges with T-only NBI. The discharges are analyzed using the TRANSP plasma analysis code. Good agreement with measured parameters is achieved. Profiles are computed for the isotopic mass of the hydrogenic thermal species A, and for the hydrogenic thermal plus beam species A{sub tot}. Their volume averages increase approximately linearly as the fraction of T-NBI power increases, and they are slightly peaked for DT and T-only NBI discharges. The total energy and the total energy confinement time increase approximately linearly with A{sub tot} up to 30%. The beam fraction of the total energy at 0.5 sec of NBI remains relatively constant, {approx} 40--50% as A{sub tot} varies. The thermal ion fraction increases slightly, and the electron fraction decreases. The isotopic and alpha heating effects contribute in roughly equal amounts to the increase in central T{sub e}.

  7. Microbial mass-dependent fractionation of chromium isotopes

    USGS Publications Warehouse

    Sikora, E.R.; Johnson, T.M.; Bullen, T.D.

    2008-01-01

    Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 ??M Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 ??M, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways. ?? 2008 Elsevier Ltd.

  8. Microbial mass-dependent fractionation of chromium isotopes

    NASA Astrophysics Data System (ADS)

    Sikora, Eric R.; Johnson, Thomas M.; Bullen, Thomas D.

    2008-08-01

    Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 μM Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/ 52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 μM, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/ 52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways.

  9. Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry.

    PubMed

    Ireland, Trevor R

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  10. Isotope mass and charge effects in tokamak plasmas

    SciTech Connect

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-15

    The effect of primary ion species of differing charge and mass - specifically, deuterium, hydrogen, and helium - on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  11. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  12. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  13. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  14. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  15. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Merritt, Dawn A.; Hayes, J. M.; Marais, David J. Des

    1995-01-01

    Less than 15 min are required for the determination of δ13CPDB with a precision of 0.2‰ (1σ, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of δ on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of sample handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of <1‰.

  16. Asteroid mass estimation using Markov-Chain Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Siltala, Lauri; Granvik, Mikael

    2016-10-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid using astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations into the OpenOrb asteroid-orbit-computation software: the very rough 'marching' approximation, in which the asteroid orbits are fixed at a given epoch, reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-Chain Monte Carlo (MCMC) approach. We will introduce each of these algorithms with particular focus on the MCMC algorithm, and present example results for both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans, particularly in connection with ESA's Gaia mission.

  17. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  18. Optical spectroscopy using mass-separated beams: Nuclear properties of unstable indium and tin isotopes

    NASA Astrophysics Data System (ADS)

    Kuehl, T.; Kirchner, R.; Klepper, O.; Marx, D.; Dinger, U.; Eberz, J.; Huber, G.; Lochmann, H.; Menges, R.; Ulm, G.

    1987-05-01

    Collinear fast-beam laser-spectroscopy has been used to measure the hyperfine structure and isotope shift of several indium and tin isotopes. The related experimental techniques are described, including the preparation of mass-separated beams of neutron-deficient indium and tin isotopes at the GSI on-line mass separator following fusion-evaporation reactions. The deviation of the observed dependence of the charge radii upon the neutron number from the expected behaviour is briefly discussed.

  19. Using Punnett Squares to Facilitate Students' Understanding of Isotopic Distributions in Mass Spectrometry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2006-01-01

    The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…

  20. Non-canonical mass laws in equilibrium isotopic fractionations: Evidence from the vapor pressure isotope effect of SF6

    NASA Astrophysics Data System (ADS)

    Eiler, John; Cartigny, Pierre; Hofmann, Amy E.; Piasecki, Alison

    2013-04-01

    We report experimental observations of the vapor pressure isotope effect, including 33S/32S and 34S/32S ratios, for SF6 ice between 137 and 173 K. The temporal evolution of observed fractionations, mass-balance of reactants and products, and reversal of the fractionation at one temperature (155 K) are consistent with a subset of our experiments having reached or closely approached thermodynamic equilibrium. That equilibrium involves a reversed vapor pressure isotope effect; i.e., vapor is between 2‰ and 3‰ higher in 34S/32S than co-existing ice, with the difference increasing with decreasing temperature. At the explored temperatures, the apparent equilibrium fractionation of 33S/32S ratios is 0.551 ± 0.010 times that for 34S/32S ratios—higher than the canonical ratio expected for mass dependent thermodynamic fractionations (˜0.515). Two experiments examining exchange between adsorbed and vapor SF6 suggest the sorbate-vapor fractionation at 180-188 K is similar to that for ice-vapor at ˜150 K. In contrast, the liquid-vapor fractionation at 228-300 K is negligibly small (˜0.1‰ for 34S/32S; the mass law is ill defined due to the low amplitude of fractionation). We hypothesize that the observed vapor pressure isotope for SF6 ice and sorbate is controlled by commonly understood effects of isotopic substitution on vibrational energies of molecules, but leads to both an exotic mass law and reversed fractionation due to the competition between isotope effects on intramolecular vibrations, which promote heavy isotope enrichment in vapor, and isotope effects on intermolecular (lattice) vibrations, which promote heavy isotope enrichment in ice. This explanation implies that a variety of naturally important compounds having diverse modes of vibration (i.e., varying greatly in frequency and particularly, reduced mass) could potentially exhibit similarly non-canonical mass laws for S and O isotope fractionations. We examined this hypothesis using a density function

  1. Multi-isotopic signatures of organic and conventional Italian pasta along the production chain.

    PubMed

    Bontempo, L; Camin, F; Paolini, M; Micheloni, C; Laursen, K H

    2016-09-01

    The variability of stable isotope ratios (δ(2) H, δ(13) C, δ(15) N, δ(18) O and δ(34) S) along the production chain of pasta (durum wheat, flour and pasta) produced by using both conventional and organic farming systems in four Italian regions in 2 years was investigated. The aim was to evaluate if and how the farming system and geographical origin affect stable isotope ratios determined along the production chain. Irrespective of the processing technology, 65% of the samples were correctly classified according to the farming system and 98% were correctly classified regarding the geographical region. When considering both farming system and geographical region simultaneously, 80% of the samples were correctly classified. The measured isotope parameters were thus primarily affected by the geographical origin. In conclusion, it is expected that the use of these parameters will allow the development of analytical control procedures that can be used to check the geographical origin of Italian organic and conventional pasta and its raw materials. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Isotope mass and charge effects in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-01

    The effect of primary ion species of differing charge and mass—specifically, deuterium, hydrogen, and helium—on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  3. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  4. Non-mass-dependent oxygen isotope effect observed in water vapor from Alert, Canada

    NASA Astrophysics Data System (ADS)

    Lin, Ying

    Twenty-seven precipitation samples from Chicago, IL and northwest part of Indiana were collected from 2003 to 2005. Twenty-five water vapor samples were collected at Alert, Canada (82° 30'N, 62° 19'W) from 2002 to 2005 by Lin Huang and her co-workers. Seven ice core samples from Dasuopu glacier, Chinese Himalayas (28° 23' N, 85° 43'W) were drilled by Lonnie G. Thompson and prepared by Mary E. Davis. Sample of Standard Light Antarctic Precipitation (SLAP) is available in the laboratory. Water samples were reacted with bromine pentafluoride to produce oxygen, which were then purified through molecular sieve and measured by Delta E gas source mass spectrometer. A lambda(MDF) = 0.529 +/- 0.003 (2sigma) for water is determined from measurement of local precipitation samples. No significant oxygen isotopic anomaly is found in SLAP and in ice core samples from Dasuopu glacier, Chinese Himalayas. Delta17O(CLP), oxygen isotopic anomaly relative to Chicago local precipitation, of -0.009‰ to 0.167‰ with a mean of 0.076‰ and a 2sigma standard error of 0.016‰ is observed in water vapor from Alert, Canada. About half of these Delta17O(CLP) data exhibit statistically significant excesses. Stacked seasonal trend of Delta17O(CLP) observed at Alert, Canada points to a maximum in late spring when the intrusion of stratospheric air is at its maximum and the height of Arctic tropopause is the lowest. However, no significant oxygen isotopic anomalies are found in ice core samples from Dasuopu and in SLAP. The positive excesses in Delta17O(CLP) seen in tropospheric water vapor at Alert, Canada could be explained by the transfer of positive oxygen isotopic anomalies through O3 → NOx → HOx → H2O chain in the stratosphere, and the subsequent mixing of this anomalous stratospheric water with tropospheric water vapor at Alert, Canada where the tropopause is low and where downward mixing of stratospheric air with tropospheric air takes place. The positive oxygen isotopic

  5. Microscopic investigation of the low-lying magnetic dipole transitions in the odd-mass 155-169Ho isotopes

    NASA Astrophysics Data System (ADS)

    Tabar, E.; Kuliev, A.

    2017-08-01

    The low-lying magnetic dipole (M1) strength in deformed odd-mass 155-169Ho nuclei is investigated using rotational invariant (RI-) Quasiparticle Phonon Nuclear Model (QPNM). The gross features and fragmentation of the scissors mode in 165Ho is well reproduced by RI-QPNM calculations. The systematics of the low-energy M1 excitation in Ho isotopic chain is discussed with respect to summed strength. Besides, the results for M1 excitations in odd-mass Ho isotopes are compared with the systematics of the scissors mode in the neighbouring even-even nuclei. The obtained results generally match the systematic and trends typical for the scissors motion. In addition to the low-lying M1 excitations, a M1 giant resonance in the 7-15 MeV energy region is predicted for 155-169Ho nuclei in the present study.

  6. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    PubMed

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  7. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  8. Wave Propagation In Strongly Nonlinear Two-Mass Chains

    NASA Astrophysics Data System (ADS)

    Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.

    2010-05-01

    We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.

  9. High-accuracy mass measurements of neutron-rich Kr isotopes

    SciTech Connect

    Delahaye, P.; Kellerbauer, A.; Audi, G.; Lunney, D.; Blaum, K.; George, S.; Carrel, F.; Herfurth, F.; Yazidjian, C.; Herlert, A.; Schweikhard, L.; Kluge, H.-J.

    2006-09-15

    The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  10. Fingerprinting Northeast Atlantic water masses using neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Dubois-Dauphin, Quentin; Colin, Christophe; Bonneau, Lucile; Montagna, Paolo; Wu, Qiong; Van Rooij, David; Reverdin, Gilles; Douville, Eric; Thil, François; Waldner, Astrid; Frank, Norbert

    2017-08-01

    Dissolved neodymium (Nd) isotopic composition (expressed as εNd) has been analysed for 82 seawater samples collected from 13 stations stretching from the Alboran Sea to the Iceland Basin. The distribution of the εNd values of water masses was thus investigated for the first time along the western European margin in order to explore whether the water masses flowing in the eastern subpolar and subtropical Atlantic reveal distinct isotopic patterns. The Modified Atlantic Water (MAW) in the Alboran Sea displays εNd values (between -9.2 ± 0.2 and -8.9 ± 0.2) that are significantly more radiogenic than those reported in previous studies (-10.8 ± 0.2 to -9.7 ± 0.2), suggesting temporal variations in the Nd isotopic composition of the water that enters the Mediterranean Sea from the Strait of Gibraltar. The εNd value of the underlying modified Winter Intermediate Water (WIW) has been established for the first time (-9.8 ± 0.3) and is compatible with a Nd signature acquired from the sinking of MAW in the northwestern Mediterranean Sea. Within the Gulf of Cádiz, southern Mediterranean Sea Water (MSW) (-10.6 ± 0.2) differs slightly from the northern MSW (-9.9 ± 0.4) owing to a significant contribution of modified East Antarctic Intermediate Water (EAAIW) (-10.9 ± 0.2). In the northeast Atlantic, the North Atlantic Current surface water located in the inter-gyre region (north of 46°N) displays εNd values of between -14.0 ± 0.3 and -15.1 ± 0.3, reflecting the subpolar gyre signature. Along the western European margin, εNd values of surface water decrease toward the north (from -10.4 ± 1.6 to -13.7 ± 1.0) in agreement with the gradual mixing between subtropical and subpolar water. At intermediate depth, εNd values decrease from -9.9 ± 0.4 within the Gulf of Cádiz to -12.1 ± 0.2 within the Porcupine Seabight, indicating a strong dilution of the MSW with subpolar water. Within the Rockall Trough and the Iceland Basin, the more negative εNd values at mid

  11. Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies

    NASA Astrophysics Data System (ADS)

    Robertson, A. K. H.; Ramogida, C. F.; Rodríguez-Rodríguez, C.; Blinder, Stephan; Kunz, Peter; Sossi, Vesna; Schaffer, Paul

    2017-06-01

    Effective use of the {}225Ac decay chain in targeted internal radioimmunotherapy requires the retention of both {}225Ac and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the {}225Ac decay chain: {}221Fr (218 keV) and {}213Bi (440 keV). Image quality phantoms were used to assess the performance of two collimators for simultaneous {}221Fr and {}213Bi imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to simultaneously image dynamic {}221Fr and {}213Bi activity distributions, a phantom containing a {}213Bi generator from {}225Ac was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Values consistent with activity concentrations determined independently via gamma spectroscopy were observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both {}221Fr and {}213Bi images. With the UHS collimator, no rods were resolvable in {}213Bi images and only rods  ⩾1.3 mm were resolved in {}221Fr images. After eluting the {}213Bi generator, images accurately visualized the reestablishment of transient equilibrium of the {}225Ac decay chain. The feasibility of evaluating the pharmacokinetics of the {}225Ac decay chain in vivo has been demonstrated. This presented method requires the use of a high-performance high-energy collimator.

  12. The physical chemistry of mass-independent isotope effects and their observation in nature.

    PubMed

    Thiemens, Mark H; Chakraborty, Subrata; Dominguez, Gerardo

    2012-01-01

    Historically, the physical chemistry of isotope effects and precise measurements in samples from nature have provided information on processes that could not have been obtained otherwise. With the discovery of a mass-independent isotopic fractionation during the formation of ozone, a new physical chemical basis for isotope effects required development. Combined theoretical and experimental developments have broadened this understanding and extended the range of chemical systems where these unique effects occur. Simultaneously, the application of mass-independent isotopic measurements to an extensive range of both terrestrial and extraterrestrial systems has furthered the understanding of events such as solar system origin and evolution and planetary atmospheric chemistry, present and past.

  13. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  14. Stable nitrogen isotope ratios and accumulation of various HOCs in northern Baltic aquatic food chains

    SciTech Connect

    Broman, D.; Axelman, J.; Bergqvist, P.A.; Naef, C.; Rolff, C.; Zebuehr, Y.

    1995-12-31

    Ratios of naturally occurring stable isotopes of nitrogen ({delta}{sup 15}N) can be used to numerically classify trophic levels of organisms in food chains. By combining analyses results of various HOCs (e.g. PCDD/Fs, PCBs, DDTs, HCHs and some other pesticides) the biomagnification of these substances can be quantitatively estimated. In this paper different pelagic and benthic northern Baltic food chains were studied. The {delta}{sup 15}N-data gave food chain descriptions qualitatively consistent with previous conceptions of trophic arrangements in the food chains. The different HOCs concentrations were plotted versus the {delta}{sup 15}N-values for the different trophic levels and an exponential model of the form e{sup (A+B*{delta}N)} was fitted to the data. The estimates of the constant B in the model allows for an estimation of a biomagnification power (B) of different singular, or groups of, contaminants. A B-value around zero indicates that a substance is flowing through the food chain without being magnified, whereas a value > 0 indicates that a substance is biomagnified. Negative B-values indicate that a substance is not taken up or is metabolized. The A-term of the expression is only a scaling factor depending on the background level of the contaminant.

  15. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  16. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  17. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data

    NASA Astrophysics Data System (ADS)

    Pyle, L.; Hockaday, W. C.; Boutton, T. W.; Zygourakis, K.; Kinney, T.; Masiello, C. A.

    2014-12-01

    Charcoal plays a significant role in the long-term carbon cycle and its use as a soil amendment is becoming a viable carbon sequestration strategy (biochar). One challenge in this research area has been comparing results between studies in part due to the diversity of lab and field production conditions. Although the highest treatment temperature (HTT) is often used to describe pyrolysis conditions, several studies have shown that length of time at the highest temperature can also cause changes to the physicochemical qualities of charcoal and ignoring this effect may introduce inter-comparison problems. Addressing this issue becomes especially important in the discussion of optimizing biochar for soil remediation and carbon sequestration, and in discussions of charcoal use in reconstructing past fire regimes, as increasing time at temperature may cause changes in charcoal properties similar to the changes caused by increasing HTT. Here we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in this property with pyrolysis temperature and reaction duration. We found two types of responses to CI: either a linear or a threshold relationship. We show that a threshold exists where %C, %N and δ15N begin exhibiting large changes, and this CI threshold co-occurred with an increase in charcoal aromaticity. Mass yield decreased linearly with charring intensity and carbon isotopes did not change from original biomass values in our controlled laboratory experiments. Analysis of these data shows that pyrolysis parameters should be defined in the literature as a combination of temperature and duration conditions, and that biomass that has undergone pyrolysis may be influencing soil organic nitrogen. Additionally, the lack of alteration in carbon isotopes across our matrix supports the efficacy of using pyrolyzed material for archaeological reconstructions.

  18. A timeline of stable isotopes and mass spectrometry in the life sciences.

    PubMed

    Lehmann, Wolf D

    2017-01-01

    This review retraces the role of stable isotopes and mass spectrometry in the life sciences. The timeline is divided into four segments covering the years 1920-1950, 1950-1980, 1980-2000, and 2000 until today. For each period methodic progress and typical applications are discussed. Application of stable isotopes is driven by improvements of mass spectrometry, chromatography, and related fields in sensitivity, mass accuracy, structural specificity, complex sample handling ability, data output, and data evaluation. We currently experience the vision of omics-type analyses, that is, the comprehensive identification and quantification of a complete compound class within one or a few analytical runs. This development is driven by stable isotopes without competition by radioisotopes. In metabolic studies as classic field of isotopic tracer experiments, stable isotopes and radioisotopes were competing solutions, with stable isotopes as the long-term junior partner. Since the 1990s the number of metabolic studies with radioisotopes decreases, whereas stable isotope studies retain their slow but stable upward tendency. Unique fields of stable isotopes are metabolic tests in newborns, metabolic experiments in healthy controls, newborn screening for inborn errors, quantification of drugs and drug metabolites in doping control, natural isotope fractionation in geology, ecology, food authentication, or doping control, and more recently the field of quantitative omics-type analyses. There, cells or whole organisms are systematically labeled with stable isotopes to study proteomic differences or specific responses to stimuli or genetic manipulation. The duo of stable isotopes and mass spectrometry will probably continue to grow in the life sciences, since it delivers reference-quality quantitative data with molecular specificity, often combined with informative isotope effects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:58-85, 2017. © 2016 Wiley Periodicals, Inc.

  19. Nagel scaling, relaxation, and universality in the kinetic ising model on an alternating isotopic chain

    PubMed

    Goncalves; Lopez De Haro M; Taguena-Martinez; Stinchcombe

    2000-02-14

    The dynamic critical exponent and the frequency and wave-vector dependent susceptibility of the kinetic Ising model on an alternating isotopic chain with Glauber dynamics are examined. The analysis provides a connection between a microscopic model and the Nagel scaling curve originally proposed to describe dielectric susceptibility measurements of several glass-forming liquids. While support is given to the hypothesis relating the Nagel scaling to multiple relaxation processes, it is also found that the scaling function may exhibit plateau regions and does not hold for all temperatures.

  20. Forensic applications of isotope ratio mass spectrometry--a review.

    PubMed

    Benson, Sarah; Lennard, Chris; Maynard, Philip; Roux, Claude

    2006-02-10

    The key role of a forensic scientist is to assist in determining whether a crime has been committed, and if so, assist in the identification of the offender. Many people hold the belief that a particular item can be conclusively linked to a specific person, place or object. Unfortunately, this is often not achievable in forensic science. In performing their role, scientists develop and test hypotheses. The significance of those hypotheses that cannot be rejected upon completion of all available examinations/analyses is then evaluated. Although one can generally identify the substances present using available techniques, it is generally not possible to distinguish one source of the same substance from another. In such circumstances, although a particular hypothesis cannot be rejected, it cannot be conclusively proven, i.e. the samples could still have originated from different sources. This limitation of not being able to distinguish between sources currently extends to the analysis of other forensic samples including, but not limited to, ignitable liquids, paints, adhesives, textile fibres, plastics, and illicit drugs. Stable isotope ratio mass spectrometry (IRMS) is an additional technique that can be utilised to test a given hypothesis. This technique shows the potential to be able to individualise a range of materials of forensic interest. This paper provides a brief description of the technique, followed by a review of the various applications of IRMS in different scientific fields. The focus of this summary is on forensic applications of IRMS, in particular the analysis of explosives, ignitable liquids and illicit drugs.

  1. Lightning and Mass Independent Oxygen Isotopic Fractionation in Nebular Silicates

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Lightning has long been postulated as the agent of Chondru|e formation in the solar nebula, but it may have an additional role to play as well. Lightning bolts of almost any scale will both vaporize dust and liberate oxygen atoms that will then interact with both nebular gases as well as the refractory silicate vapor as it re-condenses. Such processes should result in the addition of the heavy oxygen isotopes to the growing silicate grains while the light oxygen-16 becomes part of the gas phase water. This process will proceed to some extent throughout the history of any turbulent nebula and will result in the gradual increase of O-16 in the gas phase and in a much larger relative increase in the O-17 and O-18 content of the nebular dust. Laboratory experiments have demonstrated the production of such "heavy oxygen enriched", non-mass-dependently-fractionated dust grains in a high voltage discharge in a hydrogen rich gas containing small quantities of silane, pentacarbonyl iron and oxygen.

  2. Isotope Dilution Mass Spectrometry for the Quantification of Sulfane Sulfurs

    PubMed Central

    Liu, Chunrong; Zhang, Faya; Munske, Gerhard; Zhang, Hui

    2014-01-01

    Sulfane sulfurs are one type of important reactive sulfur species. These molecules have unique reactivity that can attach reversibly to other sulfur atoms and exhibit regulatory effects in diverse biological systems. Recent studies have suggested that sulfane sulfurs are involved in signal transduction processes regulated by hydrogen sulfide (H2S). Accurate and reliable measurements of sulfane sulfurs in biological samples are thus needed to reveal their production and mechanisms of actions. Herein we report a convenient and accurate method for the determination of sulfane sulfurs concentrations. The method employs a triphenylphosphine derivative (P2) to capture sulfane sulfurs as a stable phosphine sulphide product PS2. The concentration of PS2 was then determined by isotope dilution mass spectrometry, using a 13C3-labelled phosphine sulfide PS1 as the internal standard. The specificity and efficiency of the method were proved by model reactions. It was also applied in the measurement of sulfane sulfurs in mice tissues including brain, kidney, lung, liver, heart, spleen, and blood. PMID:25152234

  3. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    PubMed

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  4. Methods and limitations of 'clumped' CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry.

    PubMed

    Huntington, K W; Eiler, J M; Affek, H P; Guo, W; Bonifacie, M; Yeung, L Y; Thiagarajan, N; Passey, B; Tripati, A; Daëron, M; Came, R

    2009-09-01

    The geochemistry of multiply substituted isotopologues ('clumped-isotope' geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. (13)C(18)O(16)O, (18)O(18)O, (15)N(2), (13)C(18)O(16)O(2) (2-)). Such species form the basis of carbonate clumped-isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped-isotope analysis by dual-inlet gas-source isotope ratio mass spectrometry (IRMS). We demonstrate long-term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 10(12) ohm resistor on three Thermo-Finnigan 253 IRMS systems. Based on the analyses of heated CO(2) gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO(2) molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of approximately 0.01 per thousand are routinely achieved for measurements of the mass-47 anomaly (a measure mostly of the abundance anomaly of (13)C-(18)O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is approximately 5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically approximately 10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped-isotope thermometry of +/-1.2 degrees C and +/-2.4 degrees C, respectively. 2009 John Wiley & Sons, Ltd.

  5. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  6. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  7. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  8. Trace determination and isotopic analysis of the elements in life sciences by mass spectrometry.

    PubMed

    Heumann, K G

    1985-09-01

    The main ionization methods in a mass spectrometer for isotope ratio determinations of the elements are discussed in this review. These methods are thermal ionization, spark source, electron impact, inductively coupled plasma and field desorption. As concerns thermal ionization, electron impact and field desorption, a survey of the possibilities of isotope analyses in the periodic table of the elements is given. Besides kinetic studies, trace element determination by isotope dilution technique is the main application for isotope ratio measurements of the elements. The definitive method, isotope dilution mass spectrometry, is discussed as a potential tool for achieving accurate and precise trace analyses. Using field desorption mass spectrometry, one example of calcium kinetics in man and one example of thallium trace determination in an animal tissue are given. Other metal trace analyses with the isotope dilution technique are presented for biological and medical samples using positive thermal ionization mass spectrometry. Negative thermal ions are formed for the mass spectrometric analysis of non-metals and non-metal compounds in food samples, e.g. for iodine and nitrate in milk powder. Preliminary results with the isotope dilution technique are presented for a new quadrupole thermal ionization mass spectrometer which is a low-cost instrument and can be easily handled.

  9. Preparation of the anapole moment measurement in a chain of isotopes

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Hood, Jonathan; Orozco, Luis

    2010-02-01

    We present the current status of the experimental effort towards the measurement of the anapole moment in different isotopes of francium. The anapole is a parity violating, time reversal conserving nuclear moment that arises from the weak interaction among nucleons, and should be sensitive to the changes in the nuclear structure configuration among the isotopes. The anapole is a unique probe of the weak interaction in the presence of the strong interaction. The system is currently being tested with rubidium and we have analyzed the sensitivity to measurements with a chain of Rb isotopes. Our experimental scheme involves a collection of cold atoms in a blue-detuned dipole trap located at the anti-node of a microwave cavity. The standing wave would drive a parity forbidden E1 transition between hyperfine ground states, interfering with an allowed transition. The rate of transitions depends on the positive or negative handedness of the apparatus and the measurement of their difference is proportional to the anapole moment. The experiment will use of the ISAC radioactive beam facility at TRIUMF. )

  10. Extension of the nuclear mass surface for neutron-rich isotopes of argon through iron

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary Paul

    Nuclear mass measurement has maintained an important position in the field of nuclear physics for a little over a century. Nuclear masses provide key evidence of the structural transformation of nuclei away from the valley of beta-stability and are essential input for many simulations of extreme astrophysical environments. However, obtaining these masses is often a challenging endeavor due to the low production cross sections and short half-lives of the exotic nuclei which are of particular interest. To this end, the time-of-flight mass measurement technique has been developed to obtain the masses of several nuclei at once to precisions of 1 part in 105 with virtually no half-life limitation. This dissertation contains a description of the experiment, analysis, and results of the second implementation of the time-of-flight nuclear mass measurement technique at the National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn, and 69Fe were measured for the first time. These newly obtained masses were applied to outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant scientific advances. The measurement results for 48Ar and 49Ar, which were found to have atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively, provide strong evidence for the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67 Mn, and 69Fe, which were found to have atomic mass excesses of -33.48(44) MeV, -34.09(62) MeV, and -39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the N = 40 subshell. In addition, we found 64Cr is substantially less bound than predicted by global mass models that are commonly used in nuclear astrophysics simulations, resulting in a significant reduction in the

  11. Stable isotope markers differentiate between mass-reared and wild Lepidoptera in sterile insect technique programs

    USDA-ARS?s Scientific Manuscript database

    In this comprehensive study a number of Sterile Insect Technique (SIT) target moth species were identified and the feasibility was assessed of using isotope signatures to distinguish mass reared from wild moth species as a marking tool. Large natural differences in the isotopic signatures of commer...

  12. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  13. Discrete breathers in a mass-in-mass chain with Hertzian local resonators.

    PubMed

    Wallen, S P; Lee, J; Mei, D; Chong, C; Kevrekidis, P G; Boechler, N

    2017-02-01

    We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.

  14. Discrete breathers in a mass-in-mass chain with Hertzian local resonators

    NASA Astrophysics Data System (ADS)

    Wallen, S. P.; Lee, J.; Mei, D.; Chong, C.; Kevrekidis, P. G.; Boechler, N.

    2017-02-01

    We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.

  15. Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)—Nanoautography with stable isotope tracers

    NASA Astrophysics Data System (ADS)

    McMahon, Greg; Glassner, Brian J.; Lechene, Claude P.

    2006-07-01

    We describe some technical aspects of the application of multi-isotope imaging mass spectrometry (MIMS) to biological research, particularly the use of isotopic tags to localize and measure their incorporation into intracellular compartments. We touch on sample preparation, on image formation, on drift correction and on extraction of quantitative data from isotope ratio imaging. We insist on the wide variety of sample types that can be used, ranging from whole cells prepared directly on Si supports, to thin sections of cells and tissues on Si supports, to ultrathin TEM sections on carbon-coated grid. We attempt to dispel the myth of difficulties in sample preparation, which we view as a needless deterrent to the application of MIMS to the general biological community. We present protocols for the extraction of isotope ratio data from mass images. We illustrate the benefits of using sequential image plane acquisition followed by the application of an autocorrelation algorithm (nanotracking) to remove the effects of specimen drift. We insist on the advantages to display the isotope ratios as hue saturation intensity images.

  16. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  17. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry.

    PubMed

    Betti, M; Rasmussen, G; Koch, L

    1996-07-01

    A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at microg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques.

  18. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  19. On-line measurement of intramolecular carbon isotope distribution of acetic acid by continuous-flow isotope ratio mass spectrometry.

    PubMed

    Yamada, Keita; Tanaka, Misato; Nakagawa, Fumiko; Yoshida, Naohiro

    2002-01-01

    Molecular and intramolecular carbon isotope measurements of acetic acid present in natural environments have been performed by off-line procedures. The off-line method is complicated and time-consuming and requires micromolar to millimolar amounts of sample. This limits geochemical isotopic studies, especially at the intramolecular level, on acetic acid present in natural samples. Here, we examine an on-line measurement of intramolecular carbon isotope distribution of acetic acid using continuous-flow isotope ratio mass spectrometry (CF-IRMS) coupled with an on-line pyrolysis system. This is achieved by measurement of the respective carbon isotope ratios of CH4 and CO2 produced by on-line pyrolysis of acetic acid. Results for authentic standards of pure acetic acid demonstrated the practicality of this on-line method, although the carbon isotope ratio of the methyl group could not be determined directly. The precision of the carbon isotope measurements was 0.4 per thousand (1sigma). The carbon isotope distribution determined by the on-line method was identical to that determined by the conventional off-line method within analytical error. The advantages of the on-line method compared with the conventional off-line method are that it is less laborious, requires less analytical time (less than one hour per sample) and, most importantly, uses smaller sample sizes (ca. 10 nanomole). An application of this on-line method to natural geochemical samples will provide an insight into the geochemical cycle of acetic acid. Copyright 2002 John Wiley & Sons, Ltd.

  20. Mass resolution optimization in a large isotopic composition experiment

    NASA Technical Reports Server (NTRS)

    Esposito, J. A.; Acharya, B. S.; Balasubrahmanyan, V. K.; Mauger, B. G.; Ormes, J. F.; Streitmatter, R. E.; Heinrich, W.; Henkel, M.; Simon, M.; Tittel, H. O.

    1985-01-01

    A range-energy experiment was built to measure the isotopic composition of galactic cosmic rays. An enrichment of neutron rich isotopes, 22Ne and (25Mg + 26Mg) in particular, when compared to the solar composition is shown. A rich statistics measurement of these and other neutron-rich isotopes in the galactic flux yields information to the source of these particles. A computer simulation of the experiment was used to estimate the instrument resolution. The Cherenkov detector light collection efficiency, was calculated. Absorption of light in the radiator was considered to determine the optimum Cherenkov medium thickness. The experiment will determine the isotopic composition for the elements neon through argon in the energy range 300 to 800 MeV per nucleon.

  1. Mass transfer and carbon isotope evolution in natural water systems

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, L.N.; Pearson, F.J.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  2. Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Gélabert, Alexandre; Cartigny, Pierre; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François

    2016-05-01

    Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in 57Fe during magnetite biomineralization but not in even Fe isotopes (54Fe, 56Fe, and 58Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record.

  3. Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria.

    PubMed

    Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Gélabert, Alexandre; Cartigny, Pierre; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François

    2016-05-06

    Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in (57)Fe during magnetite biomineralization but not in even Fe isotopes ((54)Fe, (56)Fe, and (58)Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record. Copyright © 2016, American Association for the Advancement of Science.

  4. Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies.

    PubMed

    Robertson, Andrew K H; Ramogida, Caterina; Rodriguez-Rodriguez, Cristina; Blinder, Stephan; Kunz, Peter; Sossi, Vesna; Schaffer, Paul

    2017-03-31

    Purpose: Effective use of the 225Ac decay chain in targeted internal radioimmunotherapy requires the retention of both 225Ac and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the 225Ac decay chain: 221Fr (218 keV) and 213Bi (440 keV). Methods: Image quality phantoms were used to assess the performance of two collimators for simultaneous 221Fr and 213Bi imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to image dynamic 221Fr and 213Bi activity distributions, a phantom containing a 213Bi generator from 225Ac was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Results: Values consistent with activity concentrations determined independently via gamma spectroscopy observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both 221Fr and 213Bi images. With the UHS collimator, no rods were resolvable in 213Bi images and only rods ≥1.3 mm were resolved in 221Fr images. After eluting the 213Bi generator, images accurately visualized the reestablishment of transient equilibrium of the 225Ac decay chain. Conclusion: A novel imaging method with potential to evaluate the pharmacokinetics of the 225

  5. Measurement of stable isotopic enrichment and concentration of long-chain fatty acyl-carnitines in tissue by HPLC-MS.

    PubMed

    Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R

    2006-02-01

    We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.

  6. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    SciTech Connect

    Cole, Amanda S.; Boering, Kristie A.

    2006-11-14

    In addition to the anomalous {sup 17}O and {sup 18}O isotope effects in the three-body ozone formation reaction O+O{sub 2}+M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in {sup 17}O and {sup 18}O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O({sup 1}D), O({sup 3}P), O{sub 2}({sup 1}{delta}), and O{sub 2}({sup 1}{sigma}) is needed through experiments we suggest here.

  7. Competition between pairing correlations and deformation from the odd-even mass staggering of francium and radium isotopes

    NASA Astrophysics Data System (ADS)

    Kreim, S.; Beck, D.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Cocolios, T. E.; Gottberg, A.; Herfurth, F.; Kowalska, M.; Litvinov, Yu. A.; Lunney, D.; Manea, V.; Mendonca, T. M.; Naimi, S.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Stora, Th.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2014-08-01

    The masses of Fr222,224,226-233 and Ra233,234 have been determined with the Penning-trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN, including the previously unknown mass and half-life of Fr233. We study the evolution of the odd-even staggering of binding energies along the francium and radium isotopic chains and of its lowest-order estimator, Δ3(N). An enhancement of the staggering of Δ3(N) is observed towards neutron number N =146, which points to contributions beyond pairing correlations. These contributions are investigated in the Hartree-Fock and Hartree-Fock-Bogoliubov approaches, emphasizing the connections to the single-particle level density and nuclear deformation.

  8. Mass measurements of short-lived isotopes in a penning trap

    SciTech Connect

    Kern, F.; Egelhof, P.; Hilberath, T.; Kalinowsky, H.; Kluge, H.h.; Kunz, K.; Schweikhard, L.; Stolzenberg, H.; Moore, R.B.; Audi, G.; and others

    1987-12-10

    A mass spectrometer has been set up at the on-line isotope separator ISOLDE at CERN/Geneva. Mass-separated radioactive ions are stored in a Penning trap. Their mass is determined by a measurement of the cyclotron frequency in the magnetic field of a superconducting magnet. A resolving power of up to 300.000 and a precision of some 10 keV were determined in case of mass measurements of neutron-deficient RB and Cs isotopes. The resonance of the isobars /sup 88/Sr and /sup 88/Rb were clearly resolved and evidence was obtained for an isomer in /sup 122/Cs.

  9. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  10. Determination of carbon isotopic measurement conditions for ceramide in skin using gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Haraguchi, Hiroyuki; Yamada, Keita; Miyashita, Rumiko; Aida, Kazuhiko; Ohnishi, Masao; Gilbert, Alexis; Yoshida, Naohiro

    2014-01-01

    The ceramide (Cer) content of skin and glucosylceramide (GlcCer) intake affect skin moisture conditions, but their mutual relation in skin remains unclear. For clarification of that mutual relation, carbon stable isotopes ((12)C and (13)C) are useful as a tracer. However, carbon isotopic measurement has not been applied to the study of clarifying their skin moisturizing effects. Therefore, we used gas chromatography / combustion / isotope ratio mass spectrometry (GC-C-IRMS) to ascertain the appropriate conditions for carbon isotopic measurements using synthesized Cer (SCer) in substitution for very low concentrations of Cer in skin. SCer was derivatized to trimethylsilylated SCer (TMS-SCer) quantitatively using N-trimethylsilylimidazole (TMSI) depending on the amount of SCer. The derivatization rates were 75-85%. Excess TMSI was removed using three cycles of hexane-water distribution. Under these conditions, carbon isotopic measurements of TMS-SCer conducted using GC-C-IRMS showed high repeatability and good inter-day variation (S.D. < 0.3‰). The carbon stable isotope ratio value (δ(13)C) of SCer calculated using a mass balance equation was compared with δ(13)C of underivatized SCer, which was regarded as the actual δ(13)C of SCer obtained using sealed tube combustion method. The difference between the calculated δ(13)C of SCer and δ(13)C of the underivatized SCer depended on the TMSI reagent supplier and on the number of hydroxyl groups to be derivatized in SCer. For accurate δ(13)C of Cer in skin using GC-C-IRMS, the measured δ(13)C of a target TMS-Cer must be calculated using a correction factor representing the difference in δ(13)C of underivatized standard SCer from that of TMS-standard SCer having a structure resembling that of the target Cer in skin. In addition, we show that the same lot of TMSI reagent from a specific supplier must be used throughout the experiments.

  11. A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Sachenko, V. D.; Gall, L. N.; Zarutskii, I. V.; Gall, N. R.

    2013-05-01

    A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings based on the carbon-13 isotope breath test has been designed and constructed. Important stages of the work included (i) calculating a low-aberration mass analyzer, (ii) manufacturing and testing special gas inlet system, and (iii) creating a small-size collector of ions. The proposed instrument ensures 13C/12C isotopic ratio measurement to within 1.7‰ (pro mille) accuracy, which corresponds to requirements for a diagnostic tool. Preliminary medical testing showed that the mass spectrometer is applicable to practical diagnostics. The instrument is also capable of measuring isotopic ratios of other light elements, including N, O, B (for BF2+ ions), Ar, Cl, and S.

  12. Leaf waxes in riparian trees: hydrogen isotopes, concentrations, and chain-length patterns

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Ehleringer, J.; Doman, C.; Khachaturyan, S.

    2011-12-01

    The stable hydrogen isotope ratios of epicuticular leaf wax n-alkanes record aspects of a plant's ecophysiological conditions. However, it remains unclear as to whether n-alkane hydrogen isotope values (δ2H) directly reflect environmental water (source water or tissue water) or environmental water in combination with a biochemical fractionation. Furthermore, it is uncertain if leaf n-alkane δ2H values reflect a single time interval during leaf expansion or if n-alkane δ2H values record the combination of inputs throughout the entire lifespan of a leaf. These different possibilities will influence how leaf wax biomarkers are interpreted in both ecological and environmental reconstruction contexts. To address these issues, we sampled leaves/buds, stems, and water sources of five common western U.S. riparian species under natural field conditions throughout the growing season. Riparian species were selected because the input water source is most likely to be nearly constant through the growing season. We found that species in this study demonstrated marked and systematic variations in n-alkane concentration, average chain length, and δ2H values. Intraspecific patterns were consistent: average chain lengths and δ2H values increased from bud opening through full leaf expansion with little variation during the remainder of the sampling interval, while leaf-wax concentration as a fraction of total biomass increased throughout the growing season. These data imply that leaf-wax δ2H values reflect multiple periods of wax growth and that the leaf wax is continually produced throughout a leaf's lifespan.

  13. Molybdenum isotopes and mass balance during early stages of pedogenesis

    NASA Astrophysics Data System (ADS)

    King, E. K.; Thompson, A.; Chadwick, O.; Pett-Ridge, J. C.

    2015-12-01

    Molybdenum (Mo) is an essential micronutrient and redox sensitive trace metal that has the potential to be a tracer of pedogenic processes. Globally, riverine δ98Mo values are elevated relative to bedrock, suggesting weathering processes preferentially retain light Mo isotopes, however, the mechanisms governing this process in soils are poorly understood. To elucidate these mechanisms, we studied seven soil profiles developed on a 10ka lava flow in Hawaii receiving 600 to 2000 mm mean annual precipitation. We assessed Mo abundance and isotopic composition as a function of soil organic matter (OM) content, iron (Fe) and manganese (Mn) (oxyhydr)oxide abundance, and Mo loss/gain. We found net accumulation of Mo across all sites (+48% to +289%) that was positively correlated with increasing precipitation, OM content, and Fe and Mn (oxyhydr)oxide content and inversely correlated with soil depth. Thus, the highest Mo gains are in the wettest surface soil horizons, which also have high OM content. Selective extractions of surface soils indicate that 13% to 40% of mobile Mo is predominately associated with OM; whereas Mo associated with Fe and Mn (oxyhydr)oxides is an order of magnitude lower (0.6% to 6%). The isotopic composition of soil Mo deviated from parent material values (δ98Mo ~-0.15‰). Mo isotopic values were lightest at the dry sites (δ98Mo values of -0.29‰ to -0.63‰) and become heavy with increasing precipitation (δ98Mo -0.2‰ to +0.3‰). At all sites, the surface horizons were isotopically heavy relative to the subsurface horizons, and samples with the heaviest δ98Mo values corresponded with horizons that have gained Mo and have higher OM content. Subsurface Mo isotopic values are lighter than bedrock isotopic composition and may reflect associations with Fe and Mn (oxyhydr)oxides. In order further to constrain Mo fluxes into and out of the soil system, we measured Mo isotopes in local rainwater, groundwater, and vegetation. Based on this data, we

  14. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    SciTech Connect

    Janecky, D.R.

    1988-09-21

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs.

  15. Stable strontium mass dependent isotopic fractionation in authigenic continental barite

    NASA Astrophysics Data System (ADS)

    Griffith, E. M.; Widanagamage, I. H.; Scher, H. D.; Senko, J.

    2013-12-01

    The use of stable Sr-isotopic measurements (δ88Sr) of barite precipitates from terrestrial environments will be evaluated as a new geochemical proxy to identify mode of barite mineralization for use in earth science applications including understanding similar ancient barite deposits. Stable Sr-isotope measurements of barite and waters from three warm artesian springs in the continental United States where barite precipitates under a variety of conditions (e.g., temperatures, saturation states, microbial communities) will be presented. Initial results show a large range of fractionation factors during barite precipitation from aqueous solution between and within some of the field sites of >0.6 permil. The waters range from δ88Sr = -0.04 to +0.50 permil. The solid barite precipitates that have been separated from the bulk sediment using a modified sequential leaching procedure range from δ88Sr = -0.43 to +0.16 permil. Average 2σ for the isotopic analyses is 0.05 permil, similar to previously published estimates for error on this measurement by MC-ICPMS. Barite is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Establishing the controlling parameters of stable Sr-isotopic fractionation in barite is important as barite may be an ideal vehicle to address critical questions in the earth sciences, including early earth biogeochemistry.

  16. In-Vivo Zinc Metabolism by Isotope Ratio Mass Spectrometry

    USDA-ARS?s Scientific Manuscript database

    The purpose of this chapter is to highlight some of the methodological and technical issues surrounding the in vivo use of stable isotopes and to provide examples of how such studies have advanced our knowledge of human zinc metabolism. The advantages and disadvantages of the currently available in...

  17. Verification of Nd Isotopes as a Water Mass Tracer Based on Isotopic Evaluation of Cretaceous Detrital Residues from Demerara Rise

    NASA Astrophysics Data System (ADS)

    Pugh, E.; Martin, E. E.; MacLeod, K. G.

    2011-12-01

    The Late Cretaceous was one of the most recent major greenhouse intervals. Numerous studies focus on temperature trends and CO2 concentrations during this event, but little is known about ocean circulation and structure at that time. Recently published Nd isotopes of fossil fish teeth/debris recovered from Ocean Drilling Program (ODP) sites on Demerara Rise off Suriname, South America highlight the presence of unusual, nonradiogenic background ɛNd values (-14 to -17) that span much of the record from the Cenomanian through Santonian and continue in the Campanian and Maastrichtian following an ~10 my hiatus. This value is less radiogenic than any major water mass documented in the Cretaceous or today and is interrupted by a dramatic positive excursion of 8 ɛNd units during Ocean Anoxic Event 2 (OAE2, ~94 my). The nonradiogenic ɛNd signal has been interpreted to represent local formation of a warm, saline bottom water mass [Demerara Bottom Water (DBW)] on the proximal Guyana Shield, while the positive ɛNd excursion has been attributed to a temporary shutdown of DBW production or enhanced input of a North Atlantic/Tethyan water mass associated with peak greenhouse conditions (MacLeod et al., 2008, Geology; Jiménez Berrocoso et al., 2010, Geology). The goal of this study was to evaluate Nd and Pb isotopic compositions of detrital silicates from ODP sites 1260 and 1261 on Demerara Rise to verify that Nd isotopes preserved in fish debris record a water mass signal rather than sediment-seawater interactions, such as boundary exchange or sediment diagenesis. Results demonstrate no correlation between seawater and residue Nd isotopes for the Cenomanian to Maastrichtian. Over this interval the offset between seawater and residue ɛNd values is highly variable (0.2 to 6 ɛNd units), but there is no relationship between the long term patterns of seawater and residue variations. In particular, residue ɛNd values record no change during the dramatic increase in seawater

  18. Sample matrix effects on measured carbon and oxygen isotope ratios during continuous-flow isotope-ratio mass spectrometry.

    PubMed

    Levitt, Nicholas Paul

    2014-11-15

    Continuous-flow isotope-ratio mass spectrometry (CF-IRMS) is frequently used to analyze CO2 found in media such as air, breath, and soil pore space gas with the aid of a sample preparation and transfer device such as a Gasbench II. This study investigated the effect that matrices other than helium (He) have on the measured δ(13)C and δ(18)O isotope ratios of CO2. Identical CO2 was added to sample vials with matrices of pure He, pure N2, or a 21:79 mixture of O2/N2 and analyzed by a ThermoFinnigan Delta(Plus) XP isotope-ratio mass spectrometer coupled to a ThermoFinnigan Gasbench II. Variables such as CO2 concentration, sample analysis sequence, and sample matrix removal ('blanking') through manipulation of an injection and dilution open split were tested to identify systematic isotope ratio offsets between the different matrix types. The process of blanking induced a δ(13)C and δ(18)O offset of ≤0.2‰ between otherwise identical populations of CO2 samples in He. The (13)C/(12)C and (18)O/(16)O isotope ratios of CO2 sampled from pure N2 or a mixture of O2/N2 were found to be within 0.1 to 0.2‰ of those of an identical CO2 sampled from a He matrix when N2 or O2/N2 was removed prior to transport to the mass spectrometer. The measured oxygen isotope ratios of CO2 sampled from N2 and O2/N2 varied by as much as 0.6‰ and 4‰, respectively, if matrix gas was not removed prior to ionization. Sampling CO2 from matrices similar to air does not significantly affect the measured (13)C/(12)C and (18)O/(16)O isotope ratios of CO2 when a gas-handling procedure that includes the removal of matrix gas is utilized. This procedure is much preferable to introducing matrix gas and potentially isobaric interference to the ion source. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Iron and nickel isotopic mass fractionation in deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Brownlee, Donald E.

    1993-01-01

    Magnetite-wuestite spherules collected from deep-sea sediments are thought to have originally been Fe-Ni metal particles at the top of the atmosphere that were oxidized and melted during entry into the earth's atmosphere. Some likely sources for the metal particles are Fe-Ni interplanetary dust particles (IDP's) and metal or sulfide from stony IDP's that separated after melting. Davis et al. reported that four of these spherules are enriched in the heavy isotopes of iron, with enrichments of 8-23%/amu. We have developed a technique for analysis of both iron and nickel isotopes on the same ion microprobe spot and have applied this technique to a number of deep-sea spherules in order to better understand the processes leading to isotopic mass fractionation. Eight spherules show iron and nickel isotopic mass fractionation, with iron and nickel enriched in the heavy isotopes by 10-19%/amu and 4-32%/amu, respectively. If the mass fractionations are due to Rayleigh fractionation during evaporation, these spherules lost 76-94% of their original mass. We have analyzed the four magnetite-wuestite spherules for which iron isotopic data were reported by Davis et al. as well as four new spherules.

  20. Iron and nickel isotopic mass fractionation in deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Brownlee, Donald E.

    1993-01-01

    Magnetite-wuestite spherules collected from deep-sea sediments are thought to have originally been Fe-Ni metal particles at the top of the atmosphere that were oxidized and melted during entry into the earth's atmosphere. Some likely sources for the metal particles are Fe-Ni interplanetary dust particles (IDP's) and metal or sulfide from stony IDP's that separated after melting. Davis et al. reported that four of these spherules are enriched in the heavy isotopes of iron, with enrichments of 8-23%/amu. We have developed a technique for analysis of both iron and nickel isotopes on the same ion microprobe spot and have applied this technique to a number of deep-sea spherules in order to better understand the processes leading to isotopic mass fractionation. Eight spherules show iron and nickel isotopic mass fractionation, with iron and nickel enriched in the heavy isotopes by 10-19%/amu and 4-32%/amu, respectively. If the mass fractionations are due to Rayleigh fractionation during evaporation, these spherules lost 76-94% of their original mass. We have analyzed the four magnetite-wuestite spherules for which iron isotopic data were reported by Davis et al. as well as four new spherules.

  1. On the Fine Isotopic Distribution and Limits to Resolution in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dittwald, Piotr; Valkenborg, Dirk; Claesen, Jürgen; Rockwood, Alan L.; Gambin, Anna

    2015-08-01

    Mass spectrometry enables the study of increasingly larger biomolecules with increasingly higher resolution, which is able to distinguish between fine isotopic variants having the same additional nucleon count, but slightly different masses. Therefore, the analysis of the fine isotopic distribution becomes an interesting research topic with important practical applications. In this paper, we propose the comprehensive methodology for studying the basic characteristics of the fine isotopic distribution. Our approach uses a broad spectrum of methods ranging from generating functions—that allow us to estimate the variance and the information theory entropy of the distribution—to the theory of thermal energy fluctuations. Having characterized the variance, spread, shape, and size of the fine isotopic distribution, we are able to indicate limitations to high resolution mass spectrometry. Moreover, the analysis of "thermorelativistic" effects (i.e., mass uncertainty attributable to relativistic effects coupled with the statistical mechanical uncertainty of the energy of an isolated ion), in turn, gives us an estimate of impassable limits of isotopic resolution (understood as the ability to distinguish fine structure peaks), which can be moved further only by cooling the ions. The presented approach highlights the potential of theoretical analysis of the fine isotopic distribution, which allows modeling the data more accurately, aiming to support the successful experimental measurements.

  2. Differences in the Elemental Isotope Definition May Lead to Errors in Modern Mass-Spectrometry-Based Proteomics.

    PubMed

    Claesen, Jürgen; Lermyte, Frederik; Sobott, Frank; Burzykowski, Tomasz; Valkenborg, Dirk

    2015-11-03

    The elemental isotope definition used to calculate the theoretical masses and isotope distribution of (bio)molecules is considered to be a fixed, universal standard in mass-spectrometry-based proteomics. However, this is an incorrect assumption. In view of the ongoing advances in mass spectrometry technology, and in particular the ever-increasing mass precision, the elemental isotope definition and its variations should be taken into account. We illustrate the effect of the elemental isotope uncertainty on the theoretical and experimental masses with theoretical calculations and examples.

  3. In Vivo Mass-independent Fractionation of Mercury Isotopes in Fish

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, L. A.

    2008-12-01

    Recent experimental work and analyses of natural samples have revealed both mass-dependent and mass- independent isotope fractionation effects in mercury. These findings portend new avenues toward understanding the global mercury cycle. It has been shown experimentally that photo reduction of Hg+2 and methylmercury in water with concomitant release of the reduced, gaseous species Hg° results in the residual methylmercury possessing a mass-independent isotope effect. This effect is a relative enrichment of isotopes 199Hg and 201Hg over the even mass number isotopes when compared to the mercury standard NIST SRM3133. Large mass independent fractionation (MIF) effects (Δ199Hg values of a few ‰) have been found in mercury in fish and interpreted as isotope effects inherited from the water. To evaluate the possibility that MIF might be produced within the fish, we have analyzed 38 samples that include zooplankton and twelve different species of fish from a single lake collected over a 2-month time period for mercury isotopic compositions. Trophic levels of the same fish specimens had previously been determined from stomach contents and nitrogen isotopes. Zooplankton in the lake contain mercury with Δ199Hg and Δ201Hg values of +0.43 (±0.07) and +0.44 (±0.07) respectively. Among the fish species there is a striking correspondence between trophic level and Δ199Hg and Δ201Hg values for primary, secondary, and tertiary consumers. The Δ199Hg values ranges over ~1‰ from ~+0.4 in zooplankton, juvenile bluegill and several other small fishes to Δ199Hg = + 1.36 for the Florida gar that is the top predator fish in the lake. These observations indicate that the MIF effect, rather than being an artifact of the water column is produced in vivo. Partial separation of 199Hg and 201Hg from isotopes of even neutron number can be achieved by the magnetic isotope effect in reactions involving sufficiently long-lived intermediate free radicals, where nuclear - electron

  4. Improved analysis of micro- and nanomole-scale sulfur multi-isotope compositions by gas source isotope ratio mass spectrometry.

    PubMed

    Au Yang, David; Landais, Guillaume; Assayag, Nelly; Widory, David; Cartigny, Pierre

    2016-04-15

    Multiple sulfur isotope compositions are usually measured on relatively large samples (in the range of micromoles); however, sometimes only small amounts are available and thus it is necessary to analyze small (sub-micromole) samples. We report an improved method to measure multiple sulfur isotope compositions: δ(33) S, δ(34) S and δ(36) S values on the SF6 molecule (m/z 127, 128, 129, 131) for quantities down to 0.1 micromole, and δ(33) S and δ(34) S values for quantities down to 20 nanomoles. Multiple sulfur isotope analyses including fluorination and purification of two international Ag2 S standards, IAEA-S1 and IAEA-S3, were carried out at various low concentrations on a dual-inlet isotope ratio mass spectrometer using a microvolume and modified resistor capacities. The analyses yielded a narrow range of δ(34) S values vs CDT (the international standard), with an overall standard deviation of ±0.2 ‰, which was within the range of certified values. This demonstrates the feasibility of determining both Δ(33) S and Δ(36) S values on the sub-micromole scale, and Δ(33) S values on the nanomole scale with similar accuracy to conventional dual-inlet analyses. The analysis of the three S-isotope ratios on the SF6 molecule using the so-called conventional fluorination method and dual-inlet ion ratio mass spectrometry is reliable for sample sizes down to ~20 nanomoles. Despite being close to the theoretical limits for maintaining the viscous flow regime of gas in the capillary, errors were not limited by counting statistics, but probably relate to sample gas purification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data

    PubMed Central

    Treutler, Hendrik; Neumann, Steffen

    2016-01-01

    Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92% of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0. PMID:27775610

  6. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data.

    PubMed

    Treutler, Hendrik; Neumann, Steffen

    2016-10-20

    Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92 % of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0.

  7. Mass dependent isotope fractionation during impacts induced the Archaean mass-independent fractionation of sulphur: Evidence against Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Huang, H.

    2010-12-01

    A prevailing hypothesis, low-oxygen level of the Archaean atmosphere, relies strongly on the presence of strong mass-independent fractionation (MIF) of the sulfur isotopes in sulfide- and sulfate-bearing minerals older than 2.4 billion years. Actually, there is “a broad overlap between MIF signals observed within Archaean sedimentary sequences and periods of enhanced asteroid impacts represented by impact ejecta/fallout units”(Glikson 2010) (Fig. 1). Moreover, usually MIF- related sulphur occurs in the Archaean sedimentary rocks as pyrite (FeS2) which has been found in the K-T boundary clay beds and in several identified impact craters, which is an independent argument in favor of pyrites could be the product of impact. Impact processes (vaporization and condensation) are sufficient to explain the MIF signals following the principle: the earlier the condensed material, the more enriched in lighter isotopes (Huang 2010). The nature of the MIF of the sulfur isotopes is that the fractionation of isotope is still mass dependent during impacts, which means the measured nonzero Δ33S values of Archean sulfide- and sulfate-bearing minerals indicate that their different condensation sequences. Another important line of evidence that support the impact-generated MIF of the sulfur isotopes comes from the various iron isotope values of the pyrites especially those with iron isotope heterogeneity at grain scale. Thus, it is clear that the signals are the markers of impact rather than O2 poor atmosphere. Furthermore, this can also account for the lack of MIF-S in several Archaean units before 2.4 billion years. Figure 1 Plot of mass-independent fractionation of sulphur and asteroid impact events with age. Modified from Glikson (2010)

  8. Application of Uranium Isotope Dilution Mass Spectrometry in the preparation of New Certified Reference Materials

    NASA Astrophysics Data System (ADS)

    Hasözbek, A.; Mathew, K. J.; Orlowicz, G.; Srinivasan, B.; Narayanan, U.

    2012-04-01

    Proven measurement techniques play a critical role in the preparation of Certified Reference Materials (CRMs) - those requiring high accuracy and precision in the measurement results. Isotope Dilution Mass Spectrometry (IDMS) is one such measurement method commonly used in the quantitative analysis of uranium in nuclear safeguards and isotope geology applications. In this project, we evaluated the possibility of using some of the uranium isotopic and assay CRMs made earlier by the New Brunswick laboratory as IDMS spikes to define the uranium mass fraction in future preparations of CRMs. Uranium solutions prepared from CRM 112-A (a highly pure uranium metal assay standard) and CRM 115 (a highly pure uranium oxide isotopic and assay standard) were used as spikes in the determination of uranium. Two different thermal ionization mass spectrometer instruments (MAT 261 and TRITON) were used for the isotopic measurements. Standard IDMS equation was used for data reduction to yield results for uranium mass fraction along with uncertainties, the latter calculated according to GUM. The results show that uranium mass fraction measurements can be made with the required accuracy and precision for defining the uranium concentration in new CRMs as well as in routine samples analyses.

  9. Mass spectrometric study of the mercury isotopes in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1986-01-01

    Isotopic abundance ratios for mercury were determined by mass spectrometry in six samples of bulk material and in one sample of chondrules from the Allende meteorite. A primary purpose of the work was to attempt to verify the anomalous ratios reported for Hg-196/Hg-202 by neutron activation. Measurements were made on the mercury released at temperatures of 250, 450, 600 C, and in some cases, higher temperatures. The precision of the measurements was such that if an anomaly of the magnitude reported exists, it should have been seen. The isotopic abundance ratios for the other mercury isotopes were also measured. Within the errors of measurement these agreed with normal terrestrial values.

  10. Three-stage mass spectrometer for isotopic analysis of radionuclides in environmental samples

    SciTech Connect

    Halverson, J.E.

    1981-09-01

    A three-stage mass spectrometer was constructed for isotopic analysis of several radioactive as well as stable elements at environmental levels. The spectrometer is interfaced to a digital computer, which controls the operation of the spectrometer, accumulates data, reduces data, and prints a final result. The spectrometer has demonstrated the capability of measuring the isotopic composition of plutonium samples as small as 0.005 picogram and has an abundance sensitivity greater than 10/sup 8/.

  11. Mass-independent fractionation of mercury isotopes in compact fluorescent light bulbs

    NASA Astrophysics Data System (ADS)

    Mead, C.; Anbar, A. D.; Lyons, J. R.; Johnson, T. M.

    2010-12-01

    Compact fluorescent lightbulbs (CFLs) are a growing source of Hg pollution. The high-energy environment of the CFLs combined with the known partitioning of Hg into the bulb walls could provide an environment for unusual isotope fractionation that could be used to trace pollution from improper bulb disposal. To investigate this possibility, we analyzed the isotope composition of Hg in CFL glass, phosphor powder, and whole bulbs from CFLs of known ages. We observed large, mass-independent fractionation of Hg isotopes between Hg embedded in the bulb wall and Hg in the liquid and vapor phases, which are the initial reservoir of Hg in the bulb. This fractionation results in the bulb wall showing enrichment of 198Hg, 199Hg, 200Hg, 201Hg, and 204Hg relative to 202Hg, the most abundant isotope. Both the amount of Hg embedded in the glass and the magnitude of the isotope enrichment were found to increase with the number of hours of light bulb use. For a CFL used for 3600 hours (with a rated lifetime of 10,000 hours), the isotopic composition of the Hg in the glass was enriched by 34.5‰, 4.1‰, 6.3‰, 21.1‰, and 12.1‰ for 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg, and 204Hg/202Hg, respectively, compared to NIST SRM-3133. This pattern of isotope enrichments is not correlated with mass differences for any of the isotope ratios. In contrast, the other mass-independent effects that have recently been observed in Hg isotopes (i.e., the nuclear volume and magnetic isotope effects) resemble mass-dependent fractionation for the even mass isotopes and are anomalous only for the odd mass isotopes, 199Hg and 201Hg. First order theoretical calculations using Hg absorption and emission data for each of the hyperfine components of the 253.7 nm line have shown that similar fractionation can be produced through an optical self-shielding effect. This effect occurs because each Hg isotope has a different degree of optical saturation at their respective absorption wavelength

  12. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  13. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  14. A liquid chromatography - mass spectrometry method to measure ¹³C-isotope enrichment for DNA stable-isotope probing.

    PubMed

    Auclair, Julie; Lépine, François; Villemur, Richard

    2012-03-01

    DNA stable-isotope probing (DNA-SIP) is a cultivation-independent technique that makes it possible to associate metabolic function and taxonomic identity in a wide range of terrestrial and aquatic environments. In DNA-SIP, DNA is labeled via the assimilation of a labeled growth substrate that is subsequently used to identify microorganisms involved in assimilation of the substrate. However, the labeling time has to be sufficient to obtain labeled DNA but not so long such that cross-feeding of ¹³C-labeled metabolites from the primary consumers to nontarget species can occur. Confirmation that the DNA is isotopically labeled in DNA-SIP assays can be achieved using an isotope ratio mass spectrometer. In this study, we describe the development of a method using liquid chromatography (HPLC) coupled to a quadrupole mass spectrometer (QMS) to measure the ¹³C enrichment of thymine incorporated into DNA in Escherichia coli cultures fed with [¹³C]acetate. The method involved the hydrolysis of DNA extracted from the cultures that released the nucleotides, followed by the separation of the thymine by HPLC on a reverse-phase C₈ column in isocratic elution mode and the detection and quantification of ¹³C-labeled thymine by QMS. To mimic a DNA-SIP assay, a DNA mixture was made using ¹³C-labeled E. coli DNA with DNA extracted from five bacterial species. The HPLC-MS method was able to measure the correct proportion of ¹³C-DNA in the mix. This method can then be used as an alternative to the use of isotope ratio mass spectrometry in DNA-SIP assays.

  15. Mass-dependent Mo isotope variations in oceanic basalts - a new tracer for mantle recycling processes

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Freymuth, H.; Hibbert, K.; Lai, Y. J.; Elliott, T.

    2016-12-01

    How and to what extent crustal material is recycled into the deeper mantle as a result of plate tectonic processes is a long-standing but still not fully understood question in Earth Sciences. Indirect evidence from chemical as well as radiogenic isotope data in oceanic basalts suggest that such a process may indeed have operated over much of Earth's history. Yet, uncertainties in characterising the age of the presumed recycled crustal components as well as the wide range in their chemical composition do not allow us to verify the mantle recycling hypothesis. Technological advances now enable us to explore new isotopic tracers that could shed light on this question. One of these new tools are mass-dependent isotope variation of molybdenum (Mo). Mass-dependent Mo isotope data in clastic and chemical sediments are a well-established geochemical tool to study redox conditions in the Earth's water masses over the geological past [1, 2, 3]. Being an intrinsic property of rocks exposed to the hydrosphere (see Anbar [4] for an overview), mass-dependent Mo isotope variation in mantle-derived rocks from oceanic settings could therefore be used a tracer of recycled crustal material in the Earth's mantle. In this contribution we provide a current overview over how different geological and magmatic processes - such as seawater alteration of oceanic crust, slab dehydration during plate subduction as well as magmatic emplacement - could affect the Mo isotopic composition of crustal components being transferred into the deeper mantle, as well as that of mantle melts that may contain such a recycled component. With this in mind, we explore the use of mass-dependent Mo isotope variations in mantle-derived rocks as a tracer of recycled crust in the mantle. [1] Archer & Vance (2008) Nature Geoscience 1, 597-600. [2] Barling et al. (2001) EPSL 193, 447-457. [3] Siebert et al. (2003) EPSL 211, 159-171. [4] Anbar (2004) Rev. Min. Geochem. 55, 429-454.

  16. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, A. L.

    2007-12-01

    Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1

  17. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    SciTech Connect

    Green, Tyler; Kuznetsov, Ilya; Willingham, David; Naes, Benjamin E.; Eiden, Gregory C.; Zhu, Zihua; Chao, W.; Rocca, Jorge J.; Menoni, Carmen S.; Duffin, Andrew M.

    2017-01-01

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument has a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.

  18. Determination of nitrogen-15 isotope fractionation in tropine: evaluation of extraction protocols for isotope ratio measurement by isotope ratio mass spectrometry.

    PubMed

    Molinié, Roland; Kwiecień, Renata A; Silvestre, Virginie; Robins, Richard J

    2009-12-01

    N-Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Deltadelta15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid-liquid phase partitioning or silica-C18 solid-phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and delta15N values were obtained by isotope ratio measurement mass spectrometry (irm-MS). Although all the protocols used can provide satisfactory data and both irm-EA-MS and irm-GC-MS can be used to obtain the delta15N values, the most convenient method is liquid-liquid extraction from a reduced aqueous volume combined with irm-GC-MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N-KIEs. Copyright 2009 John Wiley & Sons, Ltd.

  19. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  20. High sensitivity measurement of amino acid isotope enrichment using liquid chromatography-mass spectrometry.

    PubMed

    van Eijk, Hans M H; Wijnands, Karolina A P; Bessems, Babs A F M; Olde Damink, Steven W; Dejong, Cornelis H C; Poeze, Martijn

    2012-09-15

    Measurement of the incorporation or conversion of infused stable isotope enriched metabolites in vivo such as amino acids plays a key role in metabolic research. Specific routes are frequently probed in knockout mouse models limiting the available amount of sample. Although less precise as compared to combustion-isotope ratio mass spectrometry (C-IRMS), gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) techniques are therefore often the method of choice to measure isotopic enrichment of target metabolites. However, under conditions of metabolic depletion, the precision of these systems becomes limiting. In this paper, studies were performed to enhance the sensitivity and precision of isotope enrichment measurements using LC-MS. Ion-statistics and resolution were identified as critical factors for this application when using a linear trap mass spectrometer. The combination with an automated pre-column derivatization and a carefully selected solvent mix allowed us to measure isotopic enrichments down to 0.005% at plasma concentrations as low as 5 μmol/l, an improvement by a factor of 100 compared to alternative methods. The resulting method now allowed measurement of the in vivo conversion of the amino acid arginine into citrulline as a marker for the production of nitric oxide in an in vivo murine endotoxemia model with depleted plasma levels of arginine and citrulline.

  1. Influence of mass-transfer limitations on carbon isotope fractionation during microbial dechlorination of trichloroethene.

    PubMed

    Aeppli, Christoph; Berg, Michael; Cirpka, Olaf A; Holliger, Christof; Schwarzenbach, René P; Hofstetter, Thomas B

    2009-12-01

    Mass transfer of organic contaminants from nonaqueous phase liquids to the aqueous phase can significantly modulate the observable carbon isotope fractionation behavior associated with contaminant transformation. We evaluated the effects of kinetic interphase mass transfer between tetradecane and water on the observable (13)C enrichment factor, epsilon(obs), pertinent to the reductive dechlorination of trichloroethene (TCE) by Sulfurospirillum sp. in laboratory batch model systems containing organic, aqueous and gaseous phases. We propose a conceptual model, which includes the kinetics of tetradecane-water and gas-water mass transfer, microbial growth, and isotope-sensitive parameters describing dehalorespiration, for quantifying variable (13)C enrichment factors. While the C isotope fractionation of TCE reduction to cis-dichloroethene (cDCE) in the absence of phase-transfer effects can be characterized by a constant epsilon-value of -18.8 +/- 0.6 per thousand, mass-transfer limitations impede describing this process with a constant enrichment factor typically used in Rayleigh equations. Owing to the masking of kinetic isotope effects by the transfer of TCE from tetradecane to the aqueous phase, (obs)-values gradually changed from -18.4 per thousand to -5.9 per thousand. Such variations may complicate the interpretation of compound-specific isotope analysis in the assessment of chloroethene biodegradation in field applications.

  2. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  3. MIDcor, an R-program for deciphering mass interferences in mass spectra of metabolites enriched in stable isotopes.

    PubMed

    Selivanov, Vitaly A; Benito, Adrián; Miranda, Anibal; Aguilar, Esther; Polat, Ibrahim Halil; Centelles, Josep J; Jayaraman, Anusha; Lee, Paul W N; Marin, Silvia; Cascante, Marta

    2017-02-03

    Tracing stable isotopes, such as (13)C using various mass spectrometry (MS) methods provides a valuable information necessary for the study of biochemical processes in cells. However, extracting such information requires special care, such as a correction for naturally occurring isotopes, or overlapping mass spectra of various components of the cell culture medium. Developing a method for a correction of overlapping peaks is the primary objective of this study. Our computer program-MIDcor (free at https://github.com/seliv55/mid_correct) written in the R programming language, corrects the raw MS spectra both for the naturally occurring isotopes and for the overlapping of peaks corresponding to various substances. To this end, the mass spectra of unlabeled metabolites measured in two media are necessary: in a minimal medium containing only derivatized metabolites and chemicals for derivatization, and in a complete cell incubated medium. The MIDcor program calculates the difference (D) between the theoretical and experimentally measured spectra of metabolites containing only the naturally occurring isotopes. The result of comparison of D in the two media determines a way of deciphering the true spectra. (1) If D in the complete medium is greater than that in the minimal medium in at least one peak, then unchanged D is subtracted from the raw spectra of the labeled metabolite. (2) If D does not depend on the medium, then the spectrum probably overlaps with a derivatized fragment of the same metabolite, and D is modified proportionally to the metabolite labeling. The program automatically reaches a decision regarding the way of correction. For some metabolites/fragments in the case (2) D was found to decrease when the tested substance was (13)C labeled, and this isotopic effect also can be corrected automatically, if the user provides a measured spectrum of the substance in which the (13)C labeling is known a priori. Using the developed program improves the reliability

  4. Precision in Strontium Isotope Measurements by Laser Ablation Assisted Resonance Ionization Mass Spectrometry

    SciTech Connect

    Sasada, S.; Tomita, H.; Watanabe, K.; Higuchi, Y.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have investigated the precision of strontium isotope analysis by Laser Ablation-assisted Resonance Ionization Mass Spectrometry(LA-RIMS). We have confirmed that the mass discrimination effect on the {sup 87}Sr/{sup 86}Sr measurement was reduced by the internal correction method. For the present system, the precision of the isotope ratio of {sup 87}Sr/{sup 86}Sr has been estimated to be 0.6%(1{sigma}). The precision has been limited by the fluctuations with a time scale of less than 10 s.

  5. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  6. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

    PubMed

    Roussis, Stilianos G; Proulx, Richard

    2003-03-15

    A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

  7. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    PubMed

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  8. Further study of α-decay in heavy isotopic chains considering the isospin effect

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-06-01

    We have enhanced the deformed density-dependent cluster model to improve the quantitative description of α-decay in heavy even-even nuclei with 84≤slant Z≤slant 92. To preliminarily introduce the isospin effect into α-decay, the neutron excess term is added in the establishment of the crucial α-core potential. The proton and neutron density distributions are respectively considered in different parameterized formulas by combining them with available experimental data of both the charge radius and the neutron skin thickness. The calculated α-decay half-lives are found to be in somewhat better agreement with the experimental data as compared with our previous results. Strikingly, it is noted that the relatively large deviation between theory and experiment, along the tail of the isotopic chain, is obviously reduced and smoother. This may indicate the necessity of considering the isospin effect in α-decay, especially for extremely neutron-rich nuclei, which appears to be essential for the extended study of heaviest nuclei as well.

  9. The study of trace metal absoption using stable isotopes and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.

    1991-12-01

    The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.

  10. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a

  11. A mass-independent sulfur isotope effect in the nonthermal formation

    NASA Technical Reports Server (NTRS)

    Bains-Sahota, Swroop K.; Thiemens, Mark H.

    1989-01-01

    A nonmass-dependent sulfur isotope effect is present in the rotationally symmetric S2F10 molecule, produced in an electrical discharge through sulfur tetrafluoride. A similar isotopic fractionation was observed in the product S2F10 from the electrodissociation of SF5Cl and in the reaction between fluorine atoms produced by F2 photolysis and SF2, collectively ruling out the SF5 formation process as the source of the mass-independent fractionation. The secondary dissociation of S2F10 as a source of the mass-independent fractionation is ruled out by control S2F10 dissociation experiments which are shown to produce small mass-dependent fractionations. Mass-dependent effects such as sulfur isotopic exchange and secondary dissociation reactions are significant processes for the system under study, and have been quantitatively accounted for. The role of symmetry in nonmass-dependent isotope effects is strengthened by the present experiments, and the search and characterization of mass-independent effects is extended to sulfur-containing molecules.

  12. Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates

    PubMed Central

    Miller, Martin F.; Franchi, Ian A.; Thiemens, Mark H.; Jackson, Teresa L.; Brack, André; Kurat, Gero; Pillinger, Colin T.

    2002-01-01

    Nearly all chemical processes fractionate 17O and 18O in a mass-dependent way relative to 16O, a major exception being the formation of ozone from diatomic oxygen in the presence of UV radiation or electrical discharge. Investigation of oxygen three-isotope behavior during thermal decomposition of naturally occurring carbonates of calcium and magnesium in vacuo has revealed that, surprisingly, anomalous isotopic compositions are also generated during this process. High-precision measurements of the attendant three-isotope fractionation line, and consequently the magnitude of the isotopic anomaly (Δ17O), demonstrate that the slope of the line is independent of the nature of the carbonate but is controlled by empirical factors relating to the decomposition procedure. For a slope identical to that describing terrestrial silicates and waters (0.5247 ± 0.0007 at the 95% confidence level), solid oxides formed during carbonate pyrolysis fit a parallel line offset by −0.241 ± 0.042‰. The corresponding CO2 is characterized by a positive offset of half this magnitude, confirming the mass-independent nature of the fractionation. Slow, protracted thermolysis produces a fractionation line of shallower slope (0.5198 ± 0.0007). These findings of a 17O anomaly being generated from a solid, and solely by thermal means, provide a further challenge to current understanding of the nature of mass-independent isotopic fractionation. PMID:12167677

  13. New Short-Lived Isotope 221U and the Mass Surface Near N =126

    NASA Astrophysics Data System (ADS)

    Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; Ackermann, D.; Andersson, L.-L.; Block, M.; Brand, H.; Cox, D. M.; Even, J.; Forsberg, U.; Golubev, P.; Hartmann, W.; Herzberg, R.-D.; Heßberger, F. P.; Hoffmann, J.; Hübner, A.; Jäger, E.; Jeppsson, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kurz, N.; Lommel, B.; Maiti, M.; Minami, S.; Mistry, A. K.; Mrosek, Ch. M.; Pysmenetska, I.; Rudolph, D.; Sarmiento, L. G.; Schaffner, H.; Schädel, M.; Schausten, B.; Steiner, J.; De Heidenreich, T. Torres; Uusitalo, J.; Wegrzecki, M.; Wiehl, N.; Yakusheva, V.

    2015-12-01

    Two short-lived isotopes 221U and 222U were produced as evaporation residues in the fusion reaction 50Ti + 176Yb at the gas-filled recoil separator TASCA. An α decay with an energy of Eα=9.31 (5 ) MeV and half-life T1 /2=4.7 (7 ) μ s was attributed to 222U. The new isotope 221U was identified in α -decay chains starting with Eα=9.71 (5 ) MeV and T1 /2=0.66 (14 ) μ s leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N =126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α -decay reduced width.

  14. Mass-dependent and -independent fractionation of Fe isotopes in magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Amor, M.; Busigny, V.; Louvat, P.; Gelabert, A.; Cartigny, P.; Durand-Dubief, M.; Ona-Nguema, G.; Alphandéry, E.; Chebbi, I.; Guyot, F. J.

    2016-12-01

    Magnetotactic bacteria (MTB) perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the oldest microorganisms capable of biomineralization on Earth, identification of their activity in the geological record remains poorly resolved because of the lack of reliable signatures. Here, we determined Fe isotope fractionation by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 to better understand Fe cycling in MTB and provide new signatures of the contribution of MTB to iron geochemistry. AMB-1 strain was cultivated with either Fe(III)-quinate or Fe(II)-ascorbate as Fe sources. Iron isotope composition of Fe sources, bacterial growth media after AMB-1 cultures, bacterial lysates (corresponding to AMB-1 cells devoid of magnetite) and magnetite samples were analyzed by MC-ICP-MS after column chromatography. In the two culture conditions, growth media after AMB-1 cultures were enriched in light Fe isotopes relative to Fe sources. Two distinct bacterial Fe reservoirs were characterized in AMB-1: (1) magnetite enriched in the light Fe isotopes by 1.5 to 2.5‰ in δ56Fe relative to Fe sources, and (2) lysate enriched in the heavy Fe isotopes by 0.3 to 0.8‰ relative to Fe sources. More importantly, mass-independent fractionations in odd (57Fe) but not in even isotopes (54Fe, 56Fe and 58Fe) were observed for the first time, highlighting a magnetic isotope effect. Magnetite samples were significantly enriched in 57Fe by 0.23‰ relative to 54Fe, 56Fe and 58Fe. Based on our results, we propose a model for Fe cycling and magnetite biomineralization in AMB-1, and propose to use this specific mass-independent signature of Fe isotopes to evaluate the contribution of MTB to the iron biogeochemistry of recent and ancient environmental samples.

  15. Isotopic and trace element sensors for fluid flow, heat- and mass transport in fractured rocks

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.

    2012-12-01

    The flow of fluids through fractured rocks is critically important in hydrothermal systems associated with geothermal energy production, base metal ore deposits, and global geochemical cycles through the enormous volumes of fluids in mid-ocean ridge systems. The nature of heat and mass transport in hydrothermal systems is determined by the spacing and volume of fractures, the nature of chemical transport in matrix blocks between fractures, the dissolution and precipitation rates of minerals in the matrix blocks, and the rates of fluid flow. Directly measuring these properties in active systems is extremely difficult, but the chemical and isotopic composition of fluids, where they can be adequately sampled, provides this information in coded form. Deciphering the signals requires appropriate models for the mineral-fluid chemical reactions and transport in the inter-fracture rock matrix. Ultimately, numerical reactive transport models are required to properly account for coupling between mineral reaction kinetics and fluid phase transport, but it is surprisingly difficult to adequately represent isotopic exchange in these models. The difficulty comes partly from the additional bookkeeping that is necessary, but more fundamentally from limitations in the detailed molecular dynamics of the mineral-fluid interfaces and how they control isotopic exchange and partitioning. Nevertheless, relatively simple analytical models illustrate how the isotopic and trace element composition of fluids relates to fracture aperture and spacing, mineral dissolution kinetics, competition between diffusive and advective transport, and competition between chemical exchange and heat exchange. The large number of geochemical parameters that can be measured potentially allows for detailed characterization of the effective mass transport and system characteristics like average fracture spacing and mineral dissolution rates. Examples of useful analytical models and applications to available data

  16. Improved Polymerase Chain Reaction-restriction Fragment Length Polymorphism Genotyping of Toxic Pufferfish by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Miyaguchi, Hajime

    2016-01-01

    An improved version of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method for genotyping toxic pufferfish species by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is described. DNA extraction is carried out using a silica membrane-based DNA extraction kit. After the PCR amplification using a detergent-free PCR buffer, restriction enzymes are added to the solution without purifying the reaction solution. A reverse-phase silica monolith column and a Fourier transform high resolution mass spectrometer having a modified Kingdon trap analyzer are employed for separation and detection, respectively. The mobile phase, consisting of 400 mM 1,1,1,3,3,3-hexafluoro-2-propanol, 15 mM triethylamine (pH 7.9) and methanol, is delivered at a flow rate of 0.4 ml/min. The cycle time for LC/ESI-MS analysis is 8 min including equilibration of the column. Deconvolution software having an isotope distribution model of the oligonucleotide is used to calculate the corresponding monoisotopic mass from the mass spectrum. For analysis of oligonucleotides (range 26-79 nucleotides), mass accuracy was 0.62 ± 0.74 ppm (n = 280) and excellent accuracy and precision were sustained for 180 hr without use of a lock mass standard. PMID:27684516

  17. Mass determination near N =20 for Al and Na isotopes

    NASA Astrophysics Data System (ADS)

    Gallant, A. T.; Alanssari, M.; Bale, J. C.; Andreoiu, C.; Barquest, B. R.; Chowdhury, U.; Even, J.; Finlay, A.; Frekers, D.; Gwinner, G.; Klawitter, R.; Kootte, B.; Kwiatkowski, A. A.; Lascar, D.; Leach, K. G.; Leistenschneider, E.; Lennarz, A.; Mayer, A. J.; Short, D.; Thompson, R.; Wieser, M.; Lunney, D.; Dilling, J.

    2017-08-01

    We report on the mass measurements of Na,3231 and 29,34,35Al, performed with the TITAN Penning trap mass spectrometer at TRIUMF. The mass excesses were found to be 12246 (14 ) and 18638 (37 ) keV for Na,3231 and -18207.77 (37 ),-3000.5 (29 ) , and -223.7 (73 ) keV for 29,34,35Al, respectively. Our measurements confirm the observation of a crossover in the two-neutron separation energies of 33Mg and 34Al. We did not observe the recently reported, long-lived, isomeric state of 34Al, but, based on the previously measured half-lives, the mass value of the ground state was determined.

  18. Pyrolysis-gas chromatography-isotope ratio mass spectrometry of polyethylene.

    PubMed

    González-Pérez, J A; Jiménez-Morillo, N T; de la Rosa, J M; Almendros, G; González-Vila, F J

    2015-04-03

    Polyethylene is probably the most used plastic material in daily life and its accurate analysis is of importance. In this communication the chemical structure of polyethylenes is studied in detail using conventional analytical pyrolysis (Py-GC/MS), bulk stable isotopic analysis (IRMS) and pyrolysis compound specific stable isotopic analysis (Py-CSIA) to measure stable isotope proportions (δ(13)C, δ(15)N and δD) of polyethylene pyrolysis compounds. Polyethylene pyrolysis yields triplet peaks of n-alkanes, α-alkenes and α,ω-alkanedienes. No differences were found for bulk δ(13)C among different polyethylene types. However, conspicuous differences in δD were evident. It was possible to assign structure δ(13)C and δD values to specific polyethylene pyrolysis products in the range 12-18 carbon chain length. Conspicuous differences were found for the pyrolysis products with unsaturated moieties showing significant higher δD values than saturated chains (alkanes) that were deuterium depleted. In addition, a full isotopic fingerprinting (δ(13)C, δ(15)N and δD) for a dye (o-chloroaniline) contained in a polyethylene is reported. To the best of our knowledge this is the first application Py-CSIA to the study of a synthetic polymer. This hyphenated analytical technique is a promising tool to study synthetic materials, providing not only a fingerprinting, but also allowing the traceability of the polymerization process and the origin of the materials.

  19. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records

    NASA Astrophysics Data System (ADS)

    Huang, Xianyu; Xue, Jiantao; Guo, Shouyu

    2012-03-01

    Five coticolous lichen samples were collected from western Hubei Province of China to analyze the long chain n-alkanes and their carbon isotope compositions. The n-alkanes range in carbon number from C17 to C33 with strong odd-over-even predominance between C21 and C33. Lichens are dominated by n-C29 in the samples of Dajiuhu, Shennongjia Mountain, but by both n-C23 and n-C29 at Qizimei Mountain. This difference may result from the different environmental conditions in these two sites. The δ 13C values of long chain n-alkanes in lichen samples show the signature of C3 plants. Based on compoundspecific carbon isotopic values and previous results, we state that alkane homologs >C23 mainly originate from the symbiotic fungi, while symbiotic algae only contribute trace amount of long chain alkanes. Of great interesting is the occurrence of long chain 3-methylalkanes in the Qizimei samples. These anteiso compounds range from C24 to C32, displaying obvious even-over-odd predominance. This study reveals that the association of long chain 3-methylalkanes with n-C23 alkane might be used as proxies to reconstruct the paleoecological implications of lichens in Earth history.

  20. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  1. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  2. Application of high-precision isotope ratio monitoring mass spectrometry to identify the biosynthetic origins of proteins

    PubMed Central

    Apostol, Izydor; Brooks, Paul D.; Mathews, Antony J.

    2001-01-01

    Isotope ratio monitoring (IRM) mass spectrometry was used to measure the relative abundance of stable isotopes in several samples of adult human hemoglobin expressed in E. coli, yeast, and human blood. The results showed significant differences in the distribution of 15N and 13C isotopes among hemoglobin samples produced in these organisms. This indicates that IRM mass spectrometry can be used in forensic protein chemistry to identify the origin of protein expression. PMID:11420448

  3. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    Secondary Ion Mass Spectrometry, SIMS or ion microprobe analysis, has become an important tool for geochemistry because of its ability study the distributions of elemental and isotopic abundances in situ on polished samples with high (typically a few microns to sub-micron) spatial resolution. In addition, SIMS exhibits high sensitivity for a wide range of elements (H to Pu) so that isotope analyses can sometimes be performed for elements that comprise only trace quantities of some mineral phase (e.g., Pb in zircon) or on major and/or minor elements in very small samples (e.g., presolar dust grains). Offsetting these positive attributes are analytical difficulties due to the complexity of the sputtering source of analyte ions: (1) relatively efficient production of molecular ion species (especially from a complex matrix such as most natural minerals) that cause interferences at the same nominal mass as atomic ions of interest, and (2) quantitation problems caused by variations in the ionization efficiencies of different elements and/or isotopes depending upon the chemical state of the sample surface during sputtering--the so-called "matrix effects". Despite the availability of high mass resolution instruments (e.g., SHRIMP II/RG, CAMECA 1270/1280/NanoSIMS), the molecular ion interferences effectively limit the region of the mass table that can be investigated in most samples to isotope systems at Ni or lighter or at Os or heavier. The matrix effects and the sensitivity of instrumental mass discrimination to the physical state of the sample surface can hamper reproducibility and have contributed to a view that SIMS analyses, especially for so- called stable isotopes, are most appropriate for extraterrestrial samples which are often small, rare, and can exhibit large magnitude isotopic effects. Recent improvements in instrumentation and technique have extended the scope of SIMS isotopic analyses and applications now range from geochronology to paleoclimatology to

  4. Using Theoretical Protein Isotopic Distributions to Parse Small-Mass-Difference Post-Translational Modifications via Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rhoads, Timothy W.; Williams, Jared R.; Lopez, Nathan I.; Morré, Jeffrey T.; Bradford, C. Samuel; Beckman, Joseph S.

    2013-01-01

    Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as 13C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein's empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.

  5. Isotopic-ratio mass spectrometers for the analysis of uranium hexafluoride

    SciTech Connect

    Sulfridge, C.; Jones, H.C.

    1981-05-06

    Descriptions, including photographs, are presented of the two isotopic-ratio mass spectrometers which have been developed for the analysis of uranium hexafluoride. The objectives were to have these spectrometers meet the sensitivity and precision requirements of development and improvement programs at uranium enrichment facilities, and for universal application to on-stream monitoring of UF/sub 4/ in enrichment facilities.

  6. Quadrupole mass spectrometer for a mobile laboratory to measure isotope ratios

    SciTech Connect

    Walton, J.R.; Smith, D.H.; McKown, H.S.; Carter, J.A.

    1981-01-01

    A mobile laboratory has been assembled for on-site inspection of plant operations handlng special nuclear materials. The isotopic composition of U, Pu, and other elements can be analyzed using a quadrupole mass spectrometer. Some results of analysis of uranium and boron standards are given. (DLC)

  7. Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis

    ERIC Educational Resources Information Center

    de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro

    2012-01-01

    In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…

  8. Cholesterol efflux analyses using stable isotopes and mass spectrometry

    PubMed Central

    Brown, Robert J.; Shao, Fei; Baldán, Ángel; Albert, Carolyn J.; Ford, David A.

    2012-01-01

    Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and media content of [d7]-cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple quadrupole ESI-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning and NL 368.5 scanning were used to detect cholesterol (as an acetylated derivative), [d7]-cholesteryl ester (CE) and unlabeled CE, respectively. The same mass of [d7]-cholesterol was substituted for [3H]-cholesterol under standard efflux assay conditions. At the end of [d7]-cholesterol loading, the intracellular mass of [d7]-cholesterol was 2-fold greater than unlabeled cholesterol, and the intracellular [d7]-CE profile is similar to unlabeled CE. Efflux of cholesterol to apolipoprotein A-I and high-density lipoproteins was similar when comparing efflux of either [d7]-cholesterol or [3H]-cholesterol as measured by following efflux of the tracers only. This technique also can be used to assess the efflux of unlabeled cholesterol to acceptors in media that are initially cholesterol-free (e.g., apolipoprotein A-I). Taken together, this mass spectrometry based assay provides new molecular detail to assess cholesterol efflux. PMID:23072980

  9. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  10. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry

    PubMed Central

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments. PMID:17010211

  11. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  12. Temperature dependence of the symmetry energy and neutron skins in Ni, Sn, and Pb isotopic chains

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Kadrev, D. N.; Gaidarov, M. K.; Sarriguren, P.; de Guerra, E. Moya

    2017-02-01

    The temperature dependence of the symmetry energy for isotopic chains of even-even Ni, Sn, and Pb nuclei is investigated in the framework of the local density approximation (LDA). The Skyrme energy density functional with two Skyrme-class effective interactions, SkM* and SLy4, is used in the calculations. The temperature-dependent proton and neutron densities are calculated through the hfbtho code that solves the nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical transformed deformed harmonic-oscillator basis. In addition, two other density distributions of 208Pb, namely the Fermi-type density determined within the extended Thomas-Fermi (TF) method and symmetrized-Fermi local density obtained within the rigorous density functional approach, are used. The kinetic energy densities are calculated either by the hfbtho code or, for a comparison, by the extended TF method up to second order in temperature (with T2 term). Alternative ways to calculate the symmetry energy coefficient within the LDA are proposed. The results for the thermal evolution of the symmetry energy coefficient in the interval T =0 -4 MeV show that its values decrease with temperature. The temperature dependence of the neutron and proton root-mean-square radii and corresponding neutron skin thickness is also investigated, showing that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in the more neutron-rich nuclei, a feature that may have consequences on astrophysical processes and neutron stars.

  13. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; John, Seth G.; Kavner, Abby

    2014-01-01

    The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn+2 in solution, with observed fractionations varying from Δ66/64Znmetal-aqueous = -1.0‰ to -3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects. Light isotopes are electroplated. In all cases light stable isotopes of the metals are preferentially electroplated, with mass-dependent behavior evident where three or more isotopes are measured. Fractionation is time-independent, meaning that the fractionation factor does not vary with the extent of reaction. In most of our experiments, we have controlled the extent of reaction such that only a small amount of metal is deposited from the stock solution, thus avoiding significant evolution of the reservoir composition. In such experiments, the observed isotope fractionation is constant as a

  14. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  15. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  16. Determination of perchlorate in infant formula by isotope dilution ion chromatography/tandem mass spectrometry

    PubMed Central

    Wang, Z.; Lau, B.P.-Y.; Tague, B.; Sparling, M.; Forsyth, D.

    2011-01-01

    A sensitive and selective isotope dilution ion chromatography/tandem mass spectrometry (ID IC-MS/MS) method was developed and validated for the determination of perchlorate in infant formula. The perchlorate was extracted from infant formula by using 20 ml of methanol and 5 ml of 1% acetic acid. All samples were spiked with 18O4 isotope-labelled perchlorate internal standard prior to extraction. After purification on a graphitised carbon solid-phase extraction column, the extracts were injected into an ion chromatography system equipped with an Ionpac AS20 column for separation of perchlorate from other anions. The presence of perchlorate in samples was quantified by isotope dilution mass spectrometry. Analysis of both perchlorate and its isotope-labelled internal standard was carried out on a Waters Quattro Ultima triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) negative ionisation mode. The method was validated for linearity and range, accuracy, precision, sensitivity, and matrix effects. The limit of quantification (LOQ) was 0.4 μg 1−1 for liquid infant formula and 0.95 μg kg−1 for powdered infant formula. The recovery ranged from 94% to 110% with an average of 98%. This method was used to analyse 39 infant formula, and perchlorate concentrations ranging from

  17. Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China

    NASA Astrophysics Data System (ADS)

    Wang, Zhuhong; Chen, Jiubin; Feng, Xinbin; Hintelmann, Holger; Yuan, Shengliu; Cai, Hongming; Huang, Qiang; Wang, Shuxiao; Wang, Fengyang

    2015-11-01

    The isotopic composition of mercury (Hg) is increasingly used to constrain the sources and pathways of this metal in the atmosphere. Though China has the highest Hg production, consumption and emission in the world, Hg isotope ratios are rarely reported for Chinese wet deposition. In this study, we examined, for the first time outside North America, both mass-dependent fractionation (MDF, expressed as δ202Hg) and mass-independent fractionation of odd (odd-MIF, Δ199Hg) and even (even-MIF, Δ200Hg) Hg isotopes in 15 precipitation samples collected from September 2012 to August 2013 in Guiyang (SW China). All samples displayed significant negative δ202Hg (-0.44 ∼ -4.27‰), positive Δ199Hg (+0.19 to +1.16‰) and slightly positive Δ200Hg (-0.01‰ to +0.20‰). Potential sources of Hg in precipitation were identified by coupling both MDF and MIF of Hg isotopes with a back-trajectory model. The results showed that local emission from coal-fired power plants and cement plants and western long-range transportation are two main contributing sources, while the contribution of Hg from south wind events would be very limited on an annual basis. The relatively lower Δ200Hg values in Guiyang precipitation may indicate a dilution effect by local sources and/or insignificant even-MIF in the tropopause contribution of this subtropical region. Our study demonstrates the usefulness of isotope fractionation, especially MIF for tracing sources and pathways of Hg in the atmosphere.

  18. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  19. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  20. Profiling thiol redox proteome using isotope tagging mass spectrometry.

    PubMed

    Parker, Jennifer; Zhu, Ning; Zhu, Mengmeng; Chen, Sixue

    2012-03-24

    Pseudomonas syringae pv. tomato strain DC3000 not only causes bacterial speck disease in Solanum lycopersicum but also on Brassica species, as well as on Arabidopsis thaliana, a genetically tractable host plant(1,2). The accumulation of reactive oxygen species (ROS) in cotyledons inoculated with DC3000 indicates a role of ROS in modulating necrotic cell death during bacterial speck disease of tomato(3). Hydrogen peroxide, a component of ROS, is produced after inoculation of tomato plants with Pseudomonas(3). Hydrogen peroxide can be detected using a histochemical stain 3'-3' diaminobenzidine (DAB)(4). DAB staining reacts with hydrogen peroxide to produce a brown stain on the leaf tissue(4). ROS has a regulatory role of the cellular redox environment, which can change the redox status of certain proteins(5). Cysteine is an important amino acid sensitive to redox changes. Under mild oxidation, reversible oxidation of cysteine sulfhydryl groups serves as redox sensors and signal transducers that regulate a variety of physiological processes(6,7). Tandem mass tag (TMT) reagents enable concurrent identification and multiplexed quantitation of proteins in different samples using tandem mass spectrometry(8,9). The cysteine-reactive TMT (cysTMT) reagents enable selective labeling and relative quantitation of cysteine-containing peptides from up to six biological samples. Each isobaric cysTMT tag has the same nominal parent mass and is composed of a sulfhydryl-reactive group, a MS-neutral spacer arm and an MS/MS reporter(10). After labeling, the samples were subject to protease digestion. The cysteine-labeled peptides were enriched using a resin containing anti-TMT antibody. During MS/MS analysis, a series of reporter ions (i.e., 126-131 Da) emerge in the low mass region, providing information on relative quantitation. The workflow is effective for reducing sample complexity, improving dynamic range and studying cysteine modifications. Here we present redox proteomic

  1. Energy and mass dependence of isotopic enrichment in sputtering

    SciTech Connect

    Shutthanandan, V.; Zhang, J.; Ray, Pradosh

    2003-05-01

    When a solid surface containing more than one component is bombarded by energetic particles, the sputtered flux is found to deviated from the stoichiometric composition of the target. This is known as preferential sputtering. Usually the sputtered flux is enriched with the lighter-mass particles, particularly at small emission angles. As the bombardment of the target is continued, the target surface becomes depleted in the particles that are preferentially emitted and a steady state is eventually established, where the ratio of the sputtered particles becomes equal to the natural abundance ratio of the particles in the target.

  2. Amino and Acetamide Functional Group Effects on the Ionization and Fragmentation of Sugar Chains in Positive-Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yamagaki, Tohru; Sugahara, Kohtaro; Watanabe, Takehiro

    2014-01-01

    To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo- N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.

  3. Probing the homogeneity of the isotopic composition and molar mass of the ‘Avogadro’-crystal

    NASA Astrophysics Data System (ADS)

    Pramann, Axel; Lee, Kyoung-Seok; Noordmann, Janine; Rienitz, Olaf

    2015-12-01

    Improved measurements on silicon crystal samples highly enriched in the 28Si isotope (known as ‘Si28’ or AVO28 crystal material) have been carried out at PTB to investigate local isotopic variations in the original crystal. This material was used for the determination of the Avogadro constant NA and therefore plays an important role in the upcoming redefinition of the SI units kilogram and mole, using fundamental constants. Subsamples of the original crystal have been extensively studied over the past few years at the National Research Council (NRC, Canada), the National Metrology Institute of Japan (NMIJ, Japan), the National Institute of Standards and Technology (NIST, USA), the National Institute of Metrology (NIM, People’s Republic of China), and multiple times at PTB. In this study, four to five discrete, but adjacent samples were taken from three distinct axial positions of the crystal to obtain a more systematic and comprehensive understanding of the distribution of the isotopic composition and molar mass throughout the crystal. Moreover, improved state-of-the-art techniques in the experimental measurements as well as the evaluation approach and the determination of the calibration factors were utilized. The average molar mass of the measured samples is M  =  27.976 970 12(12) g mol-1 with a relative combined uncertainty uc,rel(M)  =  4.4 ×10-9. This value is in astounding agreement with the values of single samples measured and published by NIST, NMIJ, and PTB. With respect to the associated uncertainties, no significant variations in the molar mass and the isotopic composition as a function of the sample position in the boule were observed and thus could not be traced back to an inherent property of the crystal. This means that the crystal is not only ‘homogeneous’ with respect to molar mass but also has predominantly homogeneous distribution of the three stable Si isotopes.

  4. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  5. A review on the determination of isotope ratios of boron with mass spectrometry.

    PubMed

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine (11) B/(10) B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs2 BO2(+) , N-TIMS, which uses BO2(-) , and MC-ICPMS, which uses B(+) ions for bulk analysis or B(-) and B(+) ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  6. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth

    NASA Astrophysics Data System (ADS)

    Babikov, Dmitri

    2017-03-01

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: 33S, 34S, and 36S. Interestingly, the ratio of capital ΔΔ values obtained within this model for 33S and 36S is -1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth.

  7. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth

    PubMed Central

    Babikov, Dmitri

    2017-01-01

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: 33S, 34S, and 36S. Interestingly, the ratio of capital Δ values obtained within this model for 33S and 36S is −1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth. PMID:28258172

  8. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth.

    PubMed

    Babikov, Dmitri

    2017-03-21

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: (33)S, (34)S, and (36)S. Interestingly, the ratio of capital [Formula: see text] values obtained within this model for (33)S and (36)S is -1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth.

  9. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  10. [Determination of nicotinamide in formula milk powder using liquid chromatography-isotope dilution mass spectrometry].

    PubMed

    Huang, Ting; Zhang, Wei; Liu, Yang; Liu, Jun

    2007-11-01

    It is important to determine trace compounds in complex matrices. Internal standards are often introduced to circumvent loss of analytes during the preparation to achieve accurate measurement. Isotope internal standards are better than other types of internal standards, due to its high similarity to analyte in chemical properties. By introducing isotope-labeled nicotinamide, as an internal standard, a method for determining nicotinamide in formula milk powder by liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) was developed with a relative standard deviation of 0.94%. The results suggested that the developed LC-IDMS method has high accuracy, high specificity, high repeatability, and is suitable for the determination of vitamins in complex matrices. This method was used to perform international comparison for CCQM-P78, and the result was consistent with that of international laboratories.

  11. Absolute isotopic composition and atomic weight of neodymium using thermal ionization mass spectrometry.

    PubMed

    Zhao, Motian; Zhou, Tao; Wang, Jun; Lu, Hai; Fang, Xiang; Guo, Chunhua; Li, Qiuli; Li, Chaofeng

    2005-01-01

    Synthetic mixtures prepared gravimetrically from highly enriched isotopes of neodymium in the form of oxides of well-defined purity were used to calibrate a thermal ionization mass spectrometer. A new error analysis was applied to calculate the final uncertainty of the atomic weight value. Measurements on natural neodymium samples yielded an absolute isotopic composition of 27.153(19) atomic percent (at.%) 142Nd, 12.173(18) at.% 143Nd, 23.798(12) at.% 144Nd, 8.293(7) at.% 145Nd, 17.189(17) at.% 146Nd, 5.756(8) at.% 148Nd, and 5.638(9) at.% 150Nd, and the atomic weight of neodymium as 144.2415(13), with uncertainties given on the basis of 95% confidence limits. No isotopic fractionation was found in terrestrial neodymium materials.

  12. Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry.

    PubMed

    Raeder, S; Hakimi, A; Stöbener, N; Trautmann, N; Wendt, K

    2012-11-01

    The in-source resonance ionization mass spectrometry technique was applied for quantification of ultratrace amounts of plutonium isotopes as a proof of principle study. In addition to an overall detection limit of 10(4) to 10(5) atoms, this method enables the unambiguous identification and individual quantification of the plutonium isotopes (238)Pu and (241)Pu which are of relevance for dating of radiogenic samples. Due to the element-selective ionization process, these isotopes can be measured even under a high surplus of isobaric contaminations from (238)U or (241)Am, which considerably simplifies chemical preparation. The technique was developed, tested, and characterized on a variety of synthetic and calibration samples and is presently applied to analyze environmental samples.

  13. Quantitative imaging of selenoprotein with multi-isotope imaging mass spectrometry (MIMS).

    PubMed

    Tang, Shiow-Shih; Guillermier, Christelle; Wang, Mei; Poczatek, Joseph Collin; Suzuki, Noriyuki; Loscalzo, Joseph; Lechene, Claude

    2014-11-01

    Multi-isotope imaging mass spectrometry (MIMS) allows high resolution quantitative imaging of protein and nucleic acid synthesis at the level of a single cell using stable isotope labels. We employed MIMS to determine the compartmental localization of selenoproteins tagged with stable isotope selenium compounds in human aortic endothelial cells (HAEC), and to compare the efficiency of labeling (to determine the ideal selenium source) from these compounds: [(82)Se]-selenite, [(77)Se]-seleno-methionine, and [(76)Se]-methyl-selenocysteine. We found that all three selenium sources appear to be localized in the nucleus as well as in the cytoplasm in HAEC. Seleno-methionine appears to be a better source for (seleno)protein synthesis. For MIMS detection, we compared freeze-drying to thin layer vs. thin sectioning for sample preparation. MIMS provides a unique and novel way to dissect selenoprotein synthesis in cells.

  14. Accelerating equilibrium isotope effect calculations. I. Stochastic thermodynamic integration with respect to mass

    NASA Astrophysics Data System (ADS)

    Karandashev, Konstantin; Vaníček, Jiří

    2017-05-01

    Accurate path integral Monte Carlo or molecular dynamics calculations of isotope effects have until recently been expensive because of the necessity to reduce three types of errors present in such calculations: statistical errors due to sampling, path integral discretization errors, and thermodynamic integration errors. While the statistical errors can be reduced with virial estimators and path integral discretization errors with high-order factorization of the Boltzmann operator, here we propose a method for accelerating isotope effect calculations by eliminating the integration error. We show that the integration error can be removed entirely by changing particle masses stochastically during the calculation and by using a piecewise linear umbrella biasing potential. Moreover, we demonstrate numerically that this approach does not increase the statistical error. The resulting acceleration of isotope effect calculations is demonstrated on a model harmonic system and on deuterated species of methane.

  15. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  16. Simultaneous measurement of 13C- and 15N-isotopic enrichments of threonine by mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Mermoud, Anne-France; Rémond, Didier; Faure, Magali; Breuille, Denis; Williamson, Gary; Peré-Trepat, Emma; Ramadan, Ziad; Fay, Laurent-Bernard; Kochhar, Sunil

    2009-04-01

    Under conditions of high isotopic dilution, e.g. in a tracer study, the ability to determine accurately and quantitatively small variations in isotopic enrichments of differently labelled chemical compounds (e.g. (13)C and (15)N in threonine) in a single run by gas chromatography/mass spectrometry (GC/MS) is desirable but remains a technological challenge. Here, we report a new, rapid and simple GC/MS method for simultaneously measuring the isotopic enrichments of doubly labelled threonine ([U(13)C] and (15)N) with isotopic enrichment lower than 1.5 Molar Percent Excess (MPE). The long-term reproducibility measured was around 0.09 MPE for both tracers (throughout a 6 week period). The intra-day repeatability was lower than 0.05 and 0.06 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. To calculate both isotopic enrichments, two modes of calculations were used: one based on work by Rosenblatt et al. in 1992 and the other one using a matrix approach. Both methods gave similar results (ANOVA, P >0.05) with close precision for each mode of calculation. The GC/MS method was then used to investigate the differential utilization of threonine in different organs according to its route of administration in minipigs after administration of both tracers. In plasma samples, the lowest isotopic enrichment measured between two successive time points was at 0.01 and 0.02 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. Moreover, the accuracy of GC/MS (13)C-isotopic enrichment measured was validated by analyzing the same plasma samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Statistical analysis showed that both techniques gave the same results (ANOVA, P >0.05). This new GC/MS method offers the possibility to measure (13)C- and (15)N-isotopic enrichments with higher throughput, and using a lower amount of sample, than using GC/C/IRMS.

  17. Quantitative Gingival Crevicular Fluid Proteome in Health and Periodontal Disease Using Stable-Isotope Chemistries and Mass Spectrometry

    PubMed Central

    Carneiro, Leandro G.; Nouh, Hesham; Salih, Erdjan

    2014-01-01

    Aim Application of quantitative stable-isotope-labeling chemistries and mass spectrometry (MS) to determine alterations in gingival crevicular fluid (GCF) proteome in periodontal disease. Materials and Methods Quantitative proteome of GCF from 40 healthy individuals versus 40 patients with periodontal disease was established using 320 GCF samples and stable-isotope-labeling reagents, ICAT and mTRAQ, with MS technology and validated by enzyme-linked immunosorbent methods. Results We have identified 238 distinct proteins of which 180 were quantified in GCF of both healthy and periodontal patients with additional 26 and 32 distinct proteins that were found only in GCF of healthy or periodontal patients. In addition, 42 pathogenic bacterial proteins and 11 yeast proteins were quantified. The data highlighted a series of proteins not quantified previously by large-scale MS approaches in GCF with relevance to periodontal disease, such as host derived Ig alpha-2 chain C, Kallikrein-4, S100-A9, transmembrane proteinase 13, peptidase S1 domain, several collagen types and pathogenic bacterial proteins e.g., formamidase, leucine amidopeptidase and virulence factor OMP85. Conclusions The innovative analytical approaches provided detailed novel changes in both host and microbial derived GCF proteomes of periodontal patients. The study defined 50 host and 16 pathogenic bacterial proteins significantly elevated in periodontal disease most of which were novel with significant potential for application in the clinical arena of periodontal disease. PMID:24738839

  18. Theory of mass-independent fractionation of isotopes, phase space accessibility, and a role of isotopic symmetry.

    PubMed

    Marcus, Rudolph A

    2013-10-29

    Key experimental and theoretical features of mass-independent fractionation (MIF) of isotopes, also known as the η-effect, are summarized, including its difference from the exit channel zero-point energy difference effect. The latter exactly cancels in the MIF. One key experimental result is that the MIF for O3 formation is a low-pressure phenomenon and, moreover, that it decreases with increasing pressure of third bodies at pressures far below the "Lindemann fall-off" pressures for three-body recombination of O and O2. A possible origin of the MIF is discussed in terms of a role for isotopologue symmetry in intramolecular energy sharing. An explanation is suggested for the large difference in the fall-off pressure for recombination and the pressure for a large decrease in MIF, in terms of a difference between deactivating collisions and what we term here "symmetry-changing collisions". It is noted that the theory of the MIF involves four recombination rate constants and an equilibrium constant, for each trace isotope, seven rate constants in all and two equilibrium constants. A conceptual shortcut is noted. Experimental and computational information that may provide added insight into the MIF mechanism and tests is described.

  19. Theory of mass-independent fractionation of isotopes, phase space accessibility, and a role of isotopic symmetry

    PubMed Central

    Marcus, Rudolph A.

    2013-01-01

    Key experimental and theoretical features of mass-independent fractionation (MIF) of isotopes, also known as the η-effect, are summarized, including its difference from the exit channel zero-point energy difference effect. The latter exactly cancels in the MIF. One key experimental result is that the MIF for O3 formation is a low-pressure phenomenon and, moreover, that it decreases with increasing pressure of third bodies at pressures far below the “Lindemann fall-off” pressures for three-body recombination of O and O2. A possible origin of the MIF is discussed in terms of a role for isotopologue symmetry in intramolecular energy sharing. An explanation is suggested for the large difference in the fall-off pressure for recombination and the pressure for a large decrease in MIF, in terms of a difference between deactivating collisions and what we term here “symmetry-changing collisions”. It is noted that the theory of the MIF involves four recombination rate constants and an equilibrium constant, for each trace isotope, seven rate constants in all and two equilibrium constants. A conceptual shortcut is noted. Experimental and computational information that may provide added insight into the MIF mechanism and tests is described. PMID:23812747

  20. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    PubMed

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration.

  1. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes

    PubMed Central

    Farquhar, James; Cliff, John; Zerkle, Aubrey L.; Kamyshny, Alexey; Poulton, Simon W.; Claire, Mark; Adams, David; Harms, Brian

    2013-01-01

    It is generally thought that the sulfate reduction metabolism is ancient and would have been established well before the Neoarchean. It is puzzling, therefore, that the sulfur isotope record of the Neoarchean is characterized by a signal of atmospheric mass-independent chemistry rather than a strong overprint by sulfate reducers. Here, we present a study of the four sulfur isotopes obtained using secondary ion MS that seeks to reconcile a number of features seen in the Neoarchean sulfur isotope record. We suggest that Neoarchean ocean basins had two coexisting, significantly sized sulfur pools and that the pathways forming pyrite precursors played an important role in establishing how the isotopic characteristics of each of these pools was transferred to the sedimentary rock record. One of these pools is suggested to be a soluble (sulfate) pool, and the other pool (atmospherically derived elemental sulfur) is suggested to be largely insoluble and unreactive until it reacts with hydrogen sulfide. We suggest that the relative contributions of these pools to the formation of pyrite depend on both the accumulation of the insoluble pool and the rate of sulfide production in the pyrite-forming environments. We also suggest that the existence of a significant nonsulfate pool of reactive sulfur has masked isotopic evidence for the widespread activity of sulfate reducers in the rock record. PMID:23407162

  2. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes.

    PubMed

    Farquhar, James; Cliff, John; Zerkle, Aubrey L; Kamyshny, Alexey; Poulton, Simon W; Claire, Mark; Adams, David; Harms, Brian

    2013-10-29

    It is generally thought that the sulfate reduction metabolism is ancient and would have been established well before the Neoarchean. It is puzzling, therefore, that the sulfur isotope record of the Neoarchean is characterized by a signal of atmospheric mass-independent chemistry rather than a strong overprint by sulfate reducers. Here, we present a study of the four sulfur isotopes obtained using secondary ion MS that seeks to reconcile a number of features seen in the Neoarchean sulfur isotope record. We suggest that Neoarchean ocean basins had two coexisting, significantly sized sulfur pools and that the pathways forming pyrite precursors played an important role in establishing how the isotopic characteristics of each of these pools was transferred to the sedimentary rock record. One of these pools is suggested to be a soluble (sulfate) pool, and the other pool (atmospherically derived elemental sulfur) is suggested to be largely insoluble and unreactive until it reacts with hydrogen sulfide. We suggest that the relative contributions of these pools to the formation of pyrite depend on both the accumulation of the insoluble pool and the rate of sulfide production in the pyrite-forming environments. We also suggest that the existence of a significant nonsulfate pool of reactive sulfur has masked isotopic evidence for the widespread activity of sulfate reducers in the rock record.

  3. On-line determination of oxygen isotope ratios of water or ice by mass spectrometry.

    PubMed

    Leuenberger, M; Huber, C

    2002-09-15

    Oxygen isotope ratio determination on any of the water phases (water vapor, water, ice) is of great relevance in different research fields such as climate and paleoclimate studies, geological surveys, and hydrological studies. The conventional technique for oxygen isotope measurement involves equilibration with carbon dioxide gas for a given time with a subsequent isotope determination. The equilibration technique is available in different layouts, but all of them are rather time-consuming. Here we report a new on-line technique that processes water samples as well as ice samples. The same principal, CO2 hydration, is used but speeded up by (i) a direct injection and full dissolution of CO2 in the water, (ii) an increased isotope exchange temperature at 50 degrees C, and (iii) a rapid gas extraction by means of an air-permeable membrane into a continuous helium flux supplying the isotope ratio mass spectrometer with the sample gas. The precision is better than 0.1/1000 which is only slightly larger than with the conventional equilibration technique. This on-line technique allows analysis of 1 m of ice with a resolution of 1-3 cm, depending on the meltwater flux, within 1 h. Similarly, continuous and fast analysis can be performed for aqueous samples for hydrological, geological, and perhaps medical applications.

  4. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data.

    PubMed

    Mimmo, Tanja; Camin, Federica; Bontempo, Luana; Capici, Calogero; Tagliavini, Massimo; Cesco, Stefano; Scampicchio, Matteo

    2015-11-15

    The awareness of customers of the origin of foods has become an important issue. The growing demand for foods that are healthy, safe and of high quality has increased the need for traceability and clear labelling. Thus, this study investigates the capability of C and N stable isotope ratios to determine the geographical origin of several apple varieties grown in northern Italy. Four apple varieties (Cripps Pink, Gala, Golden Delicious, Granny Smith) have been sampled in orchards located in the Districts of Bolzano, Ferrara, Verona and Udine (northern Italy). Carbon (δ(13) C) and nitrogen (δ(15) N) isotope values of the whole apple fruits and three sub-fractions (peel, pulp and seed) have been determined simultaneously by isotope ratio mass spectrometry. The δ(13) C and δ(15) N values of apples and apple sub-fractions, such as peel, seed and pulp, were significantly affected by the geographical origin and the fruit variety. The four varieties could be distinguished to a certain extent only within each district. A 99% correct identification of the samples according to their origin was, however, achieved by cross validation with the 'leave-one-out' method. This study proves the potential of stable isotopes to discriminate the geographical origin of apples grown in orchards located only a few hundreds of kilometres apart. Stable isotopes were also able to discriminate different apple varieties, although only within small geographical areas. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Methane oxidation in biofilters measured by mass-balance and stable isotope methods.

    PubMed

    Powelson, D K; Chanton, J P; Abichou, T

    2007-01-15

    Simultaneous flux and isotope measurements on compost and sand biofilters showed that the fraction of CH4 oxidized, calculated from delta13C measurements using a closed system model (f(oxir,C)), averaged only 0.455 of the fraction oxidized based on mass-balance measurements (f(oxm)). The discrepancy between f(oxm) and f(oxir,C) may be partly due to complete oxidation of a portion of the inflow gas, thereby eliminating its contribution to the emitted methane on which isotopic measurements are conducted. To relate f(oxir,C) and f(oxm) a simple binary closed-system model is proposed that assumes that f(oxir,C) refers to only part of the inflow, P, and that the remainder of inflow (1 - P) is completely oxidized before reaching the outlet. This model is compared to the standard open-system model. The H-isotope fraction oxidized (f(oxir,H)) was determined for a subset of samples and found to be not significantly different from f(oxir,C). The carbon isotope fractionation factor, alphaox,C = 1.0244, and the H-isotope fractionation factor, alphaox,H = 1.2370, were determined by incubation studies. Delta13C measurements indicated that the emitted flow was more strongly oxidized by the compost biofilters (f(oxir,C) = 0.362, f(oxm) = 0.757) than the sand biofilters (f(oxir,C) = 0.222, f(oxm) = 0.609).

  6. New developments in high-resolution gas source isotope ratio mass spectrometers

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ellam, R. M.; Hilkert, A.; Schwieters, J. B.; Hamilton, D.

    2015-12-01

    Gas source isotope ratio mass spectrometry (IRMS) is one of the main tools for the study of the isotopic compositions of light elements, extended in the last 10 years to the measurements of molecules bearing several rare isotopes (e.g., clumped isotopes of CO2) as well as position-specific isotopic substitutions in a few choice analytes (e.g., in N2O). Measuring those low-abundance species creates several technical challenges, with the main one being the presence of numerous isobaric interferences. Those can come either from contaminants (background gases present in the source of the instrument or impurities introduced with the analyte), or unwanted beams created by the analyte itself during the ionization process (for example adducts and fragments). In order to avoid those isobaric species, new high-resolution, double-focusing IRMS have been developed. We present here the capabilities of the production series version of the ThermoFisher Scientific 253 Ultra, which was installed at SUERC in July 2015. The instrument is capable of reaching high mass resolving power (above 40,000) and is similar in design to the Caltech 253 Ultra prototype. The collector array has 9 detector positions, 8 of which are movable. Faraday cups at each detector can be linked to amplifiers with gains ranging from 3.108 to 1012 Ohm (and 1013 Ohm amplifiers being currently developped). There are also 4 ion counters, one of which located behind a retardation lens (RPQ) to limit background noise and improve abundance sensitivity. Additionally, one of the Faraday cup in the new instrument has a very narrow entrance slit, allowing high mass resolving power and high resolution, with a complete separation of the ion beams instead of complex peak shapes corresponding to overlapping ion beams. This will potentially remove the need for adduct lines or peak stripping schemes for analytes like CH4.

  7. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2014-04-01

    Isotopic fractionations accompanying element transfer through terrestrial ecosystems have the potential to shed light on ecological interactions between primary producers and consumers, but with the exception of carbon and nitrogen this potential has barely been exploited. Here, the magnesium stable isotope composition of bones and teeth of extant mammals from Kruger National Park (KNP) and Western Cape (WC), South Africa was measured for the first time. The nature of the geological substrate proves to be a major determinant of the ecosystem isotope baseline, as indicated by the lighter magnesium isotope ratios measured in WC mammals (ranging from -1.58‰ to -0.79‰) compared to those from KNP mammals (ranging from -1.01‰ to -0.04‰). Therefore, comparisons between the isotope signatures of taxa must be restricted to a pre-defined geographic area with a homogeneous substrate. In both parks, Mg shows slight enrichment in heavier isotopes from herbivores to carnivores. Plant remains trapped in the dentition of herbivores provide direct evidence of dietary source and, when available, were measured. In KNP only, δ26Mg of plant remains is systematically lighter than the values for herbivore teeth. These results invite further exploration of the variability of Mg isotopes in vertebrate ecosystems in order to test whether magnesium, a bio-essential element present in relatively large proportions in bone and teeth apatite, may serve as an additional trophic tracer to nitrogen, which is a constituent of collagen that rapidly degrades after burial.

  8. Tectonic controls on the long-term carbon isotope mass balance

    NASA Astrophysics Data System (ADS)

    Shields, Graham A.; Mills, Benjamin J. W.

    2017-04-01

    The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ13C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ13C and a range of uplift proxies, including seawater 87Sr/86Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ13C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ13C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ13C record plays in reconstructing the oxygenation of earth’s surface environment.

  9. Tectonic controls on the long-term carbon isotope mass balance.

    PubMed

    Shields, Graham A; Mills, Benjamin J W

    2017-04-25

    The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ(13)C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ(13)C and a range of uplift proxies, including seawater (87)Sr/(86)Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ(13)C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ(13)C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ(13)C record plays in reconstructing the oxygenation of earth's surface environment.

  10. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  11. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  12. High-precision isotopic analysis of palmitoylcarnitine by liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry.

    PubMed

    Guo, ZengKui; Yarasheski, Kevin; Jensen, Michael D

    2006-01-01

    Single quadrupole gas chromatography/mass spectrometry (GC/MS) has been widely used for isotopic analysis in metabolic investigations using stable isotopes as tracers. However, its inherent shortcomings prohibit it from broader use, including low isotopic precision and the need for chemical derivatization of the analyte. In order to improve isotopic detection power, liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry (LC/ESI-itMS2) has been evaluated for its isotopic precision and chemical sensitivity for the analysis of [13C]palmitoylcarnitine. Over the enrichment range of 0.4-10 MPE (molar % excess), the isotopic response of LC/ESI-itMS2 to [13C]palmitoylcarnitine was linear (r = 1.00) and the average isotopic precision (standard deviation, SD) was 0.11 MPE with an average coefficient of variation (CV) of 5.6%. At the lower end of isotopic enrichments (0.4-0.9 MPE), the isotopic precision was 0.05 MPE (CV = 8%). Routine analysis of rat skeletal muscle [13C4]palmitoylcarnitine demonstrated an isotopic precision of 0.03 MPE for gastrocnemius (n = 16) and of 0.02 MPE for tibialis anterior (n = 16). The high precision enabled the detection of a small (0.08 MPE) but significant (P = 0.01) difference in [13C4]palmitoylcarnitine enrichments between the two muscles, 0.51 MPE (CV = 5.8%) and 0.43 MPE (CV = 4.6%), respectively. Therefore, the system demonstrated an isotopic lower detection limit (LDL) of < or =0.1 MPE (2 x SD) that has been impossible previously with other organic mass spectrometry instruments. LC/ESI-itMS2 systems have the potential to advance metabolic investigations using stable isotopes to a new level by significantly increasing the isotopic solving power.

  13. Precision mass measurements of magnesium isotopes and implications for the validity of the isobaric mass multiplet equation

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Kwiatkowski, A. A.; Drozdowski, O. M.; Andreoiu, C.; Burdette, D.; Chaudhuri, A.; Chowdhury, U.; Gallant, A. T.; Grossheim, A.; Gwinner, G.; Heggen, H.; Holt, J. D.; Klawitter, R.; Lassen, J.; Leach, K. G.; Lennarz, A.; Nicoloff, C.; Raeder, S.; Schultz, B. E.; Stroberg, S. R.; Teigelhöfer, A.; Thompson, R.; Wieser, M.; Dilling, J.

    2017-09-01

    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the isobaric mass multiplet equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29Cl and 30Ar. The atomic mass of 27Mg was found to be within 1.6 σ of the value stated in the Atomic Mass Evaluation. The atomic masses of Mg,2928 were measured to be both within 1 σ , while being 7 and 33 times more precise, respectively. Using the 29Mg mass excess and previous measurements of 29Cl, we uncovered a cubic coefficient of d =28 (7 )keV , which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28S and the one-neutron separation energy of 29Cl, which have both come from a single measurement. Finally, our results were compared with ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.

  14. Experimental study of the variation of alpha elastic scattering cross sections along isotopic and isotonic chains at low energies

    SciTech Connect

    Kiss, G. G.; Gyuerky, Gy.; Elekes, Z.; Fueloep, Zs.; Somorjai, E.; Galaviz, D.; Sonnabend, K.; Zilges, A.; Mohr, P.; Goerres, J.; Wiescher, M.; Oezkan, N.; Gueray, T.; Yalcin, C.; Avrigeanu, M.

    2008-05-21

    To improve the reliability of statistical model calculations in the region of heavy proton rich isotopes alpha elastic scattering experiments have been performed at ATOMKI, Debrecen, Hungary. The experiments were carried out at several energies above and below the Coulomb barrier with high precision. The measured angular distributions can be used for testing the predictions of the global and regional optical potential parameter sets. Moreover, we derived the variation of the elastic alpha scattering cross section along the Z = 50 ({sup 112}Sn-{sup 124}Sn) isotopic and N = 50 ({sup 89}Y-{sup 92}Mo) isotonic chains. In this paper we summarize the efforts to provide high precision experimental angular distributions for several A{approx_equal}100 nuclei to test the global optical potential parameterizations applied to p-process network calculations.

  15. α -decay chain of the short-lived isotope 220Pa established using a digital pulse processing technique

    NASA Astrophysics Data System (ADS)

    Huang, T. H.; Zhang, W. Q.; Sun, M. D.; Liu, Z.; Wang, J. G.; Liu, X. Y.; Ding, B.; Gan, Z. G.; Ma, L.; Yang, H. B.; Zhang, Z. Y.; Yu, L.; Jiang, J.; Wang, K. L.; Wang, Y. S.; Liu, M. L.; Li, Z. H.; Li, J.; Wang, X.; Lu, H. Y.; Lin, C. J.; Sun, L. J.; Ma, N. R.; Ren, Z. Z.; Zhang, F. S.; Zou, W.; Zhou, X. H.; Xu, H. S.; Xiao, G. Q.

    2017-07-01

    The decay properties of the short-lived isotope 220Pa were re-investigated via the reaction 40Ar+187Re at the gas-filled recoil separator Spectrometer for Heavy Atoms and Nuclear Structure. The digital pulse processing technique was applied to resolve the evaporation residues-α (ER -α ) pileup signals in the decay of 220Pa. The α -decay chain of 220Pa leading to the well-known 216Ac isotope was established for the first time. The α energy and half-life were measured to be Eα=9.520 (16 ) MeV and T1 /2=0.90 (13 ) μ s , respectively. The spin parity of the ground state of 220Pa was assigned to be 1-, based on the reduced α -decay width.

  16. Development of a dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Gall', L. N.; Sachenko, V. M.; Zarutskii, I. V.; Gall', N. R.

    2013-06-01

    A dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with Helicobacter Pylori using the isotope respiratory test is developed. A low-aberration mass analyzer is calculated, an input system that makes it possible to eliminate the memory effects is developed, and a small-size ion detector is constructed. The mass spectrometer is created, and the tests are performed. The measurement accuracy of the 13C/12C and 16O/18O isotope ratios are 1.7 and 2.2‰, respectively. Preliminary medical tests show that the spectrometer can be employed for the desired diagnostics.

  17. High-precision mass spectrometric analysis using stable isotopes in studies of children.

    PubMed

    Schierbeek, Henk; van den Akker, Chris H P; Fay, Laurent B; van Goudoever, Johannes B

    2012-01-01

    The use of stable isotopes combined with mass spectrometry (MS) provides insight into metabolic processes within the body. Herein, an overview on the relevance of stable isotope methodology in pediatric research is presented. Applications for the use of stable isotopes with MS cover carbohydrate, fat, and amino acid metabolism as well as body composition, energy expenditure, and the synthesis of specific peptides and proteins, such as glutathione and albumin. The main focus of these studies is on the interactions between nutrients and the endogenous metabolism within the body and how these factors affect the health of a growing infant. Considering that the early imprinting of metabolic processes hugely impacts metabolism (and thus functional outcome) later in life, research in this area is important and is advancing rapidly. The major fluxes on a metabolic level are the synthesis and breakdown rates. They can be quantified using kinetic tracer analysis and mathematical modeling. Organic MS and isotope ratio mass spectrometry (IRMS) are the two most mature techniques for the isotopic analysis of compounds. Introduction of the samples is usually done by coupling gas chromatography (GC) to either IRMS or MS because it is the most robust technique for specific isotopic analysis of volatile compounds. In addition, liquid chromatography (LC) is now being used more often as a tool for sample introduction of both volatile and non-volatile compounds into IRMS or MS for (13)C isotopic analyses at natural abundances and for (13)C-labeled enriched compounds. The availability of samples is often limited in pediatric patients. Therefore, sample size restriction is important when developing new methods. Also, the availability of stable isotope-labeled substrates is necessary for measurements of the kinetics and concentrations in metabolic studies, which can be a limiting factor. During the last decade, the availability of these substrates has increased. Furthermore, improvements

  18. 2H/(1)H and (13)C/(12)C isotope ratios of trans-anethole using gas chromatography-isotope ratio mass spectrometry.

    PubMed

    Bilke, Steffi; Mosandl, Armin

    2002-07-03

    Authenticity assessment of trans-anethole is deduced from (2)H/(1)H and (13)C/(12)C isotope ratios, determined by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). For that purpose, self-prepared anise and fennel oils, and synthetic and "natural" samples of trans-anethole, as well as commercially available anise and fennel oils have been investigated. Authenticity ranges of (2)H/(1)H and (13)C/(12)C isotope ratios of trans-anethole were defined. Scope and limitations of the applied online GC-IRMS techniques are discussed.

  19. Explaining the structure of the Archean mass-independent sulfur isotope record.

    PubMed

    Halevy, Itay; Johnston, David T; Schrag, Daniel P

    2010-07-09

    Sulfur isotopes in ancient sediments provide a record of past environmental conditions. The long-time-scale variability and apparent asymmetry in the magnitude of minor sulfur isotope fractionation in Archean sediments remain unexplained. Using an integrated biogeochemical model of the Archean sulfur cycle, we find that the preservation of mass-independent sulfur is influenced by a variety of extra-atmospheric mechanisms, including biological activity and continental crust formation. Preservation of atmospherically produced mass-independent sulfur implies limited metabolic sulfur cycling before approximately 2500 million years ago; the asymmetry in the record indicates that bacterial sulfate reduction was geochemically unimportant at this time. Our results suggest that the large-scale structure of the record reflects variability in the oxidation state of volcanic sulfur volatiles.

  20. Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications.

    PubMed

    Thiemens, M H; Savarino, J; Farquhar, J; Bao, H

    2001-08-01

    In 1983, Thiemens and Heidenreich reported the first chemically produced mass-independent isotope effect. This work has been shown to have a wide range of applications, including atmospheric chemistry, solar system evolution, and chemical physics. This work has recently been reviewed (Weston, R. E. Chem. Rev. 1999, 99, 2115-2136; Thiemens, M. H. Science 1999, 283, 341-345). In this Account, observations of mass-independent isotopic compositions in terrestrial and Martian solids are reviewed. A wide range of applications, including formation and transport of aerosols in the present atmosphere, chemistry of ancient atmospheres and oceans, history and coupling of the atmosphere-surface in the Antarctic dry valleys, origin and evolution of oxygen in the Earth's earliest environment, and the chemistry of the atmosphere and surface of Mars, are discussed.

  1. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  2. High-precision Penning-trap mass measurements of heavy xenon isotopes for nuclear structure studies

    SciTech Connect

    Neidherr, D.; Cakirli, R. B.; Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S.; Beck, D.; Herfurth, F.; Blaum, K.; Boehm, Ch.; George, S.; Breitenfeldt, M.; Rosenbusch, M.; Schweikhard, L.; Casten, R. F.; Herlert, A.; Kowalska, M.; Kellerbauer, A.; Schwarz, S.

    2009-10-15

    With the double Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN the masses of the neutron-rich isotopes {sup 136-146}Xe were measured with a relative uncertainty of the order of 10{sup -8} to 10{sup -7}. In particular, the masses of {sup 144-146}Xe were measured for the first time. These new mass values allow one to extend calculations of the mass surface in this region. Proton-Neutron interaction strength, obtained from double differences of binding energies, relate to subtle structural effects, such as the onset of octupole correlations, the growth of collectivity, and its relation to the underlying shell model levels. In addition, they provide a test of density functional calculations.

  3. High precision Penning trap mass spectrometry of rare isotopes produced by projectile fragmentation

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Barquest, B. R.; Block, M.; Bollen, G.; Campbell, C. M.; Ferrer, R.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Redshaw, M.; Ringle, R.; Schwarz, S.; Savory, J.

    2011-09-01

    The Low Energy Beam and Ion Trap (LEBIT) is the only present facility to combine high precision Penning trap mass spectrometry with fast beam projectile fragmentation. Located at the National Superconducting Cyclotron Laboratory (NSCL), LEBIT is able to measure radionuclides produced in a chemically independent process with minimal decay losses. Recent exotic mass measurements include 66As, 63-66Fe, and 32Si. 66As is a new candidate to test the Conserved Vector Current (CVC) hypothesis. The masses of the neutron-rich iron isotopes provide additional information about the mass surface and the subshell closure at N = 40. 32Si is a member of the A = 32, T = 2 quintet; its measurement permits the most stringent test of the validity of the isobaric multiplet mass equation (IMME). An overview of some recent measurements will be presented as well as advanced techniques for ion manipulation.

  4. Re-Os isotope and platinum group elements of a FOcal ZOne mantle source, Louisville Seamounts Chain, Pacific ocean

    NASA Astrophysics Data System (ADS)

    Tejada, Maria Luisa G.; Hanyu, Takeshi; Ishikawa, Akira; Senda, Ryoko; Suzuki, Katsuhiko; Fitton, Godfrey; Williams, Rebecca

    2015-02-01

    The Louisville Seamount Chain (LSC) is, besides the Hawaiian-Emperor Chain, one of the longest-lived hotspot traces. We report here the first Re-Os isotope and platinum group element (PGE) data for Canopus, Rigil, and Burton Guyots along the chain, which were drilled during IODP Expedition 330. The LSC basalts possess (187Os/188Os)i = 0.1245-0.1314 that are remarkably homogeneous and do not vary with age. A Re-Os isochron age of 64.9 ± 3.2 Ma was obtained for Burton seamount (the youngest of the three seamounts drilled), consistent with 40Ar-39Ar data. Isochron-derived initial 187Os/188Os ratio of 0.1272 ± 0.0008, together with data for olivines (0.1271-0.1275), are within the estimated primitive mantle values. This (187Os/188Os)i range is similar to those of Rarotonga (0.124-0.139) and Samoan shield (0.1276-0.1313) basalts and lower than those of Cook-Austral (0.136-0.155) and Hawaiian shield (0.1283-0.1578) basalts, suggesting little or no recycled component in the LSC mantle source. The PGE data of LSC basalts are distinct from those of oceanic lower crust. Variation in PGE patterns can be largely explained by different low degrees of melting under sulfide-saturated conditions of the same relatively fertile mantle source, consistent with their primitive mantle-like Os and primordial Ne isotope signatures. The PGE patterns and the low 187Os/188Os composition of LSC basalts contrast with those of Ontong Java Plateau (OJP) tholeiites. We conclude that the Re-Os isotope and PGE composition of LSC basalts reflect a relatively pure deep-sourced common mantle sampled by some ocean island basalts but is not discernible in the composition of OJP tholeiites.

  5. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, Elise

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C+ with 12C 1H+ comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.

  6. Theoretical study of band structure of odd-mass 115,117I isotopes

    NASA Astrophysics Data System (ADS)

    Singh, Dhanvir; Kumar, Amit; Sharma, Chetan; Singh, Suram; Bharti, Arun

    2016-05-01

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich 115,117I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  7. Theoretical study of band structure of odd-mass {sup 115,117}I isotopes

    SciTech Connect

    Singh, Dhanvir Kumar, Amit Sharma, Chetan; Singh, Suram; Bharti, Arun

    2016-05-06

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich {sup 115,117}I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  8. Calculation of partial isotope incorporation into peptides measured by mass spectrometry

    PubMed Central

    2010-01-01

    Background Stable isotope probing (SIP) technique was developed to link function, structure and activity of microbial cultures metabolizing carbon and nitrogen containing substrates to synthesize their biomass. Currently, available methods are restricted solely to the estimation of fully saturated heavy stable isotope incorporation and convenient methods with sufficient accuracy are still missing. However in order to track carbon fluxes in microbial communities new methods are required that allow the calculation of partial incorporation into biomolecules. Results In this study, we use the characteristics of the so-called 'half decimal place rule' (HDPR) in order to accurately calculate the partial13C incorporation in peptides from enzymatic digested proteins. Due to the clade-crossing universality of proteins within bacteria, any available high-resolution mass spectrometry generated dataset consisting of tryptically-digested peptides can be used as reference. We used a freely available peptide mass dataset from Mycobacterium tuberculosis consisting of 315,579 entries. From this the error of estimated versus known heavy stable isotope incorporation from an increasing number of randomly drawn peptide sub-samples (100 times each; no repetition) was calculated. To acquire an estimated incorporation error of less than 5 atom %, about 100 peptide masses were needed. Finally, for testing the general applicability of our method, peptide masses of tryptically digested proteins from Pseudomonas putida ML2 grown on labeled substrate of various known concentrations were used and13C isotopic incorporation was successfully predicted. An easy-to-use script [1] was further developed to guide users through the calculation procedure for their own data series. Conclusion Our method is valuable for estimating13C incorporation into peptides/proteins accurately and with high sensitivity. Generally, our method holds promise for wider applications in qualitative and especially

  9. INTERLABORATORY COMPARISON OF MASS SPECTROMETRIC METHODS FOR LEAD ISOTOPES AND TRACE ELEMENTS IN NIST SRM 1400 BONE ASH

    EPA Science Inventory

    The results of an interlaboratory comparison are reported for he lead isotope composition and for trace element concentrations in NIST SRM 1400 Bone Ash obtained using quadrupole and magnetic-sector inductively coupled plasma mass spectrometry (ICP-MS) and (for the Pb isotopes on...

  10. INTERLABORATORY COMPARISON OF MASS SPECTROMETRIC METHODS FOR LEAD ISOTOPES AND TRACE ELEMENTS IN NIST SRM 1400 BONE ASH

    EPA Science Inventory

    The results of an interlaboratory comparison are reported for he lead isotope composition and for trace element concentrations in NIST SRM 1400 Bone Ash obtained using quadrupole and magnetic-sector inductively coupled plasma mass spectrometry (ICP-MS) and (for the Pb isotopes on...

  11. An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun

    2013-01-01

    Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.

  12. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ricci, M. P.; Merritt, D. A.; Freeman, K. H.; Hayes, J. M.

    1994-01-01

    Methods are described for continuous monitoring of signals required for precise analyses of 13C, 18O, and 15N in gas streams containing varying quantities of CO2 and N2. The quantitative resolution (i.e. maximum performance in the absence of random errors) of these methods is adequate for determination of isotope ratios with an uncertainty of one part in 10(5); the precision actually obtained is often better than one part in 10(4). This report describes data-processing operations including definition of beginning and ending points of chromatographic peaks and quantitation of background levels, allowance for effects of chromatographic separation of isotopically substituted species, integration of signals related to specific masses, correction for effects of mass discrimination, recognition of drifts in mass spectrometer performance, and calculation of isotopic delta values. Characteristics of a system allowing off-line revision of parameters used in data reduction are described and an algorithm for identification of background levels in complex chromatograms is outlined. Effects of imperfect chromatographic resolution are demonstrated and discussed and an approach to deconvolution of signals from coeluting substances described.

  13. Accounting for isotopic clustering in Fourier transform mass spectrometry data analysis for clinical diagnostic studies.

    PubMed

    Kakourou, Alexia; Vach, Werner; Nicolardi, Simone; van der Burgt, Yuri; Mertens, Bart

    2016-10-01

    Mass spectrometry based clinical proteomics has emerged as a powerful tool for high-throughput protein profiling and biomarker discovery. Recent improvements in mass spectrometry technology have boosted the potential of proteomic studies in biomedical research. However, the complexity of the proteomic expression introduces new statistical challenges in summarizing and analyzing the acquired data. Statistical methods for optimally processing proteomic data are currently a growing field of research. In this paper we present simple, yet appropriate methods to preprocess, summarize and analyze high-throughput MALDI-FTICR mass spectrometry data, collected in a case-control fashion, while dealing with the statistical challenges that accompany such data. The known statistical properties of the isotopic distribution of the peptide molecules are used to preprocess the spectra and translate the proteomic expression into a condensed data set. Information on either the intensity level or the shape of the identified isotopic clusters is used to derive summary measures on which diagnostic rules for disease status allocation will be based. Results indicate that both the shape of the identified isotopic clusters and the overall intensity level carry information on the class outcome and can be used to predict the presence or absence of the disease.

  14. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  15. Confirmation of mass-independent Ni isotopic variability in iron meteorites

    NASA Astrophysics Data System (ADS)

    Steele, Robert C. J.; Elliott, Tim; Coath, Christopher D.; Regelous, Marcel

    2011-12-01

    We report high-precision analyses of internally-normalised Ni isotope ratios in 12 bulk iron meteorites. Our measurements of 60Ni/ 61Ni, 62Ni/ 61Ni and 64Ni/ 61Ni normalised to 58Ni/ 61Ni and expressed in parts per ten thousand (‱) relative to NIST SRM 986 as ɛ60Ni,ɛ62Ni and ɛ64Ni, vary by 0.146, 0.228 and 0.687, respectively. The precision on a typical analysis is 0.03‱, 0.05‱ and 0.08‱ for ɛ60Ni, ɛ62Ni and ɛ64Ni, respectively, which is comparable to our sample reproducibility. We show that this 'mass-independent' Ni isotope variability cannot be ascribed to interferences, inaccurate correction of instrumental or natural mass-dependent fractionation, fractionation controlled by nuclear field shift effects, nor the influence of cosmic ray spallation. These results thus document the presence of mass-independent Ni isotopic heterogeneity in bulk meteoritic samples, as previously proposed by Regelous et al. (2008) (EPSL 272, 330-338), but our new analyses are more precise and include determination of 64Ni. Intriguingly, we find that terrestrial materials do not yield homogenous internally-normalised Ni isotope compositions, which, as pointed out by Young et al. (2002) (GCA 66, 1095-1104), may be the expected result of using the exponential (kinetic) law and atomic masses to normalise all fractionation processes. The certified Ni isotope reference material NIST SRM 986 defines zero in this study, while appropriate ratios for the bulk silicate Earth are given by the peridotites JP-1 and DTS-2 and, relative to NIST SRM 986, yield deviations in ɛ60Ni, ɛ62Ni and ɛ64Ni of -0.006‱, 0.036‱ and 0.119‱, respectively. There is a strong positive correlation between ɛ64Ni and ɛ62Ni in iron meteorites analyses, with a slope of 3.03 ± 0.71. The variations of Ni isotope anomalies in iron meteorites are consistent with heterogeneous distribution of a nucleosynthetic component from a type Ia supernova into the proto-solar nebula.

  16. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X. M.

    2012-04-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  17. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  18. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  19. Applications of Structural Mass Spectrometry to Metabolomics: Clarifying Bond Specific Spectral Signatures with Isotope Edited Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott

    2015-06-01

    Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.

  20. Isotopic mass-dependence of metal cation diffusion coefficients in liquid water

    SciTech Connect

    Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.

    2009-01-11

    Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.

  1. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  2. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  3. Isotopic separation

    SciTech Connect

    Chen, C.

    1981-03-10

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential.

  4. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  5. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry.

    PubMed

    Merritt, D A; Freeman, K H; Ricci, M P; Studley, S A; Hayes, J M

    1995-07-15

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  6. Measuring technique for thermal ionisation mass spectrometry of human tracer kinetic study with stable cerium isotopes.

    PubMed

    Keiser, Teresa; Höllriegl, Vera; Giussani, Augusto; Oeh, Uwe

    2011-06-01

    Thermal ionisation mass spectrometry (TIMS) method has been developed for the simultaneous detection of different cerium isotopes in biological samples (i.e., blood and urine) at very low concentrations. The work has been done in the frame of a biokinetic study, where different stable cerium isotopes have been administered orally and intravenously as tracers to the human body. In order to develop an appropriate detection method for the tracers in the biological samples, an optimum sample preparation technique has been set and adapted to the specific requirements of the analysis technique used, i.e., TIMS. For sample evaporation and ionisation, the double tantalum filament technique showed the best results. The ions produced were simultaneously collected on a secondary electron multiplier so that the isotopic ratios of the cerium isotopes in the biological samples could be measured. The technique has been optimised for the determination of cerium down to 1 ng loaded on the evaporation filament corresponding to cerium concentrations of down to 1 ng ml(-1) in the blood or urine samples. It has been shown that the technique is reliable in application and enables studies on cerium metabolism and biokinetics in humans without employing radioactive tracers.

  7. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  8. Carbon isotopic characterization of cider CO2 by isotope ratio mass spectrometry: a tool for quality and authenticity assessment.

    PubMed

    Cabañero, Ana I; Rupérez, Mercedes

    2012-08-30

    The cider market is an important sector of the food industry in certain regions. Adulteration of cider can happen in several ways: for example, by the addition of sugar, or of exogenous CO(2) to certain types of cider. Because such practices are not allowed by either Spanish legislation or the legislation of other countries, it is essential to study possible methods to detect these unauthorized practices. For this purpose a procedure was required to study the stable carbon isotopic composition of CO(2) in cider. A liquid sample of cider was transferred to a vial and CO(2) from the headspace of the vial was analyzed using a peripheral device interfaced to an isotope ratio mass spectrometer. Separation of the CO(2) from water and ethanol was achieved using a gas chromatography column located in the peripheral device. The values for repeatability and reproducibility obtained indicated the robustness of the method, which is required for routine analysis. Ninety cider samples from various origins were analyzed, most of which showed a (13)C content consistent with the declared origin. The δ(13)C ranged from -24.80‰ to -20.89‰ for ciders with endogenous carbon dioxide (-22.74 ± 0.79‰) and -37.13‰ to -26.00‰ if industrial CO(2) was added. Several samples were also suspected of C4 sugar addition prior to the fermentation. A fast, accurate and simple method for cider adulteration detection was developed. The addition of exogenous CO(2) as well as C4 sugar addition prior to fermentation could be detected. The method showed advantages over existing methods in term of simplicity (no sample preparation and very long-term stability of the sample), speed (less than 10 min/sample) and precision ((r ≤0.32 and R ≤0.42). Copyright © 2012 John Wiley & Sons, Ltd.

  9. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  10. Development and Deployment of Retrofit PolarisQ Ion Trap Mass Spectrometer for Isotope Ratio Measurements

    SciTech Connect

    Thompson, Cyril V.; Whitten, William B.

    2015-11-01

    This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts with UF6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.

  11. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities. Annual Report 2011

    SciTech Connect

    Biegalski, Steven R.; Buchholz, Bruce A.

    2011-08-24

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.

  12. Stable nitrogen isotope ratios and accumulation of PCDD/F and PCB in Baltic aquatic food chains

    SciTech Connect

    Broman, D.; Naef, C.; Rolff, C.; Zebuehr, Y.

    1994-12-31

    Ratios of naturally occurring stable isotopes of nitrogen ({delta}{sup 15}N) can be used to numerically classify trophic levels of organisms in food chains. By combining analyses results of PCDD/Fs and non-ortho PCBs the biomagnification of these substances can be quantitatively estimated. The two Baltic food chains studied were one pelagic (phytoplankton -- settling particulate matter (SPM) -- zooplankton -- mysids -- herring -- cod) and one littoral (phytoplankton -- SPM -- blue mussel -- eider duck). The {delta}{sup 15}N-data gave food chain descriptions qualitatively consistent with previous conceptions of trophic arrangements in the food chains. Phytoplankton showed the lowest average {delta}{sup 15}N-value and the juvenile eider duck and the cod showed the highest average {delta}{sup 15}N-values for the littoral and pelagic food chains, respectively. The PCDD/Fs and PCBs concentrations were plotted versus the {delta}{sup 15}N-values for the different trophic levels and an exponential model of the form e{sup (A + B*{delta}N)} was fitted to the data. The estimates of the constant B in the model allows for an estimation of a biomagnification power (B) of different singular, or groups of, contaminants. A B-value around zero indicates that a substance is flowing through the food chain without being magnified, whereas a value > 0 indicates that a substance is biomagnified. Negative B-values indicate that a substance is not taken up or is metabolized. The A-term of the expression is only a scaling factor depending on the background level of the contaminant.

  13. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    PubMed

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Isolation and derivatization of plasma taurine for stable isotope analysis by gas chromatography-mass spectrometry

    SciTech Connect

    Irving, C.S.; Klein, P.D.

    1980-09-01

    A method for the isolation and derivatization of plasma taurine is described that allows stable isotope determinations of taurine to be made by gas chromatography-mass spectrometry. The isolation procedure can be applied to 0.1 ml of plasma; the recovery of plasma taurine was 70 to 80%. For gc separation, taurine was converted to its dimethylaminomethylene methyl ester derivative which could not be detected by hydrogen flame ionization, but could be monitored readily by NH/sub 3/ chemical ionization mass spectrometry. The derivatization reaction occurred partially on-column and required optimization of injection conditions. Using stable isotope ratiometry multiple ion detection, (M + 2 + H)/sup +//(M + H)/sup +/ ion ratio of natural abundance taurine was determined with a standard deviation of less than +-0.07% of the ratio. The (1,2-/sup 13/C)taurine/taurine mole ratios of standard mixtures could be accurately determined to 0.001. This stable isotope gc-ms method is suitable for studying the plasma kinetics of (1,2-/sup 13/C)taurine in infants who are at risk with respect to taurine depletion.

  15. Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic 'absolute' carbon and oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan

    2008-03-01

    Mass-spectrometric stable isotope measurements of CO 2 use molecular ion currents at mass-to-charge ratios m/ z 44, 45 and 46 to derive the elemental isotope ratios n( 13C)/ n( 12C) and n( 18O)/ n( 16O), abbreviated 13C/ 12C and 18O/ 16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ' 17O correction'. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/ 12C ( 13R), 17O/ 16O ( 17R) and 18O/ 16O ( 18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO 2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H 3PO 4 at 25 °C (VPDB-CO 2). I find 17R/10-6=382.7-2.1+1.7, 18RVSMOW/10 -6 = 2005.20 ± 0.45, 13R/10-6= 11124 ± 45, 17R/10-6=391.1-2.1+1.7 and 18R/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences ( δ values). This reveals that only ratios of isotope ratios (namely, 17R/ 13R and 13R17R/ 18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/ 12C difference, but not for 18O/ 16O. Even though inter-laboratory differences can be corrected for by a common 'ratio assumption set' and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/ 16O and 18O/ 16O isotope ratios. For highest accuracy in the 13C/ 12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that

  16. Water masses along the OVIDE 2010 section as identified by oxygen and hydrogen stable isotope values

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Thierry, Virginie

    2016-04-01

    The OVIDE transect between the western Iberian Peninsula and the southern tip of Greenland is one of the hydrographic sections in the North Atlantic that is measured regularly to identify changes in water mass formation and transport and thus to evaluate the state of the Atlantic Meridional Overturning Circulation (Mercier et al., 2015; García-Ibáñez et al., 2015; both in Progr. in Oceanography). During the OVIDE 2010 campaign seawater samples covering the complete water column were collected on the section between Portugal and the Reykjanes ridge for stable isotope analyses. Oxygen (δ18O) and hydrogen (δD) stable isotope values were measured simultaneously by cavity ring-down laser spectroscopy using a L1102-i Picarro water isotope analyser at the Godwin Laboratory for Paleoclimate Research (Univ. Cambridge, UK). Within the upper water column the stable isotope values clearly mark the positions of the Portugal Current (40.3°N 11°W), the North Atlantic Drift (46.2°N 19.4°W) and of the subarctic front (51°N 23.5°W). Up to Station 36 (47.7°N 20.6°W) an upper (around 600 m) and lower (around 1000 m) branch of the Mediterranean Outflow water (MOW) can clearly be distinguished by high oxygen (0.5-0.7‰) and hydrogen (3-5‰) values. At Station 28 (42.3°N 15.1°W) strong MOW influence is also indicated between 1400 and 1600 m. In the west European Basin, lower oxygen isotope values reveal the presence of Labrador Sea Water (LSW) below the MOW (down to 2200 m). Close to and west of the subarctic front this water mass shallows and occupies the complete interval between 1000 and 2000 m water depth. In the Iceland basin, two additional levels with lower oxygen isotope values are observed. The deeper level (2200-3500 m) marks Iceland Scotland Overflow Water (ISOW) that based on its distinct isotopic signature (δ18O ≤ 0.25‰) can be traced as far east as 18.5°W (down to at least 3500 m). Close to the Reykjanes ridge both, the ISOW and LSW, are also

  17. Approaching the N=82 shell closure with mass measurements of Ag and Cd isotopes

    SciTech Connect

    Breitenfeldt, M.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Borgmann, Ch.; Boehm, Ch.; George, S.; Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S.; Beck, D.; Dworschak, M.; Herfurth, F.; Savreux, R.; Yazidjian, C.; Blaum, K.; Cakirli, R. B.; Casten, R. F.; Delahaye, P.

    2010-03-15

    Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of {sup 112,114-124}Ag and {sup 114,120,122-124,126,128}Cd, determined with relative uncertainties between 2x10{sup -8} and 2x10{sup -7}, resulted in significant corrections and improvements of the mass surface. In particular, the mass of {sup 124}Ag was previously unknown. In addition, other masses that had to be inferred from Q values of nuclear decays and reactions have now been measured directly. The analysis includes various mass differences, namely the two-neutron separation energies, the applicability of the Garvey-Kelson relations, double differences of masses deltaV{sub pn}, which give empirical proton-neutron interaction strengths, as well as a comparison with recent microscopic calculations. The deltaV{sub pn} results reveal that for even-even nuclides around {sup 132}Sn the trends are similar to those in the {sup 208}Pb region.

  18. Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Niemann, Hasso (Technical Monitor)

    2001-01-01

    Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.

  19. Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Niemann, Hasso (Technical Monitor)

    2001-01-01

    Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.

  20. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis.

    PubMed

    An, S; Gardner, W S; Kana, T

    2001-03-01

    A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N(2) gas species ((28)N(2), (29)N(2), and (30)N(2)) were monitored during incubation experiments after the addition of (15)NO(3)(-). Formulas were developed to estimate the production (denitrification) and consumption (N(2) fixation) of N(2) gas from the fluxes of the different isotopic forms of N(2). Proportions of the three isotopic forms produced from (15)NO(3)(-) and (14)NO(3)(-) agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 microg-atoms of N m(-2) h(-1). They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N(2) production rates due to denitrification could be separated from high N(2) consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 microg-atoms of N m(-2) h(-1)) were lower than nitrogen fixation rates (average, 60 microg-atoms of N m(-2) h(-1)). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N(2) isotope capability, it was possible to do isotope-pairing experiments with the MIMS system.

  1. Quantitative imaging of inositol distribution in yeast using multi-isotope imaging mass spectrometry (MIMS).

    PubMed

    Saiardi, A; Guillermier, C; Loss, O; Poczatek, J C; Lechene, C

    2014-11-01

    Despite the widely recognized importance of the several species of inositol polyphosphates in cell biology, inositol has not been successfully imaged and quantified inside cells using traditional spectrophotometry. Multi-isotope imaging mass spectrometry (MIMS) technology, however, has facilitated direct imaging and measurement of cellular inositol. After pulsing cells with inositol labeled with the stable isotope Carbon-13 ((13)C), the label was detected in subcellular volumes by MIMS. The tridimensional localization of (13)C within the cell illustrated cellular distribution and local accumulation of inositol. In parallel, we performed control experiments with (13)C-Glucose to compare a different (13)C distribution pattern. Because many functions recently attributed to inositol polyphosphates are localized in the nucleus, we analyzed its relative nuclear concentration. We engineered yeast with human thymidine permease and viral thymidine kinase, then fed them with (15)N-thymidine. This permitted direct analysis of the nuclear DNA through the detection of the (15)N isotopic signal. We found practically no co-localization between inositol signal ((13)C-isotope) and nuclear signal ((15)N-isotope). The (13)C-tag (inositol) accumulation was highest at the plasma membrane and in cytoplasmic domains. In time-course labeling experiments performed with wild type yeast (WT) or modified yeast unable to synthesize inositol from glucose (ino1Δ), the half-time of labeled inositol accumulation was ~1 hour in WT and longer in ino1Δ. These studies should serve as a template to study metabolism and physiological role of inositol using genetically modified yeasts.

  2. Simultaneous Measurement of Denitrification and Nitrogen Fixation Using Isotope Pairing with Membrane Inlet Mass Spectrometry Analysis†

    PubMed Central

    An, Soonmo; Gardner, Wayne S.; Kana, Todd

    2001-01-01

    A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N2 gas species (28N2, 29N2, and 30N2) were monitored during incubation experiments after the addition of 15NO3−. Formulas were developed to estimate the production (denitrification) and consumption (N2 fixation) of N2 gas from the fluxes of the different isotopic forms of N2. Proportions of the three isotopic forms produced from 15NO3− and 14NO3− agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 μg-atoms of N m−2 h−1. They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N2 production rates due to denitrification could be separated from high N2 consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 μg-atoms of N m−2 h−1) were lower than nitrogen fixation rates (average, 60 μg-atoms of N m−2 h−1). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N2 isotope capability, it was possible to do isotope-pairing experiments with the MIMS system. PMID:11229907

  3. Use of stable carbon and nitrogen isotopes to trace the larval striped bass food chain in the Sacramento-San Joaquin Estuary, California, April to September 1985

    USGS Publications Warehouse

    Rast, Walter; Sutton, J.E.

    1989-01-01

    To assess one potential cause for the decline of the striped bass fishery in the Sacramento-San Joaquin Estuary, stable carbon and nitrogen isotope ratios were used to examine the trophic structures of the larval striped bass food chain, and to trace the flux of these elements through the food chain components. Study results generally confirm a food chain consisting of the elements, phytoplankton/detritus-->zooplankton/Neomysis shrimp-->larval striped bass. The stable isotope ratios generally become more positive as one progresses from the lower to the higher trophic level food chain components, and no unusual trophic structure was found in the food chain. However, the data indicate an unidentified consumer organism occupying an intermediate position between the lower and higher trophic levels of the larval striped bass food chain. Based on expected trophic interactions, this unidentified consumer would have a stable carbon isotope ratio of about 28/mil and a stable nitrogen isotope ratio of about 8/mi. Three possible feeding stages for larval striped bass also were identified, based on their lengths. The smallest length fish seem to subsist on their yolk sac remnants, and the largest length fish subsist on Neomysis shrimp and zooplankton. The intermediate-length fish represent a transition stage between primary food sources and/or use of a mixture of food sources. (USGS)

  4. Changes in Holocene to LGM water mass stratification near Southern Africa inferred from Nd isotopes

    NASA Astrophysics Data System (ADS)

    Jones, K. M.; Goldstein, S. L.; Hemming, S. R.; Hall, I. R.; Zahn, R.

    2009-12-01

    Global thermohaline circulation (THC) is an important component of the climate system that initiates or amplifies abrupt climate change. A major driver of THC is the formation of North Atlantic Deep Water (NADW), which is sandwiched by northward flowing Southern Ocean water masses as it is advected southward. An important exit route of NADW out of the South Atlantic is through flow around the southern tip of Africa, which makes the South African Margin an excellent location to investigate changes in THC and water mass stratification through time. We measured the Nd isotopes of modern seawater from three depth profiles collected along the South African Margin, which were collected on RSS Charles Darwin Cruise 154. All seawater profiles show a similar pattern with higher ɛNd values at intermediate depths (ɛNd ~ -9.5 at 600-1200m), lower values for the core of NADW (ɛNd ~ -11.5 at 2000-3500m), and higher values in the deepest waters sampled (ɛNd -9.8 at 4150m). This pattern is consistent with conservative mixing of major North Atlantic and Southern Ocean end-member water masses and is not consistent with inputs from, or exchange with margin sediments, for most depths. We also measured the Nd isotopes of multiple sedimentary archives in proximal Holocene coretop sediments collected from depths spanning intermediate to deep/bottom waters. The Nd isotopes of a fish tooth, several foram coating leachates, and multiple bulk sediment Fe-Mn leachates display the same pattern as the local seawater. We had no seawater for comparison with our deepest core (VM19-224; depth ~ 4600m), but the eNd value from it (ɛNd = -8.4) is consistent with Antarctic Bottom Water (ɛNd ~ -8.5). These results suggest: (1) that Nd isotopes of seawater in the region behave conservatively; (2) that the local margin sediments faithfully record the Nd isotope composition of the waters they are bathed in and (3) this “ground-truthing” implies that it is valid to use Nd isotopes as a circulation

  5. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  6. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-02-22

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction.

  7. Separation of rare earth isotopes using resonance ionization time-of-flight mass spectrometry

    SciTech Connect

    Armstrong, D.P.; McCulla, W.H.; Schweitzer, G.K.

    1985-01-01

    Stable isotopes comprise a very large portion of the periodic table. They find a wide variety of applications, which include serving as precursors for radioisotopes and radiopharmaceuticals and as accelerated particle targets. Isotopes of the lanthanides, with very high boiling points and low natural abundances, are often difficult to separate by conventional electromagnetic techniques. Photoionization is a potential alternative method. We have devised a system in which an atomic beam of the rare earth metal is admitted to the ionization region of a time-of-flight mass spectrometer. Photoionization is achieved using a pulsed, two-photon laser scheme. Preliminary results from the photoionization of samarium are discussed. 5 refs., 3 figs., 1 tab.

  8. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction

    PubMed Central

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A.

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes (32S, 33S, 34S and 36S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ34S with negative Δ33S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  9. Photon Scattering from the Stable Even-Mass Mo Isotopes Below the Neutron-Separation Energy

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Hutcheson, A.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C.; Hammond, S.; Karwowski, H. J.; Kelley, J. H.; Schwengner, R.; Dönau, F.; Wagner, A.

    2008-10-01

    We present results from photon-scattering experiments on the stable even-mass molybdenum isotopes below the neutron-separation energy carried out with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf in Germany, and with monoenergetic photon beams at the HIγS facility at TUNL. We applied statistical methods in order to correct for the branching and cascade transitions and to determine the photoabsorption cross section. The obtained results allowed us to extend the tail of the Giant Dipole Resonance below the (,) threshold down to 4 MeV. The photoabsorption cross sections deduced from the present experiments show that the dipole strength increases with the neutron number of the Mo isotopes. The experimental results are discussed in the frame of Quasiparticle-Random-Phase-Approximation in a deformed basis which describe the increasing strength as a result of the deformation.

  10. Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry.

    PubMed

    Griffith, Wendell P; Kaltashov, Igor A

    2003-08-26

    Dynamics of bovine hemoglobin assembly was investigated by monitoring monomers/oligomers equilibria in solution with electrospray ionization mass spectrometry and circular dichroism spectroscopy. Intensities of ionic signals corresponding to various protein species (tetramers, dimers, heme-deficient dimers, as well as apo- and holo-monomers) were used to estimate relative fractions of these species in solution as a function of pH. The fraction of folded protein for each observed species was estimated based on charge-state distributions of corresponding ionic species in the mass spectra. The cumulative numbers (averaged across the entire protein population) were in good agreement with circular dichroism data at the Soret band and in the far-UV region, respectively. The mass spectral data confirm that hemoglobin dissociation involves a step where heme is first lost from the beta-chain of the alpha beta-dimer to form a heme-deficient dimeric species. This dimer dissociates further to produce a holo-alpha-chain and an apo-beta-chain. The former is tightly folded into a comparatively compact structure at neutral pH, while the latter always exhibits significant backbone disorder. Acidification of the protein solution to pH 4 leads to partial heme dissociation and significant increase of the backbone flexibility in the alpha-chains as well. Complete dissociation of the heme from the alpha-chains at a pH below 4 coincides with the total disappearance of the dimeric and tetrameric hemoglobin species from the mass spectra. The experimental data provide strong evidence that binding of a partially unstructured apo-beta-chain to a tightly folded holo-alpha-chain to form a heme-deficient dimer is the initial step of hemoglobin assembly. Such binding locks the beta-chain in a highly ordered conformation, which allows for an efficient heme acquisition, followed by docking of two hemoglobin dimers to form a tetrameric form of the protein. The asymmetry of the roles of the two

  11. Evaluation of meteoric calcite cements as a proxy material for mass-47 clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Defliese, William F.; Lohmann, Kyger C.

    2016-01-01

    Meteoric diagenetic cements are ubiquitous throughout geologic history, affecting most carbonate exposures worldwide. They can often be difficult to interpret, as it is usually difficult to separate the influences of water δ18O and temperature on isotopic signals contained within the carbonate rock body. Despite this difficulty in interpretation, meteoric phreatic cements can potentially be a useful proxy material, as they form slowly in equilibrium at mean annual temperature and are not affected by any biogenic effects that can bias other proxy materials. We applied the mass-47 clumped isotope paleothermometer to Pleistocene and Holocene carbonates from Bermuda and Barbados in order to investigate the effects of meteoric diagenesis on Δ47 signals, and to determine their suitability as a paleotemperature proxy. Phreatic calcite cements are found to record the same temperatures as unaltered carbonate sediments, while any sample exhibiting vadose characteristics is biased towards unreasonably hot apparent formation temperatures. Burial heating and re-equilibration are not geologically viable explanations for the anomalously hot temperatures recorded in vadose cements, as neither Bermuda or Barbados has any burial history. Instead, it is likely that precipitation in the vadose zone occurs on timescales quicker than isotopic equilibrium can be achieved, driven by a combination of CO2 degassing and evaporation, which have been previously shown to cause problems in speleothems and pedogenic carbonates. We conclude by suggesting that meteoric phreatic calcites may be an ideal phase for paleotemperature reconstruction, as they accurately record mean annual temperatures and form under equilibrium conditions, while also being resistant to further mineral driven diagenesis. Vadose cements, and any sample likely affected by processes similar to vadose diagenesis, should be avoided for climate reconstructions using the mass-47 clumped isotope thermometer.

  12. Integration of Stable Isotope and other Mass Spectral Data for Microbial Forensics

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Jarman, K. H.

    2008-12-01

    The nascent field of microbial forensics requires the development of diverse signatures as indicators of various aspects of the production environment of microorganisms. We have characterized isotopic relationships between Bacillus subtilis ATCC 6051 spores and their growth environment, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of a total of 247 separate cultures of spores produced on a total of 32 different culture media. We have analyzed variation within individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times in the context of using stable isotope ratios as a signature for sample matching. We have correlated the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen of growth medium nutrients or water and spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures. The power of stable isotope ratio data can be greatly enhanced by combining it with orthogonal datasets that speak to different aspects of an organism's production environment. We developed a Bayesian network that follows the causal relationship from culture medium recipe to spore elemental content as measured by secondary ion mass spectrometry (SIMS), carbon and nitrogen stable isotope ratios, and to the presence of residual agar by electrospray ionization MS (ESI-MS). The network was developed and tested on data from three replicate cultures of B. subtilis ATCC 49760 in broth and agar-containing versions of four different nutrient media. To test the network, data from SIMS analyses of B. subtilis 49760 produced in a different medium, from approximately 200 ESI MS analyses of B. thuringensis ATCC 58890 and B. anthracis Sterne grown in five additional media, and the stable isotope data from the 247 cultures of B. subtilis 6051 spores were used. This network was able to characterize

  13. Detection and analysis of polymerase chain reaction products by mass spectrometry

    SciTech Connect

    Hurst, G.B., Doktycz, M.J., Britt, P.F., Vass, A.A., Buchanan, M.V.

    1997-02-01

    This paper describes recent and ongoing efforts to overcome some of the obstacles to more routine and robust application of MALDI-TOF to analysis of polymerase chain reaction products and other information- bearing nucleic acid molecules. Methods for purifying nucleic acid samples are described, as is the application of delayed extraction TOF mass spectrometry to analysis of short oligonucleotides.

  14. A novel approach for the chromatographic purification and peptide mass fingerprinting of urinary free light chains.

    PubMed

    Mali, Bhupesh C; Badgujar, Shamkant B; Shukla, Kunal K; Bhanushali, Paresh B

    2017-02-01

    We describe a chromatographic approach for the purification of urinary free light chains (FLCs) viz., lambda free light chains (λ-FLCs) and kappa free light chains (κ-FLCs). Isolated urinary FLCs were analyzed by SDS-PAGE, immunoblotting and mass spectrometry (MS). The relative molecular masses of λ-FLC and κ-FLC are 22,933.397 and 23,544.336Da respectively. Moreover, dimer forms of each FLC were also detected in mass spectrum which corresponds to 45,737.747 and 47,348.028Da respectively for λ-FLCs and κ-FLCs. Peptide mass fingerprint analysis of the purified λ-FLCs and κ-FLCs has yielded peptides that partially match with known light chain sequences viz., gi|218783338 and gi|48475432 respectively. The tryptic digestion profile of isolated FLCs infers the exclusive nature of them and they may be additive molecules in the dictionary of urinary proteins. This is the first report of characterization and validation of FLCs from large volume samples by peptide sequencing. This simple and cost-effective approach to purification of FLCs, together with the easy availability of urine samples make the large-scale production of FLCs possible, allowing exploration of various bioclinical as well as biodiagnostic applications.

  15. Rapid 18O analysis of small water and CO2 samples using a continuous-flow isotope ratio mass spectrometer.

    PubMed

    Fessenden, Julianna E; Cook, Craig S; Lott, Michael J; Ehleringer, James R

    2002-01-01

    High-frequency throughput is often needed in isotopic studies in biological and medical fields. Here we report that high-precision oxygen isotope ratio measurements of water (+/-0.13 per thousand) were rapidly and routinely made on small samples (40-100 microL) using an isotope ratio mass spectrometer operated in continuous-flow mode. Simple modifications to existing instrumentation allow for rapid manual analyses of dilute CO2 (10% CO2/90% N2), including the addition of a septum port and water trap prior to the gas chromatography (GC) column (elemental analyzer column in this study) and the extension of fused-silica capillary tubing between the mass spectrometer source and the effluent tubing from the GC column (located within the CONFLO unit on Finnigan mass spectrometers). We routinely analyzed 20 small-volume samples per hour using this technique, without sacrificing precision of the oxygen isotope ratio measurement. Copyright 2002 John Wiley & Sons, Ltd.

  16. Determination of low isotopic enrichment of L-[1-13C]valine by gas chromatography/combustion/isotope ratio mass spectrometry: a robust method for measuring protein fractional synthetic rates in vivo.

    PubMed

    Reijngoud, D J; Hellstern, G; Elzinga, H; de Sain-van der Velden, M G; Okken, A; Stellaard, F

    1998-07-01

    A method was developed for measuring protein fractional synthetic rates using the N-methoxycarbonylmethyl ester (MCM) derivative of L-[1-13C]valine and on-line gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The derivatization procedure can be performed rapidly and GC separation of valine from the other branched-chain amino acids, leucine and isoleucine, is easily obtained. A good linear relationship was observed between the increment of the 13C/12C isotope ratio in CO2 gas derived from the combustion of derivatized valine and the tracer mole ratio of L-[1-13C]valine to unlabelled valine. The limit of quantitation was at an L-[1-13C]valine tracer mole ratio of 0.0002. The method was used to measure the isotopic enrichment of L-[1-13C]valine in standard mixtures and in skeletal muscle of six growing piglets infused with L-[1-13C]valine (2 mg kg-1 h-1 for 6 h). After infusion of L-[1-13C]valine the mean tracer mole ratio in plasma of L-[1-13C]valine at the isotopic steady state was 0.0740 +/- 0.0056 (GC/MS, mean +/- SEM) and the mean tracer mole ratio of valine in muscle protein fraction at 6 h was 0.000236 +/- 0.000038 (GC/C/IRMS). The resulting mean protein fractional synthetic rate in piglet skeletal muscle was 0.052 +/- 0.007% h-1, which is in good agreement with literature data obtained with alternative, more elaborate techniques. By this method protein fractional synthetic rates can be measured at low isotopic enrichment levels using L-[1-13C]valine, the MCM derivative and on-line GC/C/IRMS.

  17. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results.

  18. The role of symmetry in the mass independent isotope effect in ozone

    PubMed Central

    Michalski, Greg; Bhattacharya, S. K.

    2009-01-01

    Understanding the internal distribution of “anomalous” isotope enrichments has important implications for validating theoretical postulates on the origin of these enrichments in molecules such as ozone and for understanding the transfer of these enrichments to other compounds in the atmosphere via mass transfer. Here, we present an approach, using the reaction NO2− + O3, for assessing the internal distribution of the Δ17O anomaly and the δ18O enrichment in ozone produced by electric discharge. The Δ17O results strongly support the symmetry mechanism for generating mass independent fractionations, and the δ18O results are consistent with published data. Positional Δ17O and δ18O enrichments in ozone can now be more effectively used in photochemical models that use mass balance oxygen atom transfer mechanisms to infer atmospheric oxidation chemistry. PMID:19307571

  19. Isotope mass fractionation during evaporation of Mg2SiO4

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Hashimoto, Akihiko

    1990-01-01

    Synthetic forsterite (Mg2SiO4) was partially evaporated in vacuum for various durations and at different temperatures. The residual charges obtained when molten Mg2SiO4 was evaporated to 12 percent of its initial mass were enriched in heavy isotopes by about 20, 30, and 15 per mil/amu for O, Mg, and Si, respectively, whereas solid forsterite evaporated to a similar residual mass fraction showed negligible fractionations. These results imply that calcium and aluminum-rich refractory inclusions in carbonaceous chondrites must have been at least partially molten in the primordial solar nebula if the observed large mass fractionation effects were caused by evaporation processes in the nebula.

  20. Positive parity low spin states of odd-mass tellurium isotopes

    NASA Astrophysics Data System (ADS)

    Yazar, Harun Reşit

    2006-11-01

    In this work, we analyse the positive parity of states of odd-mass nucleus within the framework of interacting boson fermion model. The result of an IBFM-1 multilevel calculation with the lg 9/2, 2d 5/2, 2d 3/2, 3s 1/2 and one level, 1h 11/2 with negative parity, single particle orbits is reported for the positive parity states of the odd mass nucleus 123-125Te. Also, an IBM-1 calculation is presented for the low-lying states in the even-even 124-126Te core nucleus. The energy levels and B (E2) transition probabilities were calculated and compared with the experimental data. It was found that the calculated positive parity low spin state energy spectra of the odd-mass 123-125Te isotopes agree quite well with the experimental data.

  1. Stable isotope mass balances versus concentration differences of dissolved inorganic carbon - implications for tracing carbon turnover in reservoirs.

    PubMed

    Barth, Johannes A C; Mader, Michael; Nenning, Franziska; van Geldern, Robert; Friese, Kurt

    2017-08-01

    The aim of this study was to identify sources of carbon turnover using stable isotope mass balances. For this purpose, two pre-reservoirs in the Harz Mountains (Germany) were investigated for their dissolved and particulate carbon contents (dissolved inorganic carbon (DIC), dissolved organic carbon, particulate organic carbon) together with their stable carbon isotope ratios. DIC concentration depth profiles from March 2012 had an average of 0.33 mmol L(-1). Increases in DIC concentrations later on in the year often corresponded with decreases in its carbon isotope composition (δ(13)CDIC) with the most negative value of -18.4 ‰ in September. This led to a carbon isotope mass balance with carbon isotope inputs of -28.5 ‰ from DOC and -23.4, -31.8 and -30.7 ‰ from algae, terrestrial and sedimentary matter, respectively. Best matches between calculated and measured DIC gains were achieved when using the isotope composition of algae. This shows that this type of organic material is most likely responsible for carbon additions to the DIC pool when its concentrations and δ(13)CDIC values correlate negatively. The presented isotope mass balance is transferable to other surface water and groundwater systems for quantification of organic matter turnover.

  2. Quantification of protein posttranslational modifications using stable isotope and mass spectrometry. II. Performance.

    PubMed

    Luo, Quanzhou; Wypych, Jette; Jiang, Xinzhao Grace; Zhang, Xin; Luo, Shun; Jerums, Matthew; Lewis, Jeffrey; Keener, Ronald; Huang, Gang; Apostol, Izydor

    2012-02-15

    In this report, we examine the performance of a mass spectrometry (MS)-based method for quantification of protein posttranslational modifications (PTMs) using stable isotope labeled internal standards. Uniform labeling of proteins and highly similar behavior of the labeled vs nonlabeled analyte pairs during chromatographic separation and electrospray ionization (ESI) provide the means to directly quantify a wide range of PTMs. In the companion report (Jiang et al., Anal. Biochem., 421 (2012) 506-516.), we provided principles and example applications of the method. Here we show satisfactory accuracy and precision for quantifying protein modifications by using the SILIS method when the analyses were performed on different types of mass spectrometers, such as ion-trap, time-of-flight (TOF), and quadrupole instruments. Additionally, the stable isotope labeled internal standard (SILIS) method demonstrated an extended linear range of quantification expressed in accurate quantification up to at least a 4 log concentration range on three different types of mass spectrometers. We also demonstrate that lengthy chromatographic separation is no longer required to obtain quality results, offering an opportunity to significantly shorten the method run time. The results indicate the potential of this methodology for rapid and large-scale assessment of multiple quality attributes of a therapeutic protein in a single analysis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  4. Screening halogenated environmental contaminants in biota based on isotopic pattern and mass defect provided by high resolution mass spectrometry profiling.

    PubMed

    Cariou, Ronan; Omer, Elsa; Léon, Alexis; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2016-09-14

    In the present work, we addressed the question of global seeking/screening organohalogenated compounds in a large panel of complex biological matrices, with a particular focus on unknown chemicals that may be considered as potential emerging hazards. A fishing strategy was developed based on untargeted profiling among full scan acquisition datasets provided by high resolution mass spectrometry. Since large datasets arise from such profiling, filtering useful information stands as a central question. In this way, we took advantage of the exact mass differences between Cl and Br isotopes. Indeed, our workflow involved an innovative Visual Basic for Applications script aiming at pairing features according to this mass difference, in order to point out potential organohalogenated clusters, preceded by an automated peak picking step based on the centWave function (xcms package of open access R programming environment). Then, H/Cl-scale mass defect plots were used to visualize the datasets before and after filtering. The filtering script was successfully applied to a dataset generated upon liquid chromatography coupled to ESI(-)-HRMS measurement from one eel muscle extract, allowing for realistic manual investigations of filtered clusters. Starting from 9789 initial obtained features, 1994 features were paired in 589 clusters. Hexabromocyclododecane, chlorinated paraffin series and various other compounds have been identified or tentatively identified, allowing thus broad screening of organohalogenated compounds in this extract. Although realistic, manual review of paired clusters remains time consuming and much effort should be devoted to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Proposed serum cholesterol reference measurement procedure by gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Edwards, Selvin H; Kimberly, Mary M; Pyatt, Susan D; Stribling, Shelton L; Dobbin, Kara D; Myers, Gary L

    2011-04-01

    Our purpose was to establish a mass spectrometry reference measurement procedure (RMP) for cholesterol to use in the CDC's standardization programs. We explored a gas chromatography-isotope dilution mass spectrometry (GC-IDMS) procedure using a multilevel standard calibration curve to quantify samples with varying cholesterol concentrations. We calibrated the mass spectrometry instrument by isotope dilution with a pure primary standard reference material and an isotopically enriched cholesterol analog as the internal standard (IS). We diluted the serum samples with Tris-HCl buffer (pH 7.4, 0.05 mol/L, 0.25% Triton X-100) before analysis. We used 17 serum pools, 10 native samples, and 2 standard reference materials (SRMs). We compared the GC-IDMS measurements with the CDC's modified Abell-Levy-Brodie-Kendall (AK) RMP measurements and assessed method accuracy by analyzing 2 SRMs. We evaluated the procedure for lack of interference by analyzing serum spiked with a mixture of 7 sterols. The mean percent bias between the AK and the GC-IDMS RMP was 1.6% for all samples examined. The mean percent bias from NIST's RMP was 0.5% for the SRMs. The total %CVs for SRM 1951b levels I and II were 0.61 and 0.73%, respectively. We found that none of the sterols investigated interfered with the cholesterol measurement. The low imprecision, linear response, lack of interferences, and acceptable bias vs the NIST primary RMP qualifies this procedure as an RMP for determining serum cholesterol. The CDC will adopt and implement this GC-IDMS procedure for cholesterol standardization.

  6. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  7. Radium isotopes to investigate the water mass pathways on the Kerguelen plateau (KEOPS project)

    NASA Astrophysics Data System (ADS)

    Bourquin, M.; van Beek, P.; Reyss, J.; Souhaut, M.; Charette, M.; Jeandel, C.

    2006-12-01

    High biological productivity takes place on the Kerguelen Plateau in the Indian sector of the Southern Ocean known to be a HNLC region. Natural iron fertilization is suspected in that area. One goal of the KEOPS project is to understand the mechanisms controlling iron fertilization. We measured radium isotopes (228Ra, T1/2=5.75 y; 226Ra, T1/2=1602 y) in seawater in order to provide information on the water mass pathways on the Kerguelen plateau. Ra isotopes are produced in the sediment and diffuse in the water column. Ra isotopes may thus be a good analogue for tracing the input of sedimentary iron and its fate on the Kerguelen Plateau. The large volumes of seawater needed for Ra analysis were collected using either the ship-intake, Niskin bottles or in-situ pumping. MnO2 fibers were then used to separate Ra from seawater. 228Ra activities are extremely low in the plateau area, being in most cases <0.1 dpm/100 kg (ca. 1 ag/kg). Station A3 (520 m depth), located on the plateau in the middle of the bloom zone, also displays such low values with, however, higher 228Ra activities in the upper 50-150 m. Such a pattern suggests the presence of a water mass that has been advected on the Kerguelen Plateau. This water mass could have been enriched in 228Ra in contact with the sediment of Heard Island, south of the Kerguelen Plateau. The Ra data agree with the REE results of Zhang et al.

  8. Evidence for a possible dietary effect on the isotopic composition of Zn in blood via isotopic analysis of food products by multi-collector ICP-mass spectrometry.

    PubMed

    Costas-Rodríguez, Marta; Van Heghe, Lana; Vanhaecke, Frank

    2014-01-01

    In this work, the hypothesis of a possible dietary effect on the isotopic composition of Zn in blood from populations with different feeding habits, i.e. lacto-ovo vegetarians and omnivores, was investigated through isotopic analysis of Zn in common food products by multi-collector ICP - mass spectrometry (MC-ICP-MS). Several certified reference materials (CRMs) were also included in the sample set for comparison purposes. For these CRMs, the isotopic composition of Zn is expressed as δ-values, calculated with respect to both IRMM-3702 and JMC-ZnLyon, as isotopic standards. The range of δ(66)Zn values observed in food products was approximately 1.9‰. In general, vegetables, cereals and derived products showed an enrichment of the heavier Zn isotopes, whereas a depletion was observed in products of animal origin (meat, fish, egg and semi-skimmed milk), relative to human blood samples. Mussel, however, showed a significant enrichment of the heavier isotopes, which is hypothetically attributed to its accumulation behaviour. Thus, the lower δ(66)Zn values found in food products of animal origin appear to be reflected in the lower δ(66)Zn value observed in blood from an omnivorous population compared to that for a vegetarian population.

  9. Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry.

    PubMed

    Czerwieniec, Gregg A; Russell, Scott C; Tobias, Herbert J; Pitesky, Maurice E; Fergenson, David P; Steele, Paul; Srivastava, Abneesh; Horn, Joanne M; Frank, Matthias; Gard, Eric E; Lebrilla, Carlito B

    2005-02-15

    Single vegetative cells and spores of Bacillus atrophaeus, formerly Bacillus subtilis var. niger, were analyzed using bioaerosol mass spectrometry. Key biomarkers were identified from organisms grown in 13C and 15N isotopically enriched media. Spore spectra contain peaks from dicipolinate and amino acids. The results indicate that compounds observed in the spectra correspond to material from the spore's core and not the exosporium. Standard compounds and mixtures were analyzed for comparison. The biomarkers for vegetative cells were clearly different from those of the spores, consisting mainly of phosphate clusters and amino acid fragments.

  10. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  11. New FORTRAN computer programs to acquire and process isotopic mass spectrometric data: Operator`s manual

    SciTech Connect

    Smith, D.H.; McKown, H.S.

    1993-09-01

    This TM is one of a pair that describes ORNL-developed software for acquisition and processing of isotope ratio mass spectral data. This TM is directed at the laboratory analyst. No technical knowledge of the programs and programming is required. It describes how to create and edit files, how to acquire and process data, and how to set up files to obtain the desired results. The aim of this TM is to serve as a utilitarian instruction manual, a {open_quotes}how to{close_quotes} approach rather than a {open_quotes}why?{close_quotes}

  12. Elemental analysis of complex organic aerosol using isotopic labeling and unit-resolution mass spectrometry.

    PubMed

    Hicks, Raea K; Day, Douglas A; Jimenez, Jose L; Tolbert, Margaret A

    2015-03-03

    Elemental analysis of unit-mass resolution (UMR) mass spectra is limited by the amount of information available to definitively elucidate the molecular formula of a molecule ionized by electron impact. The problem is compounded when a mixture of organic molecules (such as those found in organic aerosols) is analyzed without the benefit of prior separation. For this reason, quadrupole mass spectrometry is not usually suited to the elemental analysis of organic mixtures. Here, we present a mathematical method for the elemental analysis of UMR mass spectra of a complex organic aerosol through the use of isotopic labeling. Quadrupole aerosol mass spectrometry was used to obtain UMR data of (13)C-labeled and unlabeled aerosol generated by far ultraviolet (FUV) photochemistry of gas mixtures containing 0.1% of either CH4 or (13)CH4 in N2. In this method, the differences in the positions of ion groups in the resulting spectra are used to estimate the mass fraction of carbon in the aerosol, and estimation of the remaining elements follows. Analysis of the UMR data yields an elemental composition of 63 ± 7% C, 8 ± 1% H, and 29 ± 7% N by mass. Unlabeled aerosols formed under the same conditions are found by high-resolution time-of-flight aerosol mass spectrometry to have an elemental composition of 63 ± 3% C, 8 ± 1% H, 20 ± 4% N, and 9 ± 3% O by mass, in good agreement with the UMR method. This favorable comparison verifies the method, which expands the UMR mass spectrometry toolkit.

  13. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting

    USGS Publications Warehouse

    Stewart, Heather; Massoudieh, Arash; Gellis, Allen C.

    2015-01-01

    A Bayesian chemical mass balance (CMB) approach was used to assess the contribution of potential sources for fluvial samples from Laurel Hill Creek in southwest Pennsylvania. The Bayesian approach provides joint probability density functions of the sources' contributions considering the uncertainties due to source and fluvial sample heterogeneity and measurement error. Both elemental profiles of sources and fluvial samples and 13C and 15N isotopes were used for source apportionment. The sources considered include stream bank erosion, forest, roads and agriculture (pasture and cropland). Agriculture was found to have the largest contribution, followed by stream bank erosion. Also, road erosion was found to have a significant contribution in three of the samples collected during lower-intensity rain events. The source apportionment was performed with and without isotopes. The results were largely consistent; however, the use of isotopes was found to slightly increase the uncertainty in most of the cases. The correlation analysis between the contributions of sources shows strong correlations between stream bank and agriculture, whereas roads and forest seem to be less correlated to other sources. Thus, the method was better able to estimate road and forest contributions independently. The hypothesis that the contributions of sources are not seasonally changing was tested by assuming that all ten fluvial samples had the same source contributions. This hypothesis was rejected, demonstrating a significant seasonal variation in the sources of sediments in the stream.

  14. An update on the Thermal Gradient Induced Non -Mass-Dependent Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sun, T.; Niles, P. B.; Bao, H.; Socki, R. A.

    2012-12-01

    Mass flow and compositional gradient (elemental and isotope separation) occur when fluid(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been experimentally and theoretically investigated for more than a century, although there has not been a satisfactory theory to date. Nevertheless, theories predict that when dealing with a multi-isotope system, such as O16-O17-O18, S32-S33-S34-S36, or Ne20-Ne21-Ne22, the mass difference is the only term in the thermal diffusion separation factors that distinguish one isotope pair from another. Thus a mass dependent relationship is expected. For O-bearing molecules the α17O/ α 18O is expected to be at 0.5 to 0.515, and for S-bearing molecules the α33S/ α 34S at 0.5 to 0.508, where α is isotope fractionation factor between cold and warm reservoirs. We recently reported that thermal diffusion generates non-mass dependent (NMD) isotope fractionation for low-pressure O2 and SF6 gases. The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. It was suggested that additional (not mass related) terms need to be theoretically considered in the order to account for the observations. In addition to the pressure and temperature dependency illustrated in our earlier report, the role of turbulence, batch gas effects, and whether it is only a transient, non-equilibrium effect have been examined in this study. We report here new results on low-pressure O2 gas thermal diffusion. (1) In a purely diffusive vertical two-bulb setting with colder reservoir at lower position, time course experiments showed that the NMD effect persists after the system reaches isotopic steady state between warmer and colder compartments, suggesting that the effect is not a transient one. (2) When the average temperature approaching condensation point for O2, the 17O switches to migrating

  15. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    NASA Astrophysics Data System (ADS)

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-10-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents.

  16. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification.

    PubMed

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-10-07

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents.

  17. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    PubMed Central

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563

  18. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    PubMed

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  19. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining

  20. High Precision Osmium Isotope Measurements Using New Generation Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Brandon, A.

    2006-12-01

    The technique for measuring Os isotopes to high precision (e.g. +/-30-50 ppm on the 186/188 ratio, 2 sigma) via negative thermal ionization mass spectrometry (NTIMS) was established a decade ago at the University of Maryland. Recent technical advances have resulted in the production of a new generation of TIMS that allows isotopic measurements with substantial improvement in accuracy and precision. Because of the improved capability, the new generation TIMS holds great potential to examine a variety of problems in geochemistry and cosmochemistry. Over the past 5 years, I have refined the technique for higher precision measurements of Os isotopes using the Triton TIMS from Thermo Electron. The measurements are made in static mode using 7 Faraday collectors. 70 or more nanograms of Os is loaded onto a Pt filament with barium hydroxide, the latter is an electron emitter that promotes efficient production of Os trioxide. Oxygen is bled into the source at constant pressures. Signal intensities of 120-180 mV 186Os trioxide are generated and measured as negative ions. Oxygen corrections to the raw data are made using the oxygen isotopic composition obtained for 2 ng loads of Re tetroxide measured on the Faraday cups. Multiple runs over the course of 3 years for the same lecture bottle used to bleed in oxygen to the source showed no change in the oxygen isotopic composition. Oxygen corrections are followed by instrumental mass fractionation corrections using 189/188, 192/189, or 192/188 using the exponential law. Both the internal and external precision for standard and unknown data are best when using 192/188, by a factor of 1.4 over 189/188, and 1.8 over 192/189. Replicate runs on 100 ng standard loads of a single filament shows no change in corrected values within external precision for all Os isotopic ratios over a wide range of fractionation, confirming adherence to the exponential law during emission. 39 runs for a standard solution gave +/-14 ppm (2 sigma) on the

  1. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Paulines, Mellie June; Limbach, Patrick A.

    2017-03-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry.

  2. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry.

    PubMed

    Paulines, Mellie June; Limbach, Patrick A

    2017-03-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original (18)O/(16)O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a (13)C/(15)N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry. Graphical Abstract ᅟ.

  3. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Paulines, Mellie June; Limbach, Patrick A.

    2017-01-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry.

  4. Metal isotope coded profiling of organic ligands by mass spectrometry in aquatic environments

    NASA Astrophysics Data System (ADS)

    Wichard, Thomas; Deicke, Michael; Frieder Mohr, Jan; Klein, Martin

    2017-04-01

    Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals. We present a targeted analysis of low-molecular-weight organic ligands based on fast UHPLC-ESI-MS measurements. Replacement of, for example, natural iron or molybdenum with isotopically pure 54Fe/58Fe (ratio 1:1) or 95Mo/98Mo (ratio 1:1) causes easily detectable unique isotopic signatures in the mass spectra of potential metal-complexing ligands. This can be achieved under laboratory conditions not only in growth media, but also by spiking directly aqueous samples or solid-phase extracts. Importantly, as the relative affinity of the metallophores for e.g., Mo or Fe is dependent on the pH, all experiments needs to be conducted under pH-controlled conditions. The improved ionization efficiency of some metal complexes helps to enhance the signal-to-noise ratio compared to the free ligand at the same chromatographic conditions. The methodology does not necessarily depend on HR-ESI-MS measurements (e.g., Q-Exactive Orbitrap) and can be applied to any mass spectrometer. With MICP, two birds can be killed with one stone: (i) the identification of metallophores (e.g., siderophores, molybdophores) for metal uptake by any organism and (ii) organic ligands which solely work as metal buffer in dissolved organic matter (DOM). We currently address following two main research lines: First, DOM has often been used as a proxy for bio-productivity in terms of a carbon source; however, the specific impact of DOM as a "metal buffer" for biological processes is still under-investigated. Upon the administration of individual isotopes or isotopic pairs, for example, 54Fe/58Fe, 63Cu/65Cu, 66Zn/68Zn, or 95Mo/98Mo and subsequent

  5. Collision-induced dissociation of the A + 2 isotope ion facilitates glucosinolates structure elucidation by electrospray ionization-tandem mass spectrometry with a linear quadrupole ion trap.

    PubMed

    Cataldi, Tommaso R I; Lelario, Filomena; Orlando, Donatella; Bufo, Sabino A

    2010-07-01

    An approach is presented that can be of general applicability for structural elucidation of naturally occurring glucosinolates (GLSs) in crude plant extracts based on the fragmentation of isotopic A and A + 2 peaks. The most important fragmentation pathways were studied by tandem mass spectrometry (MS(n), n = 2, 3) using a linear quadrupole ion trap (LTQ) upon GLSs separation by optimized reversed-phase liquid chromatography (RPLC) and electrospray ionization (ESI) in negative ion mode. As the LTQ MS analyzer ensures high sensitivity and linearity, the fragmentation behavior under collision induced dissociation (CID) of the isotopic peaks A and A + 2 as precursor ions was carefully examined. All GLSs (R-C(7)H(11)O(9)NS(2)(-)) share a common structure with at least two sulfur atoms and significant isotopic abundance of (34)S. Thus, dissociation of the +2 Da isotopomeric ions results in several fragment ion doublets containing a combination of (32)S and (34)S. Accordingly, their relative abundances allow one to speed up the structural recognition of GLSs with great confidence, as it produces more structurally informative ions than conventional tandem MS performed on A ions. This approach has been validated on known GLSs bearing two, three, four, and six sulfur atoms by comparing expected and measured isotopic peak abundance ratios (I(A)/I(A)(+2)). Both group- and compound-specific fragments were observed; the predominant pathway of fragmentation of GLSs gives rise to species having the following m/z values, [M - SO(3) - H](-), [M - 196 - H](-), [M - 178 - H](-), and [M - 162 - H](-) after H rearrangement from the R- side chain. The present strategy was successfully applied to extracts of rocket salad leaves (Eruca sativa L.), which was sufficient for the chemical identification of a not already known 6-methylsulfonyl-3-oxohexyl-GLS, a long-chain-length aliphatic glucosinolate, which contains three sulfurs and exhibits a deprotonated molecular ion at m/z 494.1.

  6. Non-mass-dependent fractionation of sulfur and oxygen isotopes during UV photolysis of sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Pen, Aranh

    Since the discovery of anomalous sulfur isotope abundance in the geological record in sulfate and sulfide minerals (Farquhar et al., 2000), much effort has been put into understanding their origin to provide new insights into the environmental conditions on the early Earth (Farquhar et al., 2001; Pavlov and Kasting, 2002; Ono et al., 2003; Zahnle et al., 2006; Farquhar et al., 2007; Lyons, 2007; Lyons, 2008). This discovery gained immense interest because of its implications for both the lack of oxygen in the atmosphere during the Archean era 2.5-3.8 Gya (billion years ago), and for rise of oxygen, or the "Great Oxidation Event", that occurred 2.2-2.4 Gya (Holland, 2002). These signatures are believed to be produced in an anticorrelation to oxygen abundance in the early atmosphere, which will aid in quantifying the rate of oxygenation during the "Great Oxidation Event". According to Farquhar et al. (2000), the non-mass-dependent (NMD), or anomalous, fractionation signatures were produced by photochemical reactions of volcanic sulfur species in Earth's early atmosphere (> 2.3 Gya) due to the lack of an oxygen and ozone shield, resulting in an atmosphere transparent to solar ultraviolet (UV) radiation (Farquhar et al., 2001). Interpretation of the anomalous rock records, though, depends on the identification of (1) chemical reactions that can produce the NMD signature (Farquhar and Wing, 2003); and (2) conditions necessary for conversion of the gas-phase products into solid minerals (Pavlov and Kasting, 2002). The focus of my research addresses the first step, which is to determine whether the chemical reactions that occurred in Earth's early atmosphere, resulting in NMD fractionation of sulfur isotopes, were due to broadband UV photochemistry, and to test isotopic self-shielding as the possible underlying mechanism. In this project, our goals were to test isotopic self-shielding during UV photolysis as a possible underlying mechanism for anomalous sulfur isotopic

  7. Removing costs from the health care supply chain: lessons from mass retail.

    PubMed

    Agwunobi, John; London, Paul A

    2009-01-01

    Improved supply-chain management and high-volume purchasing have benefited other industries. This same approach could also reduce health care costs. Streamlining layers in the supply chain and using purchasing volume to reduce prices can save money and may improve care. Providing access to in-store health clinics and low-cost generic drugs are examples of how this approach is being tested by mass retailers. We examine lessons learned from these and similar initiatives and identify opportunities to cut the costs of generic and name-brand drugs, medical supplies, over-the-counter remedies, and vision care.

  8. Chain propagator, mass, and universality in polymer solutions from Brownian relativity

    SciTech Connect

    Mezzasalma, Stefano A. . E-mail: mezzasalma@bbcm1.univ.trieste.it

    2005-08-01

    A Lagrangian theory for single chains in polymer solutions is addressed via a recent Brownian relativity. By employing generalized diffusive coordinates, statements of covariance and diffusivity invariance result into free particle Lagrangians, where mass turns out to rise as a universal spacetime property. It descends from lowering diffusivity (or curving spacetime), so identifying a mechanism which conceptually resemble those ruling macromolecular scaling laws. An extended chain propagator recovers the Gaussian end-to-end distribution and, in the limits of time-like and space-like orbits, the dualism for diffusive paths and polymer random-walks00.

  9. Observations of Carbon Chain Chemistry in the Envelopes of Low-Mass Protostars

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2012-01-01

    Observational results are reported from our surveys in the Northern Hemisphere (using the Onsala 20 m telescope) and the Southern Hemisphere (using the Mopra 22 m telescope) to search for 3 mm emission lines from carbon-chain-bearing species and other complex molecules in the envelopes of low-mass protostars. Based on a sample of approximately 60 sources, we find that carbon-chain-bearing species including HC3N (and C4H) are highly abundant in the vicinity of more than half of the observed protostars. The origin and evolution of these species, including their likely incorporation into ices in protoplanetary disks will be discussed

  10. Mass independently fractionated sulfur isotopes reveal recycling of Archean lithosphere in modern oceanic hotspot lavas

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew; Cabral, Rita; Rose-Koga, Estelle; Koga, Ken; Whitehouse, Martin; Antonelli, Michael; Farquhar, James; Day, James; Hauri, Erik

    2013-04-01

    Oceanic crust and sediments are introduced to the mantle at subduction zones, but the fate of this subducted material within the mantle, as well as the antiquity of this process, is unknown. The mantle is compositionally and isotopically heterogeneous, and it is thought that much of this heterogeneity derives from incorporation of diverse subducted components—both crustal and oceanic lithosphere—over geologic time. Basaltic lavas erupted at some oceanic hotspot volcanoes have long been considered to be melts of ancient subducted lithosphere. However, compelling evidence for the return of subducted materials in mantle plumes is lacking. We report mass independently fractionated (MIF) S-isotope signatures in olivine-hosted sulfides from 20-million-year-old ocean island basalts (OIBs) from Mangaia, Cook Islands (Polynesia). Terrestrial MIF S-isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 billion years ago. Therefore, the discovery of MIF-S in young OIBs indicates that sulfur—likely derived from hydrothermally-altered oceanic crust—was subducted into the mantle before 2.45 Ga and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with MIF 33S depletions, in the mantle source for Mangaia lavas. An Archean age for recycled oceanic crust provides key constraints on the length of time that subducted crustal material can survive in the mantle and on the timescales of mantle convection from subduction to melting and eruption at plume-fed hotspots. The new S-isotope measurements confirm inferences about the cycling of sulfur between the major reservoirs from the Archean to the Phanerozoic, extending from the atmosphere and oceans to the crust and mantle, and ultimately through a return cycle to the surface that, here, is completed in Mangaia lavas. It remains to be seen whether hotspots lavas sampling different compositional mantle endmembers (e.g., EM1, EM2

  11. Isotope mass balances in deep formations: How to consider the influence of pressure, temperature and salinity

    NASA Astrophysics Data System (ADS)

    Becker, Veith; Myrttinen, Anssi; Barth, Johannes A. C.

    2010-05-01

    Stable carbon isotopes are a sensitive tool to trace migration and to quantify mixing of CO2 from different sources. This technique is well described for application at the surface and under close-to-surface conditions. However, in order to use isotope mass balances when monitoring the fate of CO2 at carbon storage sites, some distinctive characteristics of deep formations have to be considered. High pressures (from 30 to 200 bar), temperatures (up to over 120 ° C) and salinities (approx. 100 to 400 g/L) influence the carbonate equilibrium as activities, fugacities and the stoichiometric equilibrium constants (fCO2, Kcalcite*, K1*, K2*) change with these parameters. Furthermore, isotopic fractionation is also affected by these parameters. Various relations are published, describing these dependencies with approaches of different complexity and exactness. In this field of application, available sampling data is usually limited, so that averaging and interpolation of input data may lead to noticeable error ranges. Under these conditions, the most elaborated algorithms do not necessarily perform better than more simple ones with respect to the overall error of the calculations. This work therefore compares the available approaches to describe temperature, pressure and salinity dependence in carbonate equilibrium calculations, as well as carbon isotope fractionation in this process with respect to the best ratio of accuracy in carbon storage site monitoring applications. It stands out that the fugacity and the stoichiometric constants involved in DIC-speciation are heavily influenced by pressure, temperature and salinity in general, whereas the individual composition of the solution may be simplified, at least for NaCl-type brines. With respect to fractionation, temperature plays a key role; pressure and salinity variations contribute to the species distribution only to a small amount. This study was conducted as a part of the R&D programme CLEAN, which is funded by

  12. Particle Detectors Used in Isotope Ratio Mass Spectrometry, with Applications in Geology, Environmental Science and Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Lloyd, Nicholas S.; Schwieters, Johannes; Horstwood, Matthew S. A.; Parrish, Randall R.

    This chapter introduces the reader to mass spectrometry and the instruments used to determine high-precision isotope ratios. These instruments separate ion beams, of charged atomic particles with kinetic energies of several keV, by mass-to-charge ratio. Quantitative detection of these energetic charged particles is a key technology in mass spectrometry. For isotope ratio determination the main detector types are Faraday cups, the Daly detector, and discrete dynode secondary electron multiplier (SEM) ion counters. For high-precision applications, arrays of these detectors are arranged to collect several ion beams simultaneously. Examples are given for the application of these detectors in geology, environmental sciences, and nuclear safeguards.

  13. The direct determination of the masses of unstable atoms with the chalk river on-line isotope separator

    NASA Astrophysics Data System (ADS)

    Sharma, K. S.; Schmeing, H.; Evans, H. C.; Hagberg, E.; Hardy, J. C.; Koslowsky, V. T.

    1989-02-01

    A new technique has been developed to measure the spacing of atomic mass doublets of radioactive isotopes directly with an on-line isotope separator. It relies not on ion detection but on observation of the specific radioactive signature of the isotopes under study. Consequently, line shapes and centroids can be determined, free of interference and with great accuracy, even if the corresponding beams strongly overlap or if they are contaminated by unwanted isobars or isomers. In particular, it is of no consequence if one or both members of the doublet are masked by stable background peaks. Doublets are peak matched as in a conventional mass spectrometer. The technique has been evaluated with beams of radioactive nuclides whose masses are known independently. Based on careful calibrations, two new mass values have been obtained: 72Br, 71 936 340 ± 430 μu and 63Ga, 62 939 570 ± 150 μu.

  14. Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2017-07-01

    Neutron multiplicity prior to scission and evaluation of mass distribution of fission fragments with the fission time scale for neutron induced fission of plutonium isotopes are investigated using a dynamical Langevin approach. Also, mass yield of fragments and prompt neutron multiplicity in different time scales of the fission process are compared with experimental data. Reasonable agreement is achieved between calculated and available experimental data.

  15. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  16. Stellar (n ,γ ) cross sections of neutron-rich nuclei: Completing the isotope chains of Yb, Os, Pt, and Hg

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Dillmann, I.; Domingo-Pardo, C.; Käppeler, F.

    2014-12-01

    The (n ,γ ) cross sections of the most neutron-rich stable isotopes of Yb, Os, Pt, and Hg have been determined in a series of activation measurements at the Karlsruhe 3.7 MV Van de Graaff accelerator, using the quasistellar neutron spectrum for k T =25 keV that can be produced with the 7Li(p ,n ) 7Be reaction. In this way, Maxwellian averaged cross sections could be directly obtained with only minor corrections. After irradiation the induced activities were counted with a HPGe detector via the strongest γ -ray lines. The stellar neutron capture cross sections of Yb,176174, Os,192190, Pt,198196, and Hg,204202, extrapolated to k T =30 keV, were found to be 157 ±6 mb, 114 ±8 mb, 278 ±11 mb, 160 ±7 mb, 171 ±19 mb, 94 ±4 mb, 62 ±2 mb, and 32 ±15 mb, respectively. In the case of 196Pt the partial cross section to the isomeric state at 399.5 keV could be determined as well. With these results the cross section data for long isotopic chains could be completed for a discussion of the predictive power of statistical model calculations towards the neutron-rich and proton-rich sides of the stability valley.

  17. Longitudinal evaluation of the isotope ratio mass spectrometric data: towards the 'isotopic module' of the athlete biological passport?

    PubMed

    Jardines, Daniel; Botrè, Francesco; Colamonici, Cristiana; Curcio, Davide; Procida, Gemma; de la Torre, Xavier

    2016-11-01

    The detection of the abuse of pseudo-endogenous steroids (testosterone and/or its precursors) is currently based on the application of the steroid module of the World Anti-Doping Agency (WADA) Athletes' Biological Passport (ABP), implemented through ADAMS. Diagnostic metabolites are monitored for every athlete and statistically evaluated with a predictive Bayesian approach. In the case of suspicious samples, the data of the ABP are confirmed and the isotope ratio mass spectrometry (IRMS) test is activated. We have previously demonstrated that IRMS enables confirmation of the non-endogenous origin of pseudo-endogenous steroids in otherwise non-suspicious samples, after a longitudinal evaluation of the ABP, even after the inclusion of additional long-term diagnostic hydroxylated metabolites, and that the delta values of the parameters obtained during the IRMS confirmation process presented much less variability compared to the parameters of the ABP. The aim of the present work is to evaluate the application of the same methodology used for the evaluation of the ABP, on the delta values of the pseudo-endogenous steroids monitored. The effectiveness of the proposed model has been assessed on samples obtained after controlled administrations of oral androstenedione and transdermal testosterone. The results support the conclusion that, if applied, the longitudinal evaluation of the IRMS data allows the detection of positive samples that otherwise will be reported as atypical findings (ATF), improving the efficacy of the fight against doping in sport. This approach, by narrowing the individual acceptable range, could possibly improve the detection of the intake of preparations of synthetic origin with delta values close to or overlapping those of endogenously produced steroids. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Influence of glass composition on secondary ion mass spectrometry instrumental mass fractionation for Si and Ca isotopic analyses.

    PubMed

    Tissandier, Laurent; Rollion-Bard, Claire

    2017-02-28

    In situ secondary ion mass spectrometry (SIMS) analysis requires the use of standards to unravel the instrumental mass fractionation (IMF) induced by the analytical procedures. Part of this IMF might be caused by the nature of the sample and the differences in composition and structure between the sample and the standards. This "matrix effect" has been tentatively corrected for by using standards with chemical compositions equivalent to the samples, or by the empirical use of chemical parameters. However, these corrections can only be applied to a narrow compositional range and fail to take proper account of the matrix effect when a wider chemical field is tested. We synthesized a series of glasses whose compositions span a very large part of the NCMAS (Na2 O-CaO-MgO-Al2 O3 -SiO2 ) system. Si and Ca isotopic analyses were performed on two ion microprobes (Cameca IMS-1270 and IMS-1280). The matrix effect observed may reach 20‰ between extreme compositions and cannot be accounted for by the previously used "chemical" parameters (e.g. SiO2 , SiO2 /(SiO2  + Al2 O3 )) nor by the NBO/T parameter. It therefore appears necessary to consider not only the structure of the glasses, but also the nature of the different atoms. Consequently, we assessed the use of another concept, the optical basicity, based on the electronegativities of the constitutive elements of glass. We show that this parameter significantly improves the efficiency of the matrix-effect correction and that it can be applied across the entire NCMAS compositional range studied here. Furthermore, the use of optical basicity reduces the number of glass standards required for a reliable isotopic study, and it can also be used to probe the structure of the glass. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers☆

    PubMed Central

    Fischer, Lutz; Chen, Zhuo Angel; Rappsilber, Juri

    2013-01-01

    Dynamic proteins and multi-protein complexes govern most biological processes. Cross-linking/mass spectrometry (CLMS) is increasingly successful in providing residue-resolution data on static proteinaceous structures. Here we investigate the technical feasibility of recording dynamic processes using isotope-labelling for quantitation. We cross-linked human serum albumin (HSA) with the readily available cross-linker BS3-d0/4 in different heavy/light ratios. We found two limitations. First, isotope labelling reduced the number of identified cross-links. This is in line with similar findings when identifying proteins. Second, standard quantitative proteomics software was not suitable for work with cross-linking. To ameliorate this we wrote a basic open source application, XiQ. Using XiQ we could establish that quantitative CLMS was technically feasible. Biological significance Cross-linking/mass spectrometry (CLMS) has become a powerful tool for providing residue-resolution data on static proteinaceous structures. Adding quantitation to CLMS will extend its ability of recording dynamic processes. Here we introduce a cross-linking specific quantitation strategy by using isotope labelled cross-linkers. Using a model system, we demonstrate the principle and feasibility of quantifying cross-linking data and discuss challenges one may encounter while doing so. We then provide a basic open source application, XiQ, to carry out automated quantitation of CLMS data. Our work lays the foundations of studying the molecular details of biological processes at greater ease than this could be done so far. This article is part of a Special Issue entitled: New Horizons and Applications for Proteomics [EuPA 2012]. PMID:23541715

  20. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  1. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry

    PubMed Central

    Merrill, Anna E.; Coon, Joshua J.

    2013-01-01

    Stable isotope labeling coupled with mass spectrometry has revolutionized the scope and impact of protein expression studies. Label incorporation can occur metabolically or chemically, and each method bears specific strengths and weaknesses. Quantitative proteomics confidently identifies specific interactions between proteins and other biological species, such as nucleic acids and metabolites. Extending label-based methods to phosphorylation-modified forms of proteins enables the construction of signaling networks and their temporal responses to stimuli. The integration of multiple data types offers systems-level insight on coordinated biological processes. Finally, the development of methods applicable to tissue quantification suggests the emerging role of label-based, quantitative mass spectrometry in translational science. PMID:23835517

  2. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    SciTech Connect

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  3. Search for an anomalous spin-mass coupling with a dual isotope rubidium comagnetometer

    NASA Astrophysics Data System (ADS)

    Rios, Cesar; Valdez, Julian; Swiatlowski, Jerlyn; Kremer, Jackie; Kimball, Derek

    2012-11-01

    We discuss progress in our search for a hypothetical long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth. The experiment employs a dual-isotope Rb comagnetometer: the valence electron dominates magnetic interactions and serves as a precise magnetic field monitor for the nuclei in a simultaneous measurement of Rb-85 and Rb-87 spin precession frequencies, enabling accurate subtraction of magnetic perturbations. The nuclear structure of Rb makes the experiment particularly sensitive to non-magnetic, spin-dependent interactions of the proton. The majority of recent searches for similar effects limit anomalous couplings of either the neutron or electron spin, so the proposed experiment searches a parameter space to some degree, depending on the theoretical model, orthogonal to that constrained by previous experiments. We have begun to collect data and carry out in-depth analysis of systematic effects. The optimized dual-isotope Rb magnetometer has the sensitivity to improve experimental limits on long-range spin-mass couplings by an order of magnitude in general and by three orders of magnitude for the proton spin in particular.

  4. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    NASA Astrophysics Data System (ADS)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  5. Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra

    PubMed Central

    Xiao, Kaijie; Yu, Fan; Fang, Houqin; Xue, Bingbing; Liu, Yan; Tian, Zhixin

    2015-01-01

    It has long been an analytical challenge to accurately and efficiently resolve extremely dense overlapping isotopic envelopes (OIEs) in protein tandem mass spectra to confidently identify proteins. Here, we report a computationally efficient method, called OIE_CARE, to resolve OIEs by calculating the relative deviation between the ideal and observed experimental abundance. In the OIE_CARE method, the ideal experimental abundance of a particular overlapping isotopic peak (OIP) is first calculated for all the OIEs sharing this OIP. The relative deviation (RD) of the overall observed experimental abundance of this OIP relative to the summed ideal value is then calculated. The final individual abundance of the OIP for each OIE is the individual ideal experimental abundance multiplied by 1 + RD. Initial studies were performed using higher-energy collisional dissociation tandem mass spectra on myoglobin (with direct infusion) and the intact E. coli proteome (with liquid chromatographic separation). Comprehensive data at the protein and proteome levels, high confidence and good reproducibility were achieved. The resolving method reported here can, in principle, be extended to resolve any envelope-type overlapping data for which the corresponding theoretical reference values are available. PMID:26439836

  6. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry

    PubMed Central

    Soldin, Offie P.; Guo, Tiedong; Weiderpass, Elisabete; Tractenberg, Rochelle E.; Hilakivi-Clarke, Leena; Soldin, Steven J.

    2013-01-01

    Objective To establish normal, trimester-specific reference intervals for serum 17β-estradiol, progesterone (P), 17α-hydroxyprogesterone, cortisol, 11-deoxycortisol, androstenedione, DHEA, and DHEAS, measured simultaneously using isotope dilution tandem mass spectrometry. Design Sequential cohort study. Patient(s) Healthy women undergoing a normal pregnancy (age, 25–38 years; mean, 30 years) attending a prenatal well clinic at gestation weeks 12, 22, and 32 and approximately 1 year postpartum. Main Outcome Measure(s) Trimester-specific reference intervals of endogenous steroid hormones analyzed using an isotope dilution tandem mass spectrometer equipped with an atmospheric pressure photoionization source with deuterium-labeled internal standards. Result(s) Serum estradiol, P, 17α-hydroxyprogesterone, and 11-deoxycortisol increased throughout pregnancy; cortisol increased up to the second trimester and then remained steady, while androstenedione increased by 80 percent by gestation week 12, then remained constant. Serum DHEA-S decreased by 50% by the third trimester. Conclusion(s) Trimester-specific reference intervals are reported for eight serum steroids. The ratios of individual serum hormone concentrations during pregnancy relative to their 1-year postpartum concentrations illustrate the expected normal trends of changes in hormone concentrations during pregnancy. PMID:16169406

  7. Predicting molecular formulas of fragment ions with isotope patterns in tandem mass spectra.

    PubMed

    Zhang, Jingfen; Gao, Wen; Cai, Jinjin; He, Simin; Zeng, Rong; Chen, Runsheng

    2005-01-01

    A number of different approaches have been proposed to predict elemental component formulas (or molecular formulas) of molecular ions in low and medium resolution mass spectra. Most of them rely on isotope patterns, enumerate all possible formulas for an ion, and exclude certain formulas violating chemical constraints. However, these methods cannot be well generalized to the component prediction of fragment ions in tandem mass spectra. In this paper, a new method, FFP (Fragment ion Formula Prediction), is presented to predict elemental component formulas of fragment ions. In the FFP method, the prediction of the best formulas is converted into the minimization of the distance between theoretical and observed isotope patterns. And, then, a novel local search model is proposed to generate a set of candidate formulas efficiently. After the search, FFP applies a new multiconstraint filtering to exclude as many invalid and improbable formulas as possible. FFP is experimentally compared with the previous enumeration methods, and shown to outperform them significantly. The results of this paper can help to improve the reliability of de novo in the identification of peptide sequences.

  8. Stable isotope labeling tandem mass spectrometry (SILT) to quantify protein production and clearance rates.

    PubMed

    Bateman, Randall J; Munsell, Ling Y; Chen, Xianghong; Holtzman, David M; Yarasheski, Kevin E

    2007-06-01

    In all biological systems, protein amount is a function of the rate of production and clearance. The speed of a response to a disturbance in protein homeostasis is determined by turnover rate. Quantifying alterations in protein synthesis and clearance rates is vital to understanding disease pathogenesis (e.g., aging, inflammation). No methods currently exist for quantifying production and clearance rates of low-abundance (femtomole) proteins in vivo. We describe a novel, mass spectrometry-based method for quantitating low-abundance protein synthesis and clearance rates in vitro and in vivo in animals and humans. The utility of this method is demonstrated with amyloid-beta (Abeta), an important low-abundance protein involved in Alzheimer's disease pathogenesis. We used in vivo stable isotope labeling, immunoprecipitation of Abeta from cerebrospinal fluid, and quantitative liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-tandem MS) to quantify human Abeta protein production and clearance rates. The method is sensitive and specific for stable isotope-labeled amino acid incorporation into CNS Abeta (+/-1% accuracy). This in vivo method can be used to identify pathophysiologic changes in protein metabolism and may serve as a biomarker for monitoring disease risk, progression, or response to novel therapeutic agents. The technique is adaptable to other macromolecules, such as carbohydrates or lipids.

  9. The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water.

    PubMed

    Sültenfuss, Jürgen; Roether, Wolfgang; Rhein, Monika

    2009-06-01

    We describe the mass spectrometric facility for measuring helium isotopes, neon, and tritium that has been operative at this institute since 1989, and also the sampling and sample preparation steps that precede the mass spectrometric analysis. For water samples in a near-equilibrium with atmospheric air, the facility achieves precision for (3)He/(4)He ratios of+/-0.4% or better, and+/-0.8 % or better for helium and neon concentrations. Tritium precision is typically+/-3 % and the detection limit 10 mTU ( approximately 1.2.10(-3) Bq/kg of pure water). Sample throughputs can reach some thousands per year. These achievements are enabled, among other features, by automation of the measurement procedure and by elaborate calibration, assisted by continual development in detail. To date, we have measured more than 15,000 samples for tritium and 23,000 for helium isotopes and neon, mostly in the context of oceanographic and hydrologic work. Some results of such work are outlined. Even when atmospheric tritium concentrations have become rather uniform, tritium provides water ages if (3)He data are taken concurrently. The technique can resolve tritium concentrations in waters of the pre-nuclear era.

  10. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  11. Stable isotope labeling strategy for curcumin metabolite study in human liver microsomes by liquid chromatography-tandem mass spectrometry.

    PubMed

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an (18)O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the (18)O labeled curcumin was successfully synthesized. The non-labeled and (18)O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  12. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene

    NASA Astrophysics Data System (ADS)

    Cook, Mea S.; Ravelo, A. Christina; Mix, Alan; Nesbitt, Ian M.; Miller, Nari V.

    2016-03-01

    As the largest ocean basin, the Pacific helps to set the global climate state, since its circulation affects mean ocean properties, air-sea partitioning of carbon dioxide, and the distribution of global oceanic poleward heat transport. There is evidence that during the Last Glacial Maximum (LGM) the subarctic Pacific contained a better-ventilated, relatively fresh intermediate water mass above ~2000 m that may have formed locally. The source and spatial extent of this water mass is not known, nor do we know how formation of this water mass varied during Pleistocene glaciations with different orbital and ice sheet boundary conditions. Here we present a 0.5 My multi-species benthic stable isotope record from Site U1345 (1008 m) on the northern Bering slope and a 1.0 My record from U1339 (1868 m) from the Umnak Plateau in the southeastern basin. We find that the relatively well-ventilated low-δ18O intermediate water reaches 1000 m in the Bering Sea during MIS2, but that the hydrographic divide between this water mass and poorly-ventilated deep water was shallower than 1000 m for earlier glaciations. We also compare Bering Sea piston core and IODP Expedition 323 Uvigerina data from the Holocene and LGM with the modern hydrography, and to previously published profiles from the Okhotsk Sea and Emperor Seamounts. We find that the carbon and oxygen stable isotope signatures of well-ventilated water in the Bering and Okhotsk Seas are distinct, suggesting that there may have been intermediate water formation in both basins during the LGM.

  13. Improved isotope ratio measurement performance in liquid chromatography/isotope ratio mass spectrometry by removing excess oxygen.

    PubMed

    Hettmann, Elena; Brand, Willi A; Gleixner, Gerd

    2007-01-01

    A low dead volume oxygen scrubbing system was introduced in a commercially available liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) interface to enhance the analytical capability of the system. In the LC/IRMS interface carbon from organic samples is converted into CO(2) inside the mobile phase by wet chemical oxidation using peroxodisulfate (Na(2)S(2)O(8)). After passing the hot reaction zone, surplus oxygen (O(2)) remains dissolved in the liquid phase. Both CO(2) and O(2) diffuse through a transfer membrane into the helium carrier and are transferred to the mass spectrometer. The presence of O(2) in the ion source may have detrimental effects on measurement accuracy and precision as well as on filament lifetime. As a remedy, a new on-line O(2)-removing device has been incorporated into the system. The new O(2) scrubber consists of two parallel hot copper reduction reactors (0.8 mm i.d., active length 120 mm) and a switch-over valve between them. One reactor is regenerated using He/H(2) while the other is actively scavenging O(2) from the gas stream. The capacity of each reduction reactor, expressed as usage time, is between 40 and 50 min. This is sufficient for a single LC run for sugars and organic acids. A further increase of the reduction capacity is accompanied by a peak broadening of about 100%. After switching to a freshly reduced reactor the oxygen background and the delta(13)C values of the reference gas need up to 500 s to stabilize. For repeated injections the delta(13)C values of sucrose remain constant (+/-0.1 per thousand) for about 3000 s. The long-term stability for measurements of sucrose was 0.11 per thousand without the reduction oven and improved slightly to 0.08 per thousand with the reduction oven. The filament lifetime improved by more than 600%, thereby improving the long-term system stability and analytical efficiency. In addition the costs per analysis were reduced considerably.

  14. Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Steele, Valerie J; Stern, Ben; Stott, Andy W

    2010-12-15

    Distinguishing animal fats from plant oils in archaeological residues is not straightforward. Characteristic plant sterols, such as β-sitosterol, are often missing in archaeological samples and specific biomarkers do not exist for most plant fats. Identification is usually based on a range of characteristics such as fatty acid ratios, all of which indicate that a plant oil may be present, none of which uniquely distinguish plant oils from other fats. Degradation and dissolution during burial alter fatty acid ratios and remove short-chain fatty acids, resulting in degraded plant oils with similar fatty acid profiles to other degraded fats. Compound-specific stable isotope analysis of δ(13)C(18:0) and δ(13)C(16:0), carried out by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), has provided a means of distinguishing fish oils, dairy fats, ruminant and non-ruminant adipose fats, but plant oils are rarely included in these analyses. For modern plant oils where C(18:1) is abundant, δ(13)C(18:1) and δ(13)C(16:0) are usually measured. These results cannot be compared with archaeological data or data from other modern reference fats where δ(13)C(18:0) and δ(13)C(16:0) are measured, as C(18:0) and C(18:1) are formed by different processes resulting in different isotopic values. Eight samples of six modern plant oils were saponified, releasing sufficient C(18:0) to measure the isotopic values, which were plotted against δ(13)C(16:0). The isotopic values for these oils, with one exception, formed a tight cluster between ruminant and non-ruminant animal fats. This result complicates the interpretation of mixed fatty residues in geographical areas where both animal fats and plant oils were in use. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Global nitrogen cycle: pre-Anthropocene mass and isotope fluxes and effects of human perturbations

    NASA Astrophysics Data System (ADS)

    Joo, Y.; Li, D. D.; Lerman, A.; Mackenzie, F. T.

    2012-12-01

    The size of the largest nitrogen reservoir -- the Earth atmosphere -- and its long residence time of approximately 17 million years suggest that the global N cycle was likely to be balanced at geological time scales. After the industrial revolution, human activities, such as mining, fossil fuel burning, land use change, and artificial fertilization, have resulted in perturbations and numerous flux changes of the N cycle. The effects of human activities on the mass and isotopic composition of the N reservoirs can be predicted using a detailed N cycle model with estimated additions. For the pre-Anthropocene period, a balanced steady-state N cycle model was constructed based on the Redfield ratios and an extensive literature review. The model includes 14 N reservoirs in the domains of the atmosphere, land, and ocean. The biotic reservoirs on land and in the ocean (land plants and marine biota) interact with atmospheric N2 and dissolved inorganic N (DIN) in ocean and soil waters. DIN further interacts with dissolved organic N (DON), particulate organic matter (POM), and ocean sediments. Atmosphere supplies N to land and ocean domains mainly by N fixation, deposition, and dissolution, and these fluxes are balanced by denitrification and volatilization back to atmosphere. Riverine transport of dissolved and particulate N connects land and ocean domains. Once the cycle is mass-balanced, the isotopic composition of reservoir and the size of fractionation accompanying microbial transformations and transfers of N species between the reservoirs were estimated by numerical iteration of the flux equations based on the reported δ15N values and fractionation factors. The calculated fractionation factors tend to be smaller in magnitude than the experimentally measured ones in natural systems, which can be interpreted as an indication of N-limited conditions prevailing in pre-Anthropocene world: a smaller isotope fractionation can be interpreted as an indication of nitrogen

  16. Preparing the measurement of anapole moment in a chain of francium isotopes

    NASA Astrophysics Data System (ADS)

    Sheng, Dong

    This thesis presents the current status of the experimental efforts towards the measurement of the anapole moment in francium. The anapole moment is a parity violating, time-reversal conserving nuclear moment that arises from the weak interaction among nucleons. It is nuclear spin dependent and sensitive to the configuration of nuclear structure. Our experimental scheme is to perform a direct measurement of the anapole moment, by driving a parity forbidden E1 transition between ground hyperfine states in a series of francium isotopes inside a blue detuned dipole trap at the electric anti-node of a microwave cavity. We explore the tests using rubidium isotopes. The francium experiment will be moved to the ISAC radioactive beam facility of TRIUMF, Canada. During the preparation of the apparatus, we test the coherent control of the ground states via microwave and Raman beams, characterize the performance of a blue detuned dipole trap and study the atomic dynamics inside it using both classical and quantum methods. We also measure the lifetime of excited 5d states in Rb, with less than 1% uncertainty, to test and help to improve the current atomic structure theories.

  17. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-06

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols.

  18. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry.

    PubMed

    Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi

    2015-04-01

    We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.

  19. High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose.

    PubMed

    Woodley, Ewan J; Loader, Neil J; McCarroll, Danny; Young, Giles H F; Robertson, Iain; Heaton, Timothy H E; Gagen, Mary H; Warham, Joseph O

    2012-01-30

    Stable isotope analysis of cellulose is an increasingly important aspect of ecological and palaeoenvironmental research. Since these techniques are very costly, any methodological development which can provide simultaneous measurement of stable carbon and oxygen isotope ratios in cellulose deserves further exploration. A large number (3074) of tree-ring α-cellulose samples are used to compare the stable carbon isotope ratios (δ(13)C) produced by high-temperature (1400°C) pyrolysis/gas chromatography (GC)/isotope ratio mass spectrometry (IRMS) with those produced by combustion GC/IRMS. Although the two data sets are very strongly correlated, the pyrolysis results display reduced variance and are strongly biased towards the mean. The low carbon isotope ratios of tree-ring cellulose during the last century, reflecting anthropogenic disturbance of atmospheric carbon dioxide, are thus overestimated. The likely explanation is that a proportion of the oxygen atoms are bonding with residual carbon in the reaction chamber to form carbon monoxide. The 'pyrolysis adjustment', proposed here, is based on combusting a stratified sub-sample of the pyrolysis results, across the full range of carbon isotope ratios, and using the paired results to define a regression equation that can be used to adjust all the pyrolysis measurements. In this study, subsamples of 30 combustion measurements produced adjusted chronologies statistically indistinguishable from those produced by combusting every sample. This methodology allows simultaneous measurement of the stable isotopes of carbon and oxygen using high-temperature pyrolysis, reducing the amount of sample required and the analytical costs of measuring them separately.

  20. When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Kujawinski, Dorothea M; Zhang, Lijun; Schmidt, Torsten C; Jochmann, Maik A

    2012-09-18

    Compound-specific isotope analysis (CISA) of nonvolatile analytes has been enabled by the introduction of the first commercial interface to hyphenate liquid chromatography with an isotope ratio mass spectrometer (LC-IRMS) in 2004, yet carbon isotope analysis of unpolar and moderately polar compounds is still a challenging task since only water as the eluent and no organic modifiers can be used to drive the separation in LC. The only way to increase the elution strength of aqueous eluents in reversed phase LC is the application of high temperatures to the mobile and stationary phases (HT-LC-IRMS). In this context we present the first method to determine carbon isotope ratios of pharmaceuticals that cannot be separated by already existing separation techniques for LC-IRMS, such as reversed phase chromatography at normal temperatures, ion-chromatography, and mixed mode chomatography. The pharmaceutical group of sulfonamides, which is generally mixed with trimethoprim in pharmaceutical products, has been chosen as probe compounds. Substance amounts as low as 0.3 μg are sufficient to perform a precise analysis. The successful applicability and reproducibility of this method is shown by the analysis of real pharmaceutical samples. The method provides the first tool to study the pharmaceutical authenticity as well as degradation and mobility of such substances in the environment by using the stable isotopic signature of these compounds.

  1. The measurement of a fibrinogen α C-chain 5.9 kDa fragment (FIC 5.9) using MALDI-TOF MS and a stable isotope-labeled peptide standard dilution.

    PubMed

    Sogawa, Kazuyuki; Kodera, Yoshio; Noda, Kenta; Ishizuka, Yusuke; Yamada, Mako; Umemura, Hiroshi; Maruyama, Katsuya; Tomonaga, Takeshi; Yokosuka, Osamu; Nomura, Fumio

    2011-05-12

    We previously identified a 5.9 kDa peptide fragment of fibrinogen α C-chain (FIC 5.9) as a novel biomarker candidate for heavy drinking. In an effort to improve FIC 5.9 measurement for potential use in clinical diagnostics, we combined the ClinProt System and a stable isotope-labeled peptide standard dilution as a simple and reproducible system for measuring FIC 5.9. We analyzed 104 serum samples that were obtained from patients with alcohol dependency, from patients with chronic hepatitis C, and from healthy volunteers. Serum FIC 5.9 levels were measured using the ClinProt system with and without a stable isotope-labeled synthetic FIC 5.9 as an internal standard. The within-day and between-day CVs were significantly smaller with stable isotope dilution mass spectrometry (SID-MS) than with conventional MALDI-TOF MS. Of the two different MALDI-TOF MS platforms, we obtained concordant results with SID-MS. Furthermore, only SID-MS detected a small but significant difference between the serum FIC 5.9 levels in the chronic hepatitis C group and the controls. MALDI-TOF MS with a stable isotope-labeled peptide spike can determine serum FIC 5.9 levels more precisely than conventional MS. This will make inter-laboratory FIC 5.9 comparisons possible. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Stable isotope probing and Raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway.

    PubMed

    Li, Mengqiu; Huang, Wei E; Gibson, Christopher M; Fowler, Patrick W; Jousset, Alexandre

    2013-02-05

    Accurately measuring carbon flows is a challenge for understanding processes such as diverse intracellular metabolic pathways and predator-prey interactions. Combined with stable isotope probing (SIP), single-cell Raman spectroscopy was demonstrated for the first time to link the food chain from carbon substrate to bacterial prey up to predators at the single-cell level in a quantitative and nondestructive manner. Escherichia coli OP50 with different (13)C content, which were grown in a mixture of (12)C- and fully carbon-labeled (13)C-glucose (99%) as a sole carbon source, were fed to the nematode. The (13)C signal in Caenorhabditis elegans was proportional to the (13)C content in E. coli. Two Raman spectral biomarkers (Raman bands for phenylalanine at 1001 cm(-1) and thymine at 747 cm(-1) Raman bands), were used to quantify the (13)C content in E. coli and C. elegans over a range of 1.1-99%. The phenylalanine Raman band was a suitable biomarker for prokaryotic cells and thymine Raman band for eukaryotic cells. A biochemical mechanism accounting for the Raman red shifts of phenylalanine and thymine in response to (13)C-labeling is proposed in this study and is supported by quantum chemical calculation. This study offers new insights of carbon flow via the food chain and provides a research tool for microbial ecology and investigation of biochemical pathways.

  3. In vivo investigation of homocysteine metabolism to polyamines by high-resolution accurate mass spectrometry and stable isotope labeling.

    PubMed

    Ruseva, Silviya; Lozanov, Valentin; Markova, Petia; Girchev, Radoslav; Mitev, Vanio

    2014-07-15

    Polyamines are essential polycations, playing important roles in mammalian physiology. Theoretically, the involvement of homocysteine in polyamine synthesis via S-adenosylmethionine is possible; however, to our knowledge, it has not been established experimentally. Here, we propose an original approach for investigation of homocysteine metabolites in an animal model. The method is based on the combination of isotope-labeled homocysteine supplementation and high-resolution accurate mass spectrometry analysis. Structural identity of the isotope-labeled metabolites was confirmed by accurate mass measurements of molecular and fragment ions and comparison of the retention times and tandem mass spectrometry fragmentation patterns. Isotope-labeled methionine, spermidine, and spermine were detected in all investigated plasma and tissue samples. The induction of moderate hyperhomocysteinemia leads to an alteration in polyamine levels in a different manner. The involvement of homocysteine in polyamine synthesis and modulation of polyamine levels could contribute to a better understanding of the mechanisms connected with homocysteine toxicity.

  4. Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances.

    PubMed

    Aeppli, Christoph; Hofstetter, Thomas B; Amaral, Helena I F; Kipfer, Rolf; Schwarzenbach, René P; Berg, Michael

    2010-05-15

    We determined in situ reductive transformation rates of tetrachloroethene (PCE) in a contaminated aquifer by combining compound-specific carbon stable isotope analysis (CSIA) of the contaminants with tracer-based ((3)H-(3)He) groundwater dating. With increasing distance from the source, PCE was gradually transformed to trichloroethene (TCE), cis-dichloroethene (cDCE), and vinyl chloride (VC). Using the in situ determined carbon isotopic enrichment factor of -3.3 +/- 1.2 per thousand allowed for quantification of the PCE-to-TCE transformation based on isotopic (delta(13)C) shifts. By combining these estimates of the extent of PCE transformation with measured groundwater residence times (between 16 and 36 years) we calculated half-lives of 2.8 +/- 0.8 years (k = 0.27 +/- 0.09 yr(-1)) for the PCE-to-TCE transformation. Carbon isotope mass balances including the chloroethenes PCE, TCE, cDCE, and VC (delta(13)C(Sigma(CEs))) enabled an assessment of complete PCE dechlorination to nonchlorinated products. Shifts of delta(13)C(Sigma(CEs)) at the fringe of the plume of more than 25 per thousand pointed to dechlorination beyond VC of up to 55 +/- 17% of the chloroethene mass. Calculated rates for this multistep dechlorination were highly variable throughout the aquifer (k = 0.4 +/- 0.4 yr(-1)), suggesting that PCE reduction to nonchlorinated products occurred only in locally restricted zones of the investigated site.

  5. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2

    SciTech Connect

    Biegalski, S; Buchholz, B

    2009-08-26

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

  6. Acetate, propionate and butyrate in plasma: determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization.

    PubMed

    Pouteau, E; Meirim, I; Métairon, S; Fay, L B

    2001-07-01

    This study describes a rapid and simple method to determine short-chain fatty acid (SCFA) concentrations and their isotopic enrichments (M(0) + 1 and M(0) + 2) in human plasma. Sample preparation involves SCFA extraction and derivatization with 1-(tert-butyldimethylsilyl)imidazole. Gas chromatography/mass spectrometry was performed using chemical ionization with ammonia as the reagent gas. Outstanding resolution, excellent linearity and good detection limits were obtained. Inter-assay and intra-assay repeatability was below 10% and 3% respectively for SCFA concentration. Inter-assay repeatability was below 5%, 4%, 6%, and 14% for isotopic enrichment determination of [1-(13)C]acetate and [1,2-(13)C(2)]acetate, [1-(13)C]propionate and [1-(13)C]butyrate respectively, with intra-assay being below 6%. Such SCFA concentrations and isotopic enrichments were determined in the plasma of rats infused with a (13)C-labeled SCFA. The turnovers of acetate, propionate and butyrate in rats were 19 micromol kg(-1) min(-1), 2.6 micromol kg(-1) min(-1), 0.3 micromol kg(-1) min(-1) respectively. Copyright 2001 John Wiley & Sons, Ltd.

  7. Applications and Advantages of Stable Isotope Phosphate Labeling of RNA in Mass Spectrometry.

    PubMed

    Borland, Kayla; Limbach, Patrick A

    2017-04-01

    Mass spectrometry (MS) has become an enabling technology for the characterization of post-transcriptionally modified nucleosides within ribonucleic acids (RNAs). These modified RNAs tend to be more challenging to completely characterize using conventional genomic-based sequencing technologies. As with many biological molecules, information relating to the presence or absence of a particular compound (i.e., qualitative measurement) is only one step in sample characterization. Additional useful information is found by performing quantitative measurements on the levels of the compound of interest in the sample. Phosphate labeling of modified RNAs has been developed by our laboratory to enhance conventional mass spectrometry techniques. By taking advantage of the mechanism of action of many ribonucleases (RNases), digesting RNA samples in the presence of (18)O-labeled water generates an (18)O-labeled 3'-phosphate in each digestion product. We describe the historical development of this approach, contrast this stable isotope labeling strategy with others used in RNA mass spectrometry, and provide examples of new analytical mass spectrometry methods that are enabled by phosphate labeling in this fashion.

  8. First direct mass measurements of stored neutron-rich 129,130,131Cd isotopes with FRS-ESR

    NASA Astrophysics Data System (ADS)

    Knöbel, R.; Diwisch, M.; Bosch, F.; Boutin, D.; Chen, L.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S. A.; Martinez-Pinedo, G.; Matoš, M.; Mazzocco, M.; Münzenberg, G.; Nakajima, S.; Nociforo, C.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Patyk, Z.; Plaß, W. R.; Scheidenberger, C.; Stadlmann, J.; Steck, M.; Sun, B.; Suzuki, T.; Walker, P. M.; Weick, H.; Wu, M.-R.; Winkler, M.; Yamaguchi, T.

    2016-03-01

    A 410 MeV/u 238U projectile beam was used to create cadmium isotopes via abrasion-fission in a beryllium target placed at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated by the FRS and injected into the isochronous storage ring ESR for mass measurements. Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without Bρ-tagging at the high-resolution central focal plane of the FRS. In the experiment with Bρ-tagging the magnetic rigidity of the injected fragments was determined with an accuracy of 2 ṡ10-4. A new method of data analysis, which uses a correlation matrix for the combined data set from both experiments, has provided experimental mass values of 25 rare isotopes for the first time. The high sensitivity and selectivity of the method have given access to nuclides detected with a rate of a few atoms per week. In this letter we present for the 129,130,131Cd isotopes mass values directly measured for the first time. The experimental mass values of cadmium as well as for tellurium and tin isotopes show a pronounced shell effect towards and at N = 82. Shell quenching cannot be deduced from a single new mass value, nor by a better agreement with a theoretical model which explicitly takes into account a quenching feature. This is in agreement with the conclusion from γ-ray spectroscopy and confirms modern shell-model calculations.

  9. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure.

    PubMed

    Salisbury, Joseph P; Liu, Qian; Agar, Jeffrey N

    2014-12-11

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com . Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX

  10. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    SciTech Connect

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wiens, Roger C.

    2012-11-10

    NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  11. Mass-independent fractionation of mercury isotopes during photochemical reduction in freshwater systems

    NASA Astrophysics Data System (ADS)

    Rose, C. H.; Bergquist, B. A.; Blum, J. D.

    2009-12-01

    Mercury is a globally distributed environmental toxin. Both inorganic and methylated species have severe detrimental effects on humans and animals, but it is methyl mercury (MeHg) that bioaccumulates in food webs and results in significant human exposure via fish consumption. Photochemical reduction of aqueous Hg species to dissolved gaseous Hg(0) can result in a net transfer of Hg from aquatic systems to the atmosphere, making it unavailable for methylation. In addition, photo-reduction of MeHg is an alternative fate to bioaccumulation for this powerful neurotoxin. Both mass-dependent isotope fractionation (MDF) and mass-independent fractionation (MIF) are observed in natural samples. MIF is the deviation in isotope ratios from those predicted by MDF based on 202Hg/198Hg. Bergquist and Blum 2007 showed that aqueous photo-reduction of Hg2+ and MeHg in the presence of dissolved natural organic matter results not only in Rayleigh-type MDF but also significant MIF, with the odd isotopes 199Hg and 201Hg being preferentially retained in the reactant (soluble) phase. Berquist and Blum 2007 also observed that the ratio of the MIF for the odd isotopes was different for each of the photo-reduction pathways (MeHg versus Hg2+) and suggested this ratio could be unique to certain pathways, which might allow identification of photo-reduction among other pathways in natural samples. They also suggested that the magnitude of MIF might relate quantitatively to the amount of photo-reduction Hg undergoes in aqueous systems. To better understand the causes of MIF and its capacity along with MDF as a tool for tracing photo-reduction of Hg, further experiments mimicking the freshwater photo-reduction of Hg2+ and MeHg were carried out. Each species was photo-reduced in the presence of Suwannee River Fulvic Acid with different portions of the electromagnetic spectrum blocked by filters. Bergquist and Blum 2007 suggested the magnetic isotope effect (MIE) as the cause of the MIF they

  12. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; MacLeod, K. G.; Jiménez Berrocoso, A.; Bourbon, E.

    2012-04-01

    Circulation in the North Atlantic during the Late Cretaceous has implications for poleward heat transport and nutrient distribution during an extreme greenhouse interval with episodes of ocean anoxia. Nd isotopes of fossil fish teeth and debris represent one of the few water mass tracers that can be used to reconstruct deep ocean circulation. We present Nd isotopic data interpreted as bottom water values for 290 samples from three Ocean Drilling Program sites on Demerara Rise (Sites 1258, 1260, and 1261) along with 102 analyses from four other North Atlantic sites (Cape Verde, Goban Spur, Bermuda Rise and Blake Nose) that provide additional geographic and bathymetric control. Our results confirm the presence of a water mass with low ɛNd values (- 14 to - 17) that are believed to be influenced by continental material during local water mass formation at low latitudes. This Demerara Bottom Water (DBW) is the primary water mass in the region from the Cenomanian to Coniacian and from the late Campanian through early Maastrichtian following a hiatus of ~ 10 my. A positive 8 ɛNd unit excursion occurs during Ocean Anoxic Event 2 (OAE2) that cannot be explained by changes in weathering inputs, diagenesis or magmatic sources of Nd; instead, it appears to represent an influx of bottom waters sourced from the Tethys or North Atlantic. This replacement of DBW during OAE2 argues for decreased production of DBW or enhanced production of Tethys/North Atlantic waters during peak greenhouse conditions. From the late Campanian through early Maastrichtian, DBW becomes the only water mass recorded at Demerara Rise and it appears to expand to abyssal depths at Cape Verde in the Campanian. This water mass is ultimately replaced by waters that appear to be sourced from the North Atlantic starting in the late Maastrichtian. Observed variations in circulation in the tropical North Atlantic during the Late Cretaceous can account for extensive deposition of black shales in the region prior

  13. Sulfur Isotope Variation in Melt Inclusions From Arc Basalts Revealed By Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Shimizu, N.; Kelley, K. A.

    2009-12-01

    Subduction zones are sites where elements once at the Earth’s surface are recycled back to the mantle. Arc volcanoes return volatiles and hydrous melts to the surface. Understanding of sulfur recycling in magmatic arcs is hampered by insufficient data on net sulfur isotopic composition of slab inputs, that range from δ34S of seawater (21‰) to negative δ34S of -70‰ for secondary sulfides, to values of 0 ± 3‰ in relict magmatic sulfides. We lack sufficient knowledge of the sulfur concentration and isotopic composition of the mantle wedge. Degassing and assimilation of crustal sulfur may produce changes to initial sulfur isotope ratios of magmas. To preclude degassing effects, we measured S isotope ratios in mafic melt inclusions by secondary ionization mass spectrometry (SIMS) from three arc volcanoes, Galunggung, and Krakatau in Indonesia, and Augustine, in Alaska. These data provide a view of the variability of initial sulfur isotope ratios of mafic arc magmas and are being evaluated for correlations with sulfur and iron oxidation state, dissolved volatiles, trace elements, and degassing effects in order to determine the origin(s) of dissolved S. Olivine-hosted melt inclusions from a basaltic bomb from the 1982-1983 Galunggung eruption represent the relatively dry adiabatic decompression melting end member of primary arc magma genesis (Sisson and Bronto,1998). New SIMS δ34S measurements of Galunggung melt inclusions yield ratios from -3.0‰ to +5.0‰ with S concentrations of 1950 ppm - 990 ppm. A few Galunggung inclusions have δ34S between 0.5‰ and 1.4‰ with S conc.'s of 1690 - 1760 ppm, that are within the mantle range, and have low water contents of 0.25 to 0.30 wt.% (Kelley et al. 2005). A subgroup of inclusions yield δ34S of 2.8‰ to 5.0‰ and 990 - 1920 ppm S. Pre-1883 basaltic scoria from Krakatau volcano contain olivine-hosted melt inclusions with water and CO2 concentrations from 1.8 - 4.1 wt.% and 79 - 1017 ppm, respectively

  14. Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    DOE PAGES

    Meisel, Z.; George, S.; Ahn, S.; ...

    2016-03-22

    Here, we present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N = 38. Additionally, we extend the S2n trend for chromium to N = 40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-artmore » shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A = 64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.« less

  15. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  16. Oxygen Isotope Mass-Balance Constraints on Pliocene Sea Level and East Antarctic Ice Sheet Stability

    NASA Astrophysics Data System (ADS)

    Winnick, M. J.; Caves, J. K.

    2015-12-01

    The mid-Pliocene Warm Period (MPWP, 3.3-2.9 Ma), with reconstructed atmospheric pCO2 of 350-450 ppm, represents a potential analogue for climate change in the near future. Current highly cited estimates place MPWP maximum global mean sea level (GMSL) at 21 ± 10 m above modern, requiring total loss of the Greenland (GIS) and marine West Antarctic Ice Sheets (WAIS) and a substantial loss of the East Antarctic Ice Sheet (EAIS), with only a concurrent 2-3 ºC rise in global temperature. Many estimates of Pliocene GMSL are based on the partitioning of oxygen isotope records from benthic foraminifera (δ18Ob) into changes in deep-sea temperatures and terrestrial ice sheets. These isotopic budgets are underpinned by the assumption that the δ18O of Antarctic ice (δ18Oi) was the same in the Pliocene as it is today, and while the sensitivity of δ18Ob to changing meltwater δ18O has been previously considered, these analyses neglect conservation of 18O/16O in the ocean-ice system. Using well-calibrated δ18O-temperature relationships for Antarctic precipitation along with estimates of Pliocene Antarctic surface temperatures, we argue that the δ18Oi of the Pliocene Antarctic ice sheet was at minimum 1‰-4‰ higher than present. Assuming conservation of 18O/16O in the ocean-ice system, this requires lower Pliocene seawater δ18O (δ18Osw) without a corresponding change in ice sheet mass. This effect alone accounts for 5%-20% of the δ18Ob difference between the MPWP interglacials and the modern. With this amended isotope budget, we suggest that Pliocene GMSL was likely 9-13.5 m and very likely 5-17 m above modern, which suggests the EAIS is less sensitive to radiative forcing than previously inferred from the geologic record.

  17. Authenticity of carbon dioxide bubbles in French ciders through multiflow-isotope ratio mass spectrometry measurements.

    PubMed

    Gaillard, Laetitia; Guyon, Francois; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-01

    A procedure to detect whether carbon dioxide was added to French ciders has been developed. For this purpose, an optimised and simplified method is proposed to determine (13)C/(12)C isotope ratio of carbon dioxide (δ(13)C) in ciders. Three critical steps were checked: (1) influence of atmospheric CO2 remaining in the loaded vial, (2) impact of helium flush, (3) sampling speed. This study showed that atmospheric CO2 does not impact the measurement, that helium flush can lead to isotopic fractionation and finally, that a fractionation occurs only 5h after bottle opening. The method, without any other preparation, consists in sampling 0.2 mL of cold (4 °C) cider in a vial that is passed in an ultrasonic bath for 10 min at room temperature to enhance cider de-carbonation. The headspace CO2 is then analysed using the link Multiflow®-isotope ratio mass spectrometer. Each year, a data bank is developed by fermenting authentic apples juices in order to control cider authenticity. Over a four year span (2008-2011), the CO2 produced during the fermentation step was studied. This set of 61 authentic ciders, from various French production areas, was used to determine a δ(13)C value range of -22.59±0.92‰ for authentic ciders CO2 bubbles. 75 commercial ciders were analysed with this method. Most of the samples analysed present a gas δ(13)C value in the expected range. Nevertheless, some ciders have δ(13)C values outside the 3σ limit, revealing carbonation by technical CO2. This practice is not allowed for organic, "Controlled Appellation of Origin" ciders and ciders specifying natural carbonation on the label.

  18. Quantifying spatial groundwater dependence in peatlands through a distributed isotope mass balance approach

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka M.; Ronkanen, Anna-Kaisa; Marttila, Hannu; Rozanski, Kazimierz; Kløve, Bjørn

    2017-03-01

    The unique biodiversity and plant composition of peatlands rely on a mix of different water sources: precipitation, runoff, and groundwater (GW). Methods used to delineate areas of ecosystem groundwater dependence, such as vegetation mapping and solute tracer studies, are indirect and lack the potential to assess temporal changes in hydrology, information needed in GW management. This paper outlines a new methodology for mapping groundwater-dependent areas (GDAs) in peatlands using a 2H and 18O isotope mass balance method. The approach reconstructs the initial isotopic composition of the peat pore water in the uppermost peat layer before its modification by evaporation. It was assumed that pore water in this layer subject to evaporation is a two-component mixture consisting of GW and precipitation input from the month preceding the sampling period. A Bayesian Monte Carlo isotope mixing model was applied to calculate the proportions of GW and rainwater in the sampled pore water and to assess uncertainties. The approach revealed large spatial variability in the contribution of GW to the pore water present in the top layer of peatland, covering the range from approximately 0 to 100%. Results show that the current GW protection zones determined by Finnish legislation do not cover the GDAs in peatlands and highlight a need for better classification of groundwater-dependent ecosystems and conceptualization of aquifer-ecosystem interactions. Our approach offers an efficient tool for mapping GDAs and quantifying the contribution of GW to peatland pore water. However, more studies are needed to test the method for different peatland types.

  19. Isotopic analysis of enriched/depleted SO/sub 2/ via low-resolution mass sectrometry

    SciTech Connect

    Canada, D.C.; Kleven, B.E.; Campbell, R.J.

    1984-08-01

    Governmental agencies are beginning to place increasing emphasis on the acid rain problem now plaguing the northeastern United States. Sulfuric acid is the major component in the acid rain responsible for the high acidity. At present, very little scientific information exists concerning the atmospheric chemistry of sulfur compounds especially with regard to the kinetics of oxidation/hydrolysis of SO/sub 2/ to sulfate. In fact, simple knowledge of atmospheric plume dissemination is not well characterized. One proposed method of attacking these problems is via stable isotope tagging experiments (vis-a-vis, S/sup 34//S/sup 32/). A number of enriched feed materials have been proposed for the study including SO/sub 2/, SF/sub 6/, CS/sub 2/, and S. In terms of simply tracing plume dispersion, any or all of these S/sup 34/ enriched components could serve as a useful tracer. However, in terms of studying atmospheric chemical kinetics (i.e., SO/sub 2/ ..-->.. sulfate), S/sup 34/ enriched SO/sub 2/ will be the ideal feed material. The Oak Ridge Gaseous Diffusion Plant's (ORGDP) Centrifuge Division has recently run pilot plant enrichment experiments using both SO/sub 2/ and SF/sub 6/. This report describes the analytical determination of the isotopic composition of this enriched/depleted SO/sub 2/. The calculations and approximations for processing low-resolution mass spectrometric isotopic enrichment/depletion data are detailed for SO/sub 2/ molecular ion specie. 2 tables.

  20. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  1. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS).

    PubMed

    da Silva, D A F; Biscola, N P; Dos Santos, L D; Sartori, M M P; Denadai, J C; da Silva, E T; Ducatti, C; Bicudo, S D; Barraviera, B; Ferreira, R S

    2016-11-01

    Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for (13)C and (15)N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed (15)N equilibrium 5 days after MBM removal (54th day). Conversely, (15)N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, (15)N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural (15)N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ(13)C and δ(15)N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments.

  2. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  3. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Jiang, B.; Guo, H.; Ono, S.

    2015-02-01

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O2 on the S-MIF produced by two absorption band systems of SO2: photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO2 photolysis (SO2 + hν → SO + O) experiments showed S-MIF signals with large 34S/34S fractionations, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high 34S/34S fractionations, positive mass-independent anomalies in 33S, and negative anomalies in 36S, is consistent with a major contribution from optical isotopologue screening effects and data for stratospheric sulfate aerosols. In contrast, SO2 photoexcitation produced products with positive S-MIF anomalies in both 33S and 36S, which is different from stratospheric sulfate aerosols. SO2 photolysis in the presence of O2 produced SO3 with S-MIF signals, suggesting the transfer of the S-MIF anomalies from SO to SO3 by the SO + O2 + M → SO3 + M reaction. This is supported with energy calculations of stationary points on the SO3 potential energy surfaces, which indicate that this reaction occurs slowly on a single adiabatic surface, but that it can occur more rapidly through intersystem crossing. Based on our experimental results, we estimate a termolecular rate constant on the order of 10-37 cm6 molecule-2 s-1. This rate can explain the preservation of mass independent isotope signatures in stratospheric sulfate

  4. Dissolved inorganic carbon isotopic composition of the Gulf of Mexico deep-water masses.

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, J. G.; Herguera, J. C.; Ferreira-Bartrina, V.; Hernández-Ayón, J. M.; Camacho-Ibar, V.

    2014-12-01

    This study provides new data for the establishment of a carbon biogeochemical dynamics baseline in the deep Gulf of Mexico (GM) based on carbon isotopes in dissolved inorganic carbon. Water samples from 40 deep-water stations south of 25˚N were collected during XIXIMI-2 cruise, July 2011, aboard BO/Justo Sierra. Vertical profiles of temperature, salinity and dissolved oxygen (DO) were further measured in each station. In the Stable Isotopes Laboratory at CICESE we determined the carbon isotopic composition of the dissolved inorganic carbon (DIC) (δ13CDIC). Remarkably, density, DO and δ13CCID profiles showed a clear difference between the Loop current and the deep-waters of the GM south of 25˚N. We found the following average δ13CCID values in the Loop current and in the deep-waters of the Gulf: subtropical underwater (SUW): 0.73±0.06‰ and 0.86±0.04‰; 18 degree water (18W): 0.76 ± 0.08‰ and 0.58± 0.06‰; North Atlantic central water (NACW): 0.77 ± 0.05‰ and 0.71 ± 0.09‰; South Atlantic central water (SACW): 0.80 ± 0.08‰ and 0.77 ± 0.07‰; Antartic intermediate water (AAIW): 1.00 ± 0.06‰ and 0.90 ± 0.08‰; North Atlantic deep water (NADW): 1.03 ± 0.06‰ and 1.01 ± 0.10‰. We will discuss how the biological component, δ13CCID-BIO, of subsurface water masses match very closely the apparent oxygen utilization relation described by Kroopnick, 1985, with the exception of SUW, and as a consequence the 18W is probably the water mass most affected by organic carbon remineralization processes in the GM south of 25˚N. We further show how these waters seem to store a larger proportion of anthropogenic carbon than the deeper water masses.

  5. Advantages of Secondary Ion Mass Spectrometry (SIMS) for Stable Isotope Microanalysis of Trace Light Elements

    NASA Astrophysics Data System (ADS)

    Layne, G. D.

    2003-12-01

    SIMS has several general advantages for the determination of light stable isotopes occurring at trace element concentrations in natural samples. Ion microprobe SIMS instruments sputter nanogram quantities of material from a well defined, micrometer-sized analytical crater. The extremely small quantity of sample extracted allows analysis of very small objects, such as igneous melt inclusions. Sputter ionization of many light elements (e.g.; Li, B, S, Cl) is efficient enough (>>1%) to allow precise determination of isotope ratios at elemental concentrations as low as 1 - 100 ppm. Primary bombardment of the sample is performed in close proximity to the initial extraction optics of the mass spectrometer, enabling very stable control of the ionization process. Consequently, instrumental mass fractionation (IMF) can be maintained at a very consistent and reproducible level. In situ SIMS microanalysis has a particular advantage for samples where the elemental concentration is less than that which would provoke chemical blank problems during preparation of the purified samples necessary for other types of mass spectrometry. B isotopes. Use of SIMS for the determination of delta11B is simplified because compositionally diverse matrices are amenable to calibration for IMF with a single standard; usually a high silica glass containing 100s - 1000s ppm total B1.This attribute is particularly convenient in subduction-related volcanic systems, where tephra sequences may contain a wide spectrum of major element chemistries. The combination of δ 11B and trace element microanalyses has been particularly valuable in these same systems. For example, the inverse correlation of δ 11B with LILE/Nb ratios in Neogene fallout tephra was used to infer the contribution of a metasomatized mantle wedge to the Izu Arc Front volcanics2. Li isotopes. For Li, IMF is more dependent on matrix chemistry, requiring a well-determined suite of standards. IMF may also drift in response to elemental

  6. An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, T.B.

    2001-01-01

    An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.

  7. Small Scale Heterogeneity in the Mantle Beneath the Southern Cascades: Isotope and Trace-Element Geochemistry of Primitive Basalts in the Poison Lake Chain

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Teasdale, R.

    2009-12-01

    We present new trace-element and isotope data for four of nine stratigraphically and petrographically defined groups of primitive basalts in the Poison Lake chain, east of Lassen Volcanic National Park in northern California. The Poison Lake chain is located near the Basin and Range, which provides conduits for magma to reach the surface efficiently with little contamination. Its limited area (5 km east-west and 20 km north-south) and proximity to the Basin and Range make the Poison Lake chain an ideal location to study the mantle beneath the southern Cascades. The volcanic field encompasses 43 vents that comprise nine groups of chemically distinct primitive calc-alkaline basalts. The four groups analyzed for this study, are the basalts of Robbers Spring (~202 ka), Pittville Road (~117 ka), old railroad grade (~102 ka) and Bogard Buttes (~100 ka), which were chosen based on their spatial distribution and age relationships. Our new trace-element and isotope data confirm distinct geochemical groups that were previously recognized with major-element data. Lead isotopes suggest derivation from a mantle source modified by subducted sediment; however, primitive and mantle-like Sr-isotope ratios (0.7037-0.7042) preclude significant crustal contamination as these basalts ascended through the crust. Isotopic and trace-element compositions are distinct among groups despite their proximity to one another, essentially ruling out direct genetic relationships or a common source for these basalts. Instead, slight major- and trace-element variations suggest that within-group compositional diversity may be produced by one of the following processes: variable degrees of partial melting, minimal fractional crystallization, or mixing with mafic magmas of similar composition. Well-defined groups of primitive basalts erupted in the Poison Lake chain are interpreted to represent small, independent batches of mantle melt that rapidly traversed the crust. The small volume erupted, distinct

  8. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry.

    PubMed

    van Roij, Linda; Sluijs, Appy; Laks, Jelmer J; Reichart, Gert-Jan

    2017-01-15

    Analyses of stable carbon isotope ratios (δ(13) C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Analyses of the international IAEA CH-7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ(13) C values. Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5-0.9‰. These promising results set the stage for investigating both δ(13) C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  9. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  10. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGES

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; ...

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  11. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  12. Isotope dilution gas chromatography/mass spectrometry method for determination of pyrethroids in apple juice.

    PubMed

    Wong, Siu-kay; Yu, Kwok-chiu; Lam, Chi-ho

    2010-03-01

    This paper presents the development of a highly precise and accurate analytical method for the determination of three matrix-bound pyrethroids, namely, cypermethrin, permethrin, and bifenthrin, using an isotope dilution gas chromatography/mass spectrometry technique. Identification of the analytes was confirmed under selective ion monitoring mode by the presence of two dominant ion fragments within specific time windows and matching of relative ion intensities of the ions concerned in samples and calibration standards. Quantitation was based on the measurement of concentration ratios of the natural and isotope analogues in the sample and calibration blends. Intraday and interday repeatabilities of replicate analyses of the pyethroids in an apple juice sample were below 0.5%. The expanded relative uncertainty ranged from 3 to 6%, which was significantly lower than the range obtained using internal or external calibration methods. As a labeled analogue is not available for bifenthrin, bifenthrin was determined using labeled cis-permethrin as the internal standard. The results were counterchecked by a gas chromatography-electron capture detection technique using PCB 209 as the internal standard. The method developed was applied to a recent pilot study organized by CCQM and the results were consistent with those of other participants.

  13. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability.

  14. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    SciTech Connect

    Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth; Dirmyer, Matthew R.; Campbell, Keri; Gonzalez, Jhanis J.

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  15. Inductively Coupled Plasma/Mass Spectrometric Isotopic Determination of Nuclear Wastes Sources Associated with Hanford Tank Leaks

    SciTech Connect

    Evans, John C.; Dresel, P. Evan; Farmer, Orville T.

    2007-11-01

    The subsurface distribution of a nuclear waste tank leak on the U.S. Department of Energy’s Hanford Site was sampled by slant drilling techniques in order to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. High-sensitivity inductively coupled plasma/mass spectrometry (ICP/MS) techniques were used for determination of isotopic ratios for Cs, I, Mo. Analysis of the isotopic patterns of I and Mo combined with associated chemical data showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature.

  16. Using Lanthanide Nanoparticles as Isotopic Tags for Biomarker Detection by Mass Cytometry

    NASA Astrophysics Data System (ADS)

    Cao, Pengpeng

    The development of robust, versatile, and high-throughput biosensing techniques has widespread implications for early disease detection and accurate diagnosis. An innovative technology, mass cytometry, has been developed to use isotopically-labelled antibodies to simultaneously study multiple parameters of single cells. The current detection sensitivity of mass cytometry is limited by the number of copies of a given isotope that can be attached to a given antibody. This thesis describes research on the synthesis, characterization, and bioconjugation of a new class of nanoparticle-based labelling agents to be employed for the detection of low-abundance biomarkers by mass cytometry. Hydrophobic lanthanide nanoparticles (Ln NPs) have been prepared by the Winnik group. To render the NPs water-soluble for biological applications, we coated the NP surface with a first generation of multidentate poly(ethylene glycol) (PEG)-based ligands via ligand exchange. We measured the size, morphology, and polydispersity of these hydrophilic NPs by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The colloidal stability of the NPs was determined at various pH and in phosphate buffered saline (PBS) solutions. Tetradentate-PEG-coated NPs (Tetra-NPs) exhibited the best stability at pH 3 to 9, and in PBS. However, when cells were treated with Tetra-NPs in preliminary in vitro studies, significant undesirable non-specific binding (NSB) was observed. In order to tackle the NSB issue presented in the Tetra-NPs, we prepared a second generation of polymer-based ligands using ring-opening metathesis polymerization (ROMP). A small library of ROMP polymers was synthesized, characterized, and used to stabilize NPs in aqueous solutions. The ROMP-NPs were found to have significantly reduced NSB to cells by inductively coupled plasma-mass spectrometry (ICP-MS). To further modify the NPs, amine groups were introduced as functional handles to both the tetradentate-PEG and

  17. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  18. Application of Screening Experimental Designs to Assess Chromatographic Isotope Effect upon Isotope-Coded Derivatization for Quantitative Liquid Chromatography–Mass Spectrometry

    PubMed Central

    2015-01-01

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography–mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, 13C6-, 15N2-, or 15N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett–Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of 15N or 13C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus 15N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with 15N- or 13C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  19. Mass spectrometry analyses of rat 2b myosin heavy chain isoform.

    PubMed

    Zurmanová, J; Malácová, D; Půta, F; Novák, P; Rícný, J; Soukup, T

    2007-01-01

    We have separated 2b myosin heavy chain (MyHC) isoform from the rat extensor digitorum longus muscle by SDS-PAGE and analyzed it by two subsequent mass spectrometry techniques. After tryptic digestion, the obtained peptides were identified by Matrix-Assisted Laser Desorption/Ionisation reflectron Time of Flight mass spectrometry (MALDI-TOF MS) and sequenced by liquid chromatography tandem mass spectrometry (ESI LC/MS/MS). The analyzed peptides proportionally covered 30 % of the 2b MyHC isoform sequence. The results suggest that the primary structure is identical with the highest probability to a NCBI database record ref|NP_062198.1|, representing the last updated record of rat 2b isoform. Nonetheless, four peptides carrying amino acid substitution(s) in comparison with the NCBI database record were identified.

  20. A chain kinematic model to assess the movement of lower-limb including wobbling masses.

    PubMed

    Thouzé, A; Monnet, T; Bélaise, C; Lacouture, P; Begon, M

    2016-01-01

    Computer simulation models have shown that wobbling mass on the lower limb affects the joint kinetics. Our objective was to propose a non-invasive method to estimate bones and wobbling mass kinematics in the lower limb during hopping. The chain kinematic model has set degrees of freedom at the joints and free wobbling bodies. By comparison to a model without wobbling bodies, the marker residual was reduced by 20% but the joint kinematics remains unchanged. Wobbling bodies' displacements reached 6.9 ± 3.5° and 6.9 ± 2.4 mm relative to the modelled bones. This original method is a first step to assess wobbling mass effect on joint kinetics.

  1. Screening of dimethoate in food by isotope dilution and electrospray ionization tandem mass spectrometry.

    PubMed

    Mazzotti, Fabio; Di Donna, Leonardo; Macchione, Barbara; Maiuolo, Loredana; Perri, Enzo; Sindona, Giovanni

    2009-05-01

    Crop control is an important issue in both developed and developing countries. An environmentally friendly approach is represented by the so-called Integrated Pest Management (IPM), whereby synthetic pesticides are only applied as a last resort, under the strict control of suitable experts. European and US regulatory authorities, such as the US EPA, are constantly assessing the risks of exposure to the organophosphate (OP) class of pesticides and, among these, specifically dimethoate. The use of dimethoate is still allowed in many crops, including olives, which once was based in the Mediterranean area but now is expanding rapidly throughout the world. An important aspect of IPM protocols is represented by the availability of reliable and sensitive methods to detect pesticides residues. This paper describes an isotope dilution dimethoate assay based on the application of electrospray ionization tandem mass spectrometry (ESI-MS/MS) by means of a deuterium-labeled internal standard.

  2. Rapid assay of resveratrol in red wine by paper spray tandem mass spectrometry and isotope dilution.

    PubMed

    Di Donna, Leonardo; Taverna, Domenico; Indelicato, Serena; Napoli, Anna; Sindona, Giovanni; Mazzotti, Fabio

    2017-08-15

    A rapid analytical approach for the assay of resveratrol in red wines, based on Paper Spray Mass Spectrometry (PS-MS) and Multiple Reaction Monitoring (MRM) is described. The assay involves the use of the stable isotope dilution method. The analytical parameters calculated analyzing fortified samples confirm the reliability of the proposed approach, with accuracy values about 100%, and LOD and LOQ values calculated at 0.5 and 0.8μg/mL, respectively. Furthermore, both the recovery, which was quantitative for the analyte, and the reproducibility (RSD%), checked on different days on the same wine, always below 7%, highlighted the consistency of the methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A dedicated AMS setup for medium mass isotopes at the Cologne FN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Altenkirch, R.; Feuerstein, C.; Müller-Gatermann, C.; Hackenberg, G.; Herb, S.; Bhandari, P.; Heinze, S.; Stolz, A.; Dewald, A.

    2017-09-01

    AMS measurements of medium mass isotopes, e.g. of 53Mn and 60Fe, are gaining interest in various fields of operation, especially geoscience. Therefore a dedicated AMS setup has been built at the Cologne 10 MV FN tandem accelerator. This setup is designed to obtain a sufficient suppression of the stable isobars at energies around 100 MeV. In this contribution we report on the actual status of the new setup and the first in-beam tests of its individual components. The isobar suppression is done with (dE/dx) techniques using combinations of energy degrader foils with an electrostatic analyzer (ESA) and a time of flight (ToF) system, as well as a (dE/dx),E gas ionization detector. Furthermore, the upgraded ion source and its negative ion yield measurement for MnO- are presented.

  4. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    SciTech Connect

    Budny, R. V.; Team, JET

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The higher T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  5. Quantification of four artificial sweeteners in Finnish surface waters with isotope-dilution mass spectrometry.

    PubMed

    Perkola, Noora; Sainio, Pirjo

    2014-01-01

    The artificial sweeteners sucralose (SCL), acesulfame (ACS), saccharin (SAC), and cyclamate (CYC) have been detected in environmental waters in Europe and North America. Higher environmental levels are expected in view of the increasing consumption of these food additives. In this study, an isotope-dilution mass spectrometry (IDMS) LC-MS/MS method was developed and validated for quantifying the four artificial sweeteners in boreal lakes (n = 3) and rivers (n = 12). The highest concentrations of ACS, SAC, CYC and SCL were 9,600, 490, 210 and 1000 ng/L, respectively. ACS and SAC were detected in all studied samples, and CYC and SCL in 98% and 56% of the samples. Seasonal trends of ACS and SAC were observed in some rivers. ACS and SCL concentrations in rivers correlated linearly with population equivalents of the wastewater treatment plants in the catchment areas, whereas SAC and CYC concentrations depend more on the source.

  6. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  7. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China.

    PubMed

    Wignall, Paul B; Sun, Yadong; Bond, David P G; Izon, Gareth; Newton, Robert J; Védrine, Stéphanie; Widdowson, Mike; Ali, Jason R; Lai, Xulong; Jiang, Haishui; Cope, Helen; Bottrell, Simon H

    2009-05-29

    The 260-million-year-old Emeishan volcanic province of southwest China overlies and is interbedded with Middle Permian carbonates that contain a record of the Guadalupian mass extinction. Sections in the region thus provide an opportunity to directly monitor the relative timing of extinction and volcanism within the same locations. These show that the onset of volcanism was marked by both large phreatomagmatic eruptions and extinctions amongst fusulinacean foraminifers and calcareous algae. The temporal coincidence of these two phenomena supports the idea of a cause-and-effect relationship. The crisis predates the onset of a major negative carbon isotope excursion that points to subsequent severe disturbance of the ocean-atmosphere carbon cycle.

  8. (238)U/(235)U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance.

    PubMed

    Noordmann, Janine; Weyer, Stefan; Georg, R Bastian; Jöns, Svenja; Sharma, Mukul

    2016-01-01

    significantly lower δ(238)U (-0.55 and -0.59 ‰) than seawater (-0.38 ‰). These findings, together with the heavier U isotope composition observed for some altered basalts and carbonate veins support a model, in which redox processes mostly drive U isotope fractionation. This may result in a slightly heavier U isotope composition of U that is removed from seawater during hydrothermal seafloor alteration compared to that of seawater. Using the estimated isotope compositions of rivers and all U sinks from the ocean (of this study and the literature) for modelling of the isotopic U mass balance, this gives reasonable results for recent estimates of the oceanic U budget. It furthermore provides additional constraints on the relative size of the diverse U sinks and respective net isotope fractionation during U removal.

  9. One possible source of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth

    NASA Astrophysics Data System (ADS)

    Babikov, Dmitri; Semenov, Alexander; Teplukhin, Alexander

    2017-05-01

    Energy transfer mechanism for recombination of two sulfur atoms into a diatomic molecule, S2, is studied theoretically and computationally to determine whether the rate coefficient of this process can be significantly affected by isotopic substitutions, and whether the resultant isotope effect is expected to be mass-dependent or mass-independent. This is one of sulfur polymerization processes thought to be important in the anoxic atmosphere of the Archean Earth and, potentially, relevant to mass-independent fractionation of sulfur isotopes. A simplified theoretical approach is employed, in which all properties of S2 molecule are characterized rather accurately, whereas the process of stabilization of metastable S2∗ by bath gas collisions is described approximately. Properties of individual scattering resonances in S2 are studied in detail, and it is found that most important contributions to the recombination process come from ro-vibrational states formed near the top of centrifugal barrier, and that the number of such states is about 50 (in 32S32S). Absolute value of recombination rate coefficient is computed to be 1.22 × 10-33 cm6/s (for 32S32S at room temperature and atmospheric pressure), close to experimental result. Two distinct isotope effects are identified. One is a classical mass-dependent effect due to translational partition function, which leads to a weak, smooth, and negative mass-dependence of rate coefficient (4% decrease when the mass is raised from 32S32S to 34S34S). Second effect, due to quantized resonances, is two orders of magnitude stronger, but is local. In practice, due to presence of multiple individual resonances, this phenomenon leads to irregular mass-independent variations of rate coefficients in the ranges ±5%. It is also demonstrated that in real molecules this irregular behavior is expected to be somewhat smoother, and the isotope effect is somewhat smaller, due to dependence of stabilization cross section on properties of

  10. Evaluation Of Sensitivity Of Mass-independent Oxygen Isotopes In Aerosol Nitrate To Environmental Factors Using A Photochemical Box Model

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Wilkins, G.; Jackson, T.; Brothers, L.; McCabe, J.; Thiemens, M. H.

    2007-12-01

    An existing photochemical box model for use in polluted marine boundary layers was modified to allow for the explicit tracking of the mass-independent isotopic composition of oxygen in aerosol nitrate as well as other atmospheric species such as OH and H2O2. This modified model was then used to study the sensitivity of the mass-independent isotopic composition of atmospheric nitrate(HNO3) to variables such as relative humidity, temperature ozone and NOx concentrations. Here we present the results of these studies and compare model predictions of the mass-independent oxygen isotopic composition of aerosol nitrate to measurements taken in fine (<1micron) and coarse (>1 micron) aerosol samples taken in a variety of locations, from coastal urban environments, the tropics (Ecuador), inland California (Riverside), and Antarctica. Regarding Antarctica, we comment on the isotopic composition of OH there and the ramifications of these findings for the isotopic composition of other oxygen bearing compounds in the Antarctic atmosphere.

  11. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction.

    PubMed

    Whiteside, Jessica H; Olsen, Paul E; Eglinton, Timothy; Brookfield, Michael E; Sambrotto, Raymond N

    2010-04-13

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO(2). The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie's Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO(2) super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date.

  12. Determination of mass-dependent isotopic fractionation of cerium and neodymium in geochemical samples by MC-ICPMS.

    PubMed

    Ohno, Takeshi; Hirata, Takafumi

    2013-01-01

    We have developed a new analytical method to determine the mass-dependent isotopic fractionations on Ce and Nd in geochemical samples. Mass discrimination effects on Ce and Nd were externally corrected by normalizing (149)Sm/(147)Sm and (153)Eu/(151)Eu, being 0.92124 and 1.0916, respectively based on an exponential law. The reproducibility of the isotopic ratio measurements on (142)Ce/(140)Ce, (146)Nd/(144)Nd and (148)Nd/(144)Nd were 0.08‰ (2SD, n = 25), 0.06‰ (2SD, n = 39) and 0.12‰ (2SD, n = 39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five geochemical reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ(142)Ce and δ(146)Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by geochemical or physicochemical processes without changing the oxidation status of Ce, since the redox-reaction can produce larger isotopic fractionation than the reactions without changing the oxidation state. The variations in the Ce and Nd isotope ratios for geochemical samples could provide new information concerning the physico-chemical processes of the sample formation.

  13. Ion-optical studies for improved ion transmission in multistage isotope-ratio mass spectrometers

    SciTech Connect

    Stoffels, J.J. ); Laue, H.J. )

    1991-10-01

    Theoretical and experimental ion-optical studies of multistage isotope-ratio mass spectrometers were conducted to determine what improvement in ion transmission efficiency might be attainable through design changes. The computer program GIOS (General Ion Optical Systems) was used to perform theoretical calculations of focusing properties and ion transmission efficiency. Actual transmission through multiple-sector instruments was determined from measurements of the ion beam vertical profile at the focus of each stage. For existing mass spectrometers with tandem magnets of normal geometry, our studies determined a feasible design change that significantly increases ion transmission through the analyzer. The use of a cylindrical einzel lens or an electrostatic quadrupole lens near the focal point between the magnets provides vertical focusing of the ion beam to achieve the improved transmission. We also established a new mass spectrometer design that give 100% transmission through tandem magnetic analyzers and through a third-stage electrostatic analyzer without the use of an intermediate focusing lens. Non-normal magnetic field boundaries provide ion beam focusing in the vertical plant to achieve this complete transmission. 19 refs., 27 figs., 3 tabs.

  14. Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants.

    PubMed

    Nagy, K; Sandoz, L; Craft, B D; Destaillats, F

    2011-11-01

    This paper reports new insights at the molecular level into the route of a worldwide problem of the food industry: the occurrence of monochloro-propanediol (MCPD) esters. The application of mass defect-driven workflows is described to generate a hypothesis on the identity and occurrence of those thermally labile, chlorinated contaminant precursors that may act as chlorine donors during the formation of MCPD esters. For the first time, holistic mass-defect filtering of isotope signatures is used to pinpoint completely unknown and unexpected chlorine-containing substances naturally present in various extracts of palm fruit and partially and fully refined oils. Supervised multivariate analysis showed the effective classification of samples from various stages of industrial processing, suggesting that these steps strongly impact a complex and dynamic pool of chlorinated substances. In-vitro experiments confirmed that several of these naturally occurring chlorinated plant constituents decompose upon heat treatment, thus potentially being a source of chlorine for further reactions with palm oil lipids in a subsequent chlorination cascade. It is hypothesised that during oil refining the organochlorines naturally present in palm fruits act as a 'chlorine source' for the generation MCPD diesters. This discovery implies that industrial efforts targeting the mitigation of chlorinated substances must intervene at the earliest possible production stage or preferably even prior to oil processing. Current performance and limitations of mass-defect filtering are discussed and future developments are outlined.

  15. Refinement and evaluation of an automated mass spectrometer for nitrogen isotope analysis by the Rittenberg technique

    PubMed Central

    Mulvaney, R. L.; Liu, Y. P.

    1991-01-01

    An apparatus designed to automatically perform hypobromite oxidations of ammonium salt samples for nitrogen isotope analyses with a mass spectrometer was modified to improve performance and reduce analysis time. As modified, reference N2 is admitted to the mass spectrometer between samples from a dedicated inlet manifold, for calibration at the same pressure as that of the preceding sample. Analyses can be performed on samples containing 10 μg to 1 mg of N (or more), at a rate of up to 350 samples/day. When operated with a double-collector mass spectrometer, the standard deviation at the natural abundance level (10 analyses, 50-150 μg N) was <0.0001 atom % 15N. Very little memory was observed when natural abundance samples (0.366 atom % 15N) were analysed. following samples containing 40 atom % 15N. Analyses in the range, 0.2 to 1 atom % 15N (50-150 μg N), were in good agreement with manual Rittenberg analyses (1 mg N) using a dual-inlet system, and precision was comparable. For enrichments of 2 to 20 atom % 15N, automated analyses were slightly lower than manual analyses, which was attributed to outgassing of N2 from the plastic microplate used to contain samples. PMID:18924914

  16. Oxygen isotopic substitution of peptidyl phosphates for modification-specific mass spectrometry.

    PubMed

    Shi, Yu; Yao, Xudong

    2007-11-15

    The first method of isotopic substitution of a nonbridging oxygen atom in pre-existing phosphates on peptides is reported, solving a long-standing, challenging issue in the sample preparation of phosphopeptides. Peptidyl phosphates, phosphate groups on phosphopeptides, are converted to phosphoramidates with carbodiimide assistance. Acid-catalyzed hydrolysis of the newly formed phosphoramidates incorporates one oxygen atom from H2(16)O or H2(18)O, producing peptidyl phosphates-16O1 or -18O1, respectively. The oxygen labels are stable under common separation and analysis conditions. This labeling method causes minimal structural alteration to peptidyl phosphates and allows the direct application of established phosphate-specific marker ions to the mass spectrometric analysis of differentially labeled phosphopeptide pairs. Using phosphotyrosinyl peptides as model analytes, the characteristic 16O1- and 18O1-labeled phosphotyrosine immonium ions at m/z 216.043 and 218.047 are used for developing a method of phosphopeptide quantitation that is independent of the amino acid sequence of the peptides. From analysis by tandem parallel fragmentation mass spectrometry, it is clear that the phosphate-specific marker ions authentically inherit the quantitative information from precursor phosphopeptides. The dynamic range for relative quantitation of differentially labeled phosphopeptides is at least 2 orders of magnitude for experiments run on a quadrupole time-of-flight mass spectrometer. The use of 16O1 and 18O1 labeling for counting the number of phosphate groups on peptides is also demonstrated.

  17. Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Hou-Chun; You, Chen-Feng; Cai, Wei-Jun; Chung, Chuan-Hsiung; Huang, Kuo-Fang; Chen, Bao-Shan; Li, Yen

    2014-02-21

    We describe a method for rapid, precise and accurate determination of calcium ion (Ca(2+)) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 μL aliquot of seawater was spiked with an appropriate (43)Ca enriched solution for (44)Ca/(43)Ca ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 μL solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca(2+) values, possibly due to a contribution of interference from Mg(2+) and Sr(2+) in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca(2+) determination with small sample size, high throughput, excellent internal precision and external reproducibility.

  18. Video analysis of sliding chains: A dynamic model based on variable-mass systems

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Page, A.; Riera, J.; Hueso, J. L.

    2015-06-01

    This paper presents an experimental study of the dynamics of a chain sliding off of a table, using video analysis to test a theoretical model. The model consists of two variable-mass subsystems, with friction between the chain and the table and assumes that all links move at the same speed. In order to check the model, the chain position x(t) is obtained using video analysis. The smoothed function x(t) and its derivatives v(t) and a(t) are numerically computed using a local regression algorithm. In this way, the differential equation governing the motion can be directly tested, instead of comparing the position with the solution of the differential equation. Our procedure is very sensitive to deviations between the model and reality, so we can detect the point at which the chain ceases to be in tension and the model is no longer valid. This experiment shows students the limitations of simplified models and offers an opportunity to assess a model's range of validity.

  19. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  20. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry.

    PubMed

    Ren, Yao; Walczyk, Thomas

    2014-09-01

    Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status.

  1. Gas-phase Mechanisms of Sulfur Isotope Mass-independent Fractionation

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.

    2006-12-01

    Mass-independent fractionation (MIF) in sulfur isotopes in ancient sulfur-bearing rocks (Farquhar et al. 2000a) is interpreted as evidence for gas-phase MIF processes in the early Earth atmosphere. This interpretation is made by analogy with oxygen isotope MIF in the modern atmosphere (produced during ozone formation), and by laboratory photolysis experiments on SO2 (Farquhar et al. 2001; Wing et al. 2004) that yield both elemental sulfur and sulfate with S MIF signatures at wavelengths above and below the SO2 dissociation limit. What is lacking is a quantitative understanding of the mechanisms of gas-phase S MIF. Quantification is essential in order to extract the full implications of sulfur MIF throughout Earth history, including for bacterial sulfate reduction processes which largely conserve D33S and D36S. Several sulfur MIF mechanisms are possible. The most obvious is the gas-phase thiozone reaction, which is isovalent to the ozone formation reaction. Ozone formation produces a well-known MIF signature in oxygen isotopes (Thiemens and Heidenreich 1983), and a symmetry-dependent non-RRKM mechanism has been proposed as the origin of O MIF (Gao and Marcus 2001). It is possible and perhaps likely that S3 formation also proceeds by a non-RRKM process. Data are lacking on isotopic (an even non-isotopic) rates of S3 formation, so it is not possible to make definitive statements about MIF in S3 at this time. However modeling results suggest that the vapor pressure of S2 is too low for gas-phase S3 formation to be significant. Two additional species that may exhibit a non-RRKM MIF signature are S2O2 and S4. Again, there is a lack of isotopomer-specific kinetic data for these reactions, and gas-phase formation of S4 is likely inconsequential. Perhaps the most obvious mechanism is simply the primary act of SO2 photolysis. The SO2 absorption spectrum is highly structured, with strong vibronic bands above and below the dissociation limit. In contrast H2S, with its mostly

  2. Precision mass measurements of some isotopes of tungsten and mercury for an adjustment to the mass table in the region A = 184 to A = 204

    NASA Astrophysics Data System (ADS)

    Barillari, Domenico K.

    This thesis concerns the precise re-measurement of mass values in the region of the mercury isotopes, such that important discrepancies in the high-mass end of the mass table could be resolved. Scope and contents. Four mass spectroscopic doublets involving a comparison between 201Hg, 199Hg and 183W (and using a chlorocarbon reference) are reported from measurements made with the upgraded Manitoba 11 deflection instrument. The measurements address the problem of a mass table mis-adjustment in the region of the valley of β-stability between the tungsten group and the noble metals. The results, forming a well-closed loop of mass differences, support the earlier results of Kozier [Ko(1977)] regarding the (stable) mercury isotope masses and confirm an approximate 20 μu discrepancy in the mass adjustment of Audi et al [Au(1993)]. A local least- square re-adjustment conducted using these and existing mass table data suggests that the error originates with mass differences pertaining to one or more other nuclide pairs, perhaps 193Ir-192Ir. The work on upgrading the precision voltage supply and potentiometry system of the Manitoba II instrument is also reported, as is a new assessment on the data processing method. (Abstract shortened by UMI.)

  3. Simultaneous hydrogen and heavier element isotopic ratio images with a scanning submicron ion probe and mass resolved polyatomic ions.

    PubMed

    Slodzian, Georges; Wu, Ting-Di; Bardin, Noémie; Duprat, Jean; Engrand, Cécile; Guerquin-Kern, Jean-Luc

    2014-04-01

    In situ microanalysis of solid samples is often performed using secondary ion mass spectrometry (SIMS) with a submicron ion probe. The destructive nature of the method makes it mandatory to prevent information loss by using instruments combining efficient collection of secondary ions and a mass spectrometer with parallel detection capabilities. The NanoSIMS meets those requirements with a magnetic spectrometer but its mass selectivity has to be improved for accessing opportunities expected from polyatomic secondary ions. We show here that it is possible to perform D/H ratio measurement images using 12CD-/12CH-, 16OD-/16OH-, or 12C2D-/12C2H- ratios. These polyatomic species allow simultaneous recording of D/H ratios and isotopic compositions of heavier elements like 15N/14N (via 12C15N-/12C14N-) and they provide a powerful tool to select the phase of interest (e.g., mineral versus organics). We present high mass resolution spectra and an example of isotopic imaging where D/H ratios were obtained via the 12C2D-/12C2H- ratio with 12C2D- free from neighboring mass interferences. Using an advanced mass resolution protocol, a "conventional" mass resolving power of 25,000 can be achieved. Those results open many perspectives for isotopic imaging at a fine scale in biology, material science, geochemistry, and cosmochemistry.

  4. Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks.

    PubMed

    Sinha, M P; Neidholdt, E L; Hurowitz, J; Sturhahn, W; Beard, B; Hecht, M H

    2011-09-01

    A laser ablation-miniature mass spectrometer (LA-MMS) for the chemical and isotopic measurement of rocks and minerals is described. In the LA-MMS method, neutral atoms ablated by a pulsed laser are led into an electron impact ionization source, where they are ionized by a 70 eV electron beam. This results in a secondary ion pulse typically 10-100 μs wide, compared to the original 5-10 ns laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer (MMS) and measured in parallel by a modified CCD array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LA-MMS offers a more quantitative assessment of elemental composition than techniques that detect ions directly generated by the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the wavelength of the laser beam, and the not well characterized ionization efficiencies of the elements in the process. The above problems attendant to the direct ion analysis has been minimized in the LA-MMS by analyzing the ablated neutral species after their post-ionization by electron impaction. These neutral species are much more abundant than the directly ablated ions in the ablated vapor plume and are, therefore, expected to be characteristic of the chemical composition of the solid. Also, the electron impact ionization of elements is well studied and their ionization cross sections are known and easy to find in databases. Currently, the LA-MMS limit of detection is 0.4 wt.%. Here we describe LA-MMS elemental composition measurements of various minerals including microcline, lepidolite, anorthoclase, and USGS BCR-2G samples. The measurements of high precision isotopic ratios including (41)K

  5. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    PubMed Central

    Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan

    2016-01-01

    Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694

  6. High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry.

    PubMed

    Fisher, Rebecca; Lowry, David; Wilkin, Owen; Sriskantharajah, Srimathy; Nisbet, Euan G

    2006-01-01

    Small-scale developments have been made to an off-the-shelf continuous-flow gas chromatography/isotope-ratio mass spectrometry (CF-GC/IRMS) system to allow high-precision isotopic analysis of methane (CH(4)) and carbon dioxide (CO(2)) at ambient concentrations. The repeatability (1sigma) obtainable with this system is 0.05 per thousand for delta(13)C of CH(4), 0.03 per thousand for delta(13)C of CO(2), and 0.05 per thousand for delta(18)O of CO(2) for ten consecutive analyses of a standard tank. An automated inlet system, which allows diurnal studies of CO(2) and CH(4) isotopes, is also described. The improved precision for CH(4) analysis was achieved with the use of a palladium powder on quartz wool catalyst in the combustion furnace, which increased the efficiency of oxidation of CH(4) to CO(2). The automated inlet further improved the precision for both CH(4) and CO(2) analysis by keeping the routine constant. The method described provides a fast turn-around in samples, with accurate, reproducible results, and would allow a long-term continuous record of CH(4) or CO(2) isotopes at a site to be made, providing information about changing sources of the gases both seasonally and interannually.

  7. Longitudinal profiling of urinary steroids by gas chromatography/combustion/isotope ratio mass spectrometry: diet change may result in carbon isotopic variations.

    PubMed

    Saudan, Christophe; Kamber, Matthias; Barbati, Giulia; Robinson, Neil; Desmarchelier, Aurélien; Mangin, Patrice; Saugy, Martial

    2006-02-02

    Longitudinal profiling of urinary steroids was investigated by using a gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) method. The carbon isotope ratio of three urinary testosterone (T) metabolites: androsterone, etiocholanolone, 5beta-androstane-3alpha,17beta-diol (5beta-androstanediol) together with 16(5alpha)-androsten-3alpha-ol (androstenol) and 5beta-pregnane-3alpha,20alpha-diol (5beta-pregnanediol) were measured in urine samples collected from three top-level athletes over 2 years. Throughout the study, the subjects were living in Switzerland and were residing every year for a month or two in an African country. (13)C-enrichment larger than 2.5 per thousand was observed for one subject after a 2-month stay in Africa. Our findings reveal that (13)C-enrichment caused by a diet change might be reduced if the stay in Africa was shorter or if the urine sample was not collected within the days after return to Switzerland. The steroids of interest in each sample did not show significant isotopic fractionation that could lead to false positive results in anti-doping testing. In contrast to the results obtained with the carbon isotopic ratio, profiling of urinary testosterone/epitestosterone (T/E) ratios was found to be unaffected by a diet change.

  8. Application of isotopic labeling, and gas chromatography mass spectrometry, to understanding degradation products and pathways in the thermal-oxidative aging of Nylon 6.6

    SciTech Connect

    White, Gregory Von; Clough, Roger L.; Hochrein, James M.; Bernstein, Robert

    2013-12-01

    Nylon 6.6 containing 13C isotopic labels at specific positions along the macromolecular backbone has been subjected to extensive thermal-oxidative aging at 138 °C for time periods up to 243 days. In complementary experiments, unlabeled Nylon 6.6 was subjected to the same aging conditions under an atmosphere of 18O2. Volatile organic degradation products were analyzed by cryofocusing gas chromatography mass spectrometry (cryo-GC/MS) to identify the isotopic labeling. The labeling results, combined with basic considerations of free radical reaction chemistry, provided insights to the origin of degradation species, with respect to the macromolecular structure. A number of inferences on chemical mechanisms were drawn, based on 1) the presence (or absence) of the isotopic labels in the various products, 2) the location of the isotope within the product molecule, and 3) the relative abundance of products as indicated by large differences in peak intensities in the gas chromatogram. The overall degradation results can be understood in terms of free radical pathways originating from initial attacks on three different positions along the nylon chain which include hydrogen abstraction from: the (CH2) group adjacent to the nitrogen atom, at the (CH2) adjacent the carbonyl group, and direct radical attack on the carbonyl. Understanding the pathways which lead to Nylon 6.6 degradation ultimately provides new insight into changes that can be leveraged to detect and reduce early aging and minimize problems associated with material degradation.

  9. The confines of triple oxygen isotope exponents in elemental and complex mass-dependent processes

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.

    2015-12-01

    Small differences in triple isotope relationships, or Δ17O in the case of oxygen, have been increasingly used to study a range of problems including hydrological cycles, stratosphere-troposphere exchange, biogeochemical pathways and fluxes, and the Moon's origin in the geochemical and cosmochemical communities. A Δ17O value depends on the triple isotope exponent θ of involved reaction steps. However, the probabilistic distribution of the intrinsic and apparent θ values has not been examined for elemental processes and for processes that are out of equilibrium or bearing reservoir-transport complexities. A lack of knowledge on the confines of θ may hamper our understanding of the subtle differences among mass-dependent processes and may result in mischaracterization of a set of mass-dependent processes as being in violation of mass-dependent rules. Here we advocate a reductionist approach and explore θ confines starting from kinetic isotope effects (KIEs) within the framework of transition state theory (TST). The advantage of our KIE approach is that any elemental or composite, equilibrium or non-equilibrium process can be reduced to a set of KIEs with corresponding θKIE. We establish that the KIE between a reactant and a transition state (TS) is intrinsic. Given a range of KIEs known for Earth processes involving oxygen, we use a Monte Carlo calculation method and a range of oxygen-bonded molecular masses to obtain a distribution of θKIE values and subsequently that of θeq. Next, complexities are examined by looking into expected effects due to reaction progress, unbalanced fluxes, and reference frame. Finally, compounded reservoir-transport effects are examined using two simple processes - Rayleigh Distillation (RD) and Fractional Distillation (FD). Our results show that the apparent θ values between two species or two states of the same evolving species have much broader confines than the commonly used "canonical" confines of 0.51-0.53, particularly

  10. Nucleosynthetic and Mass-Dependent Titanium Isotope Variations in Individual Chondrules of Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Schönbächler, M.; Bauer, K. K.; Fehr, M. A.; Chaumard, N.; Zanda, B.

    2017-02-01

    We present evidence for nucleosynthetic Ti isotope heterogeneity between individual chondrules of ordinary chondrites difficult to reconcile with chondrule formation from molten planetesimals. Metamorphism resulted in stable Ti isotope fractionation.

  11. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of (29)Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO(+) and SiO2(+) ion species was performed, and we found that SiO(+) ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO3). For SiO2(+), no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. (28)Si(16)O(18)O(+), (30)Si(16)O(16)O(+)). The developed method was validated by measuring a series of reference solutions with different (29)Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  12. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  13. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  14. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  15. Determination of Peptide and Protein Ion Charge States by Fourier Transformation of Isotope-Resolved Mass Spectra

    SciTech Connect

    Tabb, Dave L; Shah, Manesh B; Strader, Michael B; Connelly, Heather M; Hettich, Robert {Bob} L; Hurst, Gregory {Greg} B

    2006-01-01

    We report an automated method for determining charge states from high-resolution mass spectra. Fourier transforms of isotope packets from high-resolution mass spectra are compared to Fourier transforms of modeled isotopic peak packets for a range of charge states. The charge state for the experimental ion packet is determined by the model isotope packet that yields the best match in the comparison of the Fourier transforms. This strategy is demonstrated for determining peptide ion charge states from 'zoom scan' data from a linear quadrupole ion trap mass spectrometer, enabling the subsequent automated identification of singly-through quadruply-charged peptide ions, while reducing the numbers of conflicting identifications from ambiguous charge state assignments. We also apply this technique to determine the charges of intact protein ions from LC-FTICR data, demonstrating that it is more sensitive under these experimental conditions than two existing algorithms. The strategy outlined in this paper should be generally applicable to mass spectra obtained from any instrument capable of isotopic resolution.

  16. Isotopic distributions, element ratios, and element mass fractions from enrichment-meter-type gamma-ray measurements of MOX

    SciTech Connect

    Close, D.A.; Parker, J.L.; Haycock, D.L. ); Dragnev, T. )

    1991-01-01

    The gamma-ray spectra from infinitely'' thick mixed oxide samples have been measured. The plutonium isotopics, the U/Pu ratio, the high-Z mass fractions (assuming only plutonium, uranium, and americium), and the low-Z mass fraction (assuming the matrix is only oxygen) can be determined by carefully analyzing the data. The results agree well with the chemical determination of these parameters. 8 refs., 3 figs., 3 tabs.

  17. Mapping peptide thiol accessibility in membranes using a quaternary ammonium isotope-coded mass tag (ICMT)

    PubMed Central

    Su, Chiao-Yung; London, Erwin; Sampson, Nicole S.

    2013-01-01

    The plasma membrane contains a diverse array of proteins, including receptors, channels, and signaling complexes, that serve as decision-making centers. I