Light stable isotope analysis of meteorites by ion microprobe
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1994-01-01
The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.
APPLICATION OF STABLE ISOTOPE TECHNIQUES TO AIR POLLUTION RESEARCH
Stable isotope techniques provide a robust, yet under-utilized tool for examining pollutant effects on plant growth and ecosystem function. Here, we survey a range of mixing model, physiological and system level applications for documenting pollutant effects. Mixing model examp...
Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude
2009-06-01
The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.
NASA Astrophysics Data System (ADS)
Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.
2018-05-01
This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.
2016-09-01
Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.
ISOTOPIC BIOGEOCHEMISTRY OF DISSOLVED ORGANIC NITROGEN: A NEW TECHNIQUE AND APPLICATION. (R825151)
We present a new technique for isolating and isotopically characterizing dissolved organic nitrogen (DON) for non-marine waters,
15N values for DON from lacustrine samples and data suggesting that this technique will be a...
APPLICATIONS OF ENVIRONMENTAL ISOTOPES FOR WATERSHED INVESTIGATIONS
Environmental isotopes include naturally-occurring nuclides that can be applied as tracers within watersheds (Sidle, 1998). Recent advances in mass spectroscopy may supplant many traditional and costly hydrometric techniques. It is now possible, for example, to utilize isotopes a...
Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; ...
2015-09-04
Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.
USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES
Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...
Xu, Xiao Wu; Yu, Xin Xiao; Jia, Guo Dong; Li, Han Zhi; Lu, Wei Wei; Liu, Zi Qiang
2017-07-18
Soil-vegetation-atmosphere continuum (SPAC) is one of the important research objects in the field of terrestrial hydrology, ecology and global change. The process of water and carbon cycling, and their coupling mechanism are frontier issues. With characteristics of tracing, integration and indication, stable isotope techniques contribute to the estimation of the relationship between carbon sequestration and water consumption in ecosystems. In this review, based on a brief introduction of stable isotope principles and techniques, the applications of stable isotope techniques to water and carbon exchange in SPAC using optical stable isotope techniques were mainly explained, including: partitioning of net carbon exchange into photosynthesis and respiration; partitioning of evapotranspiration into transpiration and evaporation; coupling of water and carbon cycle at the ecosystem scale. Advanced techniques and methods provided long-term and high frequency measurements for isotope signals at the ecosystem scale, but the issues about the precision and accuracy for measurements, partitioning of ecosystem respiration, adaptability for models under non-steady state, scaling up, coupling mechanism of water and carbon cycles, were challenging. The main existing research findings, limitations and future research prospects were discussed, which might help new research and technology development in the field of stable isotope ecology.
NASA Astrophysics Data System (ADS)
Sergio, de los Santos-Villalobos; Claudio, Bravo-Linares; dos Anjos Roberto, Meigikos; Renan, Cardoso; Max, Gibbs; Andrew, Swales; Lionel, Mabit; Gerd, Dercon
Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI) analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13 C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software
The plasma separation process as a pre-cursor for large scale radioisotope production
NASA Astrophysics Data System (ADS)
Stevenson, Nigel R.
2001-07-01
Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.
NASA Astrophysics Data System (ADS)
Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine
2005-04-01
Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.
Stable Chlorine Isotope Study: Application to Early Solar System Materials
NASA Technical Reports Server (NTRS)
Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.
2010-01-01
A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.
Calcium isotope analysis by mass spectrometry.
Boulyga, Sergei F
2010-01-01
The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use of biological isotope fractionation in medical studies, paleoclimatic and paleoceanographic, and other terrestrial as well as extraterrestrial investigations. 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.
2016-06-01
Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.
Stanley, F E; Byerly, Benjamin L; Thomas, Mariam R; Spencer, Khalil J
2016-06-01
Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10(-6)) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods. Graphical Abstract ᅟ.
Measurement of isotope ratios on transient signals by MC-ICP-MS.
Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef
2004-01-01
Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).
Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation
DOE R&D Accomplishments Database
Libby, W. F.
1958-08-04
Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)
Brenner, I.B.; Taylor, Howard E.
1992-01-01
Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.
Tea, Illa; Tcherkez, Guillaume
2017-01-01
The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of 2 H, 18 O, 13 C, and 15 N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for 15 N and 13 C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO 2 and N 2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application. © 2017 Elsevier Inc. All rights reserved.
Andvik, R.T.; VanDeHey, J.A.; Fincel, M.J.; French, William E.; Bertrand, K.N.; Chipps, Steven R.; Klumb, Robert A.; Graeb, B.D.S.
2010-01-01
Traditional techniques for stable isotope analysis (SIA) generally require sacrificing animals to collect tissue samples; this can be problematic when studying diets of endangered species such as the pallid sturgeon Scaphirhynchus albus. Our objectives were to (i) determine if pectoral fin tissue (non-lethal) could be a substitute for muscle tissue (lethal) in SIA of juvenile pallid sturgeon, and (ii) evaluate the influence of preservation techniques on stable isotope values. In the laboratory, individual juvenile pallid sturgeon were held for up to 186 day and fed chironomids, fish, or a commercially available pellet diet. Significant, positive relationships (r² ≥ 0.8) were observed between fin and muscle tissues for both δ15N and δ13C; in all samples isotopes were enriched in fins compared to muscle tissue. Chironomid and fish based diets of juvenile pallid sturgeon were distinguishable for fast growing fish (0.3 mm day−1) using stable δ15N and δ13C isotopes. Frozen and preserved fin tissue δ15N isotopes were strongly related (r2 = 0.89) but δ13C isotopes were weakly related (r2 = 0.16). Therefore, freezing is recommended for preservation of fin clips to avoid the confounding effect of enrichment by ethanol. This study demonstrates the utility of a non-lethal technique to assess time integrated food habits of juvenile pallid sturgeon and should be applicable to other threatened or endangered species.
APPLICABILITY OF La-Ce SYSTEMATICS TO PLANETARY SAMPLES.
Nakamura, Noboru; Tatsumoto, Mitsunobu; Ludwig, Kenneth R.
1984-01-01
Ce isotopic compositions in several terrestrial and extraterrestrial materials were determined in order to investigate the applicability of using Ce as an isotopic tracer to geological processes. Owing to the low abundances of **1**3**8La and **1**3**8Ce in nature, the measurements of **1**3**8Ce/**1**4**0Ce ratios of natural samples have relatively large ( greater than 0. 02%) errors, and the variations in Ce-isotope ratios were barely resolved. A tenuous anticorrelation was observed between epsilon //C//e and epsilon //N//d for terrestrial basalts and granites, indicating that with some improvement in analytical techniques the Ce isotopic composition may prove useful as a tracer for geological processes.
Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; ...
2016-03-31
Actinide isotope measurements are a critical signature capability in the modern nuclear forensics “toolbox”, especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10 -6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Furthermore, results are presented for small sample (~20 ng) applications involving a well-knownmore » plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.« less
Iyengar, Venkatesh
2002-03-01
Nuclear and isotopic techniques are valuable tools in human nutritional research studies. Isotopes, both radioactive and nonradioactive, enable detailed evaluations of nutrient intake, body composition, energy expenditure, status of micronutrients, and nutrient bioavailability. In recent times, isotopic methods have been widely used in a number of coordinated research projects and technical cooperation projects of the International Atomic Energy Agency's Nutrition Programme. The doubly labeled water technique combines the use of the stable isotopes oxygen-18 and hydrogen-2 (deuterium) to measure total energy expenditure in free-living human subjects, and to investigate the magnitude and causes of both undernutrition and the emergence of obesity in developing countries. The deuterium dilution technique is a reliable tool to measure breastmilk intake and thereby infant growth and development. In collaboration with the World Health Organization's Growth Monitoring Program, this technique is being used to generate new data on growth standards for children in developing countries. This technique is also used in the measurement of body composition by the estimation of lean body mass and fat mass in individuals. Stable isotopes of iron and zinc have been successfully used to assess the nutritional impact of several nationwide food supplementation-programs conducted on pregnant and lactating women and children in both industrialized and developing countries. Isotopic techniques are especially suitable for monitoring changes in body composition, energy metabolism, and mineral status (with particular reference to osteoporosis) in the elderly. Nuclear methods have also served to develop models for a physiological reference man in Asia in support of radiological health and safety issues, for establishing elemental composition of foods, and for measurement of pollutants in the environment.
A significant challenge in environmental studies is to determine the onset and extent of MTBE bioremediation at an affected site, which may involve indirect approaches such as microcosm verification of microbial activities at a given site. Stable isotopic fractionation is cha...
Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review.
Cheng, Hefa; Hu, Yuanan
2010-05-01
As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation. Copyright 2009 Elsevier Ltd. All rights reserved.
Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies
You, Le; Zhang, Baichen; Tang, Yinjie J.
2014-01-01
The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020
Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes
NASA Astrophysics Data System (ADS)
Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.
2017-04-01
An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.
Advances in primate stable isotope ecology-Achievements and future prospects.
Crowley, Brooke E; Reitsema, Laurie J; Oelze, Vicky M; Sponheimer, Matt
2016-10-01
Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been used to address a diversity of ecological questions ranging from niche partitioning to nutritional status to variability in life history traits. With this increasing array of applications, stable isotope analysis stands to make major contributions to our understanding of primate behavior and biology. Most notably, isotopic data provide novel insights into primate feeding behaviors that may not otherwise be detectable. This special issue brings together some of the recent advances in this relatively new field. In this introduction to the special issue, we review the state of isotopic applications in primatology and its origins and describe some developing methodological issues, including techniques for analyzing different tissue types, statistical approaches, and isotopic baselines. We then discuss the future directions we envision for the field of primate isotope ecology. Am. J. Primatol. 78:995-1003, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Applications of DNA-Stable Isotope Probing in Bioremediation Studies
NASA Astrophysics Data System (ADS)
Chen, Yin; Vohra, Jyotsna; Murrell, J. Colin
DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.
Applications of DNA-stable isotope probing in bioremediation studies.
Chen, Yin; Vohra, Jyotsna; Murrell, J Colin
2010-01-01
DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.
Stable isotope methodology in the pharmacokinetic studies of androgenic steroids in humans.
Shinohara, Y; Baba, S
1990-04-01
The use of stable isotopically labeled steroids combined with gas chromatography/mass spectrometry (GC/MS) has found a broad application in pharmacologic studies. Initially, stable isotopically labeled steroids served as the ideal analytic internal standard for GC/MS analysis; however, their in vivo use has expanded and has proven to be a powerful pharmacokinetic tool. We have successfully used stable isotope methodology to study the pharmacokinetic/bioavailability of androgens. The primary advantage of the technique is that endogenous and exogenous steroids with the same basic structure can be differentiated by using stable isotopically labeled analogs. The method was used to examine the pharmacokinetics of testosterone and testosterone propionate, and to clarify the influence of endogenous testosterone. Another advantage of the isotope methods is that steroidal drugs can be administered concomitantly in two formulations (e.g., solution and solid dosage). A single set of blood samples serves to describe the time course of the formulations being compared. This stable isotope coadministration technique was used to estimate the relative bioavailability of 17 alpha-methyltestosterone.
Isotope Geochemistry for Comparative Planetology of Exoplanets
NASA Technical Reports Server (NTRS)
Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.
2017-01-01
Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.
A review on the determination of isotope ratios of boron with mass spectrometry.
Aggarwal, Suresh Kumar; You, Chen-Feng
2017-07-01
The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.
Calcium Isotope Analysis by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Boulyga, S.; Richter, S.
2010-12-01
The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.
Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong
2016-05-17
The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area is the development and application of the mass cytometer, which fully exploited the multiplexing potential of metal stable isotope tagging. It realized the simultaneous detection of dozens of parameters in single cells, accurate immunophenotyping in cell populations, through modeling of intracellular signaling network and undoubted discrimination of function and connection of cell subsets. Metal stable isotope tagging has great potential applications in hematopoiesis, immunology, stem cells, cancer, and drug screening related research and opened a post-fluorescence era of cytometry. Herein, we review the development of biomolecule quantification using metal stable isotope tagging. Particularly, the power of multiplex and absolute quantification is demonstrated. We address the advantages, applicable situations, and limitations of metal stable isotope tagging strategies and propose suggestions for future developments. The transfer of enzymatic or fluorescent tagging to metal stable isotope tagging may occur in many aspects of biological and clinical practices in the near future, just as the revolution from radioactive isotope tagging to fluorescent tagging happened in the past.
Ionization cross section, pressure shift and isotope shift measurements of osmium
NASA Astrophysics Data System (ADS)
Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan
2017-11-01
In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.
Advanced Elemental and Isotopic Characterization of Atmospheric Aerosols
NASA Astrophysics Data System (ADS)
Shafer, M. M.; Schauer, J. J.; Park, J.
2001-12-01
Recent sampling and analytical developments advanced by the project team enable the detailed elemental and isotopic fingerprinting of extremely small masses of atmospheric aerosols. Historically, this type of characterization was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. However, with the introduction of 3rd and 4th generation ICP-MS instrumentation and the application of state-of-the- art "clean-techniques", quantitative analysis of over 40 elements in sub-milligram samples can be realized. When coupled with an efficient and validated solubilization method, ICP-MS approaches provide distinct advantages in comparison with traditional methods; greatly enhanced detection limits, improved accuracy, and isotope resolution capability, to name a few. Importantly, the ICP-MS approach can readily be integrated with techniques which enable phase differentiation and chemical speciation information to be acquired. For example, selective chemical leaching can provide data on the association of metals with major phase-components, and oxidation state of certain metals. Critical information on metal-ligand stability can be obtained when electrochemical techniques, such as adsorptive cathodic stripping voltammetry (ACSV), are applied to these same extracts. Our research group is applying these techniques in a broad range of research projects to better understand the sources and distribution of trace metals in particulate matter in the atmosphere. Using examples from our research, including recent Pb and Sr isotope ratio work on Asian aerosols, we will illustrate the capabilities and applications of these new methods.
We need techniques that verify that groundwater is not contaminated from hydraulic fracturing. Groundwater contamination can come from sources which may carry a fingerprint that identifies the source, or the process which led to the contamination.
Gilbert, Alexis; Hattori, Ryota; Silvestre, Virginie; Wasano, Nariaki; Akoka, Serge; Hirano, Satoshi; Yamada, Keita; Yoshida, Naohiro; Remaud, Gérald S
2012-09-15
Isotopic (13)C NMR is a relatively recent technique which allows the determination of intramolecular (13)C isotope composition at natural abundance. It has been used in various scientific fields such as authentication, counterfeiting or plant metabolism. Although its precision has already been evaluated, the determination of its trueness remains still challenging. To deal with that issue, a comparison with another normalized technique must be achieved. In this work, we compare the intramolecular (13)C isotope distribution of ethanol from different origins obtained using both Isotope Ratio Mass Spectrometry (IRMS) and Nuclear Magnetic Resonance (NMR) spectrometry techniques. The IRMS approach consists of the oxidation of ethanol to acetic acid followed by the degradation of the latter for the analysis of each fragments formed. We show here that the oxidation of ethanol to acetic acid does not bring any significant error on the determination of the site-specific δ(13)C (δ(13)C(i)) of ethanol using the IRMS approach. The difference between the data obtained for 16 samples from different origins using IRMS and NMR approaches is not statistically significant and remains below 0.3‰. These results are encouraging for the future studies using isotopic NMR, especially in combination with the IRMS approach. Copyright © 2012. Published by Elsevier B.V.
Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.
1989-01-01
Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.
A status of progress for the Laser Isotope Separation (LIS) process
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1976-01-01
An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.
NASA Astrophysics Data System (ADS)
Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.
1995-01-01
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
NASA Technical Reports Server (NTRS)
Webster, Chris; Blacksberg, Jordana; Flesch, Greg; Keymeulen, Didier; Christensen, Lance; Forouhar, Siamak
2012-01-01
The Tunable Laser Spectrometers (TLS) technique has seen wide applicability in gas measurement and analysis for atmospheric analysis, industrial, commercial and health monitoring and space applications. In Earth science using balloons and aircraft over 2 decades, several groups (JPL, NASA Langley & Ames, NOAA, Harvard U., etc) have demonstrated the technique for ozone hole studies, lab kinetics measurements, cloud physics and transport, climate change in the ice record. The recent availability of high-power (mW) room temperature lasers (TDL, IC, QC) has enabled miniaturized, high-sensitivity spectrometers for industry and space (1) Mars, Titan, Venus, Saturn, Moon (2) Commercial isotope ratio spectrometers are replacing bulkier, complex isotope ratio mass spectrometers.
Dual Si and O Isotope Measurement of Lunar Samples Using IRMS
NASA Astrophysics Data System (ADS)
Banerjee, N.; Hill, P. J. A.; Osinski, G. R.
2016-12-01
The use of isotopic systems and their associated theoretical models have become an increasingly sophisticated tool for investigating the origin of planetary bodies in the solar system. It was originally hypothesized that evidence for the impact origin of Moon would manifest itself as an isotopic heterogeneity between lunar and terrestrial samples; however, most isotope systems show no difference between the bulk Earth and Moon. The stable isotopes of both silicon (Si) and oxygen (O) have been essential in further understanding planetary processes including core formation. Historically the analysis of the Si and O isotope ratios in terrestrial and extraterrestrial material has primarily been measured independent of each other through three main techniques: isotope ratio mass spectrometry (IRMS), secondary ion mass spectrometry (SIMS), and multi-collector inductively coupled plasma mass-spectrometry (MC-ICPMS). Each technique has its own strength and weakness in regards to resolution and precision; however, one of the main limiting factors in all three of these techniques rests on the requirement of multiple aliquots. As most literature focuses on the measurement of oxygen or silicon isotopes, this unique line allows for the precise analysis of Si and O isotopes from the same aliquot of bulk sample, which cannot be done with SIMS or ICP-MS analysis. To deal with this problem a unique laser line system has been developed in the Laboratory for Stable Isotope Science at Western University, Canada, that simultaneously extracts SiF4 and O2 from the same 1-2 mg aliquot. We present the application of analyzing both isotopic systems from the sample aliquot to Apollo, meteoritic, and terrestrial samples and its implication for the formation of the Moon. Preliminary results from this line suggest that although the O isotopes ratios are consistent with a homogenous Moon-Earth system, a difference is observed in Si isotopes between Apollo and terrestrial samples compared to previous studies.
Application of isotope dilution technique in vitamin A nutrition.
Wasantwisut, Emorn
2002-09-01
The isotope dilution technique involving deuterated retinol has been developed to quantitatively estimate total body reserves of vitamin A in humans. The technique provided good estimates in comparison to hepatic vitamin A concentrations in Bangladeshi surgical patients. Kinetic studies in the United States, Bangladesh, and Guatemala indicated the mean equilibration time of 17 to 20 days irrespective of the size of hepatic reserves. Due to the controversy surrounding the efficacy of a carotene-rich diet on improvement of vitamin A status, the isotope dilution technique was proposed to pursue this research question further (IAEA's coordinated research program). In the Philippines, schoolchildren with low serum retinol concentrations showed significant improvement in total body vitamin A stores following intake of carotene-rich foods (orange fruits and vegetables), using a three-day deuterated-retinol-dilution procedure. When Chinese kindergarten children were fed green and yellow vegetables during the winter, their total body vitamin A stores were sustained as compared to a steady decline of vitamin A stores in the control children. Likewise, daily consumption of purified beta-carotene or diet rich in provitamin A carotenoids were shown to prevent a loss in total body vitamin A stores among Thai lactating women during the rice-planting season. These studies demonstrate potentials of the isotope dilution technique to evaluate the impact of provitamin A carotenoid intervention programs.
Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas
2014-05-01
Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected examples on combining isotopic systems for the study of ecosystem processes on different spatial scales will underpin the great opportunities substantiated by the field of analytical ecogeochemistry. Moreover, recent developments in plasma mass spectrometry and the application of new isotopic systems require sound metrological approaches in order to prevent scientific conclusions drawn from analytical artifacts.
Application of zinc isotope tracer technology in tracing soil heavy metal pollution
NASA Astrophysics Data System (ADS)
Norbu, Namkha; Wang, Shuguang; Xu, Yan; Yang, Jianqiang; Liu, Qiang
2017-08-01
Recent years the soil heavy metal pollution has become increasingly serious, especially the zinc pollution. Due to the complexity of this problem, in order to prevent and treat the soil pollution, it's crucial to accurately and quickly find out the pollution sources and control them. With the development of stable isotope tracer technology, it's able to determine the composition of zinc isotope. Based on the theory of zinc isotope tracer technique, and by means of doing some latest domestic and overseas literature research about the zinc isotope multi-receiving cups of inductively coupled plasma mass spectrometer (MC-ICP-MS) testing technology, this paper summarized the latest research results about the pollution tracer of zinc isotope, and according to the deficiencies and existing problems of previous research, made outlooks of zinc isotope fractionation mechanism, repository establishment and tracer multiple solutions.
Pironti, Concetta; Proto, Antonio; Camin, Federica; Cucciniello, Raffaele; Zarrella, Ilaria; Motta, Oriana
2016-11-01
The (13)C/(12)C carbon isotope ratio is a chemical parameter with many important applications in several scientific area and the technique of choice currently used for the δ(13)C determination is the isotope ratio mass spectrometry (IRMS). This latter is highly accurate (0.1‰) and sensitive (up to 0.01‰), but at the same time expensive and complex. The objective of this work was to assess the reliability of FTIR and NDIRS techniques for the measurement of carbon stable isotope ratio of food sample, in comparison to IRMS. IRMS, NDIRS and FTIR were used to analyze samples of food, such as oil, durum, cocoa, pasta and sugar, in order to determine the natural abundance isotopic ratio of carbon in a parallel way. The results were comparable, showing a close relationship among the three techniques. The main advantage in using FTIR and NDIRS is related to their cheapness and easy-to-operate in comparison to IRMS. Copyright © 2016 Elsevier B.V. All rights reserved.
Review of combined isotopic and optical nanoscopy
Richter, Katharina N.; Rizzoli, Silvio O.; Jähne, Sebastian; Vogts, Angela; Lovric, Jelena
2017-01-01
Abstract. Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the “history” of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology. PMID:28466025
Analysis and application of heavy isotopes in the environment
NASA Astrophysics Data System (ADS)
Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria
2010-04-01
A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ˜150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236U, 239,240,241,242,244Pu), astrophysics ( 182Hf, 236U, 244Pu, 247Cm), nuclear physics, and a search for long-lived super-heavy elements ( Z > 100). We are pursuing the environmental distribution of 236U, as a basis for geological applications of natural 236U.
NASA Astrophysics Data System (ADS)
Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.
2016-12-01
The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Johanson, G. A.
1972-01-01
Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.
Recent advances in biomedical applications of accelerator mass spectrometry.
Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W
2009-06-17
The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.
Recent advances in biomedical applications of accelerator mass spectrometry
Hah, Sang Soo
2009-01-01
The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. PMID:19534792
Methods for determination of radioactive substances in water and fluvial sediments
Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.
1977-01-01
Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.
Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt
2017-01-01
Conclusions: The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment. Copyright © 2016 John Wiley & Sons, Ltd.
A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.
Sakai, Saburo; Matsuda, Shinichi
2017-04-18
Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
2017-01-01
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity. PMID:28272450
Isotopic composition of atmospheric moisture from pan water evaporation measurements.
Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm
2015-01-01
A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
2017-03-08
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less
NASA Astrophysics Data System (ADS)
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
2017-03-01
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.
High precision tungsten isotope analysis using MC-ICP-MS and application for terrestrial samples
NASA Astrophysics Data System (ADS)
Suzuki, K.; Takamasa, A.
2017-12-01
Tungsten has five isotopes (M = 180, 182, 183, 184, 186), and 182W isotope is a rediogenic isotope produced by b-decay of 182Hf. Its half life is short (8.9 m.y.), and 182W isotope has been investigated to understand the early Earth geochemical evolution. Both Hf and W are highly refractory elements. As Hf is a lithophile and W is a siderophile elements, 182Hf-182W system could give constraints on metal-silicate (core-mantle) differentiation such as especially early Earth system because of its larege fractionation betwenn core-mantle and short half life. Improvement of analytical techniques of W isotope analyses leads to findings of W isotope anomaly (mostly positive) in old komatiites (2.4 - 3.8 Ga) and young volcanic rocks (12 Ma Ontong Java Plateau and 6 Ma Baffin Bay). In our study, high-precision W isotope ratio measurement with MC-ICP-MS (Thermo co. Ltd., NEPTUNE PLUS). We have measured W standard solution (SRM 3163) and obtained the isotopic compositions with an precision of ± 5ppm. However, the standard solution, which separated by cation or anion exchange resin, has systematical 183W/184W drift to -5ppm. These phenomena was also reported by Willbold et al. (2011). Therefore, we used the standard solution for correction of isotopic fractionation of samples which was processed by the same method as that of the samples. We will present the data of terrestrial samples obtained by the technique dveloped in this study.
Stable isotope measurements of evapotranspiration partitioning in a maize field
NASA Astrophysics Data System (ADS)
Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter
2017-04-01
Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.
Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS
NASA Astrophysics Data System (ADS)
Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.
2005-04-01
Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.
Application of stable isotope ratio analysis for biodegradation monitoring in groundwater
Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.
2013-01-01
Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions.
Riek, A; Klinkert, A; Gerken, M; Hummel, J; Moors, E; Südekum, K-H
2013-03-01
Despite the fact that llamas have become increasingly popular as companion and farm animals in both Europe and North America, scientific knowledge on their nutrient requirements is scarce. Compared with other livestock species, relatively little is known especially about the nutrient and energy requirements for lactating llamas. Therefore, we aimed to measure milk output in llama dams using an isotope dilution technique and relate it to energy intakes at different stages of lactation. We also validated the dilution technique by measuring total water turnover (TWT) directly and comparing it with values estimated by the isotope dilution technique. Our study involved 5 lactating llama dams and their suckling young. Milk output and TWT were measured at 4 stages of lactation (wk 3, 10, 18, and 26 postpartum). The method involved the application of the stable hydrogen isotope deuterium ((2)H) to the lactating dam. Drinking water intake and TWT decreased significantly with lactation stage, whether estimated by the isotope dilution technique or calculated from drinking water and water ingested from feeds. In contrast, lactation stage had no effect on dry matter intake, metabolizable energy (ME) intake, or the milk water fraction (i.e., the ratio between milk water excreted and TWT). The ratios between TWT measured and TWT estimated (by isotope dilution) did not differ with lactation stage and were close to 100% in all measurement weeks, indicating that the D(2)O dilution technique estimated TWT with high accuracy and only small variations. Calculating the required ME intakes for lactation from milk output data and gross energy content of milk revealed that, with increasing lactation stage, ME requirements per day for lactation decreased but remained constant per kilogram of milk output. Total measured ME intakes at different stages of lactation were similar to calculated ME intakes from published recommendation models for llamas. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias
2013-04-01
Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation. The method was developed for the multi-element isotope analysis (carbon and hydrogen) of priority volatile organic groundwater pollutants (methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene and o-xylene (BTEX)), and for carbon isotope analysis of chlorinated benzenes and ethenes. The extraction and injection conditions were optimized in terms of maximum sensitivity and minimum isotope effects. During the injection of the headspace sample, the liner is maintained at a low temperature, such that the compounds are retained in a hydrophobic insert packing while the water vapor is eliminated through the split line. With the optimized conditions, it was possible to inject up to 5mL headspace sample with no significant carbon or hydrogen isotopic effects except for the most hydrophobic substance (MTBE), which was subject to a small and reproducible isotope fractionation for hydrogen. The increment on method sensitivity was at least 20 fold in comparison with conventional static headspace analysis. The environmental applicability of the HS-PTV-GC-IRMS method was evaluated by the analysis of groundwater samples from different contaminated field sites, containing BTEX and chlorinated volatile organic contaminants in the low µg/L range. The results obtained demonstrate that this pre-concentration technique is highly promising to enhance the limits of detection of current CSIA methods and broaden its possibilities.
A novel technique to determine cobalt exchangeability in soils using isotope dilution.
Wendling, Laura A; Kirby, Jason K; McLaughlin, Michael J
2008-01-01
The environmental risk posed by Co contamination is largely a function of its oxidation state. Our objective was to assess the potential biological availability of Co and the reactions and fate of soluble Co(II) after addition to soils with varying physical and chemical characteristics. A potential risk in quantifying exchangeable Co in soils using isotope dilution techniques is the possible presence of two species of Co in soil solution and adsorbed on soil solid phases [Co(II) and Co(III)], coupled with the possibility that when an isotope of Co is added it may undergo a change in oxidation state during the measurement phase. In this study, we have utilized an isotope dilution technique with cation exchange and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry to determine the isotopically exchangeable Co fraction in several soils with varying characteristics such as differing Al, Fe, and Mn oxide content; pH; and organic carbon content. The application of the cation exchange procedure adjusts measurements of isotopically exchangeable Co to correct for the presence of non-exchangeable 57Co not in equilibrium with the solution phase. Results indicated that oxidation of added 57Co(II) to 57Co(III) or precipitation of 57Co(II) may occur on the surfaces of some soils, particularly those with a high pH or substantial quantities of Mn oxide minerals. No detectable Co(III)(aq) was found in the aqueous extracts of the soils examined.
NASA Technical Reports Server (NTRS)
McKeegan, Kevin D.
1998-01-01
NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.
A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500more » and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.« less
Benson, Sarah J; Lennard, Christopher J; Hill, David M; Maynard, Philip; Roux, Claude
2010-01-01
A significant amount of research has been conducted into the use of stable isotopes to assist in determining the origin of various materials. The research conducted in the forensic field shows the potential of isotope ratio mass spectrometry (IRMS) to provide a level of discrimination not achievable utilizing traditional forensic techniques. Despite the research there have been few, if any, publications addressing the validation and measurement uncertainty of the technique for forensic applications. This study, the first in a planned series, presents validation data for the measurement of bulk nitrogen isotope ratios in ammonium nitrate (AN) using the DELTA(plus)XP (Thermo Finnigan) IRMS instrument equipped with a ConFlo III interface and FlashEA 1112 elemental analyzer (EA). Appropriate laboratory standards, analytical methods and correction calculations were developed and evaluated. A validation protocol was developed in line with the guidelines provided by the National Association of Testing Authorities, Australia (NATA). Performance characteristics including: accuracy, precision/repeatability, reproducibility/ruggedness, robustness, linear range, and measurement uncertainty were evaluated for the measurement of nitrogen isotope ratios in AN. AN (99.5%) and ammonium thiocyanate (99.99+%) were determined to be the most suitable laboratory standards and were calibrated against international standards (certified reference materials). All performance characteristics were within an acceptable range when potential uncertainties, including the manufacturer's uncertainty of the technique and standards, were taken into account. The experiments described in this article could be used as a model for validation of other instruments for similar purposes. Later studies in this series will address the more general issue of demonstrating that the IRMS technique is scientifically sound and fit-for-purpose in the forensic explosives analysis field.
ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite
2010-01-01
Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223
Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.
2016-01-01
Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.
Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)
NASA Astrophysics Data System (ADS)
Young, M. B.; Kendall, C.; Paytan, A.
2013-12-01
The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.
Guideline on Isotope Dilution Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaffney, Amy
Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. Thismore » method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.« less
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.
2009-01-01
Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.
Developing the Molybdenum Isotopic Proxy in Marine Barite
NASA Astrophysics Data System (ADS)
Erhardt, A. M.; Paytan, A.; Aggarwal, J.
2006-12-01
Molybdenum isotope ratios in seawater fluctuate in response to changing redox conditions and can provide clues into the degree of global ocean anoxia. The isotopic ratio of molybdenum has been shown to be sensitive to the relative proportion of oxic, suboxic, and euxinic environments. Deposition in oxic environments is isotopically light (~ -1.6‰ for δ^{97/95}Mo) relative to an average crustal source (0‰). Conversely, euxinic environments have been shown to be consistently heavier (~1.3‰) than the oxic sink through time, with suboxic sediments falling between these two signals. Shifts in the relative proportion of each sink, relative to a constant source, would alter the isotopic ratio of seawater over long time scales. Previously, this seawater value, and hence the degree of global anoxia, could only be inferred through mass balance calculations. We seek to quantify the isotopic signature of seawater though time using a phase that directly records this ratio. Marine barite precipitates inorganically in the water column directly from seawater, potentially providing a direct record of seawater characteristics. Molybdenum is a trace constituent of barite, with the molybdate ion substituting for sulfate at concentrations of about 1 ppm. To accurately determine the molybdenum isotopic ratio at these low concentrations (<15 ng per sample), modifications to existing measurement techniques are required. We will present the variations made to existing separation and mass-spectrometry techniques and the calibration of these new methods. The modifications were undertaken to reduce molybdenum blank to below 1 ng per analysis, to quantitatively remove interfering zirconium and to measure precise and reproducible isotope values. Preliminary data will be presented to illustrate potential applications for this new paleoredox proxy. This technique will allow for the measurement of molybdenum isotopic ratios at low concentrations, expanding the breath of compounds and signals that potentially record changes in planetary materials.
Tomascak, P.B.; Tera, F.; Helz, R.T.; Walker, R.J.
1999-01-01
We report measurements of the isotopic composition of lithium in basalts using a multicollector magnetic sector plasma-source mass spectrometer (MC-ICP-MS). This is the first application of this analytical technique to Li isotope determination. External precision of multiple replicate and duplicate measurements for a variety of sample types averages ??1.1??? (2?? population). The method allows for the rapid (???8 min/sample) analysis of small samples (???40 ng Li) relative to commonly used thermal ionization methods. The technique has been applied to a suite of samples from Kilauea Iki lava lake, Hawaii. The samples range from olivine-rich cumulitic lava to SiO2 - and K2O-enriched differentiated liquids, and have ??7Li (per mil deviation of sample 7Li/6Li relative to the L-SVEC standard) of +3.0 to +4.8. The data indicate a lack of per mil-level Li isotope fractionation as a result of crystal-liquid fractionation at temperatures greater than 1050??C. This conclusion has been tacitly assumed but never demonstrated, and is important to the interpretation of Li isotope results from such geochemically complex environments as island arcs. Copyright ?? 1999 Elsevier Science Ltd.
Precise and accurate isotope ratio measurements by ICP-MS.
Becker, J S; Dietze, H J
2000-09-01
The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.
Using multiple isotopes to understand the source of ingredients used in golden beverages
NASA Astrophysics Data System (ADS)
Wynn, J. G.
2011-12-01
Traditionally, beer contains 4 simple ingredients: water, barley, hops and yeast. Each of these ingredients used in the brewing process contributes some combination of a number of "traditional" stable isotopes (i.e., isotopes of H, C, O, N and S) to the final product. As an educational exercise in an "Analytical Techniques in Geology" course, a group of students analyzed the isotopic composition of the gas, liquid and solid phases of a variety of beer samples collected from throughout the world (including other beverages). The hydrogen and oxygen isotopic composition of the water followed closely the isotopic composition of local meteoric water at the source of the brewery, although there is a systematic offset from the global meteoric water line that may be due to the effects of CO2-H2O equilibration. The carbon isotopic composition of the CO2 reflected that of the solid residue (the source of carbon used as a fermentation substrate), but may potentially be modified by addition of gas-phase CO2 from an inorganic source. The carbon isotopic composition of the solid residue similarly tracks that of the fermentation substrate, and may indicate some alcohol fermented from added sugars in some cases. The nitrogen isotopic composition of the solid residue was relatively constant, and may track the source of nitrogen in the barley, hops and yeast. Each of the analytical methods used is a relatively standard technique used in geological applications, making this a "fun" exercise for those involved, and gives the students hands-on experience with a variety of analytes from a non-traditional sample material.
Particle astronomy with a superconducting magnet.
NASA Technical Reports Server (NTRS)
Buffington, A.
1972-01-01
The magnetic spectrometer measures deflections of charged particles moving in a magnetic field and provides a direct means of determining the rigidity of charged primary cosmic rays up to about 100 GV/c rigidity. The underlying concepts of the method are reviewed, and factors delineating the applicable momentum range and accuracy are described along with calibration techniques. Previous experiments employing this technique are summarized, and prospects for future applications are evaluated with emphasis on separate measurement of electron and positron spectra and on isotopic separation.
NASA Astrophysics Data System (ADS)
Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John
2015-05-01
Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C).
Quantitative Fissile Assay In Used Fuel Using LSDS System
NASA Astrophysics Data System (ADS)
Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je
2017-09-01
A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.
Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.
2015-01-01
Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.
Centler, Florian; Heße, Falk; Thullner, Martin
2013-09-01
At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.
Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration
NASA Technical Reports Server (NTRS)
Merritt, D. A.; Brand, W. A.; Hayes, J. M.
1994-01-01
In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).
Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes
NASA Astrophysics Data System (ADS)
Vormawah, L. J.; Vilén, M.; Beerwerth, R.; Campbell, P.; Cheal, B.; Dicker, A.; Eronen, T.; Fritzsche, S.; Geldhof, S.; Jokinen, A.; Kelly, S.; Moore, I. D.; Reponen, M.; Rinta-Antila, S.; Stock, S. O.; Voss, A.
2018-04-01
Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm 5 s 1/2 2S →5 p 1/2 2P line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyväskylä, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-produced short-lived isotopes using collinear laser spectroscopy and application of the technique to doubly charged ions.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.
2018-06-01
Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.
Ogrinc, N; Kosir, I J; Spangenberg, J E; Kidric, J
2003-06-01
This review covers two important techniques, high resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), used to characterize food products and detect possible adulteration of wine, fruit juices, and olive oil, all important products of the Mediterranean Basin. Emphasis is placed on the complementary use of SNIF-NMR (site-specific natural isotopic fractionation nuclear magnetic resonance) and IRMS (isotope-ratio mass spectrometry) in association with chemometric methods for detecting the adulteration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Keri; Judge, Elizabeth J.; Dirmyer, Matthew R.
Surrogate nuclear explosive debris was synthesized and characterized for major, minor, and trace elemental composition as well as uranium isotopics. The samples consisted of an urban glass matrix, equal masses soda lime and cement, doped with 500 ppm uranium with varying enrichments. The surface and cross section morphology were measured with SEM, and the major elemental composition was determined by XPS. LA-ICP-MS was used to measure the uranium isotopic abundance comparing different sampling techniques. Furthermore, the results provide an example of the utility of LA-ICP-MS for forensics applications.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.
2013-01-01
The use of Hydrogen (H) isotopes in understanding oil and gas resource plays is in its infancy. Described here is a technique for H isotope analysis of organic compounds pyrolyzed from oil and gas shale-derived kerogen. Application of this technique will progress our understanding. This work complements that of Pernia et al. (2013, this meeting) by providing a novel method for the H isotope analysis of specific compounds in the characterization of kerogen extracted by analytically diverse techniques. Hydrogen isotope analyses were carried out entirely "on-line" utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC Ultra interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make semi-quantitative compositional measurements of the extracted compounds. Kerogen samples from five different basins (type II and III) were dehydrated (heated to 80 C overnight in vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C) which quantitatively forms H2, following a modified method of Burgoyne and Hayes, (1998, Anal. Chem., 70, 5136-5141). Samples ranging from approximately 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. Compounds were separated on a Poraplot Q GC column. Hydrogen isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight compounds. Water (H2O) average deltaD = -215.2 (V-SMOW), ranging from -271.8 for the Marcellus Shale to -51.9 for the Polish Shale. Higher molecular weight compounds like toluene (C7H8) have an average deltaD of -89.7 0/00, ranging from -156.0 for the Barnett Shale to -50.0 for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during formation within each basin. Since hydrocarbon H isotopes readily exchange with water, these data may provide some useful information on gas-water or oil-water interaction in resource plays, and further as a possible indicator of paleo-environmental conditions. Alternatively, our data may be an indication of H isotope exchange with water and/or acid during the kerogen isolation process. Either of these interpretations will prove useful when deciphering H isotope data derived from kerogen analysis. More experiments are planned to discern these two or other possible scenarios.
NASA Astrophysics Data System (ADS)
Irrgeher, Johanna; Reese, Anna; Zimmermann, Tristan; Prohaska, Thomas; Retzmann, Anika; Wieser, Michael E.; Zitek, Andreas; Proefrock, Daniel
2017-04-01
Environmental monitoring of complex ecosystems requires reliable sensitive techniques based on sound analytical strategies to identify the source, fate and sink of elements and matter. Isotopic signatures can serve to trace pathways by making use of specific isotopic fingermarks or to distinguish between natural and anthropogenic sources. The presented work shows the potential of using the isotopic variation of Sr, Pb (as well-established isotopic systems), Mo and B (as novel isotopic system) assessed by MC ICP-MS in water and sediment samples to study aquatic ecosystem transport processes. The isotopic variation of Sr, Pb, Mo and B was determined in different marine and estuarine compartments covering the catchment of the German Wadden Sea and its main tributaries, the Elbe, Weser and Ems River. The varying elemental concentrations, the complex matrix and the expected small variations in the isotopic composition required the development and application of reliable analytical measurement approaches as well as suited metrological data evaluation strategies. Aquatic isoscapes were created using ArcGIS® by relating spatial isotopic data with geographical and geological maps. The elemental and isotopic distribution maps show large variation for different parameters and also reflect the numerous impact factors (e.g. geology, anthropogenic sources) influencing the catchment area.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.
2012-01-01
We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.
2017-12-01
Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.
Application of Laser Induced Breakdown Spectroscopy under Polar Conditions
NASA Astrophysics Data System (ADS)
Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.
2015-12-01
Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.
Effects of must concentration techniques on wine isotopic parameters.
Guyon, Francois; Douet, Christine; Colas, Sebastien; Salagoïty, Marie-Hélène; Medina, Bernard
2006-12-27
Despite the robustness of isotopic methods applied in the field of wine control, isotopic values can be slightly influenced by enological practices. For this reason, must concentration technique effects on wine isotopic parameters were studied. The two studied concentration techniques were reverse osmosis (RO) and high-vacuum evaporation (HVE). Samples (must and extracted water) have been collected in various French vineyards. Musts were microfermented at the laboratory, and isotope parameters were determined on the obtained wine. Deuterium and carbon-13 isotope ratios were studied on distilled ethanol by nuclear magnetic resonance (NMR) and isotope ratio mass spectrometry (IRMS), respectively. The oxygen-18 ratio was determined on extracted and wine water using IRMS apparatus. The study showed that the RO technique has a very low effect on isotopic parameters, indicating that this concentration technique does not create any isotopic fractionation, neither at sugar level nor at water level. The effect is notable for must submitted to HVE concentration: water evaporation leads to a modification of the oxygen-18 ratio of the must and, as a consequence, ethanol deuterium concentration is also modified.
Stable isotope tracers and exercise physiology: past, present and future.
Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J
2017-05-01
Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
New frontiers in science and technology: nuclear techniques in nutrition123
Davidsson, Lena; Tanumihardjo, Sherry
2011-01-01
The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward. PMID:21653797
Turner, J.; Albrechtsen, H.-J.; Bonell, M.; Duguet, J.-P.; Harris, B.; Meckenstock, R.; McGuire, K.; Moussa, R.; Peters, N.; Richnow, H.H.; Sherwood-Lollar, B.; Uhlenbrook, S.; van, Lanen H.
2006-01-01
A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound-specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright ?? 2006 John Wiley & Sons, Ltd.
Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann
2015-03-03
A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.
2011-01-01
Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.
NASA Astrophysics Data System (ADS)
Karamat, Muhammad I.; Farncombe, Troy H.
2015-10-01
Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.
NASA Astrophysics Data System (ADS)
Fassett, J. D.; Kelly, W. R.
1992-07-01
The application of isotope dilution thermal ionization mass spectrometry to the determination of both uranium and thorium in four different target materials used or proposed for electronic neutrino detectors is described. Isotope dilution analysis is done using highly enriched 233U and 230Th separated isotopes. Sensitivity of the technique is such that sub-picogram amounts of material are readily measured. The overall limit to measurement is caused by contamination of these elements during the measurement process. Uranium is more easily measured than thorium because both the instrumental sensitivity is higher and contamination is better controlled. The materials analyzed were light and heavy water, pseudocumene, and mineral oil.
Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies
Misra, S.K.; Dybowska, A.; Berhanu, D.; Croteau, M.-N.; Luoma, S.N.; Boccaccini, A.R.; Valsami-Jones, E.
2012-01-01
This work presents results on synthesis of isotopically enriched (99% 65Cu) copper oxide nanoparticles and its application in ecotoxicological studies. 65CuO nanoparticles were synthesized as spheres (7 nm) and rods (7 ?? 40 nm). Significant differences were observed between the reactivity and dissolution of spherical and rod shaped nanoparticles. The extreme sensitivity of the stable isotope tracing technique developed in this study allowed determining Cu uptake at exposure concentrations equivalent to background Cu concentrations in freshwater systems (0.2-30 ??g/L). Without a tracer, detection of newly accumulated Cu was impossible, even at exposure concentrations surpassing some of the most contaminated water systems (>1 mg/L). ?? 2011 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, R; Hamilton, T; Brown, T
2006-05-30
This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less
NASA Astrophysics Data System (ADS)
Pondell, C.; Kuehl, S. A.; Canuel, E. A.
2016-12-01
There are several methodologies used to determine chronologies for sediments deposited within the past 100 years, including 210Pb and 137Cs radioisotopes and organic and inorganic contaminants. These techniques are quite effective in fine sediments, which generally have a high affinity for metals and organic compounds. However, the application of these chronological tools becomes limited in systems where coarse sediments accumulate. Englebright Lake is an impoundment in northern California where sediment accumulation is characterized by a combination of fine and coarse sediments. This combination of sediment grain size complicated chronological analysis using the more traditional 137Cs chronological approach. This study established a chronology of these sediments using 239+240Pu isotopes. While most of the 249+240Pu activity was measured in the fine grain size fraction (<63 microns), up to 25% of the plutonium activity was detected in the coarse size fractions of sediments from Englebright Lake. Profiles of 239+240Pu were similar to available 137Cs profiles, verifying the application of plutonium isotopes for determining sediment chronologies and expanding the established geochronology for Englebright Lake sediments. This study of sediment accumulation in Englebright Lake demonstrates the application of plutonium isotopes in establishing chronologies in coarse sediments and highlights the potential for plutonium to offer new insights into patterns of coarse sediment accumulation.
An Industry-Scale Mass Marking Technique for Tracing Farmed Fish Escapees
Warren-Myers, Fletcher; Dempster, Tim; Fjelldal, Per Gunnar; Hansen, Tom; Swearer, Stephen E.
2015-01-01
Farmed fish escape and enter the environment with subsequent effects on wild populations. Reducing escapes requires the ability to trace individuals back to the point of escape, so that escape causes can be identified and technical standards improved. Here, we tested if stable isotope otolith fingerprint marks delivered during routine vaccination could be an accurate, feasible and cost effective marking method, suitable for industrial-scale application. We tested seven stable isotopes, 134Ba, 135Ba, 136Ba, 137Ba, 86Sr, 87Sr and 26Mg, on farmed Atlantic salmon reared in freshwater, in experimental conditions designed to reflect commercial practice. Marking was 100% successful with individual Ba isotopes at concentrations as low as 0.001 µg. g-1 fish and for Sr isotopes at 1 µg. g-1 fish. Our results suggest that 63 unique fingerprint marks can be made at low cost using Ba (0.0002 – 0.02 $US per mark) and Sr (0.46 – 0.82 $US per mark) isotopes. Stable isotope fingerprinting during vaccination is feasible for commercial application if applied at a company level within the world’s largest salmon producing nations. Introducing a mass marking scheme would enable tracing of escapees back to point of origin, which could drive greater compliance, better farm design and improved management practices to reduce escapes. PMID:25738955
Synthesis and characterization of surrogate nuclear explosion debris: urban glass matrix
Campbell, Keri; Judge, Elizabeth J.; Dirmyer, Matthew R.; ...
2017-07-26
Surrogate nuclear explosive debris was synthesized and characterized for major, minor, and trace elemental composition as well as uranium isotopics. The samples consisted of an urban glass matrix, equal masses soda lime and cement, doped with 500 ppm uranium with varying enrichments. The surface and cross section morphology were measured with SEM, and the major elemental composition was determined by XPS. LA-ICP-MS was used to measure the uranium isotopic abundance comparing different sampling techniques. Furthermore, the results provide an example of the utility of LA-ICP-MS for forensics applications.
NASA Astrophysics Data System (ADS)
Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.
2012-04-01
Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of diffuse agrochemical pollutants in a relatively simple hydrological system. The simulated shifts in isotopic signals are within a range that could be detected with current isotope analytics. Concentrations in the stream vary significantly only for a short period during and after intense rainfall events. In contrast, CSIA values reveal longer response times such that isotopic shifts are likely to be detected in samples with a coarser temporal resolution. Rainfall events which result in fast lateral subsurface transport from the pollution source to the stream can be separated from those that lead to pollution migration through deeper subsurface zones with much longer travel times. Two-dimensional CSIA highlights an increasing importance of the oxic reaction in the topsoil during the wetter period of the year. In order to examine to which extent CSIA is applicable for more complex hydrological systems, it is projected to simulate isotope fractionation in a 3-dimensional catchment featuring additional processes such as migration from several pollution sources or in-stream degradation.
Chew, Gina; Walczyk, Thomas
2013-04-02
Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.
Position-specific 13C distributions within propane from experiments and natural gas samples
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
Position-specific 13C distributions within propane from experiments and natural gas samples
Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
Roelofse, F; Horstmann, U E
2008-01-15
The application of isotope ratio mass spectrometry (IRMS) in forensic science to establish the provenance of a range of questioned substances including soils, drugs, explosives, currency, ivory and rhino horn has been widely documented. The present study wishes to highlight the applicability of IRMS and specifically stable carbon IRMS in determining the provenance of a carbonate rock that was switched for nickel metal exported from South Africa to Israel. The technique employed effectively argued against a South African origin for the rock whilst simultaneously supporting an Israeli origin, enabling investigators to focus their attention accordingly. The study represents the first documented instance known to the authors where IRMS has been employed in the forensic geo-location of a rock.
Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong
2012-11-15
Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.
Elemental and isotopic imaging of biological samples using NanoSIMS.
Kilburn, Matt R; Clode, Peta L
2014-01-01
With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.
Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J
2015-01-01
Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions.
Carbon isotope ratios and isotopic correlations between components in fruit juices
NASA Astrophysics Data System (ADS)
Wierzchnicki, Ryszard
2013-04-01
Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.
Online analysis of chlorine stable isotopes in chlorinated ethylenes: an inter-laboratory study
NASA Astrophysics Data System (ADS)
Bernstein, Anat; Shouakar-Stash, Orfan; Hunkeler, Daniel; Sakaguchi-Söder, Kaori; Laskov, Christine; Aravena, Ramon; Elsner, Martin
2010-05-01
In the last decade, compound-specific stable isotopes analysis of groundwater pollutants became an important tool to identify different sources of the same pollutant and for tracking natural attenuating processes in the sub-surface. It has been shown that trends in the isotopic composition of the target compounds can shed light on in-situ processes that are otherwise difficult to track. Analytical methods of carbon, nitrogen and hydrogen were established and are by now frequently used for a variety of organic pollutants. Yet, the motivation of introducing analytical methods for new isotopes is emerging. This motivation is further enhanced, as advantages of using two or more stable isotopes for gaining better insight on degradation pathways are well accepted. One important element which demands the development of appropriate analytical methods is chlorine, which is found in various groups of organic pollutants, among them the chlorinated ethylenes. Chlorinated ethylenes are considered as high priority environmental pollutants, and the development of suitable chlorine isotope methods for this group of pollutants is highly desired. Ideally, stable isotope techniques should have the capability to determine the isotopic composition of and individual target compound in a non-pure mixture, without the requirement of a laborious off-line treatment. Indeed, in the last years two different concepts for on-line chlorine isotope analysis methods were introduced, by using either a standard quadrapole GC/MS (Sakaguchi-Söder et al., 2007) or by using a GC/IRMS (Shouakar-Stash et al., 2006). We present a comparison of the performances of two concepts, carried out in five different laboratories: Waterloo (GC/IRMS), Neuchâtel (GC/MS), Darmstadt (GC/MS), Tübingen (GC/MS) and Munich (GC/IRMS). This comparison was performed on pure trichloroethylene and dichloroethylene products of different manufactures, as well as trichloroethylene and dichloroethylene samples that were exposed to biodegradation. This study sets standards for further application of these techniques to distinguish sources and track degradation processes in the sub-surface.
Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry
NASA Astrophysics Data System (ADS)
Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.
2014-12-01
Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.
A novel methodology to investigate isotopic biosignatures
NASA Astrophysics Data System (ADS)
Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.
2012-04-01
An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E. coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.
Sulfur analysis by inductively coupled plasma-mass spectrometry: A review
NASA Astrophysics Data System (ADS)
Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.
2015-06-01
In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences
NASA Astrophysics Data System (ADS)
Xu, Gu-feng; Wang, Hong-mei
2001-08-01
Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.
Extending the Boundaries of Isotope Ratio MS - Latest Technological Improvements
NASA Astrophysics Data System (ADS)
Hilkert, A.
2016-12-01
Isotope ratio mass spectrometry has a long history, which started with the analysis of the isotopes of CO2. Over several decades a broad range of IRMS techniques has been derived like multi-collector high resolution ICP-MS, TIMS, noble gas static MS and gas IRMS. These different flavors of IRMS are now building a technology tool box, which allows to derive new applications build on new capabilities by combination of specific features of these sister technologies. In the 90's inductive coupled plasma ionization was added for the high precision analysis of rare elements. In 2000 extended multicollection opened the way into clumped isotopes. In 2008 the concept of a high resolution gas source IRMS was layed out to revolutionize stable gas IRMS recently followed by the combination of this static multicollection mode with fast mass scans of the single collector double focusing high resolution GCMS. Recently new technologies were created, like the mid infrared analyzers (IRIS) based on difference frequency generation lasers, the combination of a collision cell with HR MC ICPMS as well as the use of a high resolution electrostatic ion trap for extended stable isotope analysis on individual compounds. All these building blocks for IRMS address selected requirements of sample preparation, sample introduction, referencing, ionization, mass separation, ion detection or signal amplification. Along these lines new technological improvements and applications will be shown and discussed.
Isotope ratio analysis by Orbitrap mass spectrometry
NASA Astrophysics Data System (ADS)
Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.
2016-12-01
Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/ΔM in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of hydrocarbon environmental pollutants, and study of the origins of isotope anomalies in meteoritic organics.
Mass spectrometry of long-lived radionuclides
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2003-10-01
The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass spectrometry and accelerator mass spectrometry for the determination of long-lived radionuclides in quite different materials.
Shielding from space radiations
NASA Technical Reports Server (NTRS)
Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.
1993-01-01
This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.
NASA Astrophysics Data System (ADS)
Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna
2016-03-01
First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.
Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.
2015-01-01
It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248
Measurements of Gluconeogenesis and Glycogenolysis: A Methodological Review
Chung, Stephanie T.; Chacko, Shaji K.; Sunehag, Agneta L.
2015-01-01
Gluconeogenesis is a complex metabolic process that involves multiple enzymatic steps regulated by myriad factors, including substrate concentrations, the redox state, activation and inhibition of specific enzyme steps, and hormonal modulation. At present, the most widely accepted technique to determine gluconeogenesis is by measuring the incorporation of deuterium from the body water pool into newly formed glucose. However, several techniques using radioactive and stable-labeled isotopes have been used to quantitate the contribution and regulation of gluconeogenesis in humans. Each method has its advantages, methodological assumptions, and set of propagated errors. In this review, we examine the strengths and weaknesses of the most commonly used stable isotopes methods to measure gluconeogenesis in vivo. We discuss the advantages and limitations of each method and summarize the applicability of these measurements in understanding normal and pathophysiological conditions. PMID:26604176
Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua
2014-02-15
With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluating O, C, and N isotopes in human hair as a forensic tool to reconstruct travel
NASA Astrophysics Data System (ADS)
Ehleringer, Jim; Chesson, Lesley; Cerling, Thure; Valenzuela, Luciano
2014-05-01
Oxygen isotope ratios in the proteins of human scalp hair have been proposed and modeled as a tool for reconstructing the movements of humans and evaluating the likelihood that an individual is a resident or non-resident of a particular geographic region. Carbon and nitrogen isotope ratios reflect dietary input and complement oxygen isotope data interpretation when it is necessary to distinguish potential location overlap among continents. The combination of a time sequence analysis in hair segments and spatial models that describe predicted geographic variation in hair isotope values represents a potentially powerful tool for forensic investigations. The applications of this technique have thus far been to provide assistance to law enforcement with information on the predicted geographical travel histories of unidentified murder victims. Here we review multiple homicide cases from the USA where stable isotope analysis of hair has been applied and for which we now know the travel histories of the murder victims. Here we provide information on the robustness of the original data sets used to test these models by evaluating the travel histories of randomly collected hair discarded in Utah barbershops.
NASA Astrophysics Data System (ADS)
Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály
2016-04-01
Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment investigations of atmospheric carbonaceous aerosol. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 'National Excellence Program.
Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashdorj, D.; Mitchell, G. E.; Baramsai, B.
2009-03-10
The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less
Application of LA-MC-ICP-MS for analysis of Sr isotope ratios in speleothems
NASA Astrophysics Data System (ADS)
Weber, Michael; Scholz, Denis; Wassenburg, Jasper A.; Jochum, Klaus Peter; Breitenbach, Sebastian
2017-04-01
Speleothems are well established climate archives. In order to reconstruct past climate variability, several geochemical proxies, such as δ13C and δ18O as well as trace elements are available. Since several factors influence each individual proxy, robust interpretation is often hampered. This calls for multi-proxy approaches involving additional isotope systems that can help to delineate the role of different sources of water within the epikarst and changes in soil composition. Sr isotope ratios (87Sr/86Sr) have been shown to provide useful information about water residence time and water mixing in the host rock. Furthermore, Sr isotopes are not fractionated during calcite precipitation, implying that the 87Sr/86Sr ratio of the speleothem provides a direct record of the drip water. While most speleothem studies applying Sr isotopes used the TIMS methodology, LA-MC-ICP-MS has been utilized for several other archives, such as otoliths and teeth. This method provides the advantage of faster data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. Here we present the first LA-MC-ICP-MS Sr isotope data for speleothems. The analytical uncertainty of our LA-MC-ICP-MS Sr data is in a similar range as for other carbonate materials. The results of different ablation techniques (i.e. line scan and spots) are reproducible within error, implying that the application of this technique on speleothems is possible. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), such as tests with standard bracketing and comparison of the 87Sr/86Sr ratios with nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, show the robustness of the method. We applied the method to samples from Morocco (Grotte de Piste) and India (Mawmluh Cave). Our results show only very small changes in the 87Sr/86Sr ratios of both speleothems. However, one speleothem from Mawmluh Cave shows a slight increase of 87Sr/86Sr within the error, which is reproducible with line scans and spots.
NASA Astrophysics Data System (ADS)
Farley, K. A.; Hurowitz, J. A.; Asimow, P. D.; Jacobson, N. S.; Cartwright, J. A.
2013-06-01
A new method for K-Ar dating using a double isotope dilution technique is proposed and demonstrated. The method is designed to eliminate known difficulties facing in situ dating on planetary surfaces, especially instrument complexity and power availability. It may also have applicability in some terrestrial dating applications. Key to the method is the use of a solid tracer spike enriched in both 39Ar and 41K. When mixed with lithium borate flux in a Knudsen effusion cell, this tracer spike and a sample to be dated can be successfully fused and degassed of Ar at <1000 °C. The evolved 40Ar∗/39Ar ratio can be measured to high precision using noble gas mass spectrometry. After argon measurement the sample melt is heated to a slightly higher temperature (˜1030 °C) to volatilize potassium, and the evolved 39K/41K ratio measured by Knudsen effusion mass spectrometry. Combined with the known composition of the tracer spike, these two ratios define the K-Ar age using a single sample aliquot and without the need for extreme temperature or a mass determination. In principle the method can be implemented using a single mass spectrometer. Experiments indicate that quantitative extraction of argon from a basalt sample occurs at a sufficiently low temperature that potassium loss in this step is unimportant. Similarly, potassium isotope ratios measured in the Knudsen apparatus indicate good sample-spike equilibration and acceptably small isotopic fractionation. When applied to a flood basalt from the Viluy Traps, Siberia, a K-Ar age of 351 ± 19 Ma was obtained, a result within 1% of the independently known age. For practical reasons this measurement was made on two separate mass spectrometers, but a scheme for combining the measurements in a single analytical instrument is described. Because both parent and daughter are determined by isotope dilution, the precision on K-Ar ages obtained by the double isotope dilution method should routinely approach that of a pair of isotope ratio determinations, likely better than ±5%.
Novel methods for estimating 3D distributions of radioactive isotopes in materials
NASA Astrophysics Data System (ADS)
Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.
2016-09-01
In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.
2014-01-01
Described here is a technique for H isotope analysis of organic compounds pyrolyzed from kerogens isolated from gas- and liquids-rich shales. Application of this technique will progress the understanding of the use of H isotopes not only in potential kerogen occurrences on Mars, but also in terrestrial oil and gas resource plays. H isotope extraction and analyses were carried out utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make qualitative and semi-quantitative compositional measurements of these products. Kerogen samples from five different basins (type II and II-S) were dehydrated (heated to 80 C overnight under vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C), which quantitatively forms H2. Samples ranging from 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. and separated on a Poraplot Q GC column. H isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight. H2O average delta D = -215.2 per mille (V-SMOW), ranging from - 271.8 per mille for the Marcellus Shale to -51.9 per mille for a Polish shale. Higher molecular weight compounds like toluene (C7H8) have an average delta D of -89.7 per mille, ranging from -156.0 per mille for the Barnett Shale to -50.0 per mille for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during basin formation. Since hydrocarbon H isotopes readily exchange with water, these data may provide some useful information on gas-water or oil-water interaction in resource plays, and further as a possible indicator of paleoenvironmental conditions. Alternatively, our data may be an indication of H isotope exchange with water and/or acid during the kerogen isolation process. Either of these interpretations will prove useful when deciphering H isotope data derived from kerogen analyses. Understanding the role that these H-bearing compounds play in terrestrial shale paleo-environmental reconstruction may also prove useful as analogs for understanding the interactions of water and potential kerogen/organic compounds on the planet Mars.
Geochemistry and origin of regional dolomites. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.N.; Meyers, W.J.
1995-05-01
The main goal of our research on dolomites has been to better understand the composition of the fluids and processes of the fluid-rock interaction responsible for the formation of massive dolostones occurring over regional scales within sedimentary sequences. Understanding the timing of dolomitization, the fluids responsible for the dolomitization and the timing of the development of porosity has major economic ramifications in that dolomites are major oil reservoirs often having better reservoir properties than associated limestones. Our approach has been to apply trace element, major element, petrographic, crystallographic, stable isotope and radiogenic isotope systems to test models for the originsmore » of dolomites and to give information that may allow us to develop new models. Fluid compositions and processes are evaluated through the use of numerical models which we have developed showing the simultaneous evolution of the trace element and isotope systems during dolomitization. Our research has included the application of B, O, C, Sr, Nd and Pb isotope systematics and the trace elements Mn, Fe St, rare earth elements, Rb, Ba, U, Th, Pb, Zn, Na, Cl, F and SO{sub 4}{sup 2-}. Analyses are possible on individual cements or dolomite types using micro-sampling or microprobe techniques. The microprobe techniques used include synchrotron X-ray microprobe analysis at Brookhaven National Laboratory or electron microprobe at Stony Brook. Lack of a modern analogue for ancient massive dolostones has limited the application of the uniformitarian concept to developing models for the ancient regional dolostones. In addition it has not been possible to synthesize dolomite in the laboratory under conditions similar to the sedimentary or diagenetic possible environments in which the dolomites must have formed.« less
Isotopic Techniques for Assessment of Groundwater Discharge to the Coastal Ocean
2002-09-30
of the groundwater tracer. This may then be divided by the estimated groundwater Ra concentration to derive a water flux. 3...residence times of coastal waters . If one assumes that the source of short-lived radium isotopes is groundwater with a constant isotopic composition...Isotopic Techniques for Assessment of Groundwater Discharge to the Coastal Ocean William C. Burnett Department of Oceanography Florida State
Electric Dipole Moment Measurements with Rare Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chupp, Timothy
The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over.more » These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic fields and detecting noble atoms' shapes using lasers will provide new techniques for these measurements and impact a broad range of applications including measurements of the neutron EDM. Harvesting rare isotopes at the future FRIB facility at Michigan State University will provide much stronger sources of the isotopes of radon and radium for future-generation experiments and also provide new isotopes for applications including medicine.« less
NASA Astrophysics Data System (ADS)
Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.
2015-12-01
CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.
NASA Astrophysics Data System (ADS)
Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom
2016-06-01
Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsenheimer, D.W.
1992-01-01
The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen isotope ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, revealsmore » complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and isotopic exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable isotopic characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with isotopic compositions that suggest vein fluids that are at least in part magmatic. Post-metamorphic magmatic activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has magmatic isotopic compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.« less
Ren, Yao; Walczyk, Thomas
2014-09-01
Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.
We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.
The chemistry of PET imaging with zirconium-89.
Dilworth, Jonathan R; Pascu, Sofia I
2018-04-23
This Tutorial Review aims to provide an overview of the use of zirconium-89 complexes in biomedical imaging. Over the past decade there have been many new papers in this field, ranging from chemistry through to preclinical and clinical applications. Here we attempt to summarise the main developments that have occurred in this period. The primary focus is on coordination chemistry but other aspects such as isotope production, isotope properties, handling and radiochemical techniques and characterisation of cold and labelled complexes are included. Selected results from animal and human clinical studies are presented in the context of the stabilities and properties of the labelled bioconjugates.
CO2 laser oscillators for laser radar applications
NASA Technical Reports Server (NTRS)
Freed, C.
1990-01-01
This paper reviews the spectral purity, frequency stability, and long-term stabilization of newly developed CO2 isotope lasers. Extremely high spectral purity, and short-term stability of less than 1.5 x 10 to the -13th have been achieved. A brief description on using CO2 isotope lasers as secondary frequency standards and in optical radar is given. The design and output characteristics of a single frequency, TEM00q mode, variable pulse width, hybrid TE CO2 laser system is also described. The frequency chirp in the output has been measured and almost completely eliminated by means of a novel technique.
In vivo kinetic approach reveals slow SOD1 turnover in the CNS
Crisp, Matthew J.; Mawuenyega, Kwasi G.; Patterson, Bruce W.; Reddy, Naveen C.; Chott, Robert; Self, Wade K.; Weihl, Conrad C.; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S.; Bucelli, Robert C.; Yarasheski, Kevin E.; Bateman, Randall J.; Miller, Timothy M.
2015-01-01
Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins. PMID:26075819
In vivo kinetic approach reveals slow SOD1 turnover in the CNS.
Crisp, Matthew J; Mawuenyega, Kwasi G; Patterson, Bruce W; Reddy, Naveen C; Chott, Robert; Self, Wade K; Weihl, Conrad C; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S; Bucelli, Robert C; Yarasheski, Kevin E; Bateman, Randall J; Miller, Timothy M
2015-07-01
Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins.
Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C
2010-01-01
In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.
Nuclear Resonance Fluorescence of U-235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Caggiano, Joseph A.; Hensley, Walter K.
Nuclear resonance fluorescence is a physical process that provides an isotopic-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample which is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials. One isotope of significant interest is 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct measurements to search for a nuclear resonance fluorescence response of 235U below 3 MeV using a 200 g samplemore » of highly enriched uranium. Nine 235U resonances between 1650 and 2010 keV were identified in the preliminary analysis. Analysis of the measurement data to determine the integrated cross sections of the resonances is in progress.« less
NMR Studies of Low-Gamma Nuclei in Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasylishen, Roderick E.; Forgeron, Michelle A.; Siegel, Renee
2006-07-24
Over the past five years we have devoted considerable time to solid-state NMR investigaitons of nuclei, which are traditionally known as "difficult" because of their small magnetic moments. These include quadrupolar nuclei such as 35Cl, 53 Cr, 91Zr, 95Mo, 99Ru, 131 Xe, as well as spin-1/2 nuclei such as 109Ag. While NMR studies of such isotopes remain challenging, the use of moderate to high magnetic field strengths together with a variety of enhancement techniques is leading to many interesting applications. In this talk some of our successes in studying these isotopes will be presented. For example, we will present preliminarymore » results of 131Xe NMR studies of solid sodium perxenate, as well as 109Ag NMR studies of silver dialkylphosphites. Our experience using population enhancement techniques that utilize hyperbolic secant pulses will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Gouge, M.J.
1990-05-01
Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The pipe gun'' technique for freezing hydrogen isotopes {ital in} {ital situ} in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds inmore » the range 1--2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them from the high peak pressures will be required to reliably attain intact pellets at speeds of {approx}3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at {approx}0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Gouge, M.J.
1989-01-01
Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The pipe gun'' technique for freezing hydrogen isotopes in situ in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds in the rangemore » 1-2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them for the high peak pressures will be required to reliably attain intact pellets at speeds of {approx}3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds of up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at {approx}0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented. 17 refs., 6 figs., 2 tabs.« less
Cryptic Carbonate Alteration in Orogenic Sedimentary Basins: Saving the Signal
NASA Astrophysics Data System (ADS)
Ingalls, M.; Rowley, D. B.; Colman, A. S.; Currie, B.; Snell, K. E.
2017-12-01
The clumped isotope thermometer (T(Δ47)) is arguably one of the most important tools introduced to the fields of paleoclimatology and tectonics in the past decade. However, we measure clumped isotope abundances in natural materials collected from sedimentary basins, many of which have experienced complex thermal and fluid interaction histories. Throughout the history of an authigenic mineral—from precipitation to exhumation—there are multiple opportunities to overprint isotopic signatures and obscure the essential fingerprint of primary environmental conditions. Therefore, we must critically assess the presence or absence of textural and isotopic alteration after original mineral formation. We investigate Paleocene shallow marine carbonates from the Xigaze forearc (S. Tibet) that yield demonstrably non-marine δ18Oc values (-12 to -21‰ VPDB), significant cm-scale variation in clumped isotope values (0.456 to 0.721‰, or 80 to 20°C), and have experienced temperatures >150°C for longer than 10 My based on ages of partial resetting of zircon He. δ18Oc values require complete oxygen isotopic exchange during fluid-buffered diagenesis, but display little visible evidence of recrystallization. Further, within the constraints of the Xigaze forearc time-temperature history, we explain the intrasample Δ47 variation by a combination of the two known mechanisms of Δ47 alteration: (1) water-rock recrystallization and (2) solid-state reordering. The definitively altered marine carbonates pass the same optical screening tests for secondary mineralization traditionally used when employing δ18Oc or Δ47 as proxies for ancient Earth conditions, suggesting that alteration occurred on a spatial scale irresolvable by standard techniques. Therefore, higher spatial resolution detection of carbonate alteration is required to prevent incorrect or incomplete interpretation of carbonate isotopic values. We employ a suite of isotopic (δ18O, δ13C, Δ47, U/Pb), geochemical (EBSD), and optical (cathodoluminescence) techniques to identify evidence and episodes of micro-recrystallization. Our ability to screen for cryptic alteration and place isotopic alteration events within the constraints of a rock's diagenetic history is critical for the future use of the carbonate proxy record in geological applications.
NASA Astrophysics Data System (ADS)
Parkes, Stephen; Wang, Lixin; McCabe, Matthew
2015-04-01
In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a number of different in-situ analyzers that employ different optical methods. We compare this simplified calibration technique to more conventional characterization of both the cross-sensitivity determined in isotopic ratio space and the isotopic ratio span. Utilizing this simplified calibration approach with improved software control can lead to a significant reduction in time spent calibrating in-situ instrumentation or enable an increase in calibration frequency as required to minimize measurement uncertainty.
Application of the Statistical ICA Technique in the DANCE Data Analysis
NASA Astrophysics Data System (ADS)
Baramsai, Bayarbadrakh; Jandel, M.; Bredeweg, T. A.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; Ullmann, J. L.; Dance Collaboration
2015-10-01
The Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center is used to improve our understanding of the neutron capture reaction. DANCE is a highly efficient 4 π γ-ray detector array consisting of 160 BaF2 crystals which make it an ideal tool for neutron capture experiments. The (n, γ) reaction Q-value equals to the sum energy of all γ-rays emitted in the de-excitation cascades from the excited capture state to the ground state. The total γ-ray energy is used to identify reactions on different isotopes as well as the background. However, it's challenging to identify contribution in the Esum spectra from different isotopes with the similar Q-values. Recently we have tested the applicability of modern statistical methods such as Independent Component Analysis (ICA) to identify and separate different (n, γ) reaction yields on different isotopes that are present in the target material. ICA is a recently developed computational tool for separating multidimensional data into statistically independent additive subcomponents. In this conference talk, we present some results of the application of ICA algorithms and its modification for the DANCE experimental data analysis. This research is supported by the U. S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.
Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans
NASA Technical Reports Server (NTRS)
Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.
2004-01-01
Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.
Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.
Yang, Lu
2009-01-01
For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.
ATTA - A New Method of Ultrasensitive Trace-Isotope Analysis
NASA Astrophysics Data System (ADS)
Lu, Z.-T.; Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; O'Connor, T. P.; Young, L.; Winkler, G.
2000-10-01
We have developed a new method of ultrasensitive trace-isotope analysis based upon the technique of laser manipulation of neutral atoms [1]. This new method allows us to count individual 85Kr and 81Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10-11 and 10-13, respectively. Isotope analysis of 81Kr can be used to date polar ice, and 85Kr is a tracer used in monitoring nuclear wastes. In this experiment metastable Kr atoms were produced in a discharge, decelerated via the Zeeman slowing technique, and captured by a Magneto-Optical Trap where the atoms were counted by measuring their fluorescence. At present our system is capable of counting, in average, one 81Kr atom for about 12 minutes with a total efficiency of 2x10-7. We are currently working to improve our system efficiency by applying cryogenic cooling to the Kr atoms in the discharge region and by recirculating the gas in the vacuum system. This method can be used to analyze many other isotope tracers for a wide range of applications including measuring solar neutrino flux, searching for exotic particles, tracing atmospheric and oceanic currents, archeological and geological dating, medical diagnostics, monitoring fission products in the environment for nuclear waste management, etc. This work is supported by the U.S. Department of Energy, Nuclear Physics Division; L.Young is supported by the Office of Basic Energy Sciences, Division of Chemical Sciences (Contract W-31-109-ENG-38). [1] C.Y. Chen et. al., Science 286, 1139 (1999).
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
Pallaro, Anabel; Tarducci, Gabriel
2014-12-01
The application of nuclear techniques in the area of nutrition is safe because they use stable isotopes. The deuterium dilution method is used in body composition and human milk intake analysis. It is a reference method for body fat and validates inexpensive tools because of its accuracy, simplicity of application in individuals and population and the background of its usefulness in adults and children as an evaluation tool in clinical and health programs. It is a non-invasive technique as it uses saliva, which facilitates the assessment in pediatric populations. Changes in body fat are associated with non-communicable diseases; moreover, normal weight individuals with high fat deposition were reported. Furthermore, this technique is the only accurate way to determine whether infants are exclusively breast-fed and validate conventional methods based on surveys to mothers.
Khazaei, Esmaeil; Milne-Home, William
2017-05-01
Elevated levels of chloride concentration due to anthropogenic activities including the road salts, septic effluent and agricultural sources are common in shallow groundwater of the recent glacial deposits north of Toronto, Ontario, Canada. Identifying suitable techniques for discriminating the source of the chloride concentration helps to better plan the protection of groundwater in the area. This paper examines the applicability of geochemical techniques with emphasis on Panno et al. (Ground Water 44: 176-187, 2006) and Mullaney et al. (2009) graphical approaches for discriminating the sources of chloride with known causes of impacts. The results indicated that the graphical methods developed using Cl - , Br - and/or total nitrogen (N) could identify the combined sources of road salts and septic systems. However, discriminating between the road salts, septic effluent or agricultural sources needs to be complemented by other techniques including the artificial sweeteners and isotope tracers.
Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere.
Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Gao, Meng; Gao, Jian; Michalski, Greg; Wang, Yuesi
2018-07-01
The sources of aerosol ammonium (NH 4 + ) are of interest because of the potential of NH 4 + to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH 4 + is challenging in the urban atmosphere, which has excess ammonia (NH 3 ) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH 4 + , with isotopically light (-33.8‰) and heavy (0 to +12.0‰) NH 4 + associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37-52% of the initial NH 3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH 3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH 3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH 3 and aerosol NH 4 + . Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Separated isotopes: vital tools for science and medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
This report summarizes the deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE). The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An Overview with three recommendations resulting from the Workshop, prepared by the Steering Committee, is followed by Chapters 1 to 4, reports of the following four Workshop panels: (1) panel on research applications in physics, chemistry and geoscience; (2) panelmore » on commercial applications; (3) panel on biomedical research applications; (4) panel on clinical applications. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They proved of great value and are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11. Selected papers have been abstracted and indexed.« less
Someda, Hidetoshi; Gakuhari, Takashi; Akai, Junko; Araki, Yoshiyuki; Kodera, Tsutomu; Tsumatori, Gentaro; Kobayashi, Yasushi; Matsunaga, Satoru; Abe, Shinichi; Hashimoto, Masatsugu; Saito, Megumi; Yoneda, Minoru; Ishida, Hajime
2016-04-01
Stable isotope analysis has undergone rapid development in recent years and yielded significant results in the field of forensic sciences. In particular, carbon and oxygen isotopic ratios in tooth enamel obtained from human remains can provide useful information for the crosschecking of morphological and DNA analyses and facilitate rapid on-site prescreening for the identification of remains. This study analyzes carbon and oxygen isotopic ratios in the tooth enamel of Japanese people born between 1878 and 1930, in order to obtain data for methodological differentiation of Japanese and American remains from the Second World War. The carbon and oxygen isotopic ratios in the tooth enamel of the examined Japanese individuals are compared to previously reported data for American individuals (born post WWII), and statistical analysis is conducted using a discrimination method based on a logistic regression analysis. The discrimination between the Japanese and US populations, including Alaska and Hawaii, is found to be highly accurate. Thus, the present method has potential as a discrimination technique for both populations for use in the examination of mixed remains comprising Japanese and American fallen soldiers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansfield, C. D.; Rutt, H. N.
2002-02-01
The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.
All-diode-laser cooling of Sr+ isotope ions for analytical applications
NASA Astrophysics Data System (ADS)
Jung, Kyunghun; Yamamoto, Kazuhiro; Yamamoto, Yuta; Miyabe, Masabumi; Wakaida, Ikuo; Hasegawa, Shuichi
2017-06-01
Trapping and cooling of Sr+ isotope ions by an all-diode-laser system has been demonstrated in order to develop a novel mass spectrometric technique in combination with ion trap-laser cooling. First, we constructed external cavity diode lasers and associated stabilization apparatus for laser cooling of Sr+ ions. The transition frequencies confirmed by optogalvanic spectroscopy enabled successful cooling of 88Sr+ ions. An image of two trapped ions has been captured by CCD camera. Minor isotopes, 84Sr+ and 86Sr+, were also cooled and trapped. From an analysis of the observed spectra of a string crystal of each isotope, the isotope shifts of the cooling transition (5s 2S1/2 → 5p 2P1/2) of Sr+ ions were determined to be +371(8) MHz for Δν84-88 and +169(8) MHz for Δν86-88. In the case of the repumping transition (4d 2D3/2 → 5p 2P1/2), Δν84-88 and Δν86-88 were measured to be -833(6) and -400(5) MHz, respectively. These values are in good agreement with previously reported values.
Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard
2017-07-01
Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other analytical techniques for characterization of complex biofilm matrices are discussed in a critical review. Graphical Abstract Applicability of Raman microspectroscopy for biofilm analysis.
Monte Carlo isotopic inventory analysis for complex nuclear systems
NASA Astrophysics Data System (ADS)
Phruksarojanakun, Phiphat
Monte Carlo Inventory Simulation Engine (MCise) is a newly developed method for calculating isotopic inventory of materials. It offers the promise of modeling materials with complex processes and irradiation histories, which pose challenges for current, deterministic tools, and has strong analogies to Monte Carlo (MC) neutral particle transport. The analog method, including considerations for simple, complex and loop flows, is fully developed. In addition, six variance reduction tools provide unique capabilities of MCise to improve statistical precision of MC simulations. Forced Reaction forces an atom to undergo a desired number of reactions in a given irradiation environment. Biased Reaction Branching primarily focuses on improving statistical results of the isotopes that are produced from rare reaction pathways. Biased Source Sampling aims at increasing frequencies of sampling rare initial isotopes as the starting particles. Reaction Path Splitting increases the population by splitting the atom at each reaction point, creating one new atom for each decay or transmutation product. Delta Tracking is recommended for high-frequency pulsing to reduce the computing time. Lastly, Weight Window is introduced as a strategy to decrease large deviations of weight due to the uses of variance reduction techniques. A figure of merit is necessary to compare the efficiency of different variance reduction techniques. A number of possibilities for figure of merit are explored, two of which are robust and subsequently used. One is based on the relative error of a known target isotope (1/R 2T) and the other on the overall detection limit corrected by the relative error (1/DkR 2T). An automated Adaptive Variance-reduction Adjustment (AVA) tool is developed to iteratively define parameters for some variance reduction techniques in a problem with a target isotope. Sample problems demonstrate that AVA improves both precision and accuracy of a target result in an efficient manner. Potential applications of MCise include molten salt fueled reactors and liquid breeders in fusion blankets. As an example, the inventory analysis of a liquid actinide fuel in the In-Zinerator, a sub-critical power reactor driven by a fusion source, is examined. The result reassures MCise as a reliable tool for inventory analysis of complex nuclear systems.
Highly multiparametric analysis by mass cytometry.
Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Nitz, Mark; Winnik, Mitchell A; Tanner, Scott
2010-09-30
This review paper describes a new technology, mass cytometry, that addresses applications typically run by flow cytometer analyzers, but extends the capability to highly multiparametric analysis. The detection technology is based on atomic mass spectrometry. It offers quantitation, specificity and dynamic range of mass spectrometry in a format that is familiar to flow cytometry practitioners. The mass cytometer does not require compensation, allowing the application of statistical techniques; this has been impossible given the constraints of fluorescence noise with traditional cytometry instruments. Instead of "colors" the mass cytometer "reads" the stable isotope tags attached to antibodies using metal-chelating labeling reagents. Because there are many available stable isotopes, and the mass spectrometer provides exquisite resolution between detection channels, many parameters can be measured as easily as one. For example, in a single tube the technique allows for the ready detection and characterization of the major cell subsets in blood or bone marrow. Here we describe mass cytometric immunophenotyping of human leukemia cell lines and leukemia patient samples, differential cell analysis of normal peripheral and umbilical cord blood; intracellular protein identification and metal-encoded bead arrays. Copyright © 2010 Elsevier B.V. All rights reserved.
Present and future prospects of accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
Kutschera, Walter
1988-05-01
Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.
Use of doubly labeled water technique in soldiers training for jungle warfare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes-Ewan, C.H.; Morrissey, B.L.; Gregg, G.C.
1989-07-01
The doubly labeled water method was used to estimate the energy expended by four members of an Australian Army platoon (34 soldiers) engaged in training for jungle warfare. Each subject received an oral isotope dose sufficient to raise isotope levels by 200-250 ({sup 18}O) and 100-120 ppm ({sup 2}H). The experimental period was 7 days. Concurrently, a factorial estimate of the energy expenditure of the platoon was conducted. Also, a food intake-energy balance study was conducted for the platoon. Mean daily energy expenditure by the doubly labeled water method was 4,750 kcal (range 4,152-5,394 kcal). The factorial estimate of meanmore » daily energy expenditure was 4,535 kcal. Because of inherent inaccuracies in the food intake-energy balance technique, we were able to conclude only that energy expenditure, as measured by this method, was greater than the estimated mean daily intake of 4,040 kcal. The doubly labeled water technique was well tolerated, is noninvasive, and appears to be suitable in a wide range of field applications.« less
Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt
2017-03-30
Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Fractionation of silver isotopes in native silver explained by redox reactions
NASA Astrophysics Data System (ADS)
Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel
2018-03-01
Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver isotope compositions might provide information about geochemical reactions relevant to both environmental and hydrometallurgical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hungate, Bruce; Pett-Ridge, Jennifer; Blazewicz, Steven
In this project, we developed an innovative and ground-breaking technique, quantitative stable isotope probing, a technique that uses density separation of nucleic acids as a quantitative measurement technique. This work is substantial because it advances SIP beyond the qualitative technique that has dominate the field for years. The first methods paper was published in Applied and Environmental Microbiology (Hungate et al. 2015), and this paper describes the mathematical model underlying the quantitative interpretation. A second methods paper (Schwartz et al. 2015) provides a conceptual overview of the method and its application to research problems. A third methods paper was justmore » published (Koch et al. 2018), in which we develop the quantitative model combining sequencing and isotope data to estimate actual rates of microbial growth and death in natural populations. This work has met much enthusiasm in scientific presentations around the world. It has met with equally enthusiastic resistance in the peer-review process, though our record of publication to date argues that people are accepting the merits of the approach. The skepticism and resistance are also potentially signs that this technique is pushing the field forward, albeit with some of the discomfort that accompanies extrapolation. Part of this is a cultural element in the field – the field of microbiology is not accustomed to the assumptions of ecosystem science. Research conducted in this project has pushed the philosophical perspective that major advances can occur when we advocate a sound merger between the traditions of strong inference in microbiology with those of grounded scaling in ecosystem science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hungate, Bruce; PettRidge, Jennifer; Blazewicz, St
In this project, we developed an innovative and groundbreaking technique, quantitative stable isotope probing, a technique that uses density separation of nucleic acids as a quantitative measurement technique. This work is substantial because it advances SIP beyond the qualitative technique that has dominate the field for years. The first methods paper was published in Applied and Environmental Microbiology (Hungate et al. 2015), and this paper describes the mathematical model underlying the quantitative interpretation. A second methods paper (Schwartz et al. 2015) provides a conceptual overview of the method and its application to research problems. A third methods paper was justmore » published (Koch et al. 2018), in which we develop the quantitative model combining sequencing and isotope data to estimate actual rates of microbial growth and death in natural populations. This work has met much enthusiasm in scientific presentations around the world. It has met with equally enthusiastic resistance in the peerreview process, though our record of publication to date argues that people are accepting the merits of the approach. The skepticism and resistance are also potentially signs that this technique is pushing the field forward, albeit with some of the discomfort that accompanies extrapolation. Part of this is a cultural element in the field – the field of microbiology is not accustomed to the assumptions of ecosystem science. Research conducted in this project has pushed the philosophical perspective that major advances can occur when we advocate a sound merger between the traditions of strong inference in microbiology with those of grounded scaling in ecosystem science.« less
Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance
NASA Astrophysics Data System (ADS)
Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.
2016-12-01
Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical applications for human health and terrestrial medicine [5]. REFERENCES [1] Morgan, J.L. et al (2011) Anal Chem 83, 6956-6962. [2] Skulan, J.L. et al. (2007) Clin Chem 53, 1155-1158. [3] Morgan, J.L. et al (2012) PNAS 109, 9989-9994. [4] Channon, M.B. et al (2015) Bone 77, 69-74. [5] Gordon, G.W. et al (2014) Leukemia 28, 2112-2115.
Possible Nuclear Safeguards Applications: Workshop on Next-Generation Laser Compton Gamma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, J. Matthew
2016-11-17
These are a set of slides for the development of a next-generation photon source white paper. The following topics are covered in these slides: Nuclear Safeguards; The Nuclear Fuel Cycle; Precise isotopic determination via NRF; UF 6 Enrichment Assay; and Non-Destructive Assay of Spent Nuclear Fuel. In summary: A way to non-destructively measure precise isotopics of ~kg and larger samples has multiple uses in nuclear safeguards; Ideally this is a compact, fieldable device that can be used by international inspectors. Must be rugged and reliable; A next-generation source can be used as a testing ground for these techniques as technologymore » develops.« less
Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur
NASA Astrophysics Data System (ADS)
Wieser, Michael Eugene
1998-09-01
Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron isotopes can be used to improve cultivation of coffee particularly in regions where 'organically grown' coffee had markedly different δ11B values than beans grown with boron- containing fertilizers in neighbouring regions. A regional dependence on the δ11B values of the coffee allow the sources of commercial coffee blends to be identified.
NASA Astrophysics Data System (ADS)
Jakopic, Rozle; Richter, Stephan; Kühn, Heinz; Benedik, Ljudmila; Pihlar, Boris; Aregbe, Yetunde
2009-01-01
A sample preparation procedure for isotopic measurements using thermal ionization mass spectrometry (TIMS) was developed which employs the technique of carburization of rhenium filaments. Carburized filaments were prepared in a special vacuum chamber in which the filaments were exposed to benzene vapour as a carbon supply and carburized electrothermally. To find the optimal conditions for the carburization and isotopic measurements using TIMS, the influence of various parameters such as benzene pressure, carburization current and the exposure time were tested. As a result, carburization of the filaments improved the overall efficiency by one order of magnitude. Additionally, a new "multi-dynamic" measurement technique was developed for Pu isotope ratio measurements using a "multiple ion counting" (MIC) system. This technique was combined with filament carburization and applied to the NBL-137 isotopic standard and samples of the NUSIMEP 5 inter-laboratory comparison campaign, which included certified plutonium materials at the ppt-level. The multi-dynamic measurement technique for plutonium, in combination with filament carburization, has been shown to significantly improve the precision and accuracy for isotopic analysis of environmental samples with low-levels of plutonium.
Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A
2016-09-08
In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk = (δ 15 N α + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.
Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance
Dongsheng, Liu; Xu, Rong; Cowburn, David
2009-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474
Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases
NASA Astrophysics Data System (ADS)
Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla
2016-04-01
An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (< 0.1 ‰) measurements in ambient air, QCLAS may be combined with a fully automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B., Henne, S. & Emmenegger, L. Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: Analytical improvements and representative re-sults. Atmospheric Measurement Techniques 6, 1659-1671 (2013). 2 Tuzson, B. et al. Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events. Atmospheric Chemistry and Physics 11, 1685-1696 (2011). 3 Mohn, J. et al. A liquid nitrogen-free preconcentration unit for measurements of ambient N2O isotopomers by QCLAS. Atmospheric Measurement Techniques 3, 609-618 (2010). 4 Wolf, B. et al. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences 12, 2517-1960 (2015). 5 Harris, E. et al. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland. Waste Management 35, 135-140 (2015). 6 Harris, E. et al. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor. Water Research 83, 258-270 (2015). 7 Eyer, S. et al. Real-time analysis of δ13C- and δ D-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results. Atmos. Meas. Tech. Discuss. 8, 8925-8970 (2015).
NASA Astrophysics Data System (ADS)
Becker, J. Sabine
2005-04-01
For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.
Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis
NASA Astrophysics Data System (ADS)
Pratt, D.; Orlowski, N.; McDonnell, J.
2016-12-01
The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.
Thiemens, Mark H
2013-10-29
Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.
ERIC Educational Resources Information Center
Thatcher, L. L.; And Others
Analytical methods for determining important components of fission and natural radioactivity found in water are reported. The discussion of each method includes conditions for application of the method, a summary of the method, interferences, required apparatus, procedures, calculations and estimation of precision. Isotopes considered are…
Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria
NASA Astrophysics Data System (ADS)
Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick
2015-04-01
In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to 13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
Srivastava, Abneesh; Hodges, Joseph T
2018-06-05
Isotope dilution-cold-vapor-inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has become the primary standard for measurement of gaseous elemental mercury (GEM) mass concentration. However, quantitative mass spectrometry is challenging for several reasons including (1) the need for isotopic spiking with a standard reference material, (2) the requirement for bias-free passive sampling protocols, (3) the need for stable mass spectrometry interface design, and (4) the time and cost involved for gas sampling, sample processing, and instrument calibration. Here, we introduce a high-resolution laser absorption spectroscopy method that eliminates the need for sample-specific calibration standards or detailed analysis of sample treatment losses. This technique involves a tunable, single-frequency laser absorption spectrometer that measures isotopically resolved spectra of elemental mercury (Hg) spectra of 6 1 S 0 ← 6 3 P 1 intercombination transition near λ = 253.7 nm. Measured spectra are accurately modeled from first-principles using the Beer-Lambert law and Voigt line profiles combined with literature values for line positions, line shape parameters, and the spontaneous emission Einstein coefficient to obtain GEM mass concentration values. We present application of this method for the measurement of the equilibrium concentration of mercury vapor near room temperature. Three closed systems are considered: two-phase mixtures of liquid Hg and its vapor and binary two-phase mixtures of Hg-air and Hg-N 2 near atmospheric pressure. Within the experimental relative standard uncertainty, 0.9-1.5% congruent values of the equilibrium Hg vapor concentration are obtained for the Hg-only, Hg-air, Hg-N 2 systems, in confirmation with thermodynamic predictions. We also discuss detection limits and the potential of the present technique to serve as an absolute primary standard for measurements of gas-phase mercury concentration and isotopic composition.
Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua
2013-01-01
Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.
From Dates to Rates: The Emergence of Integrated Geochronometry (Invited)
NASA Astrophysics Data System (ADS)
Hodges, K. V.; Adams, B. A.; Bohon, W.; Cooper, F. J.; Tripathy-Lang, A.; Van Soest, M. C.; Watson, E. B.; Young, K. E.
2013-12-01
Many applications of isotope geochemistry to telling time have involved geochronology - the measurement of the crystallization age of a mineral - or thermochronology, the measurement of the time at which a mineral cooled through an estimated closure temperature. The resulting data typically provide one or two points along an evolving temperature-time (Tt) path. Unfortunately, many problems require a richer knowledge of longer portions of the Tt path and thus the integrated application of multiple chronometers to individual minerals or suites of minerals from a particular sample or outcrop. In this presentation, we review some of the most recent advances in geochronometry, the direct dating of rates of a wide range of geologic processes on timescales ranging from seconds (in the case of bolide impact on Earth and elsewhere in the Solar System) to hundreds of millions of years (in the case of very slowly cooled Precambrian terrains). For all chronometers except those based on the production of fission tracks, our capacity to extract precise and accurate Tt paths depends on a good understanding of the kinetics of diffusive loss of radiogenic daughter isotopes. Laboratory experiments have substantially improved our understanding of nominal kinetic parameters in recent years, but our increased use of new methods for their determination (e.g., Rutherford backscattering spectroscopy, nuclear reaction analysis, and laser depth profiling) have demonstrated complexities related to compositional variations and asymmetric diffusion. At the same time, a growing number of geologic applications of these chronometers illustrate the importance of deformation history and radiation damage in modifying effective diffusion parameters. Such factors have two important implications for geochronometry. First, they suggest that studies of multiple minerals employing multiple isotopic methods - integrated geochronometry - are likely to produce more robust constraints on Tt paths than those involving the application of a single geochronometer. Second, they suggest that characterization of the chemistry and structure of minerals prior to dating may become standard procedure in most laboratories. Some of the most valuable constraints on the cooling histories of individual crystals come from microanalytical techniques that illuminate natural diffusive loss profiles, either directly (e.g., laser and ion microprobe mapping) or indirectly (e.g., 40Ar/39Ar and 4He/3He incremental heating experimentation). For most materials and most cooling histories, direct microanalytical approaches yield less spatial resolution and thus a poorer resolution of the cooling history. On the other hand, the extraction of cooling histories based on data obtained through indirect techniques requires significant simplifying assumptions regarding the three-dimensional distribution of parent isotopes that are not always warranted. Studies that integrate such techniques, rare in the literature thus far, are ushering in a new era of quantitative geochronometry.
Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; ...
2014-09-23
Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).« less
Triple-Label β Liquid Scintillation Counting
Bukowski, Thomas R.; Moffett, Tyler C.; Revkin, James H.; Ploger, James D.; Bassingthwaighte, James B.
2010-01-01
The detection of radioactive compounds by liquid scintillation has revolutionized modern biology, yet few investigators make full use of the power of this technique. Even though multiple isotope counting is considerably more difficult than single isotope counting, many experimental designs would benefit from using more than one isotope. The development of accurate isotope counting techniques enabling the simultaneous use of three β-emitting tracers has facilitated studies in our laboratory using the multiple tracer indicator dilution technique for assessing rates of transmembrane transport and cellular metabolism. The details of sample preparation, and of stabilizing the liquid scintillation spectra of the tracers, are critical to obtaining good accuracy. Reproducibility is enhanced by obtaining detailed efficiency/quench curves for each particular set of tracers and solvent media. The numerical methods for multiple-isotope quantitation depend on avoiding error propagation (inherent to successive subtraction techniques) by using matrix inversion. Experimental data obtained from triple-label β counting illustrate reproducibility and good accuracy even when the relative amounts of different tracers in samples of protein/electrolyte solutions, plasma, and blood are changed. PMID:1514684
Modern applications for a total sulfur reduction distillation method - what’s old is new again
2014-01-01
Background The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments. Results The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil. Conclusions Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling. PMID:24808759
NASA Astrophysics Data System (ADS)
Burgess, S. S. O.; Nguyen, M. L.
2009-04-01
Managing water use efficiency and ecohydrology is important for providing food, water and essential ecosystem services. Many agricultural, ecological, atmospheric and hydrological processes cannot be meaningfully managed without an area-wide or catchment-level perspective. However a vast number of factors, including mixed land uses are incorporated at such scales. There is a need for integrative, mobile and adaptable techniques to make water related measurements over large areas and mixed land uses. Nuclear techniques and analogous non-nuclear techniques may be deployed in a number of spheres within the soil-plant-atmosphere continuum (e.g. rhizosphere and above-canopy microclimate) with nuclear techniques having a distinct contribution owing to their unique ability to trace biogeochemical processes including the movement and transformation of water, nutrients and agrochemicals. 1) Soils. Isotopes can be used to trace water sources to understand groundwater dependence, rooting depth, etc. but not at all sites: early success in central USA studies has not always been repeatable in climates which produce more uniform isotopic signatures in various water sources. Soil water resources available to crops can also be studied using neutron moisture meters, but training, transport and safety issues argue for stringent management and inclusion of electrical capacitance probes for routine or automated applications. Results from capacitance probes can benefit from benchmarking against neutron probe measurements, which remain more powerful for sampling larger volumes in cases of heterogenous soils or where salinity levels are problematic. Because interpretation of soil water content in terms of plant available water also requires knowledge of soil organic matter characteristics, 13C and compound specific stable isotopes can help to identify changes in soil organic matter composition and hence water and plant nutrient availability. 2) Plants. Analysis of carbon isotope discrimination can be used to monitor water use efficiency and seasonal water stress. This includes analysis of carbon in structural leaf material and soluble sugars for different temporal scales. Some progress is also being made using 18O signatures to estimate transpiration. Furthermore xylem sap can be measured for isotopic composition can be used and absolute flow rates in the plant can be measured with thermometric tracers. Information on transpiration can help differentiate between wasteful evaporative processes versus efficient plant gas exchange. 3) Atmosphere (above & within canopy). Whilst traditional vapour related techniques such as Bowen ratio and eddy flux can measure total ET, modern cavity ring-down laser spectrometers can sample isotopes in water vapour. These devices hold much promise to identify water sources and evaporative processes using dual isotope mixing models and Keeling plots analysis: the result is improved partitioning of transpiration and evaporation. This above suite of measurements can provide knowledge to choose correct plant species, manage irrigation and microclimate, compare land uses and predict impacts on the environment, including nutrient and agrochemical movement in the landscape. We discuss current progress in IAEA and related projects which are aimed at bringing an integrated, multi-disciplinary framework for area-wide water management that can promote food security, water resources and essential ecosystem services.
Microbial seascapes revisited.
DeLong, E F
2001-06-01
A remarkable array of new discoveries is emerging from studies of naturally occurring marine microbes. These discoveries originate from novel applications of evolving technologies, ranging from molecular phylogenetics to stable isotope analyses, to advanced microscopic techniques, to genomics. As a consequence, new perspectives on the natural history of marine microbes, the inseparable nature of the geological and biological worlds, and a plethora of unexpected new genotypes, phenotypes and physiologies are now being revealed. As our observations of naturally occurring microbes become increasingly more sophisticated, so will theory, technical applications and predictive capabilities in microbial ecology.
NASA Astrophysics Data System (ADS)
Wershow, H.; Janssen, R.; Vonhof, H.; Lubbe, J. V. D.; Joordens, J. J.; Koutamanis, D. S.; Puspaningrum, M. R.; de Vos, J.; Reijmer, J.
2015-12-01
Climate plays a prominent role in ecosystem development in the biodiversity hotspot Sundaland (Malaysia and western Indonesia) throughout the Quaternary. Recurrent isolation and connection of the islands to mainland Asia due to sea level fluctuations has enabled repeated biotic migrations and encouraged genetic speciation. These migration waves also brought Homo erectus to Java. Together with extensive and well-documented collections of other terrestrial species, these hominin fossils form faunal assemblages of which the paleoenvironmental and paleogeographical background is poorly known. Using carbon, oxygen and strontium isotopes, we have reconstructed the paleoenvironmental and paleoecological conditions of several Holocene and Pleistocene fossil sites on Sumatra and Java, Indonesia. Carbon (∂13C) and oxygen (∂18O) isotope analysis of well-preserved herbivore teeth enamel reveals a marked contrast between C3-dominated diets in warmer periods, and C4-dominated diets in cooler periods, reflecting the distinct changes in Sundaland vegetation cover between glacials and interglacials. These isotope patterns allow us to assign the appropriate climatic background to some of the older fossil assemblages from Java, for which dating uncertainty does not allow direct assignment to glacial or interglacial conditions. The stable isotope signatures of herbivores from Trinil and Sangiran, sites well-known for the fossil occurrence of Homo erectus, indicate glacial conditions. The isotope data of several H. erectus fossils from these sites seem to be in line with such an interpretation. Furthermore, we applied strontium (87Sr/86Sr) isotope analyses to a sample subset. The preliminary data show distinct Sr-isotope ratios for different sites, providing clues for the applicability of this isotope technique in detecting climate-related mobility of Sundaland fossil faunas.
NASA Astrophysics Data System (ADS)
Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.
2017-12-01
Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal is a refined search tool with straightforward application in the search for early life on Earth and distant life recorded in meteorites, returned samples, and in situ measurements.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2010-01-01
We report results of experiments designed to characterize the carbon isotope composition of intermediate organic compounds produced as a result of mineral surface catalyzed reactions. The impetus for this work stems from recently reported detection of methane in the Martian atmosphere coupled with evidence showing extensive water-rock interaction during Martian history. Abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions may be one possible process responsible for methane generation on Mars, and measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible isotope measurements. Our isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-Combustion-Isotope Ratio Mass Specrometry (Py-GC-MS-C-IRMS). Others have conducted similar pyrolysis-IRMS experiments on low molecular weight organic acids (Dias, et al, Organic Geochemistry, 33 [2002]). Our technique differs in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of the organic compounds. A sample of carboxylic acid (mixture of C1 through C6) was pyrolyzed at 100 XC and passed through the GC-MS-C-IRMS (combusted at 940 XC). In order to test the reliability of our technique we compared the _13C composition of different molecular weight organic acids (from C1 through C6) extracted individually by the traditional sealed-tube cupric oxide combustion (940 XC) method with the _13C produced by our pyrolysis technique. Our data indicate that an average 4.3. +/-0.5. (V-PDB) apparent isotopic fractionation accompanies the pyrolysis extractions. We postulate that this isotope offset could be the result of incomplete thermal desorption during pyrolysis. We are continuing to investigate the reliability of this pyrolysis technique for correcting carbon isotope measurements of mineral surface catalyzed organic compounds.
Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer
Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor
2015-09-05
To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less
Paleo-reconstruction: Using multiple biomarker parameters
NASA Astrophysics Data System (ADS)
Chen, Zhengzheng
Advanced technologies have played essential roles in the development of molecular organic geochemistry. In this thesis, we have developed several new techniques and explored their applications, alone and with previous techniques, to paleo-reconstruction. First, we developed a protocol to separate biomarker fractions for accurate measurement of compound-specific isotope analysis. This protocol involves combination of zeolite adduction and HPLC separation. Second, an integrated study of traditional biomarker parameters, diamondoids and compound-specific biomarker isotopes, differentiated oil groups from Saudi Arabia. Specifically, Cretaceous reservoired oils were divided into three groups and the Jurassic reservoired oils were divided into two groups. Third, biomarker acids provide an alternative way to characterize biodegradation. Oils from San Joaquin Valley, U.S.A. and oils from Mediterranean display drastically different acid profiles. These differences in biomarker acids probably reflect different processes of biodegradation. Fourth, by analyzing biomarker distributions in the organic-rich rocks recording the onset of Late Ordovician extinction, we propose that changes in salinity associated with eustatic sea-level fall, contributed at least locally to the extinction of graptolite species.
Measurements of Gluconeogenesis and Glycogenolysis: A Methodological Review.
Chung, Stephanie T; Chacko, Shaji K; Sunehag, Agneta L; Haymond, Morey W
2015-12-01
Gluconeogenesis is a complex metabolic process that involves multiple enzymatic steps regulated by myriad factors, including substrate concentrations, the redox state, activation and inhibition of specific enzyme steps, and hormonal modulation. At present, the most widely accepted technique to determine gluconeogenesis is by measuring the incorporation of deuterium from the body water pool into newly formed glucose. However, several techniques using radioactive and stable-labeled isotopes have been used to quantitate the contribution and regulation of gluconeogenesis in humans. Each method has its advantages, methodological assumptions, and set of propagated errors. In this review, we examine the strengths and weaknesses of the most commonly used stable isotopes methods to measure gluconeogenesis in vivo. We discuss the advantages and limitations of each method and summarize the applicability of these measurements in understanding normal and pathophysiological conditions. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
RNA-based stable isotope probing (RNA-SIP) to unravel intestinal host-microbe interactions.
Egert, Markus; Weis, Severin; Schnell, Sylvia
2018-05-30
The RNA-SIP technology, introduced into molecular microbial ecology in 2002, is an elegant technique to link the structure and function of complex microbial communities, i.e. to identify microbial key-players involved in distinct degradation and assimilation processes under in-situ conditions. Due to its dependence of microbial RNA, this technique is particularly suited for environments with high numbers of very active, i.e. significantly RNA-expressing, bacteria. So far, it was mainly used in environmental studies using microbiotas from soil or water habitats. Here we outline and summarize our application of RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in intestinal samples of human and animal origin. Following an isotope label from a prebiotic substrate into the RNA of distinct bacterial taxa will help to better understand the functionality of these medically and economically important nutrients in an intestinal environment. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.
2016-12-01
The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.
Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo
2009-12-01
A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.
Meteoritic Sulfur Isotopic Analysis
NASA Technical Reports Server (NTRS)
Thiemens, Mark H.
1996-01-01
Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.
Thiemens, Mark H.
2013-01-01
Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299
Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques
NASA Astrophysics Data System (ADS)
Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara
2010-05-01
In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity of the sample in the box. In the WS-CRDS the path of laser is longer, producing higher-sensitivity measurements. The instrument is paired with an autosampler and can be used without it and the vaporizer to analyze directly the isotopic composition of the water vapour in the atmosphere. In addition, the instrument can be moved from the laboratory and also used for outdoor measurements. The more important improvements over traditional IRMS techniques are that WS-CRDS needs less sample in order to perform the analysis (<2 ul vs. 3/5 ml); that it doesn't need manipulation of the sample (like the gas/water equilibration techniques) and the analyses are faster. Coversely, memory effects may affect the measurements so there is the need to increase the number of injection to have a high precision measurement. The laboratory of Isotope Geochemistry of the Department of Geosciences has recently acquired a WS-CRDS system from PICARRO. The isotopic data obtained with this new method have been compared with the ones obtained by means of IRMS methods. An HDO device coupled with a Thermo Finnigan Delta Plus Advantage mass spectrometer has been used, using the well know CO2 and H2/water equilibration technique. At the moment of the writing of the abstract the mean difference between the values obtained using PICARRO and using the traditional IRMS method is of the order of 0.1 per mil for the ratio 18O/16O and 1.00 per mil for the ratio D/H, but further measurements are currently underway. O'Keef A., Deacon D.A.G., 1988. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Rev. Sci. Instrum., 59, 2544.
Aleinikoff, J.N.; Muhs, D.R.; Sauer, R.R.; Fanning, C.M.
1999-01-01
A new application of the Pb isotopic tracer technique has been used to determine the relative importance of different silt sources for late Wisconsin loess in the central Great Plains of eastern Colorado. Samples of the Peoria Loess collected throughout the study area contain K-feldspar derived from two isotopically and genetically distinct sources: (1) glaciogenic material from Early and Middle Proterozoic crystalline rocks of the Colorado province, and (2) volcaniclastic material from the Tertiary White River Group exposed on the northern Great Plains. Pb isotopic compositions of K-feldspar in loess from two dated vertical sections (at Beecher Island and Last Chance, Colorado) vary systematically, implying climatic control of source availability. We propose a model whereby relatively cold conditions promoted the advance of Front Range valley glaciers discharging relatively little glaciogenic silt, but strong winds caused eolian erosion of White River Group silt due to a decrease in vegetation cover. During warmer periods, valley glaciers receded and discharged abundant glaciogenic silt, while surfaces underlain by the White River Group were stabilized by vegetation. Isotopic data from eastern Colorado loess sections record two warm-cold-warm cycles during late Wisconsin time between about 21 000 and 11 000 radiocarbon yr B.P., similar to results from other studies in the United States and Greenland.
Carbon cycling in terrestrial environments: Chapter 17
Wang, Yang; Huntington, Thomas G.; Osher, Laurie J.; Wassenaar, Leonard I; Trumbore, Susan E.; Amundson, Ronald; Harden, Jennifer W.; McKnight, Diane M.; Schiff, Sherry L.; Aiken, George R.; Lyons, W. Berry; Aravena, Ramon O.; Baron, Jill S.
1998-01-01
This chapter reviews a number of applications of isotopic techniques for the investigation of carbon cycling processes. Carbon dioxide (C02) is an important greenhouse gas. Its concentration in the atmosphere has increased from an estimated 270 ppm at the beginning of the industrial revolution to ∼ 360 ppm at present. Climatic conditions and atmospheric C02 concentration also influence isotopic discrimination during photosynthesis. Natural and anthropogenically induced variations in the carbon isotopic abundance can be exploited to investigate carbon transformations between pools on various time scales. It also discusses one of the isotopes of carbon, the 14C, that is produced in the atmosphere by interactions of cosmic-ray produced neutrons with stable isotopes of nitrogen (N), oxygen (O), and carbon (C), and has a natural abundance in the atmosphere of ∼1 atom 14 C per 1012 atoms 12C. The most important factor affecting the measured 14C ages of soil organic matter is the rate of organic carbon cycling in soils. Differences in the dynamics of soil carbon among different soils or soil horizons will result in different soil organic 14C signatures. As a result, the deviation of the measured 14C age from the true age could differ significantly among different soils or soil horizons.
Accelerator mass spectrometry.
Hellborg, Ragnar; Skog, Göran
2008-01-01
In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.
Blake, Ruth E.; Alt, Jeffrey C.; Martini, Anna M.
2001-01-01
The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (δ18Op) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO4–H2O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that δ18OP values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of δ18Op as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, δ18Op may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars. PMID:11226207
Blake, R E; Alt, J C; Martini, A M
2001-02-27
The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (delta(18)O(p)) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO(4)-H(2)O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that delta(18)O(P) values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of delta(18)O(p) as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, delta(18)O(p) may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars.
Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S
2015-01-01
Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.
NASA Astrophysics Data System (ADS)
Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.
2010-12-01
Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications presented for Sr isotope ratios simply supported by the fact that a higher statistical number of samples could be analyzed. Further supported by direct introductions systems such as laser ablation, the popularity of Sr in science has increased steadily. A number of fields of applications make nowadays use of the system so far: anthropology and archaeology as well as food science, chemical technology, forensic science, medicine or biology. The Sr isotope system will be presented along with analytical techniques applied. Selected examples making use of the natural Sr isotopic variation will be reported: Proof of provenance of food, forensic applications and migration studies on prehistoric cultures or modern biological systems. In addition, the application of enriched Sr isotope spikes will be presented. The spikes are administered in order to investigate Sr turnovers (e.g. as proxy for Ca in biomedical studies), marking tissues for tracing and migration experiments and investigating environmental processes.
NBS work on neutron resonance radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrack, R.A.
1987-01-01
NBS has been engaged in a wide-ranging program in Neutron Resonance Radiography utilizing both one- and two-dimensional position-sensitive neutron detectors. The ability to perform a position-sensitive assay of up to 16 isotopes in a complex matrix has been demonstrated for a wide variety of sample types, including those with high gamma activity. A major part of the program has been the development and application of the microchannel-plate-based position-sensitive neutron detector. This detector system has high resolution and sensitivity, together with adequate speed of response to be used with neutron time-of-flight techniques. This system has demonstrated the ability to simultaneously imagemore » three isotopes in a sample with no interference.« less
Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul
2012-01-01
There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306
High-Precision Isotope Ratio Measurements of Sub-Picogram Actinide Samples
NASA Astrophysics Data System (ADS)
Pollington, A. D.; Kinman, W.
2016-12-01
One of the most exciting trends in analytical geochemistry over the past decade is the push towards smaller and smaller sample sizes while simultaneously achieving high precision isotope ratio measurements. This trend has been driven by advances in clean chemistry protocols, and by significant breakthroughs in mass spectrometer ionization efficiency and detector quality (stability and noise for low signals). In this presentation I will focus on new techniques currently being developed at Los Alamos National Laboratory for the characterization of ultra-small samples (pg, fg, ag), with particular focus on actinide measurements by MC-ICP-MS. Analyses of U, Pu, Th and Am are routinely carried out in our facility using multi-ion counting techniques. I will describe some of the challenges associated with using exclusively ion counting methods (e.g., stability, detector cross calibration, etc.), and how we work to mitigate them. While the focus of much of the work currently being carried out is in the broad field of nuclear forensics and safeguards, the techniques that are being developed are directly applicable to many geologic questions that require analyses of small samples of U and Th, for example. In addition to the description of the technique development, I will present case studies demonstrating the precision and accuracy of the method as applied to real-world samples.
Transgenerational isotopic marking of carp Cyprinus carpio, L. using a 86Sr /84Sr double spike
NASA Astrophysics Data System (ADS)
Zitek, Andreas; Cervicek, Magdalena; Irrgeher, Johanna; Horsky, Monika; Kletzl, Manfred; Weismann, Thomas; Prohaska, Thomas
2013-04-01
Transgenerational isotopic marking has been recognized recently as an effective tool for mass marking and tracking of individual fish to their original source. Compared to other conventional marking techniques, transgenerational marking offers several advantages. Most importantly, it is possible to mark all offspring of one individual female without the necessity of handling eggs or larval fish. Furthermore it is possible to vary the concentrations of individual isotopes to obtain specific marks for individual female fish. An enriched isotopic spike solution is usually applied to gravid female spawners by injection into the body cavity for transgenerational marking. The isotope is then incorporated into the central otolith region of the offspring which is known to be built up by maternally derived material. Within this study transgenerational marking of a typical cyprinid fish species, Cyprinus carpio, L., was tested using a 86Sr /84Sr double spike. Buffered solutions with different isotopic composition and concentrations were administered to 4 female individuals by intraperitoneal injection 5 days before spawning, while one female was injected a blank solution. After spawning, otoliths (Lapilli) from juvenile fish were sampled at the age of about 5 months at fish sizes between 3 and 4 cm and analyzed for their isotopic composition by LA-ICPMS applying cross sectional line scans. Central otolith regions of the progeny showed a shift in the natural isotope ratios for the administered isotopes. Deconvolution of the blank corrected measurement data of the Sr isotopes was done to trace back the original spike ratio. The different spike ratios could be well distinguished reflecting the original composition of the spike solution. This study proved that it is possible to create batch-specific unique transgenerational marks in otolith cores by varying the concentrations of two naturally occurring Sr isotopes. This method has high potential to reduce the marking effort for any application in aquaculture and ecological research and management where the tracking of high numbers of offspring is needed.
NASA Astrophysics Data System (ADS)
Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.
2017-12-01
The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller drop pools may produce a similarly weaker kinetic effect.
NASA Astrophysics Data System (ADS)
Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas
2017-12-01
A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.
2011-01-01
We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.
Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems
NASA Technical Reports Server (NTRS)
Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.
1995-01-01
Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e., the aspect-ratio AR = delta y/delta x is much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotopic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.
NASA Astrophysics Data System (ADS)
Park, K.; Emmons, L. K.; Mak, J. E.
2007-12-01
Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year- simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers that contain the source information, jointly applying the isotope and the concentration information is expected to provide more precise optimization results in CO budget estimation. Our accumulated long-term CO isotope measurement data contribute to having more confidence of the inversions as well. Besides the benefit of adding isotope data on the inverse modeling, a trait of each isotope of CO (oxygen and carbon isotope) contains another advantageous use in the top-down estimation of the CO budget. δ18O and δ13C has a distinctive isotopic signature on a specific source; combustion sources such as a fossil fuel use show clearly different values from other natural sources in the δ18O signatures and the methane source can be easily separated by using δ13C information. Therefore, inversions of the two major sources of CO respond with different sensitivity for the different isotopes. To maximize the strengths of using isotope data in the inverse modeling analysis, various coupling schemes combining [CO], δ18O and δ13C have been investigated to enhance the credibility of the CO budget optimization.
NASA Astrophysics Data System (ADS)
Park, K.; Mak, J. E.; Emmons, L. K.
2008-12-01
Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers that contain the source information, jointly applying the isotope and the concentration information is expected to provide more precise optimization results in CO budget estimation. Our accumulated long-term CO isotope measurement data contribute to having more confidence of the inversions as well. Besides the benefit of adding isotope data on the inverse modeling, a trait of each isotope of CO (oxygen and carbon isotope) contains another advantageous use in the top-down estimation of the CO budget. δ18O and δ13C has a distinctive isotopic signature on a specific source; combustion sources such as a fossil fuel use show clearly different values from other natural sources in the δ18O signatures and the methane source can be easily separated by using δ13C information. Therefore, inversions of the two major sources of CO respond with different sensitivity for the different isotopes. To maximize the strengths of using isotope data in the inverse modeling analysis, various coupling schemes combining [CO], δ18O and δ13C have been investigated to enhance the credibility of the CO budget optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matwiyoff, N.A.
1976-01-01
The prospects for the broad scale development of the utility of stable isotopes in science, medicine, agriculture, and environmental studies are considered with emphasis on the current status of isotope production, synthesis of isotopically labelled compounds, and analytical techniques.
Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; Prévost, Stéphanie; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno
2013-07-31
Although the ability to differentiate between endogenous steroids and synthetic homologues on the basis of their (13)C/(12)C isotopic ratio has been known for over a decade, this technique has been scarcely implemented for food safety purposes. In this study, a method was developed using gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to demonstrate the abuse of 17β-estradiol in cattle, by comparison of the (13)C/(12)C ratios of the main metabolite 17α-estradiol and an endogenous reference compound (ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precisions were determined as 0.46 and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, respectively. This is, to the authors' knowledge, the first reported use of GC-MS/C/IRMS for the analysis of steroid compounds for food safety issues.
A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease*
Englander, S. Walter
2012-01-01
A new method for measuring the hydrogen exchange of macromolecules in solution is described. The method uses tritium to trace the movement of hydrogen, and utilizes Sephadex columns to effect, in about 2 minutes, a separation between tritiated macromolecule and tritiated solvent great enough to allow the measurement of bound tritium. High sensitivity and freedom from artifact is demonstrated and the possible value of the technique for investigation of other kinds of colloid-small molecule interaction is indicated. Competition experiments involving tritium, hydrogen, and deuterium indicate the absence of any equilibrium isotope effect in the ribonuclease-hydrogen isotope system, though a secondary kinetic isotope effect is apparent when ribonuclease is largely deuterated. Ribonuclease shows four clearly distinguishable kinetic classes of exchangeable hydrogens. Evidence is marshaled to suggest the independently measurable classes II, III, and IV (in order of decreasing rate of exchange) to represent “random-chain” peptides, peptides involved in α-helix, and otherwise shielded side-chain and peptide hydrogens, respectively. PMID:14075117
NASA Astrophysics Data System (ADS)
Hoffmann, William D.; Jackson, Glen P.
2015-07-01
Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.
2011-06-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in Greenland, during the 2010 field season.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.
2011-11-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.
NASA Astrophysics Data System (ADS)
Pollington, A. D.; Kinman, W.; Hanson, S. K.
2014-12-01
Recent advances in mass spectrometry have led to an improved ability to measure high precision isotope ratios at increasingly low analyte concentrations. Combining techniques for enhanced ionization with better counting of small ion beams, we routinely measure isotope ratios on 100's of pg uranium samples and ≤10 pg plutonium samples with relative standard deviations of 1‰ on major isotope ratios and 10‰ on minor ratios achievable. With slightly larger samples (≤1 ng total U), these precisions can be as low as 0.01‰ (10 ppm) and 1‰ respectively. These techniques can be applied to both nuclear forensics questions where only a small amount of sample is available, as well as geologic questions such as U-Pb or U-Th disequilibrium geochronology from either single small crystals, or microsampled domains from within a heterogeneous sample. The analytical setup is a Cetac Aridus II desolvating nebulizer interfaced with a ThermoScientific Neptune Plus equipped with a jet-type sample cone and x-type skimmer cone. The combination of the desolvating nebulizer with the enhanced cone setup leads to an increase in sensitivity on the order of 10x that of a standard glass spray chamber (~1000V/ppm U). The Neptune Plus is equipped with 9 Faraday cups and 5 electron multipliers (two behind RPQ energy filters for improved abundance sensitivtiy). This allows for the simultaneous collection of all isotopes of either U or Pu with a combination of Faraday cups (e.g., 235U and 238U) and electron multipliers (e.g., 234U and 236U) with other configurations also available (e.g., 235U and 238U can instead be measured on electron multipliers in small samples). As sample sizes get small, the contributions from environmental blanks, as well as interfering species, become increasing concerns. In this study, we will present data on efforts to minimize the contribution of environmental U using scaled down chemical procedures as well as the effect of polyatomic species on the precision and accuracy of actinide isotope measurements and what procedures can be applied to minimize interferences.
NASA Astrophysics Data System (ADS)
Kita, N. T.; Ushikubo, T.; Valley, J. W.
2008-05-01
The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4Ga) might preserve their primary oxygen isotopic records, which allows us to trace the geological processes of the early earth [1]. Lithium isotope analyses of pre- 4Ga zircon from Jack Hills show high Li abundance and low δ 7Li, indicating existence of highly weathered crustal material as early as 4.3Ga. In conclusion, these new techniques allow us to study small natural variations of stable isotopes at μm-scale that permit exciting and fundamental research where samples are small, precious, or zoned. [1] Page FZ et al. (2007) Am Min 92, 1772-1775.
Isotope ratio mass spectrometry in nutrition research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, A.H.
Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less
NASA Astrophysics Data System (ADS)
Good, Stephen P.; Soderberg, Keir; Guan, Kaiyu; King, Elizabeth G.; Scanlon, Todd M.; Caylor, Kelly K.
2014-02-01
The partitioning of surface vapor flux (FET) into evaporation (FE) and transpiration (FT) is theoretically possible because of distinct differences in end-member stable isotope composition. In this study, we combine high-frequency laser spectroscopy with eddy covariance techniques to critically evaluate isotope flux partitioning of FET over a grass field during a 15 day experiment. Following the application of a 30 mm water pulse, green grass coverage at the study site increased from 0 to 10% of ground surface area after 6 days and then began to senesce. Using isotope flux partitioning, transpiration increased as a fraction of total vapor flux from 0% to 40% during the green-up phase, after which this ratio decreased while exhibiting hysteresis with respect to green grass coverage. Daily daytime leaf-level gas exchange measurements compare well with daily isotope flux partitioning averages (RMSE = 0.0018 g m-2 s-1). Overall the average ratio of FT to FET was 29%, where uncertainties in Keeling plot intercepts and transpiration composition resulted in an average of uncertainty of ˜5% in our isotopic partitioning of FET. Flux-variance similarity partitioning was partially consistent with the isotope-based approach, with divergence occurring after rainfall and when the grass was stressed. Over the average diurnal cycle, local meteorological conditions, particularly net radiation and relative humidity, are shown to control partitioning. At longer time scales, green leaf area and available soil water control FT/FET. Finally, we demonstrate the feasibility of combining isotope flux partitioning and flux-variance similarity theory to estimate water use efficiency at the landscape scale.
APPLICATION OF ISOTOPE ENCEPHALOGRAPHY AND ELECTROENCEPHALOSCOPY FOR LOCALIZATION OF BRAIN TUMOURS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamov, V.N.; Badmayev, C.N.; Bekhtereva, N.P.
1959-10-31
The problems of diagnosis and localization of brain tumors in some cases present many difficulities and make the neurosurgeon seek for additional methods of investigation. In such circumstances usage of the tracer technique in diagnostics is of considerable help, as it has obvious advantages compared with other methods of investigation, such as safety, painlessness, non-traumatism, absence of undesirable after effects, accuracy, and relative simplicity. The present communication is based on the results of clinical observations on 150 patients with verified brain tumors. Analyses of the data show that the accuracy of the brain tumor localizations vary, depending upon the depthmore » of the tumor site and conceniration of labelled material in the area of tumor growth. The diagnostic value of the method is doubtful in cases of tumors of posterior fossa, base of the brain, or the lesions of median line. The application of isotope encephalography is successfully supplemented by the new method of investigations, i.e., electroencephaloscopy, which allows the localization of deeply set tumors. Possibilities and limitations of the method are discussed. It is concluded that the isotope encephalography and electroencephaloscopy represent very valuable diagnostic methods which alongside with other auxiliary methods are widely used in diagnosis of brain tumors. (C.H.)« less
Find Pairs: The Module for Protein Quantification of the PeakQuant Software Suite
Eisenacher, Martin; Kohl, Michael; Wiese, Sebastian; Hebeler, Romano; Meyer, Helmut E.
2012-01-01
Abstract Accurate quantification of proteins is one of the major tasks in current proteomics research. To address this issue, a wide range of stable isotope labeling techniques have been developed, allowing one to quantitatively study thousands of proteins by means of mass spectrometry. In this article, the FindPairs module of the PeakQuant software suite is detailed. It facilitates the automatic determination of protein abundance ratios based on the automated analysis of stable isotope-coded mass spectrometric data. Furthermore, it implements statistical methods to determine outliers due to biological as well as technical variance of proteome data obtained in replicate experiments. This provides an important means to evaluate the significance in obtained protein expression data. For demonstrating the high applicability of FindPairs, we focused on the quantitative analysis of proteome data acquired in 14N/15N labeling experiments. We further provide a comprehensive overview of the features of the FindPairs software, and compare these with existing quantification packages. The software presented here supports a wide range of proteomics applications, allowing one to quantitatively assess data derived from different stable isotope labeling approaches, such as 14N/15N labeling, SILAC, and iTRAQ. The software is publicly available at http://www.medizinisches-proteom-center.de/software and free for academic use. PMID:22909347
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.
2016-07-01
Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less
Mann, D V; Ho, C S; Critchley, L; Fok, B S P; Pang, E W H; Lam, C W K; Hjelm, N M
2007-05-01
The doubly labelled water (DLW) method is the technique of choice for measurement of free-living total energy expenditure (TEE) in humans. A major constraint on the clinical applicability of the method has been the expense of the (18)O isotope. We have used a reduced-dose (one-tenth of the currently recommended standard dose) of DLW for the measurement of TEE and body composition in nine healthy adult male volunteers. TEE measured by reduced-dose DLW was positively correlated with resting energy expenditure measured by metabolic cart (r=0.87, P<0.01). Isotope-derived fat mass and body mass index were strongly correlated (r=0.86, P<0.01). In four subjects in whom we performed a complementary evaluation using standard-dose isotope enrichment, the TEE measurements were satisfactorily comparable (mean+/-s.d.: reduced dose 2586+/-155 kcal/day vs standard dose 2843+/-321 kcal/day; mean difference 257+/-265 kcal/day). These data indicate that DLW measurements of human energy expenditure and body composition can be performed at a substantially reduced dose (and cost) of isotope enrichment than is currently employed.
NASA Astrophysics Data System (ADS)
Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen
2016-01-01
Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.
Han, L; Tanweer, A; Szaran, J; Halas, S
2002-09-01
A modified technique for the conversion of sulphates and sulphides to SO2 with the mixture of V2O5-SiO2 for sulphur isotopic analyses is described. This technique is more suitable for routine analysis of large number of samples. Modification of the reaction vessel and using manifold inlet system allows to analyse up to 24 samples every day. The modified technique assures the complete yield of SO2, consistent oxygen isotope composition of the SO2 gas and reproducibility of delta34S measurements being within 0.10 per thousand. It is observed, however, oxygen in SO2 produced from sulphides differs in delta18O with respect to that produced from sulphates.
Hopple, J.A.; Hannon, J.E.; Coplen, T.B.
1998-01-01
A comparison of the new hydrogen isotope-ratio technique of Vaughn et al. ([Vaughn, B.H., White, J.W.C., Delmotte, M., Trolier, M., Cattani, O., Stievenard, M., 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. (Isot. Geosci. Sect.), 152, 309-319]; the article immediately preceding this article) for the analysis of water samples utilizing automated on-line reduction by elemental uranium showed that 94% of 165 samples of Antarctic snow, ice, and stream water agreed with the ??2H values determined by H2-H2O platinum equilibration, exhibiting a bias of +0.5??? and a 2 - ?? variation of 1.9???. The isotopic results of 10 reduction technique samples, however, gave ??2H values that differed by 3.5??? or more, and were too negative by as much as 5.4??? and too positive by as much as 4.9??? with respect to those determined using the platinum equilibration technique.
Chapter 16Tracing Nitrogen Sources and Cycling in Catchments
Kendall, Carol
1998-01-01
This chapter focuses on the uses of isotopes to understand water chemistry.I Isotopic compositions generally cannot be interpreted successfully in the absence of other chemical and hydrologic data. The chapter focusses on uses of isotopes in tracing sources and cycling of nitrogen in the water-component of forested catchment, and on dissolved nitrate in shallow waters, nutrient uptake studies in agricultural areas, large-scale tracer experiments, groundwater contamination studies, food-web investigations, and uses of compound-specific stable isotope techniques. Shallow waters moving along a flowpath through a relatively uniform material and reacting with minerals probably do not achieve equilibrium but gradually approach some steady-state composition. The chapter also discusses the use of isotopic techniques to assess impacts of changes in land-management practices and land use on water quality. The analysis of individual molecular components for isotopic composition has much potential as a method for tracing the source, biogeochemistry, and degradation of organic liquids and gases because different materials have characteristic isotope spectrums or biomarkers.
Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.
2017-01-01
Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon isotope fractionation between δ13C-CH4 and δ13C-CO2(α13CCO2-CH4) to differ from the true methanogenic fractionation, complicating interpretation of methanogenic pathways. (3) Where little-fractionating non-methanogenic bacterial processes compete with highly-fractionating methanogenesis, the mass balance between CH4 and CO2 is affected. This has implications for δ13C values and provides an alternative interpretation for net C isotope signatures than solely the pathways used by active methanogens. (4) While most of the reviewed values of δD-H2O - δD-CH4 and α13CCO2-CH4 are apparently consistent with hydrogenotrophic methanogenesis as the dominant pathway in coal beds and shales, recent microbial community characterization techniques suggest a possible role for acetoclastic or methylotrophic methanogenesis in some basins.
Hayes, Robert B; Peña, Adan M; Goff, Thomas E
2005-08-01
This paper demonstrates the utility of a portable alpha Continuous Air Monitor (CAM) as a bench top scalar counter for multiple sample types. These include using the CAM to count fixed air sample filters and radiological smears. In counting radiological smears, the CAM is used very much like a gas flow proportional counter (GFPC), albeit with a lower efficiency. Due to the typically low background in this configuration, the minimum detectable activity for a 5-min count should be in the range of about 10 dpm which is acceptably below the 20 dpm limit for transuranic isotopes. When counting fixed air sample filters, the CAM algorithm along with other measurable characteristics can be used to identify and quantify the presence of transuranic isotopes in the samples. When the radiological control technician wants to take some credit from naturally occurring radioactive material contributions due to radon progeny producing higher energy peaks (as in the case with a fixed air sample filter), then more elaborate techniques are required. The techniques presented here will generate a decision level of about 43 dpm for such applications. The calibration for this application should alternatively be done using the default values of channels 92-126 for region of interest 1. This can be done within 10 to 15 min resulting in a method to rapidly evaluate air filters for transuranic activity. When compared to the 1-h count technique described by , the technique presented in the present work demonstrates a technique whereby more than two thirds of samples can be rapidly shown (within 10 to 15 min) to be within regulatory compliant limits. In both cases, however, spectral quality checks are required to insure sample self attenuation is not a significant bias in the activity estimates. This will allow the same level of confidence when using these techniques for activity quantification as is presently available for air monitoring activity quantification using CAMs.
NASA Astrophysics Data System (ADS)
Creech, J. B.; Moynier, F.; Bizzarro, M.
2017-11-01
Stable isotope studies of highly siderophile elements (HSE) have the potential to yield valuable insights into a range of geological processes. In particular, the strong partitioning of these elements into metal over silicates may lead to stable isotope fractionation during metal-silicate segregation, making them sensitive tracers of planetary differentiation processes. We present the first techniques for the precise determination of palladium stable isotopes by MC-ICPMS using a 106Pd-110Pd double-spike to correct for instrumental mass fractionation. Results are expressed as the per mil (‰) difference in the 106Pd/105Pd ratio (δ106Pd) relative to an in-house solution standard (Pd_IPGP) in the absence of a certified Pd isotopic standard. Repeated analyses of the Pd isotopic composition of the chondrite Allende demonstrate the external reproducibility of the technique of ±0.032‰ on δ106Pd. Using these techniques, we have analysed Pd stable isotopes from a range of terrestrial and extraterrestrial samples. We find that chondrites define a mean δ106Pdchondrite = -0.19 ± 0.05‰. Ureilites reveal a weak trend towards heavier δ106Pd with decreasing Pd content, similar to recent findings based on Pt stable isotopes (Creech et al., 2017), although fractionation of Pd isotopes is significantly less than for Pt, possibly related to its weaker metal-silicate partitioning behaviour and the limited field shift effect. Terrestrial mantle samples have a mean δ106Pdmantle = -0.182 ± 0.130‰, which is consistent with a late-veneer of chondritic material after core formation.
Fischer, Anko; Manefield, Mike; Bombach, Petra
2016-10-01
Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth
NASA Astrophysics Data System (ADS)
Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.
2001-12-01
Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled after the Ocean Drilling Program but focussing on the Precambrian record. This poster will present information on MtEE, and plans for a pilot project developed as part of the Summer '01 MtEE excursion to W. Australia.
Converting isotope ratios to diet composition - the use of mixing models - June 2010
One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...
Hybrid Interferometric/Dispersive Atomic Spectroscopy For Nuclear Materials Analysis
NASA Astrophysics Data System (ADS)
Morgan, Phyllis K.
Laser-induced breakdown spectroscopy (LIBS) is an optical emission spectroscopy technique that holds promise for detection and rapid analysis of elements relevant for nuclear safeguards and nonproliferation, including the measurement of isotope ratios. One important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.437 nm U II line). Measuring uranium enrichment is important in nuclear nonproliferation and safeguards because the uranium highly enriched in the 235U isotope can be used to construct nuclear weapons. High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. A hybrid interferometric/dispersive spectrometer prototype, which consists of an inexpensive, compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, was assembled for making high-resolution measurements of nuclear materials in a laboratory setting. To more fully take advantage of this low-cost, compact hybrid spectrometer, a mathematical reconstruction technique was developed to accurately reconstruct relative line strengths from complex spectral patterns with high resolution. Measurement of the mercury 313.1555/313.1844 nm doublet from a mercury-argon lamp yielded a spectral line intensity ratio of 0.682, which agrees well with an independent measurement by an echelle spectrometer and previously reported values. The hybrid instrument was used in LIBS measurements and achieved the resolution needed for isotopic selectivity of LIBS of uranium in ambient air. The samples used were a natural uranium foil (0.7% of 235U) and a uranium foil highly enriched in 235U to 93%. Both samples were provided by the Penn State University's Breazeale Nuclear Reactor. The enrichment of the uranium foils was verified using a high-purity germanium detector and dedicated software for multi-group spectral analysis. Uranium spectral line widths of ˜10 pm were measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium at that wavelength. The 424.167 nm isotope shift (˜6 pm), limited by spectral broadening, was only partially resolved but still discernible. This instrument and reconstruction method could enable the design of significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting nuclear safeguards, treaty verification, nuclear forensics, and a variety of other spectroscopic applications.
Applications of stable isotopes in clinical pharmacology
Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W
2011-01-01
This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the pharmacokinetic profile or mode of action of a drug substance. Secondly, stable isotopes may be used for the assessment of drug products or drug delivery systems by determination of parameters such as the bioavailability or the release profile. Thirdly, patients may be assessed in relation to patient-specific drug treatment; this concept is often called personalized medicine. In this article, the application of stable isotope technology in the aforementioned three areas is reviewed, with emphasis on developments over the past 25 years. The applications are illustrated with examples from clinical studies in humans. PMID:21801197
Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution.
Lee, Xinqing; Huang, Daikuan; Lou, Dawei; Pawliszyn, Janusz
2012-07-01
Formic and acetic acids are ubiquitous in the environment, food, and most of the natural products. Extraction of the acids from aqueous solution is required for their isotope analysis by the gas chromatography-isotope ratio mass spectrometry. To this objective, we have previously developed a purge-and-trap technique using the dynamic solid-phase microextraction technology, the NeedlEX. The extraction efficiency, however, remains unexamined. Here, we address this question using the flame ionization detector and isotope ratio mass spectrometer while comparing it with that of the CAR/PDMS fiber. The results show that the NeedlEX is applicable at a wide range of concentration through coordination of purge volume given the minimum amount 3.7 ng and 1.8 ng of formic and acetic, respectively, is extracted. The efficiency of NeedlEX was 6-7 times lower than the fiber at 1000 μg/mL depending on the analyte. It is, however, superior to the latter at 10 μg/mL or less owing to its lower detection limit. The extraction efficiency of both acids is equivalent in molar amount. This is, however, disguised by the different response of the flame ionization detector. The isotope ratio mass spectrometor overcomes this problem but is compromised by relatively large errors. These results are particularly useful for isotopic analysis of carboxylic acids. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Changes in the stable isotopic composition of organic contaminants (isotopic fractionation) are a useful indicator of biotransformation, and have been reported in literature for several volatile organic compounds. The technique offers an interesting alternative to time-consuming ...
NASA Astrophysics Data System (ADS)
Raulerson, S.; Volkmann, T.; Pangle, L. A.
2017-12-01
Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making temporally resolved measurements of the stable isotopes in xylem water, using a setup that can be easily repeated by other research groups. The method is anticipated to find broad application in ecohydrological analyses, and in tracer studies aimed at quantifying age distributions of soil water extracted by plant roots.
NASA Astrophysics Data System (ADS)
Jin, Biao; Rolle, Massimo
2016-04-01
Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M., 2013. Integrated carbon and chlorine isotope modeling: Applications to chlorinated aliphatic hydrocarbons dechlorination. Environ. Sci. Technol. 47, 1443-1451. doi:10.1021/es304053h. [3] Jin, B., Rolle, M., 2014. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95, 131-139. doi:10.1016/j.chemosphere.2013.08.050.
13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments
NASA Astrophysics Data System (ADS)
Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.
2011-06-01
The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.
Vibration of carbon nanotubes with defects: order reduction methods
NASA Astrophysics Data System (ADS)
Hudson, Robert B.; Sinha, Alok
2018-03-01
Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.
Nuclear Resonance Fluorescence Response of U-235
NASA Astrophysics Data System (ADS)
Warren, Glen
2008-05-01
Nuclear resonance fluorescence (NRF) is a physical process that provides an isotopic-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample, which is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials. Pacific Northwest National Laboratory and Passport Systems have collaboratively conducted a set of measurements to search for an NRF response of U-235 in the 1.5 to 9 MeV energy range. Results from these measurements will be presented.
Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet
NASA Astrophysics Data System (ADS)
Hussong, Rene; Tholey, Andreas; Hildebrandt, Andreas
2007-09-01
Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.
Quantifying uncertainty in stable isotope mixing models
Davis, Paul; Syme, James; Heikoop, Jeffrey; ...
2015-05-19
Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [ Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ 15N and δ 18O) butmore » all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.« less
Hyperfine interactions of trans-lead elements studied by nuclear radiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansaldo, E.J.
1973-09-16
The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less
NASA Astrophysics Data System (ADS)
Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne
2013-04-01
Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity up to full saturation. References Lécuyer, C. et al. (2009). Chem. Geol., 264, 122-126. [doi:10.1016/j.chemgeo.2009.02.017] Martineau, F. et al. (2012). Chem. Geol., 291, 236-240. [doi:10.1016/j.chemgeo.2011.10.017] Stadler, S. et al. (2012). Chem. Geol., 294-295, 226-242. [doi:10.1016/j.chemgeo.2011.12.006
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.
2012-01-01
Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.
Multiple-energy Techniques in Industrial Computerized Tomography
DOE R&D Accomplishments Database
Schneberk, D.; Martz, H.; Azevedo, S.
1990-08-01
Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.
Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem
NASA Astrophysics Data System (ADS)
Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo
2013-11-01
Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.
Torres-Dowdall, J.; Farmer, A.H.; Bucher, E.H.; Rye, R.O.; Landis, G.
2009-01-01
Stable isotope analyses have revolutionized the study of migratory connectivity. However, as with all tools, their limitations must be understood in order to derive the maximum benefit of a particular application. The goal of this study was to evaluate the efficacy of stable isotopes of C, N, H, O and S for assigning known-origin feathers to the molting sites of migrant shorebird species wintering and breeding in Argentina. Specific objectives were to: 1) compare the efficacy of the technique for studying shorebird species with different migration patterns, life histories and habitat-use patterns; 2) evaluate the grouping of species with similar migration and habitat use patterns in a single analysis to potentially improve prediction accuracy; and 3) evaluate the potential gains in prediction accuracy that might be achieved from using multiple stable isotopes. The efficacy of stable isotope ratios to determine origin was found to vary with species. While one species (White-rumped Sandpiper, Calidris fuscicollis) had high levels of accuracy assigning samples to known origin (91% of samples correctly assigned), another (Collared Plover, Charadrius collaris) showed low levels of accuracy (52% of samples correctly assigned). Intra-individual variability may account for this difference in efficacy. The prediction model for three species with similar migration and habitat-use patterns performed poorly compared with the model for just one of the species (71% versus 91% of samples correctly assigned). Thus, combining multiple sympatric species may not improve model prediction accuracy. Increasing the number of stable isotopes in the analyses increased the accuracy of assigning shorebirds to their molting origin, but the best combination - involving a subset of all the isotopes analyzed - varied among species.
Ruppenthal, Marc; Oelmann, Yvonne; Wilcke, Wolfgang
2013-01-15
To make use of the isotope ratio of nonexchangeable hydrogen (δ(2)H(n (nonexchangeable))) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (C(org)) and organic N (N(org)) recovery of demineralized SOM concentrates was significantly increased (C(org) recovery using existing techniques vs new demineralization method: 58% vs 78%; N(org) recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ(2)H(n) values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ(2)H(n) analyses of SOM as a new tool in paleoclimatology or geospatial forensics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruzzini, Matthew Louis
The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; themore » majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were applied for the age determination of various uranium isotopic standards. PIEs did not exhibit signi cant advantages for the determination of model ages when compared to traditional laments; however, this trial was able to provide valuable insight for guiding future investigations.« less
NASA Astrophysics Data System (ADS)
Roussel, Sabine; Huchette, Sylvain; Clavier, Jacques; Chauvaud, Laurent
2011-02-01
The ormer, Haliotis tuberculata is the only European abalone species commercially exploited. The determination of growth and age in the wild is an important tool for fisheries and aquaculture management. However, the ageing technique used in the past in the field is unreliable. The stable oxygen isotope composition ( 18O/ 16O) of the shell depends on the temperature and oxygen isotope composition of the ambient sea water. The stable oxygen isotope technique, developed to study paleoclimatological changes in shellfish, was applied to three H. tuberculata specimens collected in north-west Brittany. For the specimens collected, the oxygen isotope ratios of the shell reflected the seasonal cycle in the temperature. From winter-to-winter cycles, estimates of the age and the annual growth increment, ranging from 13 to 55 mm per year were obtained. This study shows that stable oxygen isotopes can be a reliable tool for ageing and growth studies of this abalone species in the wild, and for validating other estimates.
An isotopic approach to measuring nitrogen balance in caribou
Gustine, David D.; Barboza, Perry S.; Adams, Layne G.; Farnell, Richard G.; Parker, Katherine L.
2011-01-01
Nutritional restrictions in winter may reduce the availability of protein for reproduction and survival in northern ungulates. We refined a technique that uses recently voided excreta on snow to assess protein status in wild caribou (Rangifer tarandus) in late winter. Our study was the first application of this non‐invasive, isotopic approach to assess protein status of wild caribou by determining dietary and endogenous contributions of nitrogen (N) to urinary urea. We used isotopic ratios of N (δ15N) in urine and fecal samples to estimate the proportion of urea N derived from body N (p‐UN) in pregnant, adult females of the Chisana Herd, a small population that ranged across the Alaska‐Yukon border. We took advantage of a predator‐exclosure project to examine N status of penned caribou in April 2006. Lichens were the primary forage (>40%) consumed by caribou in the pen and δ15N of fiber tracked the major forages in their diets. The δ15N of urinary urea for females in the pen was depleted relative (−1.3 ± 1.0 parts per thousand [‰], ${\\bar {x}}\\pm {\\rm SD}$) to the δ15N of body N (2.7 ± 0.7‰). A similar proportion of animals in the exclosure lost core body mass (excluding estimates of fetal and uterine tissues; 55%) and body protein (estimated by isotope ratios; 54%). This non‐invasive technique could be applied at various spatial and temporal scales to assess trends in protein status of free‐ranging populations of northern ungulates. Intra‐ and inter‐annual estimates of protein status could help managers monitor effects of foraging conditions on nutritional constraints in ungulates, increase the efficiency and efficacy of management actions, and help prepare stakeholders for potential changes in population trends.
Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong
2015-01-01
We have developed a technique for the rapid, precise and accurate determination of sulfur isotopes (δ(34)S) by MC-ICP-MS applicable to a range of sulfur-bearing solutions of different sulfur content. The 10 ppm Alfa-S solution (ammonium sulfate solution, working standard of the lab of the authors) was used to bracket other Alfa-S solutions of different concentrations and the measured δ(34)SV-CDT values of Alfa-S solutions deviate from the reference value to varying degrees (concentration effect). The stability of concentration effect has been verified and a correction curve has been constructed based on Alfa-S solutions to correct measured δ(34)SV-CDT values. The curve has been applied to AS solutions (dissolved ammonium sulfate from the lab of the authors) and pore water samples successfully, validating the reliability of our analytical method. This method also enables us to measure the sulfur concentration simultaneously when analyzing the sulfur isotope composition. There is a strong linear correlation (R(2)>0.999) between the sulfur concentrations and the intensity ratios of samples and the standard. We have constructed a regression curve based on Alfa-S solutions and this curve has been successfully used to determine sulfur concentrations of AS solutions and pore water samples. The analytical technique presented here enable rapid, precise and accurate S isotope measurement for a wide range of sulfur-bearing solutions - in particular for pore water samples with complex matrix and varying sulfur concentrations. Also, simultaneous measurement of sulfur concentrations is available. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling of water isotopes in polar regions and application to ice core studies
NASA Astrophysics Data System (ADS)
Jouzel, J.
2012-04-01
Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep ice cores for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar ice core studies. This will include a discussion of the conventional approach for interpreting water isotopes in ice cores and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.
Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude
2009-06-01
Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.
Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.
2011-01-01
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787
Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C
2011-07-01
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.
Detecting isotopic ratio outliers
NASA Astrophysics Data System (ADS)
Bayne, C. K.; Smith, D. H.
An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Sarda, Ph.; Agrinier, P.
2003-04-01
The technique of GCMS analysis, which has been used with a great success on several past planetary missions, is not adapted for precise measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation, and chemical trapping, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. This technique allows to reach a precision on isotopic ratios of the order of a few 0.1 ppm for a typical amount of gas of a few micromoles. We are presently studying an instrument based on the same principle for space exploration applications. The PALOMA instrument (PAyload for Local Observation of Mars Atmosphere) will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. The miniaturization of major key elements, like the cryogenic device, the mass spectrometer, the line and its ensemble of valves, is presently led in our laboratories under CNES funding. The instrument consists of : (i) a gas purification and separation line, using techniques of cryogenic and chemical trapping, and possibly membrane permeation for molecular hydrogen analysis, (ii) a mass spectrometer working in static mode, without carrier gas (both time-of-flight and magnetic solutions are studied), (iii) a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer. In the specific case of Mars, it is designed to work during typically 2 years (about 1000 measurement cycles), in order to perform accurate measurements of molecular, elemental and isotopic composition and of their diurnal/seasonal variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The general characteristics of the instrument are as following . The mass is 6 kg, for a size of 30 x 30 x 20 cm. The required power, averaged over a complete measurement cycle, is 20 W (peak value : 30 W). The total energy required for one sequence is 100 Wh. This number must be considered as an upper limit, and corresponds to the most complex sequence (noble gas isotope analysis). Sequences used for stable isotopes measurement, and atmospheric molecular composition (trace gases of geological and/or astrobiological interest), are expected to be simpler, and less power-consuming. The anticipated volume of data produced by one observation sequence is estimated to be in the 3-6 kb range. The gas is sampled directly from the ambient atmosphere.
Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt
2015-01-01
The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while handling water as a bulk sample. The calibration of organic samples, commonly having high δ2H values, will benefit from the availability of suitably 2H-enriched reference waters, extending the VSMOW-SLAP scale above zero.
Arbogast, Luke W; Brinson, Robert G; Marino, John P
2016-01-01
Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. 2016 Published by Elsevier Inc.
Hofmann, D; Gehre, M; Jung, K
2003-09-01
In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.
McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J
2016-07-01
We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids
The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.
Wiegner, Tracy N; Mokiao-Lee, Ambyr U; Johnson, Erik E
2016-02-15
Nitrogen (N) enrichment often results in coastal eutrophication, even in remote areas like Hawai'i. Therefore, determining N sources to coastal waters is important for their management. This study identified N sources to tide pools in Kapoho, Hawai'i, and determined their relative importance using three stable isotopes (δ(15)N, δ(18)O, δ(11)B). Surface waters and macroalgal tissues were collected along 100-m onshore-offshore transects in areas of high groundwater input for three months at low tide. Water samples from possible N sources were also collected. Mixing model output, along with macroalgal δ(15)N values, indicated that agriculture soil (34%) was the largest anthropogenic N source followed by sewage (27%). These findings suggest that more effective fertilizer application techniques and upgrading sewage treatment systems can minimize N leaching into groundwater. Overall, our multi-stable isotope approach for identifying N sources was successful and may be useful in other coastal waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamaluddin, Muzhar Bin
The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the Random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique used to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as good as the previous theory.
NASA Astrophysics Data System (ADS)
Singare, P. U.
2014-07-01
Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.
NASA Astrophysics Data System (ADS)
Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou
2016-01-01
Speleothem inclusion-water isotope compositions are a promising new climatic proxy, but their applicability is limited by their low content in water and by analytical challenges. We have developed a precise and accurate isotopic technique that is based on cavity ring-down spectroscopy (CRDS). This method features a newly developed crushing apparatus, a refined sample extraction line, careful evaluation of the water/carbonate adsorption effect. After crushing chipped speleothem in a newly-developed crushing device, released inclusion water is purified and mixed with a limited amount of nitrogen gas in the extraction line for CRDS measurement. We have measured 50-260 nL of inclusion water from 77 to 286 mg of stalagmite deposits sampled from Gyokusen Cave, Okinawa Island, Japan. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The 1σ reproducibility for different stalagmites ranges from ±0.05 to 0.61‰ for δ18O and ±0.0 to 2.9‰ for δD. The δD vs. δ18O plot for inclusion water from modern stalagmites is consistent with the local meteoric water line. The 1000 ln α values based on calcite and fluid inclusion measurements from decades-old stalagmites are in agreement with the data from present-day farmed calcite experiment. Combination of coeval carbonate and fluid inclusion data suggests that past temperatures at 9-10 thousand years ago (ka) and 26 ka were 3.4 ± 0.7 °C and 8.2 ± 2.4 °C colder than at present, respectively.
Irrgeher, Johanna; Prohaska, Thomas
2016-01-01
Analytical ecogeochemistry is an evolving scientific field dedicated to the development of analytical methods and tools and their application to ecological questions. Traditional stable isotopic systems have been widely explored and have undergone continuous development during the last century. The variations of the isotopic composition of light elements (H, O, N, C, and S) have provided the foundation of stable isotope analysis followed by the analysis of traditional geochemical isotope tracers (e.g., Pb, Sr, Nd, Hf). Questions in a considerable diversity of scientific fields have been addressed, many of which can be assigned to the field of ecogeochemistry. Over the past 15 years, other stable isotopes (e.g., Li, Zn, Cu, Cl) have emerged gradually as novel tools for the investigation of scientific topics that arise in ecosystem research and have enabled novel discoveries and explorations. These systems are often referred to as non-traditional isotopes. The small isotopic differences of interest that are increasingly being addressed for a growing number of isotopic systems represent a challenge to the analytical scientist and push the limits of today's instruments constantly. This underlines the importance of a metrologically sound concept of analytical protocols and procedures and a solid foundation of data processing strategies and uncertainty considerations before these small isotopic variations can be interpreted in the context of applied ecosystem research. This review focuses on the development of isotope research in ecogeochemistry, the requirements for successful detection of small isotopic shifts, and highlights the most recent and innovative applications in the field.
Applications of stable isotope analysis in mammalian ecology.
Walter, W David; Kurle, Carolyn M; Hopkins, John B
2014-01-01
In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.
Mixed-mode chromatography/isotope ratio mass spectrometry.
McCullagh, James S O
2010-03-15
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications. Copyright 2010 John Wiley & Sons, Ltd.
ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS
The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...
Manthorpe, Daniel P; Lockley, William J S
2013-09-01
Improvements to thin layer chromatography (TLC) analysis can be made easily and cheaply by the application of digital colour photography and image analysis. The combined technique, digitally enhanced TLC (DE-TLC), is applicable to the accurate quantification of analytes in mixtures, to reaction monitoring and to other typical uses of TLC. Examples are given of the application of digitally enhanced TLC to: the deuteromethylations of theophylline to [methyl-(2)H3]caffeine and of umbelliferone to [(2)H3]7-methoxycoumarin; the selection of tertiary amine bases in deuterodechlorination reactions; stoichiometry optimisation in the borodeuteride reduction of quinizarin (1,4-dihydroxyanthraquinone) and to the assessment of xanthophyll yields in Lepidium sativum seedlings grown in deuterated media. Copyright © 2013 John Wiley & Sons, Ltd.
The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing
NASA Astrophysics Data System (ADS)
Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.
2008-12-01
Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and drinking water. Lead isotope and REE analysis of trabecular and cortical bone tissue of 60 femoral heads resected during hip replacement surgery at the Univ. of Roch. Medical Center were analyzed by a combination of TIMS and ICP-MS. Results show that Pb compositions are consistent with local soil with variable inputs from known environmental sources. Several samples demonstrate inputs from known environmental sources (e.g. Mississippi Valley ore) that was used in paint, solder, and US gasoline. Additionally, results suggest bioincorporation of Pb with isotopic composition consistent with that observed for Canadian gasoline aerosols. Immigrants included in the study show Pb compositions distinctly different than local residents.
Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; ...
2015-12-01
The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H 2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα 30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα 18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα 30Si(Qtz–fluid) = (0.15 ± 0.03) * 10 6/T 2 and 1000lnα 18O(Qtz–fluid) = (2.91 ± 0.04) * 10 6/T 2 when extended to zero fractionation at infinite temperature. Values of δ 30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ 18O and δ 30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less
Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha
2018-01-15
Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to <0.1 ‰ for a typical measurement period. The external precision is better than 0.2 ‰ (2SD) for δ 11 B measurements for solution samples containing as little as 0.8 ng total boron. For in situ microanalyses with LA-MC-ICP-MS, the external precision of 11 B/ 10 B from an in-house calcite standard was 1 ‰ (2SD) for individual spot analyses, and 0.3 ‰ for the mean of ≥10 replicate spot analyses. 10 13 ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Solarz, R. W.
1985-02-01
Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.
Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude
2009-06-01
An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.
NASA Astrophysics Data System (ADS)
Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.
2008-11-01
In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.
Radioisotope dilution analyses of geological samples using 236U and 229Th
Rosholt, J.N.
1984-01-01
The use of 236U and 229Th in alpha spectrometric measurements has some advantages over the use of other tracers and measurement techniques in isotope dilution analyses of most geological samples. The advantages are: (1) these isotopes do not occur in terrestrial rocks, (2) they have negligible decay losses because of their long half lives, (3) they cause minimal recoil contamination to surface-barrier detectors, (4) they allow for simultaneous determination of the concentration and isotopic composition of uranium and thorium in a variety of sample types, and (5) they allow for simple and constant corrections for spectral inferences, 0.5% of the 238U activity is subtracted for the contribution of 235U in the 236U peak and 1% of the 229Th activity is subtracted from the 230Th activity. Disadvantages in using 236U and 229Th are: (1) individual separates of uranium and thorium must be prepared as very thin sources for alpha spectrometry, (2) good resolution in the spectrometer system is required for thorium isotopic measurements where measurement times may extend to 300 h, and (3) separate calibrations of the 236U and 229Th spike solution with both uranium and thorium standards are required. The use of these tracers in applications of uranium-series disequilibrium studies has simplified the measurements required for the determination of the isotopic composition of uranium and thorium because of the minimal corrections needed for alpha spectral interferences. ?? 1984.
Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.
NASA Astrophysics Data System (ADS)
Schonberger, Peter
The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.
SIMSISH Technique Does Not Alter the Apparent Isotopic Composition of Bacterial Cells
Chapleur, Olivier; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Mazéas, Laurent; Bouchez, Théodore
2013-01-01
In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS) measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine – iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific 13C uptake during labelled methanol anaerobic degradation. PMID:24204855
NASA Astrophysics Data System (ADS)
von Blanckenburg, Friedhelm; Bouchez, Julien; Bouman, Caludia; Kamber, Balz; Gaillardet, Jérôme; Gorbushina, Anna; James, Rachael; Oelkers, Eric; Tesmer, Maja; Ashton, John
2015-04-01
The Marie Curie Initial Training Network »Isotopic Tools as Novel Sensors of Earth Surfaces Resources - IsoNose« is an alliance of eight international partners and five associated partners from science and industry. The project is coordinated at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and will run until February 2018. In the last 15 years advances in novel mass-spectrometric methods have opened opportunities to identify "isotopic fingerprints" of virtually all metals and to make use of the complete information contained in these fingerprints. The understanding developed with these new tools will ultimately guide the exploitation of Earth surface environments. However, progress in bringing these methods to end-users depends on a multi transfer of knowledge between (1) isotope Geochemistry and Microbiology, Environmental Sciences (2), Economic Geology and (3) instrument developers and users in the development of user-friendly and new mass spectrometric methods. IsoNose will focus on three major Earth surface resources: soil, water and metals. These resources are currently being exploited to an unprecedented extent and their efficient management is essential for future sustainable development. Novel stable isotope techniques will disclose the processes generating (e.g. weathering, mineral ore formation) and destroying (e.g. erosion, pollution) these resources. Within this field the following questions will be addressed and answered: - How do novel stable isotope signatures characterize weathering processes? - How do novel stable isotope signatures trace water transport? - How to use novel stable isotope as environmental tracers? - How to use novel stable isotope for detecting and exploring metal ores? - How to improve analytical capabilities and develop robust routine applications for novel stable isotopes? Starting from the central questions mentioned above the IsoNose activities are organized in five scientific work packages: 1. Making soil from rock 2. Dissolved metals in the global water cycle 3. Human influence on metal cycling 4. Innovations in metal ore exploration 5. New analytical tools Acknowledgement: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° [608069].
Warner, Daniel; Dijkstra, Jan; Hendriks, Wouter H; Pellikaan, Wilbert F
2014-03-30
Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic rumen models, but data on nutrient-specific FPR are scarce. Such models generally rely on conventional external marker techniques, which do not always describe digesta passage kinetics in a satisfactory manner. Here the use of stable isotope-labelled dietary nutrients as a promising novel tool to assess nutrient-specific passage kinetics is discussed. Some major limitations of this technique include a potential marker migration, a poor isotope distribution in the labelled feed and a differential disappearance rate of isotopes upon microbial fermentation in non-steady state conditions. Such limitations can often be circumvented by using intrinsically stable isotope-labelled plant material. Data are limited but indicate that external particulate markers overestimate rumen FPR of plant fibre compared with the internal stable isotope markers. Stable isotopes undergo the same digestive mechanism as the labelled feed components and are thus of particular interest to specifically measure passage kinetics of digestible dietary nutrients. © 2013 Society of Chemical Industry.
Nikolausz, M; Walter, R F H; Sträuber, H; Liebetrau, J; Schmidt, T; Kleinsteuber, S; Bratfisch, F; Günther, U; Richnow, H H
2013-03-01
Laboratory biogas reactors were operated under various conditions using maize silage, chicken manure, or distillers grains as substrate. In addition to the standard process parameters, the hydrogen and carbon stable isotopic composition of biogas was analyzed to estimate the predominant methanogenic pathways as a potential process control tool. The isotopic fingerprinting technique was evaluated by parallel analysis of mcrA genes and their transcripts to study the diversity and activity of methanogens. The dominant hydrogenotrophs were Methanomicrobiales, while aceticlastic methanogens were represented by Methanosaeta and Methanosarcina at low and high organic loading rates, respectively. Major changes in the relative abundance of mcrA transcripts were observed compared to the results obtained from DNA level. In agreement with the molecular results, the isotope data suggested the predominance of the hydrogenotrophic pathway in one reactor fed with chicken manure, while both pathways were important in the other reactors. Short-term changes in the isotopic composition were followed, and a significant change in isotope values was observed after feeding a reactor digesting maize silage. This ability of stable isotope fingerprinting to follow short-term activity changes shows potential for indicating process failures and makes it a promising technology for process control.
Wagstaff, Jane L; Taylor, Samantha L; Howard, Mark J
2013-04-05
This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and (19)F STD methods that are becoming more amenable due to the latest NMR equipment technologies.
Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.
1998-01-01
Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic endmember sources.
Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil
NASA Astrophysics Data System (ADS)
Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey
2017-04-01
Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.
Isotope separation by photochromatography
Suslick, Kenneth S.
1977-01-01
An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.
Sediment Tracking Using Carbon and Nitrogen Stable Isotopes
NASA Astrophysics Data System (ADS)
Fox, J. F.; Papanicolaou, A.
2002-12-01
As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. Results indicate distinct N isotopic signatures and C/N atomic ratios for forest and agriculture sediment sources. In addition, unique C and N isotopic signatures and C/N atomic ratios exist within floodplain and upland surfaces, and within the 10 centimeter profiles of erosion and deposition locations. Suspended sediment analyses are preliminary at this time. Conclusions indicate that sediment C and N isotopic signature and C/N atomic ratio are dependent upon land use and soil moisture conditions, and will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.
NASA Astrophysics Data System (ADS)
McMahon, K.; McCarthy, M. D.; Guilderson, T. P.; Sherwood, O.; Williams, B.; Larsen, T.; Glynn, D. S.
2017-12-01
Future climate change is predicted to alter ocean productivity, food web dynamics, biogeochemical cycling, and the efficacy of the biological pump. Proteinaceous deep-sea corals act as "living sediment traps," providing long-term, high-resolution records of exported surface ocean production and a window into past changes in ocean condition as a historical context for potential future changes. Here, we present recent work developing the application of compound-specific stable isotope analysis of individual amino acids to proteinaceous deep-sea corals to reconstruct past changes in phytoplankton community composition and biogeochemical cycling. We present new calibrations for molecular isotope comparisons between metabolically active coral polyp tissue and bioarchival proteinaceous skeleton. We then applied these techniques to deep-sea corals from the North Pacific Subtropical Gyre (NPSG) to reconstruct centennial to millennial time scale changes in phytoplankton community composition and biogeochemical cycling as a function of regional climate change. This work suggests that the NPSG has undergone multiple major phytoplankton regime shifts over the last millennium between prokaryotic and eukaryotic phytoplankton communities and associated sources of nitrogen fueling production. The most recent regime, which started around the end of the Little Ice Age and the onset of the Industrial era, is unprecedented in the last 1000 years and resulted in a 30-50% increase in diazotrophic cyanobacteria contribution to export production and an associated 17-27% increase in N2-fixation in the NPSG over last century. By offering the first direct phylogenetic context for long-term shifts in isotopic records of exported particulate organic matter, our data represent a major step forward in understanding the evolution of marine plankton community dynamics, food web architecture, biogeochemical cycling, and the climate feedback loops through the biological pump.
Chang, Ying-Che; Tang, Hong-Wen; Liang, Suh-Yuen; Pu, Tsung-Hsien; Meng, Tzu-Ching; Khoo, Kay-Hooi; Chen, Guang-Chao
2013-05-03
Although stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was first developed as a cell culture-based technique, stable isotope-labeled amino acids have since been successfully introduced in vivo into select multicellular model organisms by manipulating the feeding diets. An earlier study by others has demonstrated that heavy lysine labeled Drosophila melanogaster can be derived by feeding with an exclusive heavy lysine labeled yeast diet. In this work, we have further evaluated the use of heavy lysine and/or arginine for metabolic labeling of fruit flies, with an aim to determine its respective quantification accuracy and versatility. In vivo conversion of heavy lysine and/or heavy arginine to several nonessential amino acids was observed in labeled flies, leading to distorted isotope pattern and underestimated heavy to light ratio. These quantification defects can nonetheless be rectified at protein level using the normalization function. The only caveat is that such a normalization strategy may not be suitable for every biological application, particularly when modified peptides need to be individually quantified at peptide level. In such cases, we showed that peptide ratios calculated from the summed intensities of all isotope peaks are less affected by the heavy amino acid conversion and therefore less sequence-dependent and more reliable. Applying either the single Lys8 or double Lys6/Arg10 metabolic labeling strategy to flies, we quantitatively mapped the proteomic changes during the onset of metamorphosis and upon amino acid deprivation. The expression of a number of steroid hormone 20-hydroxyecdysone regulated proteins was found to be changed significantly during larval-pupa transition, while several subunits of the V-ATPase complex and components regulating actomyosin were up-regulated under starvation-induced autophagy conditions.
Godin, Jean-Philippe; McCullagh, James S O
2011-10-30
High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.
Brand, Willi A.; Coplen, Tyler B.; Aerts-Bijma, Anita T.; Bohlke, John Karl; Gehre, Matthias; Geilmann, Heike; Groning, Manfred; Jansen, Henk G.; Meijer, Harro A. J.; Mroczkowski, Stanley J.; Qi, Haiping; Soergel, Karin; Stuart-Williams, Hilary; Weise, Stephan M.; Werner, Roland A.
2009-01-01
Internationally distributed organic and inorganic oxygen isotopic reference materials have been calibrated by six laboratories carrying out more than 5300 measurements using a variety of high-temperature conversion techniques (HTC) in an evaluation sponsored by the International Union of Pure and Applied Chemistry (IUPAC). To aid in the calibration of these reference materials, which span more than 125‰, an artificially enriched reference water (δ18O of +78.91‰) and two barium sulfates (one depleted and one enriched in 18O) were prepared and calibrated relative to VSMOW2 and SLAP reference waters. These materials were used to calibrate the other isotopic reference materials in this study, which yielded:Reference materialδ18O and estimated combined uncertainty IAEA-602 benzoic acid+71.28 ± 0.36‰USGS35 sodium nitrate+56.81 ± 0.31‰IAEA-NO-3 potassium nitrate+25.32 ± 0.29‰IAEA-601 benzoic acid+23.14 ± 0.19‰IAEA-SO-5 barium sulfate+12.13 ± 0.33‰NBS 127 barium sulfate+8.59 ± 0.26‰VSMOW2 water0‰IAEA-600 caffeine−3.48 ± 0.53‰IAEA-SO-6 barium sulfate−11.35 ± 0.31‰USGS34 potassium nitrate−27.78 ± 0.37‰SLAP water−55.5‰The seemingly large estimated combined uncertainties arise from differences in instrumentation and methodology and difficulty in accounting for all measurement bias. They are composed of the 3-fold standard errors directly calculated from the measurements and provision for systematic errors discussed in this paper. A primary conclusion of this study is that nitrate samples analyzed for δ18O should be analyzed with internationally distributed isotopic nitrates, and likewise for sulfates and organics. Authors reporting relative differences of oxygen-isotope ratios (δ18O) of nitrates, sulfates, or organic material should explicitly state in their reports the δ18O values of two or more internationally distributed nitrates (USGS34, IAEA-NO-3, and USGS35), sulfates (IAEA-SO-5, IAEA-SO-6, and NBS 127), or organic material (IAEA-601 benzoic acid, IAEA-602 benzoic acid, and IAEA-600 caffeine), as appropriate to the material being analyzed, had these reference materials been analyzed with unknowns. This procedure ensures that readers will be able to normalize the δ18O values at a later time should it become necessary.The high-temperature reduction technique for analyzing δ18O and δ2H is not as widely applicable as the well-established combustion technique for carbon and nitrogen stable isotope determination. To obtain the most reliable stable isotope data, materials should be treated in an identical fashion; within the same sequence of analyses, samples should be compared with working reference materials that are as similar in nature and in isotopic composition as feasible.
Comparison of δ18O measurements in nitrate by different combustion techniques
Revesz, Kinga; Böhlke, John Karl
2002-01-01
Three different KNO3 salts with δ18O values ranging from about −31 to +54‰ relative to VSMOW were used to compare three off-line, sealed glass tube combustion methods (widely used for isotope studies) with a more recently developed on-line carbon combustion technique. All methods yielded roughly similar isotope ratios for KNO3 samples with δ18O values in the midpoint of the δ18O scale near that of the nitrate reference material IAEA-NO-3 (around +21 to +25‰). This reference material has been used previously for one-point interlaboratory and intertechnique calibrations. However, the isotope ratio scale factors by all of the off-line combustion techniques are compressed such that they are between 0.3 and 0.7 times that of the on-line combustion technique. The contraction of the δ18O scale in the off-line preparations apparently is caused by O isotope exchange between the sample and the glass combustion tubes. These results reinforce the need for nitrate reference materials with δ18O values far from that of atmospheric O2, to improve interlaboratory comparability.
U.S. Department of Energy Isotope Program
None
2018-01-16
The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNLâs Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNLâs Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNLâs Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.
U.S. Department of Energy Isotope Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwestmore » National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.« less
Atomic vapor laser isotope separation process
Wyeth, R.W.; Paisner, J.A.; Story, T.
1990-08-21
A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.
Tracing nitrates and sulphates in river basins using isotope techniques.
Rock, L; Mayer, B
2006-01-01
The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing delta(34)S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.
Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi
2010-12-15
Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S
2015-07-15
We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the calibration requirements are met), LC/IRMS is the technique of choice. The reasons for this are the improved precision, simpler sample preparation, and straightforward isotopic calibration. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-05-01
Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.
Water Isotopes in the GISS GCM: History, Applications and Potential
NASA Astrophysics Data System (ADS)
Schmidt, G. A.; LeGrande, A. N.; Field, R. D.; Nusbaumer, J. M.
2017-12-01
Water isotopes have been incorporated in the GISS GCMs since the pioneering work of Jean Jouzel in the 1980s. Since 2005, this functionality has been maintained within the master branch of the development code and has been usable (and used) in all subsequent versions. This has allowed a wide variety of applications, across multiple time-scales and interests, to be tackled coherently. Water isotope tracers have been used to debug the atmospheric model code, tune parameterisations of moist processes, assess the isotopic fingerprints of multiple climate drivers, produce forward models for remotely sensed isotope products, and validate paleo-climate interpretations from the last millennium to the Eocene. We will present an overview of recent results involving isotope tracers, including improvements in models for the isotopic fractionation processes themselves, and demonstrate the potential for using these tracers and models more systematically in paleo-climate reconstructions and investigations of the modern hydrological cycle.
Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen
2014-11-01
Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output. Copyright © 2014 Elsevier Ltd. All rights reserved.
Isotope separation by photochromatography
Suslick, K.S.
1975-10-03
A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)
Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry
NASA Technical Reports Server (NTRS)
Mahaffy, P.; Niemann, Hasso (Technical Monitor)
2001-01-01
Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.
Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E
2012-06-05
A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.
Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.
2011-01-01
Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.
Compound-specific stable isotope analysis of nitrogen-containing intact polar lipids.
Svensson, Elisabeth; Schouten, Stefan; Stam, Axel; Middelburg, Jack J; Sinninghe Damsté, Jaap S
2015-12-15
Compound-specific isotope analysis (CSIA) of nitrogen in amino acids has proven a valuable tool in many fields (e.g. ecology). Several intact polar lipids (IPLs) also contain nitrogen, and their nitrogen isotope ratios have the potential to elucidate food-web interactions or metabolic pathways. Here we have developed novel methodology for the determination of δ(15)N values of nitrogen-containing headgroups of IPLs using gas chromatography coupled with isotope-ratio mass spectrometry. Intact polar lipids with nitrogen-containing headgroups were hydrolyzed and the resulting compounds were derivatized by (1) acetylation with pivaloyl chloride for compounds with amine and hydroxyl groups or (2) esterification using acidified 2-propanol followed by acetylation with pivaloyl chloride for compounds with both carboxyl and amine groups. The δ(15)N values of the derivatives were subsequently determined using gas chromatography/combustion/isotope-ratio mass spectrometry. Intact polar lipids with ethanolamine and amino acid headgroups, such as phosphatidylethanolamine and phosphatidylserine, were successfully released from the IPLs and derivatized. Using commercially available pure compounds it was established that δ(15)N values of ethanolamine and glycine were not statistically different from the offline-determined values. Application of the technique to microbial cultures and a microbial mat showed that the method works well for the release and derivatization of the headgroup of phosphatidylethanolamine, a common IPL in bacteria. A method to enable CSIA of nitrogen of selected IPLs has been developed. The method is suitable for measuring natural stable nitrogen isotope ratios in microbial lipids, in particular phosphatidylethanolamine, and will be especially useful for tracing the fate of nitrogen in deliberate tracer experiments. Copyright © 2015 John Wiley & Sons, Ltd.
The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature
NASA Astrophysics Data System (ADS)
Kavner, A.; Shahar, A.; Bonet, F.; Simon, J. I.; Young, E.
2004-12-01
Recent developments in mass spectrometry techniques have created opportunities to examine the partitioning behavior of stable isotopes of transition metals with a focus on application to iron isotopes. Iron oxidizing and reducing bacteria have been shown to cause isotope fractionations similar in magnitude to those observed in sedimentary environments and it is believed that biological activity is responsible for the most significant Fe isotope fractionation in natural settings. Debate over the use of Fe isotopes as a biological marker resulted from subsequent measurements of fractionations in a variety of abiotic systems. The accumulated evidence, in both biotic and abiotic systems, points to a connection between redox processes and Fe isotope fractionation, however the exact mechanism for isotope fractionation is not yet well understood. Here, we present both a newly-developed theory based on chemical kinetics and preliminary experimental results that quantitatively delineate the relationship between driving force in a charge transfer reaction and resulting Fe isotope fractionation. The theory, based on R. Marcus's chemical kinetics theory for electron transfer (Ann. Rev. Phys. Chem. 15 (1964), 155), predicts that fractionation increases linearly with driving force with a proportionality related to two factors: the difference between isotopic equilibrium exchange of products and reactants, and the reorganization energy along the reaction coordinate. The theoretical predictions were confirmed by measurements of isotopic fractionation associated with electroplating iron metal from a ferrous chloride solution. Isotope fractionation of Fe electroplated under potentiostatic conditions was measured as a function of applied electrochemical potential. As plating voltage was varied from -50 mV to -2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values ranging from -0.106(±0.01) to -2.290(±±0.006)‰ , and corresponding δ 57Fe values of -0.145(±.011) and -3.354(±.019)‰ . The slope of the line created by plotting δ 56Fe vs δ 57Fe is equal to 0.6723(±.0032), consistent with fractionation due to a kinetic process involving unsolvated iron atoms. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. The magnitude of fractionation is similar to observations of Fe reduction by certain bacteria, suggesting that electrochemical processes may be responsible for observed biogeochemical signatures. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.
Contaminant bioaccumulation studies often rely on fish muscle filets as the tissue of choice for the measurement of nitrogen stable isotope ratios ( 15N) and mercury (Hg). Lethal sampling techniques may not be suitable for studies on limited populations from smaller sized aquati...
NASA Technical Reports Server (NTRS)
Wiedenbeck, M. E.
1977-01-01
An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.
Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.
2009-01-01
A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619
SL12-GADRAS-PD2Ka Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.
2014-09-09
The GADRAS Development project comprises several elements that are all related to the Detector Response Function (DRF), which is the core of GADRAS. An ongoing activity is implementing continuous improvements in the accuracy and versatility of the DRF. The ability to perform rapid computation of the response of gammaray detectors for 3-D descriptions of source objects and their environments is a good example of a recent utilization of this versatility. The 3-D calculations, which execute several orders of magnitude faster than competing techniques, compute the response as an extension of the DRF so the radiation transport problem is never solvedmore » explicitly, thus saving considerable computational time. Maintenance of the Graphic User Interface (GUI) and extension of the GUI to enable construction of the 3-D source models is included in tasking for the GADRAS Development project. Another aspect of this project is application of the isotope identification algorithms for search applications. Specifically, SNL is tasked with development of an isotope-identification based search capability for use with the RSL-developed AVID system, which supports simultaneous operation of numerous radiation search assets. A Publically Available (PA) GADRAS-DRF application, which eliminates sensitive analysis components, will soon be available so that the DRF can be used by researchers at universities and corporations.« less
Geochemistry and the understanding of ground-water systems
Glynn, Pierre D.; Plummer, Niel
2005-01-01
Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.
Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions
NASA Astrophysics Data System (ADS)
Breunig, Katharina; Scholten, Bernhard; Spahn, Ingo; Hermanne, Alex; Spellerberg, Stefan; Coenen, Heinz H.; Neumaier, Bernd
2017-09-01
The cross sections of α-particle induced reactions on arsenic leading to the formation of 76,77,78Br were measured from their respective thresholds up to 37 MeV. Thin sediments of elemental arsenic powder were irradiated together with Al degrader and Cu monitor foils using the established stacked-foil technique. For determination of the effective α-particle energies and of the effective beam current through the stacks the cross-section ratios of the monitor nuclides 67Ga/66Ga were used. This should help resolve discrepancies in existing literature data. Comparison of the data with the available excitation functions shows some slight energy shifts as well as some differences in curve shapes. The calculated thick target yields indicate, that 77Br can be produced in the energy range Eα = 25 → 17 MeV free of isotopic impurities in quantities sufficient for medical application.
Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma
Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor
2015-12-19
An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment ( 235U/ 238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderatemore » resolution Czerny–Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.« less
Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2011-01-01
One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.
NASA Astrophysics Data System (ADS)
Nowak-Lovato, K.
2014-12-01
Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.
Isotope pattern deconvolution as a tool to study iron metabolism in plants.
Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes
2008-01-01
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.
The Most Useful Actinide Isotope: Americium-241.
ERIC Educational Resources Information Center
Navratil, James D.; And Others
1990-01-01
Reviewed is the discovery, nuclear and chemical properties, and uses of an isotope of Americium (Am-241). Production and separation techniques used in industry are emphasized. Processes are illustrated in flow sheets. (CW)
NASA Astrophysics Data System (ADS)
Adamson, Kathryn; Candy, Ian; Whitfield, Liz
2015-04-01
Pedogenic calcretes are abundant in arid and semi-arid regions, and they are widely used as proxy records of palaeoclimatic change. Calcrete oxygen (δ18O) and carbon (δ13C) isotopic signatures are indicative of temperature, aridity, or vegetation at the time of calcrete formation. Their microfabrics also reflect carbonate formation mechanisms in response to the prevailing environmental conditions. Many studies have explored calcrete micromorphology or stable isotope composition, but these techniques have not yet been applied simultaneously. This co-analysis is important as it allows us to establish whether calcrete morphology directly reflects environmental change. This study tests the potential of combining these analyses to examine the relationships between calcrete microfabrics, their isotopic signals, and Quaternary climate change. Calcretes from four river terraces of the Rio Alias in southeast Spain have been analysed in detail. On the basis of morphostratigraphic correlation (Maher et al., 2007) and Uranium-series ages (Candy et al., 2005), these span the period from 304 ± 26 ka (MIS 9) to the Holocene. The oldest profiles have therefore been exposed to multiple glacial-interglacial cycles. A total of 37 micromorphological profiles have been used to extract stable oxygen and carbon isotopic indicators from 77 microfacies. The morphological and isotopic complexity of the calcrete profiles increases with progressive age. The oldest samples display multiple calcretisation phases, and their microfabrics have a larger isotopic range than the younger samples. Alpha (non-biogenic) fabrics have higher δ13C and δ18O values than beta (biogenic) fabrics. Strong positive covariance between δ13C and δ18O within all profiles suggests that both isotopes are responding to the same environmental parameter. We suggest that this is relative aridity. The study demonstrates that the detailed co-analysis of calcrete micromorphology and stable isotope signatures allows calcrete formation patterns to be placed into a wider palaeoclimatic context. Importantly, this technique provides a level of detail that is not possible through bulk isotope sampling alone. It demonstrates the potential of this technique to more reliably constrain the palaeoenvironmental significance of secondary carbonates in dryland settings where other proxy records may be poorly preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggi, F.M.; Riley, W.J.
2009-06-01
The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less
Mid-IR enhanced laser ablation molecular isotopic spectrometry
NASA Astrophysics Data System (ADS)
Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis
2016-08-01
A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.
Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart: Web Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escher, J. E.; Blackmon, J.; Elster, C.
Recent years have seen exciting new developments and progress in nuclear structure theory, reaction theory, and experimental techniques, that allow us to move towards a description of exotic systems and environments, setting the stage for new discoveries. The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications. Nuclear theory must address phenomena from laboratorymore » experiments to stellar environments, from stable nuclei to weakly-bound and exotic isotopes. Expanding the reach of theory to these regimes requires a comprehensive understanding of the reaction mechanisms involved as well as detailed knowledge of nuclear structure. A recurring theme throughout the program was the desire to produce reliable predictions rooted in either ab initio or microscopic approaches. At the same time it was recognized that some applications involving heavy nuclei away from stability, e.g. those involving fi ssion fragments, may need to rely on simple parameterizations of incomplete data for the foreseeable future. The goal here, however, is to subsequently improve and refine the descriptions, moving to phenomenological, then microscopic approaches. There was overarching consensus that future work should also focus on reliable estimates of errors in theoretical descriptions.« less
Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri
2017-10-25
Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D 2 through direct selective separation studies using 1:1 D 2 /H 2 mixtures.
Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.
2017-01-01
Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987
NASA Astrophysics Data System (ADS)
Panetta, R. J.; Hsiao, G.
2011-12-01
Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original values, demonstrating effective removal of interfering species with no isotopic fractionation during the pyrolysis. Tests of water spiked quantitatively show the MPT is most effective at removing interferences up to 1 % v/v. This level is typical for plant extracts and interstitial waters, i.e. the majority of natural samples that suffer from spectral interference.
Mass spectrometric measurements of the isotopic anatomies of molecules (Invited)
NASA Astrophysics Data System (ADS)
Eiler, J. M.; Krumwiede, D.; Schlueter, H.
2013-12-01
Site-specific and multiple isotopic substitutions in molecular structures potentially provide an extraordinarily rich set of constraints on their sources, conditions of formation, reaction and transport histories, and perhaps other issues. Examples include carbonate ';clumped isotope' thermometry, clumped isotope measurements of CO2, O2, and, recently, methane, ethane and N2O; site-specific 15N measurements in N2O and 13C and D analyses of fatty acids, sugars, cellulose, food products, and, recently, n-alkanes. Extension of the principles behind these tools to the very large number of isotopologues of complex molecules could potentially lead to new uses of isotope chemistry, similar to proteomics, metabolomics and genomics in their complexity and depth of detail (';isotomics'?). Several technologies are potentially useful for this field, including ';SNIF-NMR', gas source mass spectrometry and IR absorption spectroscopy. However, all well established methods have restrictive limits in the sizes of samples, types of analyzes, and the sorts of isotopologues that can be measured with useful precision. We will present an overview of several emerging instruments and techniques of high-resolution gas source mass spectrometry that may enable study of a large proportion of the isotopologues of a wide range of volatile and semi-volatile compounds, including many organics, with precisions and sample sizes suitable for a range of applications. A variety of isotopologues can be measured by combining information from the Thermo 253 Ultra (a new high resolution, multi-collector gas source mass spectrometer) and the Thermo DFS (a very high resolution single collector, but used here on a novel mode to achieve ~per mil precision ratio measurements), sometimes supplemented by conventional bulk isotopic measurements. It is possible to design methods in which no one of these sources of data meaningfully constrain abundances of specific isotopologues, but their combination fully and precisely constrains a large number. We have assembled a suite of instruments (including the prototype of the Ultra, and a modified version of the DFS that is capable of dual inlet analyses) that make it logistically straightforward to perform such multi-instrument analyses. Examples will be presented documenting the accuracy of these techniques for systems that are independently well known (e.g., isotopologues of methane), and the precision and internal consistency of results for larger, more complex molecules (e.g., a suite of singly and doubly substituted isotopologues of hexane and other moderate-molecular-weight organics).
Koch, Paul L.
2017-01-01
Scat is frequently used to study animal diets because it is easy to find and collect, but one concern is that gross fecal analysis (GFA) techniques exaggerate the importance of small-bodied prey to mammalian mesopredator diets. To capitalize on the benefits of scat, we suggest the analysis of scat carbon and nitrogen isotope values (δ13C and δ15N). This technique offers researchers a non-invasive method to gather short-term dietary information. We conducted three interrelated studies to validate the use of isotopic values from coyote scat: 1) we determined tissue-to-tissue apparent C and N isotope enrichment factors (ε13* and ε15*) for coyotes from road kill animals (n = 4); 2) we derived diet-to-scat isotope discrimination factors for coyotes; and 3) we used field collected coyote scats (n = 12) to compare estimates of coyote dietary proportions from stable isotope mixing models with estimates from two GFA techniques. Scat consistently had the lowest δ13C and δ15N values among the tissues sampled. We derived a diet-to-scat Δ13C value of -1.5‰ ± 1.6‰ and Δ15N value of 2.3‰ ± 1.3‰ for coyotes. Coyote scat δ13C and δ15N values adjusted for discrimination consistently plot within the isotopic mixing space created by known dietary items. In comparison with GFA results, we found that mixing model estimates of coyote dietary proportions de-emphasize the importance of small-bodied prey. Coyote scat δ13C and δ15N values therefore offer a relatively quick and non-invasive way to gain accurate dietary information. PMID:28369133
Reid, Rachel E B; Koch, Paul L
2017-01-01
Scat is frequently used to study animal diets because it is easy to find and collect, but one concern is that gross fecal analysis (GFA) techniques exaggerate the importance of small-bodied prey to mammalian mesopredator diets. To capitalize on the benefits of scat, we suggest the analysis of scat carbon and nitrogen isotope values (δ13C and δ15N). This technique offers researchers a non-invasive method to gather short-term dietary information. We conducted three interrelated studies to validate the use of isotopic values from coyote scat: 1) we determined tissue-to-tissue apparent C and N isotope enrichment factors (ε13* and ε15*) for coyotes from road kill animals (n = 4); 2) we derived diet-to-scat isotope discrimination factors for coyotes; and 3) we used field collected coyote scats (n = 12) to compare estimates of coyote dietary proportions from stable isotope mixing models with estimates from two GFA techniques. Scat consistently had the lowest δ13C and δ15N values among the tissues sampled. We derived a diet-to-scat Δ13C value of -1.5‰ ± 1.6‰ and Δ15N value of 2.3‰ ± 1.3‰ for coyotes. Coyote scat δ13C and δ15N values adjusted for discrimination consistently plot within the isotopic mixing space created by known dietary items. In comparison with GFA results, we found that mixing model estimates of coyote dietary proportions de-emphasize the importance of small-bodied prey. Coyote scat δ13C and δ15N values therefore offer a relatively quick and non-invasive way to gain accurate dietary information.
Full-Spectrum-Analysis Isotope ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.
2017-06-28
FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less
NASA Astrophysics Data System (ADS)
Nowak, Martin; van Geldern, Robert; Myrttinen, Anssi; Veith, Becker; Zimmer, Martin; Barth, Johannes
2013-04-01
With rising atmospheric greenhouse gas concentrations, CCS technologies are a feasible option to diminish consequences of uncontrolled anthropogenic CO2 emissions and related climate change. However, application of CCS technologies requires appropriate and routine monitoring tools in order to ensure a safe and effective CO2 injection. Stable isotope techniques have proven as a useful geochemical monitoring tool at several CCS pilot projects worldwide. They can provide important information about gas - water - rock interactions, mass balances and CO2 migration in the reservoir and may serve as a tool to detect CO2 leakage in the subsurface and surface. Since the beginning of injection in 2008 at the Ketzin pilot site in Germany, more than 450 samples of fluids and gases have been analysed for their carbon and oxygen isotopic composition. Analytical advancements were achieved by modifying a conventional isotope ratio mass-spectrometer with a He dilution system. This allowed analyses of a larger number of CO2 gas samples from the injection well and observation wells. With this, a high-resolution monitoring program was established over a time period of one year. Results revealed that two isotopical distinct kinds of CO2 are injected at the Ketzin pilot site. The most commonly injected CO2 is so-called 'technical' CO2 with an average carbon isotopic value of about -31 ‰. Sporadically, natural source CO2 with an average δ13C value of -3 ‰ was injected. The injection of natural source CO2 generated a distinct isotope signal at the injection well that can be used as an ideal tracer. CO2 isotope values analysed at the observation wells indicate a highly dispersive migration of the supercritical CO2 that results in mixing of the two kinds of CO2 within the reservoir. Above-reservoir monitoring includes the first overlying aquifer above the cap rock. An observation well within this zone comprises an U-tube sampling device that allows frequent sampling of unaltered brine. The fluids were analysed among others for their carbon isotopic compositions of dissolved inorganic carbon (DIC). δ13CDIC values allowed to assess impacts of the carbonate-based drilling fluid during well development and helped to monitor successive geochemical re-equilibration processes of the brine. Based on the determined δ13C baseline values of the aquifer fluid, first concepts indicate the scale of change of the δ13CDIC values that would be necessary to detect CO2 leakage from the underlying storage reservoir. Recent efforts aim at applications of new laser-based isotope sensors that allow online measurements in the field. These devices are applied for CO2 gas tracer experiments as well as for monitoring of isotope composition of soil gases in the vicinity of the pilot site. This new development will allow much better temporal and spatial resolution of measurements at a lower price. Therefore, stable isotope analyses can become a strong and promising tool for subsurface as well as surface monitoring at future CCS sites.
Rysava, K; McGill, R A R; Matthiopoulos, J; Hopcraft, J G C
2016-07-15
Nutritional bottlenecks often limit the abundance of animal populations and alter individual behaviours; however, establishing animal condition over extended periods of time using non-invasive techniques has been a major limitation in population ecology. We test if the sequential measurement of δ(15) N values in a continually growing tissue, such as hair, can be used as a natural bio-logger akin to tree rings or ice cores to provide insights into nutritional stress. Nitrogen stable isotope ratios were measured by continuous-flow isotope-ratio mass spectrometry (IRMS) from 20 sequential segments along the tail hairs of 15 migratory wildebeest. Generalized Linear Models were used to test for variation between concurrent segments of hair from the same individual, and to compare the δ(15) N values of starved and non-starved animals. Correlations between δ(15) N values in the hair and periods of above-average energy demand during the annual cycle were tested using Generalized Additive Mixed Models. The time series of nitrogen isotope ratios in the tail hair are comparable between strands from the same individual. The most likely explanation for the pattern of (15) N enrichment between individuals is determined by life phase, and especially the energetic demands associated with reproduction. The mean δ(15) N value of starved animals was greater than that of non-starved animals, suggesting that higher δ(15) N values correlate with periods of nutritional stress. High δ(15) N values in the tail hair of wildebeest are correlated with periods of negative energy balance, suggesting they may be used as a reliable indicator of the animal's nutritional history. This technique might be applicable to other obligate grazers. Most importantly, the sequential isotopic analysis of hair offers a continuous record of the chronic condition of wildebeest (effectively converting point data into time series) and allows researchers to establish the animal's nutritional diary. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lin, Z.; Kim-Hak, D.; Popp, B. N.; Wallsgrove, N.; Kagawa-Viviani, A.; Johnson, J.
2017-12-01
Cavity ring-down spectroscopy (CRDS) is a technology based on the spectral absorption of gas molecules of interest at specific spectral regions. The CRDS technique enables the analysis of hydrogen and oxygen stable isotope ratios of water by directly measuring individual isotopologue absorption peaks such as H16OH, H18OH, and D16OH. Early work demonstrated that the accuracy of isotope analysis by CRDS and other laser-based absorption techniques could be compromised by spectral interference from organic compounds, in particular methanol and ethanol, which can be prevalent in ecologically-derived waters. There have been several methods developed by various research groups including Picarro to address the organic interference challenge. Here, we describe an organic fitter and a post-processing algorithm designed to improve the accuracy of the isotopic analysis of the "organic contaminated" water specifically for Picarro models L2130-i and L2140-i. To create the organic fitter, the absorption features of methanol around 7200 cm-1 were characterized and incorporated into spectral analysis. Since there was residual interference remaining after applying the organic fitter, a statistical model was also developed for post-processing correction. To evaluate the performance of the organic fitter and the postprocessing correction, we conducted controlled experiments on the L2130-i for two water samples with different isotope ratios blended with varying amounts of methanol (0-0.5%) and ethanol (0-5%). When the original fitter was not used for spectral analysis, the addition of 0.5% methanol changed the apparent isotopic composition of the water samples by +62‰ for δ18O values and +97‰ for δ2H values, and the addition of 5% ethanol changed the apparent isotopic composition by -0.5‰ for δ18O values and -3‰ for δ2H values. When the organic fitter was used for spectral analysis, the maximum methanol-induced errors were reduced to +4‰ for δ18O values and +5‰ for δ2H values, and the maximum ethanol-induced errors were unchanged. When the organic fitter was combined with the post-processing correction, up to 99.8% of the total methanol-induced errors and 96% of the total ethanol-induced errors could be corrected. The applicability of the algorithm to natural samples such as plant and soil waters will be investigated.
Isotope Exchange in Oxide Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.
Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis
NASA Astrophysics Data System (ADS)
Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia
2015-04-01
The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this case the known isotopic ratio is measured on different pairs of detectors and the true value of the isotopic ratio of interest can be determined by a specific equation. In noble gas analysis, due to the decay of the ion beam during the measurement as well as the special isotopic systematic of the gases themselves, the cross-calibration of the SEM using these techniques becomes more complex and other methods should be investigated. In this work we present a comparison between different approaches to cross-calibrate multiple SEM's in noble gas analysis in order to evaluate the most suitable and reliable method. References: [1] Mark et al. (2009) Geochem. Geophys. Geosyst. 10, 1-9. [2] Mark et al. (2011) Geochim. Cosmochim. 75, 7494-7501. [3] Phillips and Matchan (2013) Geochimica et Cosmochimica Acta 121, 229-239. [4] Koornneef et al. (2014) Journal of Analytical Atomic Spectrometry 28, 749-754.
NASA Astrophysics Data System (ADS)
Thuss, E.; English, M. C.; Spoelstra, J.
2009-05-01
When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface water requires a better understanding of nitrogen fate in the soil zone, and will result in more effective agricultural nutrient management.
NASA Astrophysics Data System (ADS)
Doherty, W.; Lightfoot, P. C.; Ames, D. E.
2014-08-01
The effects of polynomial interpolation and internal standardization drift corrections on the inter-measurement dispersion (statistical) of isotope ratios measured with a multi-collector plasma mass spectrometer were investigated using the (analyte, internal standard) isotope systems of (Ni, Cu), (Cu, Ni), (Zn, Cu), (Zn, Ga), (Sm, Eu), (Hf, Re) and (Pb, Tl). The performance of five different correction factors was compared using a (statistical) range based merit function ωm which measures the accuracy and inter-measurement range of the instrument calibration. The frequency distribution of optimal correction factors over two hundred data sets uniformly favored three particular correction factors while the remaining two correction factors accounted for a small but still significant contribution to the reduction of the inter-measurement dispersion. Application of the merit function is demonstrated using the detection of Cu and Ni isotopic fractionation in laboratory and geologic-scale chemical reactor systems. Solvent extraction (diphenylthiocarbazone (Cu, Pb) and dimethylglyoxime (Ni) was used to either isotopically fractionate the metal during extraction using the method of competition or to isolate the Cu and Ni from the sample (sulfides and associated silicates). In the best case, differences in isotopic composition of ± 3 in the fifth significant figure could be routinely and reliably detected for Cu65/63 and Ni61/62. One of the internal standardization drift correction factors uses a least squares estimator to obtain a linear functional relationship between the measured analyte and internal standard isotope ratios. Graphical analysis demonstrates that the points on these graphs are defined by highly non-linear parametric curves and not two linearly correlated quantities which is the usual interpretation of these graphs. The success of this particular internal standardization correction factor was found in some cases to be due to a fortuitous, scale dependent, parametric curve effect.
Evaluation of soil water stable isotope analysis by H2O(liquid)-H2O(vapor) equilibration method
NASA Astrophysics Data System (ADS)
Gralher, Benjamin; Stumpp, Christine
2014-05-01
Environmental tracers like stable isotopes of water (δ18O, δ2H) have proven to be valuable tools to study water flow and transport processes in soils. Recently, a new technique for soil water isotope analysis has been developed that employs a vapor phase being in isothermal equilibrium with the liquid phase of interest. This has increased the potential application of water stable isotopes in unsaturated zone studies as it supersedes laborious extraction of soil water. However, uncertainties of analysis and influencing factors need to be considered. Therefore, the objective of this study was to evaluate different methodologies of analysing stable isotopes in soil water in order to reduce measurement uncertainty. The methodologies included different preparation procedures of soil cores for equilibration of vapor and soil water as well as raw data correction. Two different inflatable sample containers (freezer bags, bags containing a metal layer) and equilibration atmospheres (N2, dry air) were tested. The results showed that uncertainties for δ18O were higher compared to δ2H that cannot be attributed to any specific detail of the processing routine. Particularly, soil samples with high contents of organic matter showed an apparent isotope enrichment which is indicative for fractionation due to evaporation. However, comparison of water samples obtained from suction cups with the local meteoric water line indicated negligible fractionation processes in the investigated soils. Therefore, a method was developed to correct the raw data reducing the uncertainties of the analysis.. We conclude that the evaluated method is advantageous over traditional methods regarding simplicity, resource requirements and sample throughput but careful consideration needs to be made regarding sample handling and data processing. Thus, stable isotopes of water are still a good tool to determine water flow and transport processes in the unsaturated zone.
Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites
NASA Technical Reports Server (NTRS)
Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.
2005-01-01
The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].
Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.
Chahrour, Osama; Cobice, Diego; Malone, John
2015-09-10
Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamaluddin, M.B.
1986-01-01
The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique usedmore » to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as well as the previous theory.« less
Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa
2016-01-01
In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2) > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.
The RIB production target for the SPES project
NASA Astrophysics Data System (ADS)
Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni
2015-10-01
Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.
van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg
2014-12-16
A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-09-01
Papers presented at the All-Union Conference on Industrial Applications of Radioactive Isotopes and Nuclear Emissions in the National Economy of USSR, April 12 to 16, 1960, in Riga are surveyed. Short summaries are given on applications of radioactive isotopes and nuclear emissions in prospecting, developing mineral resources, metallurgy, ore enrichment processes, machine construction technology, agriculture, food processing, and medicine. Sources of alpha , beta , and gamma radiation for control and automation of processes are also discussed. The full reports from the conference will be published in 1960. (R.V.J.)
Cloern, J.E.; Canuel, E.A.; Harris, D.
2002-01-01
We report measurements of seasonal variability in the C-N stable isotope ratios of plants collected across the habitat mosaic of San Francisco Bay, its marshes, and its tributary river system. Analyses of 868 plant samples were binned into 10 groups (e.g., terrestrial riparian, freshwater phytoplankton, salt marsh) to determine whether C-N isotopes can be used as biomarkers for tracing the origins of organic matter in this river-marsh-estuary complex. Variability of ??13C and ??15N was high (???5-10???) within each plant group, and we identified three modes of variability: (1) between species and their microhabitats, (2) over annual cycles of plant growth and senescence, and (3) between living and decomposing biomass. These modes of within-group variability obscure any source-specific isotopic signatures, confounding the application of C-N isotopes for identifying the origins of organic matter. A second confounding factor was large dissimilarity between the ??13C-??15N of primary producers and the organic-matter pools in the seston and sediments. Both confounding factors impede the application of C-N isotopes to reveal the food supply to primary consumers in ecosystems supporting diverse autotrophs and where the isotopic composition of organic matter has been transformed and become distinct from that of its parent plant sources. Our results support the advice of others: variability of C-N stable isotopes within all organic-matter pools is high and must be considered in applications of these isotopes to trace trophic linkages from primary producers to primary consumers. Isotope-based approaches are perhaps most powerful when used to complement other tools, such as molecular biomarkers, bioassays, direct measures of production, and compilations of organic-matter budgets.
Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry
Pitt, James J
2009-01-01
Liquid chromatography-mass spectrometry (LC-MS) is now a routine technique with the development of electrospray ionisation (ESI) providing a simple and robust interface. It can be applied to a wide range of biological molecules and the use of tandem MS and stable isotope internal standards allows highly sensitive and accurate assays to be developed although some method optimisation is required to minimise ion suppression effects. Fast scanning speeds allow a high degree of multiplexing and many compounds can be measured in a single analytical run. With the development of more affordable and reliable instruments, LC-MS is starting to play an important role in several areas of clinical biochemistry and compete with conventional liquid chromatography and other techniques such as immunoassay. PMID:19224008
Intraluminal radiation for esophageal cancer: a Howard University technique.
Moorthy, C R; Nibhanupudy, J R; Ashayeri, E; Goldson, A L; Espinoza, M C; Nidiry, J J; Warner, O G; Roux, V J
1982-03-01
The objective of radiotherapeutic management in esophageal cancer is to accomplish maximum tumor sterilization with minimal normal tissue damage. This sincere effort is most often countered by the differential in tumor dose response vs normal tissue tolerance. Intraluminal isotope radiation, with its inherent advantage of rapid dose falloff, spares the lungs, the spinal cord, and other vital structures, yet yields adequately high doses to esophageal tumor. Though in existence since the turn of the century, the method of intracavitary radium bougie application dropped out of favor due to technical difficulties imposed by the size of the radium source and radiation exposure to the personnel involved. The authors describe a simple "iridium 192 afterloading intraluminal technique" that eliminates technical problems and reduces radiation exposure considerably.
Review of chemical separation techniques applicable to alpha spectrometric measurements
NASA Astrophysics Data System (ADS)
de Regge, P.; Boden, R.
1984-06-01
Prior to alpha-spectrometric measurements several chemical manipulations are usually required to obtain alpha-radiating sources with the desired radiochemical and chemical purity. These include sampling, dissolution or leaching of the elements of interest, conditioning of the solution, chemical separation and preparation of the alpha-emitting source. The choice of a particular method is dependent on different criteria but always involves aspects of the selectivity or the quantitative nature of the separations. The availability of suitable tracers or spikes and modern high resolution instruments resulted in the wide-spread application of isotopic dilution techniques to the problems associated with quantitative chemical separations. This enhanced the development of highly elective methods and reagents which led to important simplifications in the separation schemes. The chemical separation methods commonly used in connection with alpha-spectrometric measurements involve precipitation with selected scavenger elements, solvent extraction, ion exchange and electrodeposition techniques or any combination of them. Depending on the purpose of the final measurement and the type of sample available the chemical separation methods have to be adapted to the particular needs of environment monitoring, nuclear chemistry and metrology, safeguards and safety, waste management and requirements in the nuclear fuel cycle. Against the background of separation methods available in the literature the present paper highlights the current developments and trends in the chemical techniques applicable to alpha spectrometry.
Recent progress in Precambrian paleobiology
NASA Technical Reports Server (NTRS)
Schopf, J. W.
1986-01-01
Ongoing studies at UCLA include the following: (1) investigations in Archean and Proterozoic sequences of various locations; (2) laboratory and field studies of modern microbial biocoenoses (analogues of Precambrian microbial communities) especially those at Laguna Mormona, Baja California, Mexico; (3) development of new laboratory techniques for the separation and concentration of minute cellularly preserved fossils for isotopic and organic geochemical analyses; and (4) assembly of a computerized database for assessment of the timing and nature of major events occurring during Precambrian biotic evolution, and of the potential applicability of ancient microbiotas to problems of global biostratigraphy and biogeography.
Controls on the barium isotope compositions of marine sediments
NASA Astrophysics Data System (ADS)
Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.
2018-01-01
The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ 138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δ diss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.
Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite
NASA Technical Reports Server (NTRS)
Krishnamurthy, R. V.; Epstein, S.; Pizzarello, S.; Cronin, J. R.; Yuen, G. U.
1991-01-01
A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper.
Isotopic Techniques for Assessment of Groundwater Discharge to the Coastal Ocean
2003-09-30
estimates of the pore water Rn activity. The red line (based on an average groundwater concentration of 170 dpm/L) is considered our best estimate and...Isotopic Techniques For Assessment of Groundwater Discharge to the Coastal Ocean William C. Burnett Department of Oceanography Florida State...evaluating the influence of submarine groundwater discharge (SGD) into the ocean. Our long-term goal is to develop geochemical tools (e.g., radon and
Isotopic signatures: An important tool in today`s world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokop, D.J.; Efurd, D.W.; Benjamin, T.M.
1995-12-01
High-sensitivity/high-accuracy actinide measurement techniques developed to support weapons diagnostic capabilities at the Los Alamos National Laboratory are now being used for environmental monitoring. The measurement techniques used are Thermal Ionization Mass Spectrometry (TIMS), Alpha Spectrometry(AS), and High Resolution Gamma Spectrometry(HRGS). These techniques are used to address a wide variety of actinide inventory issues: Environmental surveillance, site characterizations, food chain member determination, sedimentary records of activities, and treaty compliance concerns. As little as 10 femtograms of plutonium can be detected in samples and isotopic signatures determined on samples containing sub-100 femtogram amounts. Uranium, present in all environmental samples, can generally yieldmore » isotopic signatures of anthropogenic origin when present at the 40 picogam/gram level. Solid samples (soils, sediments, fauna, and tissue) can range from a few particles to several kilograms in size. Water samples can range from a few milliliters to as much as 200 liters.« less
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Nowak, Martin; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A. C.; Jost, Hj
2016-04-01
A newly developed and commercially available isotope ratio laser spectrometer for CO2 analyses has been tested during a 10-day field monitoring campaign at the Ketzin pilot site for CO2 storage in northern Germany. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10-day carbon stable isotope data set with 30 minutes resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within 2σ analytical precision (<0.3 ‰). This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time table isotope data directly in the field. The injected CO2 tracer had a distinct δ13C value that was largely different from the reservoir background value. The laser spectroscopy data revealed a prior to this study unknown, intensive dynamic with fast changing δ13C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The new technique might contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
NASA Astrophysics Data System (ADS)
Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang
2016-04-01
Soil organic matter (SOM) decomposition is one of the most important processes of the global nitrogen cycle, having strong implications on soil N availability, terrestrial carbon cycling and soil carbon sequestration. During SOM decomposition low-molecular weight organic nitrogen (LMWON) is released which can be taken up by microbes (and plants). The breakdown of high-molecular weight organic nitrogen (HMWON, e.g. proteins, peptidoglycan, chitin, nucleic acids) represents the bottleneck of soil HMWON decomposition and is performed by extracellular enzymes released mainly by soil microorganisms. Despite that, the current understanding of the controls of these processes is incomplete. The only way to measure gross decomposition rates of these polymers is to use isotope pool dilution (IPD) techniques. In IPD approaches the product pool is isotopically enriched (by e.g. 15N) and the isotope dilution of this pool is measured over time. We have pioneered an IPD for protein and cellulose depolymerization, but IPD approaches for other polymers, specifically for important microbial necromass components such as chitin (fungi) and peptidoglycan (bacteria), or nucleic acids have not yet been developed. Here we present a workflow based on a universally applicable technical platform that allows to estimate the gross depolymerization rate of SOM (HMWON) at the molecular level, using ultra high performance liquid chromatography/high resolution Orbitrap mass spectrometry (UPLC/HRMS) combined with IPD techniques. The necessary isotopically labeled organic polymers (chitin, peptidoglycan and others) are extracted from laboratory bacterial and fungal cultures grown in fully isotopically labeled nutrient media (15N, 13C or both). A purification scheme for the different polymers is currently established. Labeled potential decomposition products (e.g. amino sugars and muropeptides from peptidoglycan, amino sugars and chitooligosaccharides from chitin, nucleotides and nucleosides from nucleic acids) are prepared by enzymatic and/or acid digestion of the polymers. Different UPLC separation columns (Hypercarb, HiliC and C18) make it possible to separate more than 100 related monomers and oligomers produced during polymer decomposition, a prerequisite for analyzing the concentrations and isotope kinetics of decomposition products in complex soil samples. The benchtop Orbitrap mass analyzer has a nominal mass resolving power of 100,000 (FWHM at m/z 200), which enables us to separate compounds that are 13C- and 15N-labelled (mass difference: 0.00632) in the same compound, allowing tracing carbon and nitrogen isotopes in the same compound in IPD experiments. With the accurate masses, retention times and the isotopic pattern we can quantify and qualify the target decomposition products and their isotope kinetics during soil incubation experiments. This will enable us to estimate in situ decomposition rates of the major organic nitrogen polymers in soils, allowing new insights into the major controls of the most important step in soil organic nitrogen recycling.
Human Provenancing: It's Elemental…
NASA Astrophysics Data System (ADS)
Meier-Augenstein, Wolfram; Kemp
2009-04-01
Forensic science already uses a variety of methods often in combination to determine a deceased person's identity if neither personal effects nor next of kin (or close friends) can positively identify the victim. While disciplines such as forensic anthropology are able to work from a blank canvass as it were and can provide information on age, gender and ethnical grouping, techniques such as DNA profiling do rely on finding a match either in a database or a comparative sample presumed to be an ante-mortem sample of the victim or from a putative relation. Chances for either to succeed would be greatly enhanced if information gained from a forensic anthropological examination and, circumstances permitting a facial reconstruction could be linked to another technique that can work from a blank canvass or at least does not require comparison to a subject specific database. With the help of isotope ratio mass spectrometry even the very atoms from which a body is made can be used to say something about a person that will help to focus human identification using traditional techniques such as DNA, fingerprints and odontology. Stable isotope fingerprinting works on the basis that almost all chemical elements and in particular the so-called light elements such as carbon (C) that comprise most of the human body occur naturally in different forms, namely isotopes. 2H isotope abundance values recorded by the human body through food and drink ultimately reflect averaged isotopic composition of precipitation or ground water. Stable isotope analysis of 2H isotopic composition in different human tissue such as hair, nails, bone and teeth enables us to construct a time resolved isotopic profile or ‘fingerprint' that may not necessarily permit direct identification of a murder victim or mass disaster victim but in conjunction with forensic anthropological information will provide sufficient intelligence to construct a profile for intelligence lead identification stating where a victim was from (point of origin), how old they were, what their ‘life style' was and even if and where they had recently travelled. Data from several criminal investigations are presented to illustrate potential and limitation of stable isotope analysis of human tissue in aid of victim identification.
Poulson, S.R.; Sullivan, A.B.
2009-01-01
The upper Klamath River experiences a cyanobacterial algal bloom and poor water quality during the summer. Diel chemical and isotopic techniques have been employed in order to investigate the rates of biogeochemical processes. Four diel measurements of field parameters (temperature, pH, dissolved oxygen concentrations, and alkalinity) and stable isotope compositions (dissolved oxygen-??18O and dissolved inorganic carbon-??13C) have been performed between June 2007 and August 2008. Significant diel variations of pH, dissolved oxygen (DO) concentration, and DO-??18O were observed, due to varying rates of primary productivity vs. respiration vs. gas exchange with air. Diel cycles are generally similar to those previously observed in river systems, although there are also differences compared to previous studies. In large part, these different diel signatures are the result of the low turbulence of the upper Klamath River. Observed changes in the diel signatures vs. sampling date reflect the evolution of the status of the algal bloom over the course of the summer. Results indicate the potential utility of applying diel chemical and stable isotope techniques to investigate the rates of biogeochemical cycles in slow-moving rivers, lakes, and reservoirs, but also illustrate the increased complexity of stable isotope dynamics in these low-turbulence systems compared to well-mixed aquatic systems. ?? 2009 Elsevier B.V.
The oxygen isotope partition function ratio of water and the structure of liquid water
O'Neil, J.R.; Adami, L.H.
1969-01-01
By means of the CO2-equilibration technique, the temperature dependence and absolute values of the oxygen isotope partition function ratio of liquid water have been determined, often at 1?? intervals, from -2 to 85??. A linear relationship between In (Q2/Q1) (H2O) and T-1 was obtained that is explicable in terms of the Bigeleisen-Mayer theory of isotopic fractionation. The data are incompatible with conventional, multicomponent mixture models of water because liquid water behaves isotopically as a singly structured homogeneous substance over the entire temperature range studied. A two-species model of water is proposed in which approximately 30% of the hydrogen bonds in ice are broken on melting at 0?? and in which this per cent of monomer changes by only a small amount over the entire liquid range. Because of the high precision and the fundamental property determined, the isotopic fractionation technique is particularly well suited to the detection of thermal anomalies. No anomalies were observed and those previously reported are ascribed to under-estimates of experimental error.
Calcium and Oxygen Isotopic Composition of Calcium Carbonates
NASA Astrophysics Data System (ADS)
Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin
2016-04-01
Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h-1 m-2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in 40Ca. On the other hand, 40Ca may desorb more easily, especially if the bond strength is lower as in the case of aragonite. For kinetic oxygen isotopic fractionation, the faster deprotonation of HC16O3- and the faster incorporation of C16O32- at the surfaces causes a smaller enrichment of 18O in all three polymorphs, which will be preserved at higher precipitation rates. In consequence to the different behavior of calcium and oxygen isotopes, they can be useful for multiproxy applications. Thereby calcium isotopes can be used to identify kinetic effects, especially if both aragonite and calcite, can be analyzed in one sample. Oxygen isotopes are more strongly related to temperature. [1]A. Niedermayr, S.J. Köhler and M. Dietzel (2013), Chemical Geology, 340, 105-120.
NASA Astrophysics Data System (ADS)
Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.
2015-05-01
The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.
Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7
NASA Astrophysics Data System (ADS)
Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.
2018-06-01
Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...
Why we need a centralized repository for isotopic data
USDA-ARS?s Scientific Manuscript database
Stable isotopes encode the origin and integrate the history of matter; thus, their analysis offers tremendous potential to address questions across diverse scientific disciplines. Indeed, the broad applicability of stable isotopes, coupled with advancements in high-throughput analysis, have created ...
Environmental applications of single collector high resolution ICP-MS.
Krachler, Michael
2007-08-01
The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowyer, Theodore W.; Gesh, Christopher J.; Haas, Daniel A.
This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
Uranium Measurement Improvements at the Savannah River Technology Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shick, C. Jr.
Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.
NASA Astrophysics Data System (ADS)
Hawcroft, David M.
1996-11-01
Courses of organic chemistry frequently include studies of biochemistry and hence of biochemical techniques. Radioisotopes have played a major role in the understanding of metabolic pathways, transport, enzyme activity and other processes. The experiment described in this paper uses simple techniques to illustrate the procedures involved in working with radioisotopes when following a simplified metabolic pathway. Safety considerations are discussed and a list of safety rules is provided, but the experiment itself uses very low levels of a weak beta-emitting isotope (tritium). Plant material is suggested to reduce legal, financial and emotive problems, but the techniques are applicable to all soft-tissued material. The problems involved in data interpretation in radioisotope experiments resulting from radiation quenching are resolved by simple correction calculations, and the merits of using radioisotopes shown by a calculation of the low mass of material being measured. Suggestions for further experiments are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hien, P.D.
1994-12-31
Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclearmore » science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.« less
Isotope Ratios Reveal Trickery in the Produce Aisle
ERIC Educational Resources Information Center
Journal of Chemical Education, 2007
2007-01-01
A new technique for the proper checking and banning of organic food items is proposed. The analysis of the nitrogen isotope ratio present in the food is found to be a perfect standard for the organic checking of the food products.
BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES
The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...
Peeters, Kelly; Iskra, Jernej; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila
2014-07-01
Organotin compounds (OTCs) are among the most toxic substances ever introduced to the environment by man. They are common pollutants in marine ecosystems, but are also present in the terrestrial environment, accumulated mainly in sewage sludge and landfill leachates. In investigations of the degradation and methylation processes of OTC in environmental samples, the use of enriched isotopic tracers represents a powerful analytical tool. Sn-enriched OTC are also necessary in application of the isotope dilution mass spectrometry technique for their accurate quantification. Since Sn-enriched monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) are not commercially available as single species, "in house" synthesis of individual butyltin-enriched species is necessary. In the present work, the preparation of the most toxic butyltin, namely TBT, was performed via a simple synthetic path, starting with bromination of metallic Sn, followed by butylation with butyl lithium. The tetrabutyltin (TeBT) formed was transformed to tributyltin chloride (TBTCl) using concentrated hydrochloric acid (HCl). The purity of the synthesized TBT was verified by speciation analysis using the techniques of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) and nuclear magnetic resonance (NMR). The results showed that TBT had a purity of more than 97%. The remaining 3% corresponded to DBT. TBT was quantified by reverse isotope dilution GC-ICP-MS. The synthesis yield was around 60%. The advantage of this procedure over those previously reported lies in its possibility to be applied on a micro-scale (starting with 10mg of metallic Sn). This feature is of crucial importance, since enriched metallic Sn is extremely expensive. The procedure is simple and repeatable, and was successfully applied for the preparation of (117)Sn-enriched TBTCl from (117)Sn-enriched metal. Copyright © 2014 Elsevier Ltd. All rights reserved.
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (URUGUAY)
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...
STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (BRAZIL)
Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.
Binga, Erik K; Lasken, Roger S; Neufeld, Josh D
2008-03-01
Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.
Dual-comb spectroscopy of laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy
Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less
2016-05-01
Certification Program ETH Ethene GC Gas Chromatography GC-IRMS Gas Chromatography Isotope Ratio Mass Spectroscopy H Hydrogen IRMS Isotope...tool for attenuation of chlorinated solvents. The Demonstration Site was Operable Unit 10 at Hill AFB, Utah , a site where groundwater is impacted...techniques. The method involves extraction of the target compounds from environmental sample matrix, followed by separation of the compounds using gas
Williams, Mike; Kookana, Rai
2010-08-01
Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating 12C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with 14C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems. 2010. Published by Elsevier B.V. All rights reserved.
Method for production of an isotopically enriched compound
Watrous, Matthew G.
2012-12-11
A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.
Paleoproxies: Heavy Stable Isotope Perspectives
NASA Astrophysics Data System (ADS)
Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.
2002-12-01
Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.
Developments of AMS at the TANDAR accelerator
NASA Astrophysics Data System (ADS)
Fernández Niello, J. O.; Abriola, D.; Alvarez, D. E.; Capurro, O. A.; di Tada, M.; Etchegoyen, A.; Ferrero, A. M. J.; Martí, G. V.; Pacheco, A. J.; Testoni, J. E.; Korschinek, G.
1996-08-01
Man-made long-lived radioisotopes have been produced as a result of different nuclear technologies. The study of accidental spillages and the determination of radioisotope concentrations in nuclear waste prior to final storage in a repository are subjects of great interest in connection with this activity. The accelerator mass spectrometry (AMS) technique is a powerful tool to measure long-lived isotopes at abundance ratios as low as 10 -12-10 -15 in small samples. Applications to the Argentine nuclear program like those mentioned above, as well as applications to archaeology, hydrology and biomedical research, are considered in an AMS program using the TANDAR 20 UD electrostatic accelerator at Buenos Aires. In this work we present the status of the program and a description of the facility.
Stable isotopic variation in tropical forest plants for applications in primatology.
Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E
2016-10-01
Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
EARTHTIME: Teaching geochronology to high school students
NASA Astrophysics Data System (ADS)
Bookhagen, Britta; Buchwaldt, Robert; McLean, Noah; Rioux, Matthew; Bowring, Samuel
2010-05-01
The authors taught an educational module developed as part of the EARTHTIME (www.earth-time.org) outreach initiative to 215 high school students from a Massachusetts (USA) High School as part of an "out-of-school" field trip. The workshop focuses on uranium-lead (U-Pb) dating of zircons and its application to solving a geological problem. The theme of our 2.5-hour module is the timing of the K-T boundary and a discussion of how geochronology can be used to evaluate the two main hypotheses for the cause of the concurrent extinction—the Chicxlub impact and the massive eruption of the Deccan Traps. Activities are divided into three parts: In the first part, the instructors lead hands-on activities demonstrating how rock samples are processed to isolate minerals by their physical properties. Students use different techniques, such as magnetic separation, density separation using non-toxic heavy liquids, and mineral identification with a microscope. We cover all the steps from sampling an outcrop to determining a final age. Students also discuss geologic features relevant to the K-T boundary problem and get the chance to examine basalts, impact melts and meteorites. In the second part, we use a curriculum developed for and available on the EARTHTIME website (http://www.earth-time.org/Lesson_Plan.pdf). The curriculum teaches the science behind uranium-lead dating using tables, graphs, and a geochronology kit. In this module, the students start by exploring the concepts of half-life and exponential decay and graphically solving the isotopic decay equation. Manipulating groups of double-sided chips labeled with U and Pb isotopes reinforces the concept that an age determination depends on the Pb/U ratio, not the absolute number of atoms present. Next, the technique's accuracy despite loss of parent and daughter atoms during analysis, as well as the use of isotopic ratios rather than absolute abundances, is explained with an activity on isotope dilution. Here the students determine the number of beads in a large bucket without counting them all by adding a precisely known number of "tracer" beads and averaging ratios from several small samples of the mixture. The (pre-counted) unknown quantity of beads represents the isotopic composition of zircon from four samples—the Deccan Trap basalts, the Chicxulub impact melt, and ash layers above and below the K-T boundary —and the students' measurements are used in the final part of the module. An introduction to statistical inference from small samples can also be added to this exercise. After this, the chemistry and physics behind geochemical laboratory techniques, ion exchange chromatography and isotope ratio measurements using a mass spectrometer, are explained using models, movies, posters, and analogies to familiar physics. In the final part, students engage in a summary exercise where they apply what they have learned to test the two competing hypotheses. Using the dates they calculated with isotope dilution and a graphical solution to the decay equation, they determine if the Chicxulub impact or the Deccan Trap volcanic eruption can explain the K/T boundary mass extinction. They learn the importance of measurement uncertainty in interpreting data and brainstorm how best to resolve this outstanding scientific problem. Feedback from written evaluations shows that teachers valued the interdisciplinary association of concepts from physics, chemistry and mathematics. Students enjoyed the hands-on exercises that gave them the opportunity to see how rocks can be broken down into mineral separates and individual zircons selected for analysis. The K/T-boundary exercise at the end was appreciated because it demonstrates an exciting application of geochronological methods to popular science.
Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus
2014-11-01
A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
SOURCE PARTITIONING USING STABLE ISOTOPES: COPING WITH TOO MANY SOURCES
Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste st...
Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard
2014-02-01
UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Soil, the orphan hydrological compartment: evidence from O and H stable isotopes?
NASA Astrophysics Data System (ADS)
Hissler, Christophe; Legout, Arnaud; Barnich, François; Pfister, Laurent
2015-04-01
O and H stable isotopes have been successfully used for decades for studying the exchange of waters between the hydrosphere, the pedosphere and the biosphere. They greatly contribute to improve our understanding of soil-water-plant interactions. In particular, the recent hydrological concept of "two water worlds" (separation of meteoric water that infiltrates the soil as (i) mobile water, which can reach the groundwater and can enter the stream, and as (ii) tightly bound water, which is trapped in the soil microporosity and used by plants) calls for a substantial revision of our perceptual models of runoff generation. Nevertheless, there is a need for testing the applicability of this concept over a large range of ecosystemic contexts (i.e.soil and vegetation types). To date, many investigations have focused on the relationship between the various processes triggering isotope fractionation within soils. So far, the dominating perception is that the isotope profile of water observed in soils is solely due to evaporative fractionation and its shape is dependent on climate and soil parameters. However, as of today the influence of biogeochemical processes on the spatio-temporal variability of δ18O and δD of the soil solutions has been rarely quantified. O and H exchanges between soil water and other soil compartments (living organisms, minerals, exchange capacity, organic matter) remain poorly known and require deeper investigations. Eventually, we need to better understand the distribution of O and H isotopes throughout the soil matrix. In order to address these issues, we have designed and carried out two complementary isotope experiments that use one liter soil columns of a 2mm-sieved and air-dried soil. Our objectives were (1) to observe the temporal evolution of the water O and H isotopic composition starting from the field capacity to the complete drying of the soil and (2) to determine the impact of soil biogeochemical properties on the isotopic composition of different water types in soil (weakly-, moderately- and tightly-bound). Our results show that mobile and tightly bound water may have different hydrogen isotopic signatures and that their respective isotopic signatures may vary between horizons and soil types. However, it is not yet possible to quantify the contribution of different bio-physico-chemical processes to the oxygen and hydrogen isotopic composition of the soil water because the techniques at hand for water separation are not yet reliable enough. Prior to this type of quantifications, we need to focus in a next step at the improvement of water extraction methods.
ERIC Educational Resources Information Center
Hill, Devon W.; And Others
1988-01-01
Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)
Absolute and Mass-Dependent Titanium Isotope Compositions of Solar System Materials
NASA Astrophysics Data System (ADS)
Williams, N. H.; Fehr, M. A.; Akram, W. M.; Parkinson, I. J.; Schönbächler, M.
2013-09-01
Mass dependent Ti isotope data for various solar system material will be presented. This data has been obtained via double spike technique using ^47 Ti and ^49Ti as spikes. Absolute nucleosynthetic anomalie data for Ti will be presented also.
Calibration of the clumped isotope thermometer for planktic foraminifers
NASA Astrophysics Data System (ADS)
Meinicke, N.; Ho, S. L.; Nürnberg, D.; Tripati, A. K.; Jansen, E.; Dokken, T.; Schiebel, R.; Meckler, A. N.
2017-12-01
Many proxies for past ocean temperature suffer from secondary influences or require species-specific calibrations that might not be applicable on longer time scales. Being thermodynamically based and thus independent of seawater composition, clumped isotopes in carbonates (Δ47) have the potential to circumvent such issues affecting other proxies and provide reliable temperature reconstructions far back in time and in unknown settings. Although foraminifers are commonly used for paleoclimate reconstructions, their use for clumped isotope thermometry has been hindered so far by large sample-size requirements. Existing calibration studies suggest that data from a variety of foraminifer species agree with synthetic carbonate calibrations (Tripati, et al., GCA, 2010; Grauel, et al., GCA, 2013). However, these studies did not include a sufficient number of samples to fully assess the existence of species-specific effects, and data coverage was especially sparse in the low temperature range (<10 °C). To expand the calibration database of clumped isotopes in planktic foraminifers, especially for colder temperatures (<10°C), we present new Δ47 data analysed on 14 species of planktic foraminifers from 13 sites, covering a temperature range of 1-29 °C. Our method allows for analysis of smaller sample sizes (3-5 mg), hence also the measurement of multiple species from the same samples. We analyzed surface-dwelling ( 0-50 m) species and deep-dwelling (habitat depth up to several hundred meters) planktic foraminifers from the same sites to evaluate species-specific effects and to assess the feasibility of temperature reconstructions for different water depths. We also assess the effects of different techniques in estimating foraminifer calcification temperature on the calibration. Finally, we compare our calibration to existing clumped isotope calibrations. Our results confirm previous findings that indicate no species-specific effects on the Δ47-temperature relationship measured in planktic foraminifers.
NASA Astrophysics Data System (ADS)
Reiffarth, Dominic; Petticrew, Ellen; Owens, Philip; Lobb, David
2013-04-01
The development of cost-effective, convenient and reliable methods for tracing sediment movement will help establish water security. The use of compound-specific stable isotopes (CSSIs) has seen limited, small-scale applications, often in watersheds exhibiting exotic and highly diverse vegetation types. The CSSI tracing technique relies on the detection and transport of naturally occurring organics of plant origin (biomarkers); the biomarkers of interest are produced by flora, deposited on the soil and potentially mobilized along with soil particles. In part, the uniqueness of a biomarker is dependent on its biological pathway. As a plant fixes CO2-its primary source of carbon for building larger organic molecules-discrimination against the heavier 13C isotope leads to an enrichment of 12C. The more complex the biological pathway the biomarker has been subjected to, the more discrimination and unique isotopic signature the biomarker exhibits. Successfully implementing CSSI tracing requires recognizing: (i) factors contributing to the natural variability of the isotopic signature (ii) the suitability of a biomarker and (iii) factors affecting sensitivity during analysis. Considering the relatively low input of suitable organic biomarkers into the soil and degree of signal dispersion, care must be taken to isolate and correctly identify biomarkers, particularly where vegetation types show low variability and where long-range transport occurs. Research is currently being conducted in the Horsefly River (British Columbia, Canada) and South Tobacco Creek (Manitoba, Canada) watersheds; the research seeks to address some of these concerns, particularly in a temperate climate where exotic vegetation types are not common and variability is expected to be low.
Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.
Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter
2017-09-01
Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hsiao, G.; Chappellet-Volini, L.; Vu, D.
2012-12-01
Portable high precision isotope analyzers using CRDS technology have greatly increased the use of stable isotopes in hydrological, oceanographic, and ecological studies over the past five years. However studies of some water samples yielded incorrect isotopic values indicating some form of spectroscopic interference. Subsequent work has shown that waters derived from some plants containing interfering alcohols but meteoric waters are not affected. The initial approach to handling such samples was to use spectroscopic anomalies to identify and flag affected samples for later analysis by non-optical methods. This presentation will examine the approaches developed within the past year to allow for accurate analysis of such samples by optical methods. The first approach uses an advanced spectroscopic model to identify and quantify alcohols present in the sample. The alcohol signal is incorporated into the overall fit of the measure spectra to calculate the concentration of the individual isotopes. It was found that the δ18O value could be calculated with high accuracy, the result for the δ2H value was sufficient for many applications. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The liquid sample is injected into a flash vaporizer then the vapor travels through a cartridge for physical treatment prior to analysis by CRDS. Inside the cartridge the organic molecules undergo oxidation at high temperature in the air carrier gas when exposed to the catalyst. This approach is highly effective for ethanol solutions as high as 5% as well as for the complex mixtures of alcohols found in plants. Comparison of the results of both of these methods will be compared with tertiary techniques such as IRMS where possible.
Nitrogen fertilizer applications are common land-use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree-ring growth patterns and stable isotopes to...
Nitrogen fertilizer applications are common land use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree ring growth patterns and stable isotopes to ...
78 FR 63501 - Request To Submit a Two-Part Application-Northwest Medical Isotopes, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [Project No. 0803; NRC-2013-0235] Request To Submit a Two-Part Application--Northwest Medical Isotopes, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Exemption. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing an exemption in response to an August 9, 2013...
A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.
2016-12-01
A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.
Purdue Rare Isotope Measurement Laboratory
NASA Astrophysics Data System (ADS)
Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.
2002-12-01
The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.
Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier
2018-03-06
Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.
Geochemistry and the Understanding of Groundwater Systems
NASA Astrophysics Data System (ADS)
Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.
2009-12-01
Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.
Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors
Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.
2016-01-01
Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902
NASA Astrophysics Data System (ADS)
Dume, Bayu; Amsalu, Nebiyu; Bode, Samuel; Mtei, Kelvin; Munishi, Linus; Navas, Ana; Semmens, Brice; Smith, Hugh; Stock, Brian; Blake, Will; Boeckx, Pascal
2017-04-01
Soil erosion and associated downstream siltation of dams and lakes is becoming serious threat to catchment ecosystem services supporting water, food and energy security in Ethiopia. Sediments originate on catchment hillslopes but mobilisation processes vary depending on land use and terrain. The Gilgel Gibe hydroelectric dam is one of a series of development projects launched by the Federal Government of Ethiopia. The catchment is characterised by erodible, deforested agricultural land which is also overgrazed. Siltation and nutrient enrichment are significant issues given 'hotspot' sheet erosion estimates of 2210 ton per square km. The annual contribution of sediment from the Gilgel Gibe River to the dam was estimated at 277 thousand tons per year leading to accumulations of 3.75 x 107 cubic metres per year of silt behind the dam. The primary driver for mobilisation and translocation to downstream is believed to be erosion on agricultural lands and collapse of steep banks, through landsliding into river channels in the highland headwaters. The relative importance of specific sources of siltation are unknown and sediment source apportionment has been identified as a first essential step before soil conservation measures can be implemented. Knowledge of sediment source and transfer dynamics is critical to inform management policy decisions to maintain and enhance future food, water and energy security To test the applicability of a new combination of Bayesian unmixing modelling with sediment fingerprinting in this terrain (IMIXSED approach) a demonstration sub-catchment was selected through field assessment in the upper Gilgel-Gibe water-supply catchments (Unta River) and sampling strategies designed. Accordingly, sources, i.e. soil samples from landslides (n=40), eroding channel bank (n = 5), cultivated land (n = 30), grasslands (n = 30), wooded areas (n = 10), homestead plots (n = 10) were collected alongside 10 spatially-integrated sediment deposits from the receptor cobble bed river after the 2016 rainy season. In order to extract reliable information on the sources of fine sediment delivered into rivers and dam, new isotopic techniques (e.g., Compound Specific Stable Isotopes (CSSIs)) combined with other isotopic techniques (fallout radionuclides) and geochemical tracer properties (via WD-XRF) were employed to quantify sediment sources. Results from this demonstration catchment are discussed in the context of the wider sediment pressures on the Hydro-Electric Power infrastructure of the Gilgel Gibe system.
New isotope technologies in environmental physics
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Betti, M.; Jull, A. J. T.; Vojtyla, P.
2008-02-01
As the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2011-01-01
We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).
A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16 ...
Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research
NASA Astrophysics Data System (ADS)
Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas
2014-05-01
During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer studies is critically discussed, where special emphasis is set on evaluating different data processing strategies on the example of enriched stable Sr isotopes.1 The analytical key parameters such as blank (Kr, Sr and Rb), variation of the natural Sr isotopic composition in the sample, mass bias, interferences (Rb) and total combined uncertainty are considered. A full metrological protocol for data processing using IPD is presented based on data gained during two transgenerational marking studies of fish, where the transfer of a Sr isotope double spike (84Sr and 86Sr) from female spawners of common carp (Cyprinus carpio L.) and brown trout (Salmo trutta f.f.)2 to the centre of the otoliths of their offspring was studied by (LA)-MC-ICP-MS. 1J. Irrgeher, A. Zitek, M. Cervicek and T. Prohaska, J. Anal. At. Spectrom., 2014, 29, 193-200. 2A. Zitek, J. Irrgeher, M. Kletzl, T. Weismann and T. Prohaska, Fish. Manage. Ecol., 2013, 20, 654-361.
E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes
Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; ...
2015-01-01
High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less
``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems
NASA Astrophysics Data System (ADS)
Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.
2010-12-01
The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.
Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun
2017-01-01
In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the 114/110 Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.
NASA Astrophysics Data System (ADS)
Diamond, Roger E.; Jack, Sam
2018-04-01
Changes in the stable isotope composition of water can, with the aid of climatic parameters, be used to calculate the quantity of evaporation from a water body. Previous workers have mostly focused on small, research catchments, with abundant data, but of limited scope. This study aimed to expand such work to a regional or sub-continental scale. The first full length isotope survey of the Gariep River quantifies evaporation on the river and the man-made reservoirs for the first time, and proposes a technique to calculate abstraction from the river. The theoretically determined final isotope composition for an evaporating water body in the given climate lies on the empirically determined local evaporation line, validating the assumptions and inputs to the Craig-Gordon evaporation model that was used. Evaporation from the Gariep River amounts to around 20% of flow, or 40 m3/s, of which about half is due to evaporation from the surface of the Gariep and Vanderkloof Reservoirs, showing the wastefulness of large surface water impoundments. This compares well with previous estimates based on evapotranspiration calculations, and equates to around 1300 GL/a of water, or about the annual water consumption of Johannesburg and Pretoria, where over 10 million people reside. Using similar evaporation calculations and applying existing transpiration estimates to a gauged length of river, the remaining quantity can be attributed to abstraction, amounting to 175 L/s/km in the lower middle reaches of the river. Given that high water demand and climate change are global problems, and with the challenges of maintaining water monitoring networks, stable isotopes are shown to be applicable over regional to national scales for modelling hydrological flows. Stable isotopes provide a complementary method to conventional flow gauging for understanding hydrology and management of large water resources, particularly in arid areas subject to significant evaporation.
Böhlke, J.K.; Smith, Richard L.; Miller, Daniel N.
2006-01-01
Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large‐scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3−, N2, and sorbed NH4+; and in situ natural gradient 15NH4+tracer tests with numerical simulations of 15NH4+, 15NO3−, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3− and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH4+. The δ15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH4+‐consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.
Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds
Nair, Sreejesh; Geilmann, Heike; Coplen, Tyler B.; Qi, Haiping; Gehre, Matthias; Schimmelmann, Arndt; Brand, Willi A.
2015-01-01
Rationale High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H2) has been suspected as a possible cause of incomplete H2 yield and hydrogen isotopic fractionation. Methods The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H2 yields. The technique also was optimized to provide acceptable sample throughput. Results The classical HTC reaction of a number of selected compounds exhibited H2 yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ2H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H2and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H2 and the observed hydrogen isotopic result, reflecting isotopic fractionation. Conclusions The classical HTC technique to produce H2 from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H2 being substantially shifted to more negative δ2H values. The reaction can be understood as an initial disproportionation leading to H2 and HCN with the HCN-hydrogen systematically enriched in 2H by more than 50 ‰. In the reaction of HCN with chromium, H2 and chromium-containing solid residues are formed quantitatively.
Ball, J.W.; Bassett, R.L.
2000-01-01
A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.
Positron emission tomography (PET) imaging with 18F-based radiotracers
Alauddin, Mian M
2012-01-01
Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802
NASA Technical Reports Server (NTRS)
Lowe, David C.; Brenninkmeijer, Carl A. M.; Tyler, Stanley C.; Dlugkencky, Edward J.
1991-01-01
A procedure for establishing the C-13/C-12 ratio and the C-14 abundance in the atmospheric methane is discussed. The method involves air sample collection, measurement of the methane mixing ratio by gas chromotography followed by quantitative conversion of the methane in the air samples to CO2 and H2O, and analysis of the resulting CO2 for the C-13/C-12 ratio by stable isotope ratio mass spectrometry and measurement of C-14 content by accelerator mass spectrometry. The carbon isotropic composition of methane in air collected at Baring Head, New Zealand, and in air collected on aircraft flights between New Zealand and Antarctica is determined by the method, and no gradient in the composition between Baring Head and the South Pole station is found. As the technique is refined, and more data is gathered, small seasonal and long-term variations in C-13 are expected to be resolved.
Fitzpatrick, Paul F.
2014-01-01
Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013
Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze
NASA Astrophysics Data System (ADS)
Vogl, Jochen; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Goenaga-Infante, Heidi; Malinowskiy, Dmitriy; Ren, Tongxiang; Wang, Jun; Vocke, Robert D., Jr.; Murphy, Karen; Nonose, Naoko; Rienitz, Olaf; Noordmann, Janine; Näykki, Teemu; Sara-Aho, Timo; Ari, Betül; Cankur, Oktay
2014-01-01
Isotope amount ratios are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement results. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. While the requirements for isotope ratio accuracy and precision in the case of IDMS are generally quite modest, 'absolute' Pb isotope ratio measurements for geochemical applications as well as forensic provenance studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a key comparison was urgently needed and therefore initiated at the IAWG meeting in Paris in April 2011. The analytical task within such a comparison was decided to be the measurement of Pb isotope amount ratios in water and bronze. Measuring Pb isotope amount ratios in an aqueous Pb solution tested the ability of analysts to correct for any instrumental effects on the measured ratios, while the measurement of Pb isotope amount ratios in a metal matrix sample provided a real world test of the whole chemical and instrumental procedure. A suitable bronze material with a Pb mass fraction between 10 and 100 mg•kg-1 and a high purity solution of Pb with a mass fraction of approximately 100 mg•kg-1 was available at the pilot laboratory (BAM), both offering a natural-like Pb isotopic composition. The mandatory measurands, the isotope amount ratios n(206Pb)/n(204Pb), n(207Pb)/n(204Pb) and n(208Pb)/n(204Pb) were selected such that they correspond with those commonly reported in Pb isotopic studies and fully describe the isotopic composition of Pb in the sample. Additionally, the isotope amount ratio n(208Pb)/n(206Pb) was added, as this isotope ratio is typically measured when performing Pb quantitation by IDMS involving a 206Pb spike. Each participant was free to use any method they deemed suitable for measuring the individual isotope ratios. However, the majority of the results were obtained by using muIti-collector ICPMS or TIMS. The key requirements for all analytical procedures were a traceability statement for all results and the establishment of an uncertainty budget meeting a target uncertainty for all ratios of 0.2 %, relative (k=1). Additionally, the use of a Pb-matrix separation procedure was encouraged. The obtained overall result was excellent, demonstrating that the individual results reported by the NMIs/DIs were comparable and compatible for the determination of Pb isotope ratios. MC-ICPMS and MC-TIMS data were consistent with each other and agree to within 0.05 %. The corresponding uncertainties can be considered as realistic uncertainties and mainly range from 0.02 % to 0.08 % (k=1). As stated above isotope ratios are being increasingly used in different fields. Despite the availability and ease of use of new mass spectrometers, the metrology of unbiased isotope ratio measurements remains very challenging. Therefore, further comparisons are urgently needed, and should be designed to also engage scientists outside the NMI/DI community. Possible follow-up studies should focus on isotope ratio and delta measurements important for environmental and technical applications (e.g. B), food traceability and forensics (e.g. H, C, N, O, S and 87Sr/86Sr) or climate change issues (e.g. Li, B, Mg, Ca, Si). Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.
Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, R. D., Jr.; Rabb, S. A.
2016-12-01
Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta-scale artefacts when they run out. Fig. 1 Comparison of absolute isotopic measurements of SRM 990 using two radically different approaches to absolute calibration and mass bias corrections.
Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes
Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...
Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.
Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha
2016-05-01
Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hasözbek, Altug; Mathew, Kattathu; Wegener, Michael
2013-04-01
The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.
Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagon, Alexander C.; Prouty, Nancy G.; Roark, E. Brendan; van de Flierdt, Tina
2014-01-01
Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.
Elucidating rhizosphere processes by mass spectrometry - A review.
Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan
2017-03-01
The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.
Continuous-flow water sampler for real-time isotopic water measurements
NASA Astrophysics Data System (ADS)
Carter, J.; Dennis, K.
2013-12-01
Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our continuous-flow water sample employs active control for all pertinent parameters, significantly increasing its stability and usability. We will present data from controlled laboratory experiments demonstrating sample-to-sample precision and long-term stability. We will also show experimental data that highlights the instrumental sample-to-sample memory, which we have decreased significantly from previous implementations of this technology. Additionally, we will present field results from the Sacramento River, CA. Dansgaard, W. (1964) 'Stable isotopes in precipitation', Tellus, 16(4), p. 436-468. Munksgaard, N.C., Wurster, C.M., Bass, A., Zagorskis, I., and Bird, M.I. (2012) 'First continuous shipboard d18O and dD measurements in seawater by diffusion sampling--cavity ring-down spectrometry', Environmental Chemistry Letters, 10, p.301-307. Munksgaard, N.C., Wurster, C.M., and Bird, M.I., (2011), 'Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters', Rapid Communications in Mass Spectrometry, 25, p. 3706-3712.
NASA Astrophysics Data System (ADS)
Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher
2016-01-01
Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented opportunities to overcome the underdetermined nature of stable isotopic data through integration of multiple isotopic proxies, including dual element 13C-excess values and clumped isotope temperature estimates. We demonstrate the utility of applying these multi-proxy approaches to the interpretation of paleohydroclimatic conditions in ancient lake systems. Understanding past, present, and future hydroclimatic systems is a global imperative. Significant progress should be expected as these modern research techniques become more widely applied and integrated with traditional stable isotopic proxies.
Design of a setup for 252Cf neutron source for storage and analysis purpose
NASA Astrophysics Data System (ADS)
Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da
2016-11-01
252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.
Activation cross sections of alpha-induced reactions on natIn for 117mSn production
NASA Astrophysics Data System (ADS)
Aikawa, M.; Saito, M.; Ukon, N.; Komori, Y.; Haba, H.
2018-07-01
The production of 117mSn by charged-particle induced reactions is an interesting topic for medical application. Production cross sections of α-induced reactions on natIn for 117mSn up to 50 MeV were measured using the stacked foil technique and activation method. The integral yield of 117mSn was estimated using the measured cross sections. The results were compared with experimental data investigated earlier and theoretical calculation. Measured cross sections for 113Sn and 116m,117,118mSb isotopes were also presented.
USDA-ARS?s Scientific Manuscript database
The correspondence titled “Analytical challenges in the assessment of NO synthesis from L-arginine in the MELAS syndrome” suggested challenges that can limit the utility of stable isotope infusion methodology in assessing NO production....
Aigbirhio, F I; Allwein, S; Anwar, A; Atzrodt, J; Audisio, D; Badman, G; Bakale, R; Berthon, F; Bragg, R; Brindle, K M; Bushby, N; Campos, S; Cant, A A; Chan, M Y T; Colbon, P; Cornelissen, B; Czarny, B; Derdau, V; Dive, V; Dunscombe, M; Eggleston, I; Ellis-Sawyer, K; Elmore, C S; Engstrom, P; Ericsson, C; Fairlamb, I J S; Georgin, D; Godfrey, S P; He, L; Hickey, M J; Huscroft, I T; Kerr, W J; Lashford, A; Lenz, E; Lewinton, S; L'Hermite, M M; Lindelöf, Å; Little, G; Lockley, W J S; Loreau, O; Maddocks, S; Marguerit, M; Mirabello, V; Mudd, R J; Nilsson, G N; Owens, P K; Pascu, S I; Patriarche, G; Pimlott, S L; Pinault, M; Plastow, G; Racys, D T; Reif, J; Rossi, J; Ruan, J; Sarpaki, S; Sephton, S M; Simonsson, R; Speed, D J; Sumal, K; Sutherland, A; Taran, F; Thuleau, A; Wang, Y; Waring, M; Watters, W H; Wu, J; Xiao, J
2016-04-01
The 24th annual symposium of the International Isotope Society's United Kingdom Group took place at the Møller Centre, Churchill College, Cambridge, UK on Friday 6th November 2015. The meeting was attended by 77 delegates from academia and industry, the life sciences, chemical, radiochemical and scientific instrument suppliers. Delegates were welcomed by Dr Ken Lawrie (GlaxoSmithKline, UK, chair of the IIS UK group). The subsequent scientific programme consisted of oral presentations, short 'flash' presentations in association with particular posters and poster presentations. The scientific areas covered included isotopic synthesis, regulatory issues, applications of labelled compounds in imaging, isotopic separation and novel chemistry with potential implications for isotopic synthesis. Both short-lived and long-lived isotopes were represented, as were stable isotopes. The symposium was divided into a morning session chaired by Dr Rebekka Hueting (University of Oxford, UK) and afternoon sessions chaired by Dr Sofia Pascu (University of Bath, UK) and by Dr Alan Dowling (Syngenta, UK). The UK meeting concluded with remarks from Dr Ken Lawrie (GlaxoSmithKline, UK). Copyright © 2016 John Wiley & Sons, Ltd.
Hassan, Afifa Afifi
1982-01-01
The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)
Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes
NASA Technical Reports Server (NTRS)
Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.
2011-01-01
We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.
Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.
2012-01-01
The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.
NASA Astrophysics Data System (ADS)
Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris M.; Vidal-Gavilan, Georgina; Soler, Albert
2014-05-01
Enhanced in-situ biodenitrification is a feasible technology to recovery groundwater polluted by nitrates and achieves drinking water standards. Under optimum conditions, nitrate is reduced by autochthonous bacteria trough different reactions until arrive to harmless dinitrogen gas. Isotopic fractionation monitoring in field applications allows knowing the exact degree and the real scope of this technology. Using the Rayleigh equation the change in the isotope ratio of the nitrate molecule (δ15N-NO3-, δ18O-NO3-) is related to the fraction of molecules remaining as a result of biodenitrification. However, Rayleigh application at field scale is sometimes limited due to other processes involved during groundwater flow such as dispersion or adsorption and geological media heterogeneities that interferes in concentration values. Then, include isotope fractionation processes in reactive transport models is a useful tool to interpret and predict data from in-situ biodenitrification. We developed a reactive transport model of enhanced in situ application at field scale in a fractured aquifer that considers biogeochemical processes as well as isotope fractionation to enable better monitoring and management of this technology. Processes considered were: microbiological- exogenous and endogenous nitrate and sulfate respiration coupled with microbial growth and decay, geochemical reactions (precipitation of calcite) and isotopic fractionation (δ15N-NO3-; δ18O- NO3- and carbon isotope network). The 2-D simulations at field scale were developed using PHAST code. Modeling of nitrate isotope geochemistry has allowed determining the extent of biodenitrification in model domain. We have quantified which is the importance in decreasing of nitrate concentrations due to biodegradation (percentage of biodegradation, 'B%') and due to dilution process (percentage of dilution, 'D%'). On the other hand, the stable carbon isotope geochemistry has been modeled. We have considered the isotopic carbon fractionation of different carbon species involved in enhanced biodenitrification: external organic carbon, biomass, inorganic carbon (in different forms) and calcite. The inclusion of carbon isotopes in the model, which are involved in both direct (oxidation of organic carbon) and indirect (carbonate mineral interaction) processes of enhanced biodenitrification, improves the evaluation of the overall model consistency due to the central role of carbon in the reaction network.
NASA Astrophysics Data System (ADS)
Wang, G. Q.; Xu, J. F.; Wu-Yang, S. Q.
2016-12-01
Operation of instruments and preparation of samples are also significant factors that can affect the precision of TIMS analyses, in addition to instrument hardware. We have reviewed the isotopic data of several standard materials at our TIMS lab for 5 years. It is suggested that several optimization techniques should be used in order to obtain high-precision isotopic ratio data: (1) It is important to choose a suitable filament material for isotopic measurements. We have established that W filament is likely the most efficient for ionizing Sr when selecting from W, Re, and Ta; meanwhile, Re filament can produce a higher intensity for Nd isotopes than W and Ta filament can. It is concluded that the best TIMS signals are obtained for Sr using W signal-filaments and for Nd using Re double-filaments. (2) The preparation of the activator plays a key role in the analysis of some isotopic ratios. This study indicates that choosing a suitable activator can greatly elevate the precision of 206Pb/204Pb ratios during Pb isotopic measurements. We have suggested a new scheme to make an activator by using a mixture of 10% Si-gel + 7.5% H3PO3 + 82.5% H2O (weight %). (3) It is necessary to re-set the cup configuration to avoid cup degradation when operating for a long period of time (a year or more). We propose a new cup configuration to avoid this disadvantage during Sr isotopic analyses. (4) The contamination of 187Re and 185Re after using Re-filament could be eliminated by cleaning the ion source and baking the source housing.
Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G
2005-08-01
Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.
Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.
2005-01-01
Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.
Metal stable isotopes in low-temperature systems: A primer
Bullen, T.D.; Eisenhauer, A.
2009-01-01
Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.
NASA Astrophysics Data System (ADS)
Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.
2012-03-01
We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.
A Report Guide to Radiographic Testing Literature. Volume 6
1975-04-01
Sources and Applications IITRI, Chicago, 111., 21-22 October 1964, ORNL -11C5, UC-23-Isotopes-Industrial Technology, November 1965 This...Applications IITRI, Chicago, IU., 21-22 October 1964. ORNL -11C5, UC-23lsotopes-lndustria3 Technology November 1965 The design of radioactive sources...Mich. Proceedings of Symposium on Low-Energy X and Gamma Sources and Applications IITRI, Chicago, HI., 21-22 October 1964. ORNL -11C5, US-23-Isotopes
Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R
2004-01-01
The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications.
Araújo, Daniel; Machado, Wilson; Weiss, Dominik; Mulholland, Daniel S; Boaventura, Geraldo R; Viers, Jerome; Garnier, Jeremie; Dantas, Elton L; Babinski, Marly
2017-07-01
The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ 66 Zn JMC = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ 66 Zn JMC = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-lethal sampling of walleye for stable isotope analysis: a comparison of three tissues
Chipps, Steven R.; VanDeHey, J.A.; Fincel, M.J.
2012-01-01
Stable isotope analysis of fishes is often performed using muscle or organ tissues that require sacrificing animals. Non-lethal sampling provides an alternative for evaluating isotopic composition for species of concern or individuals of exceptional value. Stable isotope values of white muscle (lethal) were compared with those from fins and scales (non-lethal) in walleye, Sander vitreus (Mitchill), from multiple systems, size classes and across a range of isotopic values. Isotopic variability was also compared among populations to determine the potential of non-lethal tissues for diet-variability analyses. Muscle-derived isotope values were enriched compared with fins and depleted relative to scales. A split-sample validation technique and linear regression found that isotopic composition of walleye fins and scales was significantly related to that in muscle tissue for both δ13C and δ15N (r2 = 0.79–0.93). However, isotopic variability was significantly different between tissue types in two of six populations for δ15N and three of six populations for δ13C. Although species and population specific, these findings indicate that isotopic measures obtained from non-lethal tissues are indicative of those obtained from muscle.
Wang, Wei; Liu, Wen-Qing; Zhang, Tian-Shu
2013-08-01
The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H2 16O and HD16 O. Also, the time course of carbon isotopic ratio delta13 C and deuterium isotope composition deltaD was calculated. The measurement precision is about 1.08 per thousand for delta13 C and 1.32 per thousand for deltaD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.
NASA Astrophysics Data System (ADS)
Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla
2017-04-01
In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.
Selenium isotope ratios as indicators of selenium sources and oxyanion reduction
Johnson, T.M.; Herbel, M.J.; Bullen, T.D.; Zawislanski, P.T.
1999-01-01
Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. We report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are needed to confirm this preliminary assessment. We have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields ??0.2??? precision on 80Se/76Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 ??g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.
Selenium isotope ratios as indicators of selenium sources and oxyanion reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T.M.; Herbel, M.J.; Bullen, T.D.
1999-09-01
Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. The authors report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are neededmore » to confirm this preliminary assessment. The authors have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields {+-}0.2% precision on {sup 80}Se/{sup 76}Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 {micro}g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.« less
Applications of inductively coupled plasma-mass spectrometry in environmental radiochemistry
Grain, J.S.
1996-01-01
The state of the art in ICP-MS is now such that there are few discernible differences between radiochemical and mass spectrometric determinations of longlived radionuclides. Indeed, ICP-MS may provide better (more sensitive) data for many radionuclides, depending upon how one wishes to define "long-lived." In lowlevel determinations, sample preparation remains an important part of the analytical procedure, even with ICP-MS, but the speed and isotopic selectivity of the mass spectrometer appear to offer distinct procedural advantages over radiochemical techniques. Therefore, "radioanalytical" ICP-MS applications should continue to grow, especially in the area of radiation protection, but further research (on efficient sample introduction, for example) and method development may be required to get ICP-MS "off the ground" in the geochemical research areas that have traditionally been supported by radiochemistry.
Fantle, M.S.; Bullen, T.D.
2009-01-01
The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a specific isotope system, it should be noted that the same methods can be used to evaluate any isotope system of interest. ?? 2008 Elsevier B.V.
Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.
Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai
2008-03-01
The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to grow in the future.
Graney, Joseph R; Landis, Matthew S
2013-03-15
A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16month period (July 1994-October 1995) at Bondville were parsed into six unique meteorological flow regimes using a minimum variance clustering technique on back trajectory endpoints. Pb isotope ratios and multi-element concentrations were measured using high resolution inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) on the archived precipitation samples. Bondville is located in central Illinois, ~250km downwind from smelters in southeast Missouri. The Mississippi Valley Type ore deposits in Missouri provided a unique multi-element and Pb isotope fingerprint for smelter emissions which could be contrasted to industrial emissions from the Chicago and Indianapolis urban areas (~125km north and east, of Bondville respectively) and regional emissions from electric utility facilities. Differences in Pb isotopes and element concentrations in precipitation corresponded to flow regime. Industrial sources from urban areas, and thorogenic Pb from coal use, could be differentiated from smelter emissions from Missouri by coupling Pb isotopes with variations in element ratios and relative mass factors. Using a three endmember mixing model based on Pb isotope ratio differences, industrial processes in urban airsheds contributed 56±19%, smelters in southeast Missouri 26±13%, and coal combustion 18±7%, of the Pb in precipitation collected in Bondville in the mid-1990s. Copyright © 2012 Elsevier B.V. All rights reserved.
Newsome, Seth D.; Yeakel, Justin D.; Wheatley, Patrick V.; Tinker, M. Tim
2012-01-01
Ecologists are increasingly using stable isotope analysis to inform questions about variation in resource and habitat use from the individual to community level. In this study we investigate data sets from 2 California sea otter (Enhydra lutris nereis) populations to illustrate the advantages and potential pitfalls of applying various statistical and quantitative approaches to isotopic data. We have subdivided these tools, or metrics, into 3 categories: IsoSpace metrics, stable isotope mixing models, and DietSpace metrics. IsoSpace metrics are used to quantify the spatial attributes of isotopic data that are typically presented in bivariate (e.g., δ13C versus δ15N) 2-dimensional space. We review IsoSpace metrics currently in use and present a technique by which uncertainty can be included to calculate the convex hull area of consumers or prey, or both. We then apply a Bayesian-based mixing model to quantify the proportion of potential dietary sources to the diet of each sea otter population and compare this to observational foraging data. Finally, we assess individual dietary specialization by comparing a previously published technique, variance components analysis, to 2 novel DietSpace metrics that are based on mixing model output. As the use of stable isotope analysis in ecology continues to grow, the field will need a set of quantitative tools for assessing isotopic variance at the individual to community level. Along with recent advances in Bayesian-based mixing models, we hope that the IsoSpace and DietSpace metrics described here will provide another set of interpretive tools for ecologists.
Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy
The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n ( 34 S)/ n ( 32 S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n ( 34 S)/ n ( 32 S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.
Stable isotope dimethyl labelling for quantitative proteomics and beyond
Hsu, Jue-Liang; Chen, Shu-Hui
2016-01-01
Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970
NASA Technical Reports Server (NTRS)
Soli, George A.; Nichols, Donald K.
1989-01-01
An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.
Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites
NASA Astrophysics Data System (ADS)
Watson, Heather C.; Richter, Frank; Liu, Ankun; Huss, Gary R.
2016-10-01
Mass-dependent, kinetic fractionation of isotopes through processes such as diffusion can result in measurable isotopic signatures. When these signatures are retained in geologic materials, they can be used to help interpret their thermal histories. The mass dependence of the diffusion coefficient of isotopes 1 and 2 can be written as (D1 /D2) =(m2 /m1) β, where D1 and D2 are the diffusion coefficients of m1 and m2 respectively, and β is an empirical coefficient that relates the two ratios. Experiments have been performed to measure β in the Fe-Ni alloy system. Diffusion couple experiments between pure Fe and Ni metals were run in a piston cylinder at 1300-1400 °C and 1 GPa. Concentration and isotopic profiles were measured by electron microprobe and ion microprobe respectively. We find that a single β coefficient of β = 0.32 ± 0.04 can describe the isotopic effect in all experiments. This result is comparable to the isotope effect determined in many other similar alloy systems. The new β coefficient is used in a model of the isotopic profiles to be expected during the Widmanstätten pattern formation in iron meteorites. The results are consistent with previous estimates of the cooling rate of the iron meteorite Toluca. The application of isotopic constraints based on these results in addition to conventional cooling rate models could provide a more robust picture of the thermal history of these early planetary bodies.
Lightfoot, Emma; O’Connell, Tamsin C.
2016-01-01
Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on) causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals’ homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific homeland should not be attempted. PMID:27124001
Certification of the Uranium Isotopic Ratios in Nbl Crm 112-A, Uranium Assay Standard (Invited)
NASA Astrophysics Data System (ADS)
Mathew, K. J.; Mason, P.; Narayanan, U.
2010-12-01
Isotopic reference materials are needed to validate measurement procedures and to calibrate multi-collector ion counting detector systems. New Brunswick Laboratory (NBL) provides a suite of certified isotopic and assay standards for the US and international nuclear safeguards community. NBL Certified Reference Material (CRM) 112-A Uranium Metal Assay Standard with a consensus value of 137.88 for the 238U/235U ratio [National Bureau of Standards -- NBS, currently named National Institute for Standards and Technology, Standard Reference Material (SRM) 960 had been renamed CRM 112-A] is commonly used as a natural uranium isotopic reference material within the earth science community. We have completed the analytical work for characterizing the isotopic composition of NBL CRM 112-A Uranium Assay Standard and NBL CRM 145 (uranyl nitrate solution prepared from CRM 112-A). The 235U/238U isotopic ratios were characterized using the total evaporation (TE) and the modified total evaporation (MTE) methods. The 234U/238U isotope ratios were characterized using a conventional analysis technique and verified using the ratios measured in the MTE analytical technique. The analysis plan for the characterization work was developed such that isotopic ratios that are traceable to NBL CRM U030-A are obtained. NBL is preparing a certificate of Analysis and will issue a certificate for Uranium Assay and Isotopics. The results of the CRM 112-A certification measurements will be discussed. These results will be compared with the average values from Richter et al (2010). A comparison of the precision and accuracy of the measurement methods (TE, MTE and Conventional) employed in the certification will be presented. The uncertainties in the 235U/238U and 234U/238U ratios, calculated according to the Guide to the Expression of Uncertainty in Measurements (GUM) and the dominant contributors to the combined standard uncertainty will be discussed.
Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry
NASA Astrophysics Data System (ADS)
Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.
2014-12-01
A number of studies have shown that the boron isotopic composition (δ11B) and the B/Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32-, and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the boron isotopic composition and B/Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B/Ca increases with increasing BOH4-/HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B/Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B/Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less
Possible application of laser isotope separation
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1975-01-01
The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.
Fabiansen, Christian; Yaméogo, Charles W; Devi, Sarita; Friis, Henrik; Kurpad, Anura; Wells, Jonathan C
2017-08-01
Childhood malnutrition is highly prevalent and associated with high mortality risk. In observational and interventional studies among malnourished children, body composition is increasingly recognised as a key outcome. The deuterium dilution technique has generated high-quality data on body composition in studies of infants and young children in several settings, but its feasibility and accuracy in children suffering from moderate acute malnutrition requires further study. Prior to a large nutritional intervention trial among children with moderate acute malnutrition, we conducted pilot work to develop and adapt the deuterium dilution technique. We refined procedures for administration of isotope doses and collection of saliva. Furthermore, we established that equilibration time in local context is 3 h. These findings and the resulting standard operating procedures are important to improve data quality when using the deuterium dilution technique in malnutrition studies in field conditions, and may encourage a wider use of isotope techniques.
Cicchetti, Esmeralda; Chaintreau, Alain
2009-06-01
Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.
Correlated optical and isotopic nanoscopy
NASA Astrophysics Data System (ADS)
Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O.; Wessels, Johannes T.
2014-04-01
The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.
Le, Phuong-Mai; Ding, Jianfu; Leek, Donald M; Mester, Zoltan; Robertson, Gilles; Windust, Anthony; Meija, Juris
2016-10-01
In this study, we report the characterization of three arsenobetaine-certified reference materials by quantitative NMR. We have synthesized an arsenobetaine bromide high-purity standard of natural isotopic composition (ABET-1) and two carbon-13-labeled isotopic standards (BBET-1 and CBET-1). Assignments of the chemical purity and isotopic composition are not trivial in the case of arsenobetaine, and in this study we utilized quantitative(1)H-NMR techniques for the determination of the mass fractions (chemical purity). The isotopic purity of all three standards was also assessed by NMR from the carbon-13 satellite signals. The standards are non-hygroscopic, high-purity (ca. 0.99 g/g), and the carbon-13 enrichment for both isotopic standards is x((13)C)≈0.99. These standards are designed for use as primary calibrators for mass spectrometric determination of arsenobetaine in environmental samples.
Changing carbon isotope ratio of atmospheric carbon dioxide: implications for food authentication.
Peck, William H; Tubman, Stephanie C
2010-02-24
Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique takes advantage of the natural difference in carbon isotope ratio between C(3) and C(4) plants. Many foods are derived from C(3) plants, but the low-cost sweeteners corn and sugar cane are C(4) plants. Most adulteration studies do not take into account the secular shift of the carbon isotope ratio of atmospheric carbon dioxide caused by fossil fuel burning, a shift also seen in plant tissues. As a result statistical tests and threshold values that evaluate authenticity of foods based on carbon isotope ratios may need to be corrected for changing atmospheric isotope values. Literature and new data show that the atmospheric trend in carbon isotopes is seen in a 36-year data set of maple syrup analyses (n = 246), demonstrating that published thresholds for cane or corn sugar adulteration in maple syrup (and other foods) have become progressively more lenient over time.
USDA-ARS?s Scientific Manuscript database
The stable isotope ratios of hydrogen (H) and oxygen (O) are valuable tracers of the origin of biological materials and water sources. Application of these environmental tracers is largely based on the distinct and pervasive spatial patterns of precipitation isotopes, which are preserved in many hy...
Jonathan N. Pauli; Winston P. Smith; Merav Ben-David
2012-01-01
Advances in the application of stable isotopes have allowed the quantitative evaluation of previously cryptic ecological processes. In particular, researchers have utilized the predictable spatial patterning in natural abundance of isotopes to better understand animal dispersal and migration. However, quantifying dispersal via natural abundance alone has proven to be...
NASA Technical Reports Server (NTRS)
1990-01-01
The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.
Microbes: Agents of Isotopic Change
NASA Astrophysics Data System (ADS)
Fogel, M. L.
2012-12-01
Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.
Llewellyn, Chris; LaPeyre, Megan K.
2010-01-01
This study sought to examine ecological equivalence of created marshes of different ages using traditional structural measures of equivalence, and tested a relatively novel approach using stable isotopes as a measure of functional equivalence. We compared soil properties, vegetation, nekton communities, and δ13C and δ15N isotope values of blue crab muscle and hepatopancreas tissue and primary producers at created (5-24 years old) and paired reference marshes in SW Louisiana. Paired contrasts indicated that created and reference marshes supported equivalent plant and nekton communities, but differed in soil characteristics. Stable isotope indicators examining blue crab food web support found that the older marshes (8 years+) were characterized by comparable trophic diversity and breadth compared to their reference marshes. Interpretation of results for the youngest site was confounded by the fact that the paired reference, which represented the desired end goal of restoration, contained a greater diversity of basal resources. Stable isotope techniques may give coastal managers an additional tool to assess functional equivalency of created marshes, as measured by trophic support, but may be limited to comparisons of marshes with similar vegetative communities and basal resources, or require the development of robust standardization techniques.
Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.
We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling alsomore » allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.« less