Science.gov

Sample records for isotopically engineered silicon

  1. Diffusion in silicon isotope heterostructures

    SciTech Connect

    Silvestri, Hughes Howland

    2004-01-01

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and 28Si enriched layers, enables the observation of 30Si self-diffusion from the natural layers into the 28Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly

  2. High-purity, isotopically enriched bulk silicon

    SciTech Connect

    Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.; Sharp, I.D.; Liao, C.; Yang, A.; Thewalt, M.L.W.; Riemann, H.

    2004-11-17

    The synthesis and characterization of dislocation-free, undoped, single crystals of Si enriched in all 3 stable isotopes is reported: {sup 28}Si (99.92%), {sup 29}Si (91.37%), and {sup 30}Si (89.8%). A silane-based process compatible with the relatively small amounts of isotopically enriched precursors that are practically available was used. The silane is decomposed to silicon on a graphite starter rod heated to 700-750 C in a recirculating flow reactor. A typical run produces 35 gm of polycrystalline Si at a growth rates of 5 {micro}m/min and conversion efficiency >95%. Single crystals are grown by the floating zone method and characterized by electrical and optical measurements. Concentrations of shallow dopants (P and B) are as low as mid-10{sup 13} cm{sup -3}. Concentrations of C and O lie below 10{sup 16} and 10{sup 15} cm{sup -3}, respectively.

  3. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    SciTech Connect

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  4. Silicon isotope fractionation in rice and cucumber plants over a life cycle: Laboratory studies at different external silicon concentrations

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wu, Lianghuan; Li, Xiaoyan; Sun, Li; Gao, Jianfei; Ding, Tiping

    2016-11-01

    Understanding the variations of silicon isotopes in terrestrial higher plants can be helpful toward elucidating the global biogeochemical silicon cycle. We studied silicon isotope fractionation in rice and cucumber plants over their entire life cycles. These two different silicon-absorbing plants were grown hydroponically at different external silicon concentrations. The ranges of δ30Si values in rice were -1.89‰ to 1.69‰, -1.81‰ to 1.96‰, and -2.08‰ to 2.02‰ at 0.17 mM, 1.70 mM, and 8.50 mM silicon concentrations, respectively. The ranges of δ30Si values in cucumber were -1.38‰ to 1.21‰, -1.33‰ to 1.26‰, and -1.62‰ to 1.40‰ at 0.085 mM, 0.17 mM, and 1.70 mM external silicon concentrations, respectively. A general increasing trend in δ30Si values from lower to upper plant parts reflected the preferential incorporation of lighter silicon isotopes from transpired water to biogenic opal. Furthermore, the active uptake mechanism regulated by several transporters might have also played an important role in the preferential transport of heavy silicon isotopes into aboveground plant parts. This suggested that silicon isotope fractionation in both rice and cucumber was a Rayleigh-like process. The data on δ30Si values for the whole plants and nutrient solutions indicated that biologically mediated silicon isotope fractionation occurred during silicon uptake by roots. At lower external silicon concentrations, heavy silicon isotopes entered plants more readily than light silicon isotopes. Conversely, at higher external silicon concentrations, light silicon isotopes entered plants more readily than heavy silicon isotopes.

  5. Silicon isotope fractionation during magmatic differentiation

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Burton, Kevin W.; Halliday, Alex N.

    2011-10-01

    The Si isotopic composition of Earth's mantle is thought to be homogeneous (δ 30Si = -0.29 ± 0.08‰, 2 s.d.) and not greatly affected by partial melting and recycling. Previous analyses of evolved igneous material indicate that such rocks are isotopically heavy relative to the mantle. To understand this variation, it is necessary to investigate the degree of Si isotopic fractionation that takes place during magmatic differentiation. Here we report Si isotopic compositions of lavas from Hekla volcano, Iceland, which has formed in a region devoid of old, geochemically diverse crust. We show that Si isotopic composition varies linearly as a function of silica content, with more differentiated rocks possessing heavier isotopic compositions. Data for samples from the Afar Rift Zone, as well as various igneous USGS standards are collinear with the Hekla trend, providing evidence of a fundamental relationship between magmatic differentiation and Si isotopes. The effect of fractionation has been tested by studying cumulates from the Skaergaard Complex, which show that olivine and pyroxene are isotopically light, and plagioclase heavy, relative to the Si isotopic composition of the Earth's mantle. Therefore, Si isotopes can be utilised to model the competing effects of mafic and felsic mineral fractionation in evolving silicate liquids and cumulates. At an average SiO 2 content of ˜60 wt.%, the predicted δ 30Si value of the continental crust that should result from magmatic fractionation alone is -0.23 ± 0.05‰ (2 s.e.), barely heavier than the mantle. This is, at most, a maximum estimate, as this does not take into account weathered material whose formation drives the products toward lighter δ 30Si values. Mass balance calculations suggest that removal of continental crust of this composition from the upper mantle will not affect the Si isotopic composition of the mantle.

  6. Diatom-induced silicon isotopic fractionation in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Francois, F.; Damien, C.; Jean-Louis, T.; Anthony, W.; Luc, A.

    2006-12-01

    We measured silicon-isotopic composition of dissolved silicon and biogenic silica collected by sequential melting from spring 2003 Antarctic pack ice (Australian sector). Sea ice is a key ecosystem in the Southern Ocean and its melting in spring has been often thought to have a seeding effect for the surface waters, triggering blooms in the mixed layer. This work is the first investigation of the silicon isotopes' proxy in sea ice and allows to estimate the activity of sea-ice diatoms in the different brine structures and the influence of sea- ice diatoms on the spring ice edge blooms. The relative use of the dissolved silicon pool by sea-ice diatoms is usually assessed by calculating nutrient:salinity ratios in the brines. However such an approach is biased by difficulties in evaluating the initial nutrient concentrations in the different brines structures, and by the impossibility to account for late sporadic nutrient replenishments. The silicon-isotopic composition of biogenic silica is a convenient alternative since it integrates an average Si utilization on all generations of diatoms. Measurements were performed on a MC-ICP-MS, in dry plasma mode using external Mg doping. Results are expressed as delta29Si relative to the NBS28 standard. From three sea ice cores with contrasted physico-chemical characteristics, we report significant isotopic fractionations linked to the diatoms activity, with distinct silicon biogeochemical dynamics between different brine structure. The diatoms in snow ice and in brine pockets of frazil or congelation ice have the most positive silicon-isotopic composition (+0.53 to +0.86 p.mil), indicating that they grow in a closed system and use a significant part of the small dissolved silicon pool. In the brine channels and skeletal layer, diatoms display a relatively less positive Si-isotopic composition (+0.41 to +0.70 p.mil), although it is still heavier compared to equilibrium fractionation (+0.38 p.mil). This suggests that they have

  7. Experimental Determination of Silicon Isotope Fractionation in Rice

    PubMed Central

    Sun, Yan; Wu, Liang-huan; Li, Xiao-yan

    2016-01-01

    Analyzing variations in silicon (Si) isotopes can help elucidate the biogeochemical Si cycle and Si accumulation processes of higher plants. Importantly, the composition of Si isotopes in higher plants has yet to be studied comprehensively and our knowledge of the distribution of Si isotopes in higher plants lags behind that of Si isotopes in marine organisms, such as diatoms. In the present study, we investigated the isotope fractionation that occurs during the uptake and transport of Si in rice, using a series of hydroponic experiments with different external concentrations of Si. We found that an active mechanism was responsible for the majority of Si uptake and transport at lower Si levels and that the uptake of Si by rice roots was significantly suppressed by both low temperature and metabolic inhibitors. In addition, light Si isotopes (28Si) entered roots more readily than heavy Si isotopes (30Si) when the active mechanism was inhibited. Therefore, we conclude that biologically mediated isotope fractionation occurs during the uptake of Si by rice roots. In addition, both active and passive Si uptake components co-exist in rice, and the fractionation effect is enhanced when more Si is absorbed by plants. PMID:28036355

  8. Silicon isotopes in angrites and volatile loss in planetesimals

    PubMed Central

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  9. Isotope Engineering of Carbon Nanotube Systems

    NASA Astrophysics Data System (ADS)

    Simon, F.; Kramberger, Ch.; Pfeiffer, R.; Kuzmany, H.; Zólyomi, V.; Kürti, J.; Singer, P. M.; Alloul, H.

    2005-06-01

    The synthesis of a unique isotope engineered system, double-wall carbon nanotubes with natural carbon outer and highly 13C enriched inner walls, is reported from isotope enriched fullerenes encapsulated in single-wall carbon nanotubes (SWCNTs). The material allows the observation of the D line of the highly defect-free inner tubes that can be related to a curvature induced enhancement of the electron-phonon coupling. Ab initio calculations explain the inhomogeneous broadening of inner tube Raman modes due to the distribution of different isotopes. Nuclear magnetic resonance shows a significant contrast of the isotope enriched inner SWCNTs compared to other carbon phases and provides a macroscopic measure of the inner tube mass content. The high curvature of the small diameter inner tubes manifests in an increased distribution of the chemical shift tensor components.

  10. Silicon and oxygen isotopic trends in Mesozoic radiolarites

    NASA Astrophysics Data System (ADS)

    Bôle, Maximlien; Baumgartner Peter, O.; Lukas, Baumgartner; Anne-Sophie, Bouvier; Rie, Hori; Masayuki, Ikeda

    2016-04-01

    Silicon and oxygen isotopes (δ30Si and δ18O) of siliceous tests (diatoms, sponges and radiolarians) preserve environmental signatures in unconsolidated sediments, but few studies show such signatures for ancient biosilicieous rocks. In Precambrian cherts from greenstone belts, small scaled isotopic variations were interpreted as a primary diagenetic feature. They were used, coupled to mean δ18O, to reconstruct seawater temperature at which cherts precipitated. Here, we examine stable isotopes in Mesozoic biogenic cherts that may also preserve an environmental signature. We measured δ30Si and δ18O in situ by SIMS, in the chalcedony of individual radiolarian tests preserved in Mesozoic radiolarites. Microanalysis of chalcedony, rather than the bulk rock isotopic composition, is likely to reveal a palaeoenvironmental signal, since it is derived from biogenic opal, the most mobile silica phase during earliest diagenesis. Our data reveal clear trends through several Mesozoic radiolarite sections from Panthalassa (Kiso River, Japan) and Western Tethys (Sogno, Italy). δ18O records measured in radiolarites show a relatively good correlation to δ18O-variations of Mesozoic low magnesium calcite shells, which are commonly used as a palaeotemperature proxy. Once these variations, attributed to seawater temperature, are removed, the residual δ18O trends are opposite to the δ30Si trends. δ30Si increases from Middle Triassic to Early Jurassic in the Kiso River sections and decrease during the Middle Jurassic in the Sogno section. The observed d30Si-trends are likely to represent a palaeoenvironmental signal, because they are not compatible with simple models of progressive diagenesis along P/T-paths (or depth below sea bottom in drill holes). Among the palaeoenvironmental factors that may have influenced these trends are the oceanic silica cycle changing though time, oceanic circulation and/or the palaeogeographic location of each studied site. Siliceous organisms are

  11. The riverine silicon isotope composition of the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Hughes, H. J.; Sondag, F.; Santos, R. V.; André, L.; Cardinal, D.

    2013-11-01

    We present here the first large-scale study of riverine silicon isotope signatures in the Amazon Basin. The Amazon and five of its main tributaries were studied at different seasons of the annual hydrological cycle. The δ30Si signature of the dissolved silicon (DSi) exported to the estuary (weighted for DSi flux) for the period considered is estimated at +0.92‰. A river cross-section shows the homogeneity of the Amazon River regarding DSi concentration and isotope ratio. The biogenic silica (BSi) concentration measured in surface water from all rivers is generally small compared to the DSi reservoir but large variations exist between rivers. Very low isotope signatures were measured in the upper Rio Negro (δ30Si = +0.05 ± 0.06‰), which we explain both by an equilibrium between clay formation and dissolution and by gibbsite formation. The Si isotope fractionation in the Andean tributaries and the Amazon main stem can be explained by clay formation and follow either a Rayleigh or a batch equilibrium fractionation model. Our results also suggest that the formation of 2:1 clays induces a fractionation factor similar to that of kaolinite formation.

  12. The silicon isotope composition of the upper continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-05-01

    The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.

  13. The silicon isotope record of early silica diagenesis

    NASA Astrophysics Data System (ADS)

    Tatzel, Michael; von Blanckenburg, Friedhelm; Oelze, Marcus; Schuessler, Jan A.; Bohrmann, Gerhard

    2015-10-01

    The heavy isotopes of silicon are strongly enriched in some of the youngest, early diagenetically formed porcellanite layers from the Southwest Indian Ridge (Pleistocene) and the Maud Rise (Pliocene). These porcellanite layers are composed of opal-CT and were formed by the conversion of amorphous silica (opal-A) from siliceous sediment via dissolution-reprecipitation. Their bulk δ30Si values range between 1.7 and 2.3‰. Detritus-poor siliceous sediment surrounding these layers is significantly lower at -0.3 to 1.5‰. Sequential chemical extractions of bulk siliceous sediment show (i) preferential dissolution of diatoms featuring higher δ30Si than radiolaria and Al-Si components. The detailed investigation of porcellanite layers by micro-scale Si isotope and Al/Si analyses using UV femtosecond laser ablation ICP mass spectrometry show that (ii) precipitation of authigenic aluminum silicates enriched in light Si isotopes drives pore waters to even higher δ30Si. We suggest that the same processes redistributed stable silicon isotopes in precursor siliceous sediments of ancient chert. We infer that past environmental conditions can be reconstructed with high fidelity from the stable Si isotope composition of chert when initial seawater Si concentrations were high (such as in the Precambrian). Exchange of Si between layers during phase transformation (from opal-A to opal-CT and from opal-CT to quartz) is impeded when variable amounts of detrital minerals are present, because they control rates of silica phase transformation and hence the timing of dissolution-reprecipitation during burial.

  14. The silicon isotopic composition of the Ganges and its tributaries

    NASA Astrophysics Data System (ADS)

    Fontorbe, Guillaume; De La Rocha, Christina L.; Chapman, Hazel J.; Bickle, Michael J.

    2013-11-01

    The silicon isotopic composition (δSi30) of the headwaters of the Ganges River, in the Himalaya, ranged from +0.49±0.01‰ to +2.17±0.04‰ at dissolved silicon (DSi) concentrations of 38 to 239 μM. Both the concentration and isotopic composition of DSi in the tributaries increased between the highest elevations to where the Ganges leaves the Himalayas at Rishikesh. The tributaries exhibit a linear correlation between δSi30 and DSi that may represent mixing between a low DSi, low δSi30 (e.g., 40 μM, +0.5‰) component potentially reflecting fractionation during adsorption of a small fraction of silicon onto iron oxides and a high DSi, high δSi30 component (e.g., 240 μM, +1.7‰) produced during higher intensity weathering with a greater proportional sequestration of weathered silicon into secondary minerals or biogenic silica. On the Ganges alluvial plain, in the Ganges and the Yamuna, Gomati, and their tributaries, DSi ranged from 122 to 218 μM while δSi30 ranged from +1.03±0.03‰ to +2.46±0.06‰. Highest values of δSi30 occurred in the Gomati and its tributaries. In general, the lower DSi and higher δSi30 of DSi in these rivers suggests control of both by removal of DSi by secondary mineral formation and/or biogenic silica production. A simple 1-dimensional model with flow through a porous medium is introduced and provides a useful framework for understanding these results.

  15. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  16. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  17. Iron and Nickel Isotopic Compositions of Presolar Silicon Carbide Grains from AGB Stars Measured with CHILI

    NASA Astrophysics Data System (ADS)

    Trappitsch, R.; Stephan, T.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Gyngard, F.; Bisterzo, S.; Gallino, R.; Dauphas, N.

    2016-08-01

    Simultaneous iron and nickel isotopic studies in presolar SiC mainstream grains measured on CHILI show the expected AGB star anomalies in the neutron-rich isotopes. Neutron-poor isotopes are dominated by GCE and show clear correlations with silicon.

  18. A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes

    NASA Astrophysics Data System (ADS)

    Fontorbe, Guillaume; Frings, Patrick J.; De La Rocha, Christina L.; Hendry, Katharine R.; Conley, Daniel J.

    2016-11-01

    Despite being one of Earth's major geochemical cycles, the evolution of the silicon cycle has received little attention and changes in oceanic dissolved silica (DSi) concentration through geologic time remain poorly constrained. Silicon isotope ratios (expressed as δ30Si) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the δ30Si of siliceous sponge spicules has been demonstrated to be a useful proxy for past DSi concentrations. We analysed δ30Si in radiolarian tests and sponge spicules from the Blake Nose Palaeoceanographic Transect (ODP Leg 171B) spanning the Palaeocene-Eocene (ca. 60-30 Ma). Our δ30Si results range from +0.32 to + 1.67 ‰ and -0.48 to + 0.63 ‰ for the radiolarian and sponge records, respectively. Using an established relationship between ambient dissolved Si (DSi) concentrations and the magnitude of silicon isotope fractionation in siliceous sponges, we demonstrate that the Western North Atlantic was DSi deplete during the Palaeocene-Eocene throughout the water column, a conclusion that is robust to a range of assumptions and uncertainties. These data can constitute constraints on reconstructions of past-ocean circulation. Previous work has suggested ocean DSi concentrations were higher than modern ocean concentrations prior to the Cenozoic and has posited a drawdown during the Early Palaeogene due to the evolutionary expansion of diatoms. Our results challenge such an interpretation. We suggest here that if such a global decrease in oceanic DSi concentrations occurred, it must predate 60 Ma.

  19. Silicon Isotopic Fractionation in a Tropical Soil-Plant System

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.

    2006-12-01

    -0.33 (Ovs) and -0.56 permil (Yvs), close to the fractionation factor previously measured in hydroponics (-0.40 permil). The average delta29Si of phytoliths in banana plants was +0.17 permil. In the topsoil, the isotopic composition of Yvs ( 0.21 permil) was close to that of unweathered pumice (-0.20 permil). The Ovs were significantly lighter (-0.73 permil), confirming published data pointing to lighter isotopic composition with increased weathering. Heavier bulk plants at Ovs might be related to a heavier residual soil solution due to: (i) the formation of lighter clay minerals at Ovs (clay fraction: -0.94 permil) than at Yvs (-0.60 permil), and (ii) the quantitative adsorption of silica onto iron oxides (see Delstanche et al., 2006, AGU), more abundant in weathered Ovs. Our data support the view that plants can induce a strong imprint on the continental cycle of silicon, just as clay formation and possibly Si adsorption onto iron oxides can do. The quantification of Si-isotopic fractionation in the soil-plant system requires, however, further studies involving all the Si pools to achieve a comprehensive understanding of this cycle.

  20. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  1. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  2. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  3. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro

    2016-10-01

    Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  4. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  5. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Tian, S. H.; Sun, L.; Wu, L. H.; Zhou, J. X.; Chen, Z. Y.

    2008-12-01

    The silicon isotope fractionation between rice plant and nutrient solution was studied experimentally. Rice plants were grown to maturity with the hydroponic culture in a naturally lit glasshouse. The nutrient solution was sampled for 14 times during the whole rice growth period. The rice plants were collected at various growth stages and different parts of the plants were sampled separately. The silica contents of the samples were determined by the gravimetric method and the silicon isotope compositions were measured using the SiF 4 method. In the growth process, the silicon content in the nutrient solution decreased gradually from 16 mM at starting stage to 0.1-0.2 mM at harvest and the amount of silica in single rice plant increased gradually from 0.00013 g at start to 4.329 g at harvest. Within rice plant the SiO 2 fraction in roots reduced continuously from 0.23 at the seedling stage, through 0.12 at the tiller stage, 0.05 at the jointing stage, 0.023 at the heading stage, to 0.009 at the maturity stage. Accordingly, the fraction of SiO 2 in aerial parts increased from 0.77, through 0.88, 0.95, 0.977, to 0.991 for the same stages. The silicon content in roots decreased from the jointing stage, through the heading stage, to the maturity stage, parallel to the decrease of silicon content in the nutrient solution. At the maturity stage, the silicon content increased from roots, through stem and leaves, to husks, but decreased drastically from husks to grains. These observations show that transpiration and evaporation may play an important role in silica transportation and precipitation within rice plants. It was observed that the δ30Si of the nutrient solution increased gradually from -0.1‰ at start to 1.5‰ at harvest, and the δ30Si of silicon absorbed by bulk rice plant increased gradually from -1.72‰ at start to -0.08‰ at harvest, reflecting the effect of the kinetic silicon isotope fractionation during silicon absorption by rice plants from nutrient

  6. Isotopic Composition of Presolar Silicon Carbide Grains Analyzed with CHILI

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Trappitsch, R.; Davis, A. M.; Pellin, M. J.; Rost, D.; Savina, M. R.; Jadhav, M.; Kelly, C. H.

    2015-07-01

    Twenty-two presolar SiC grains were analyzed for Sr, Zr, and Ba isotopes with the Chicago Instrument for Laser Ionization. Most grains showed isotope patterns consistent with formation in AGB star like observed previously. One grain is a supernova grain.

  7. Isotopic Composition of Barium in Single Presolar Silicon Carbide Grains

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2002-01-01

    We have measured Ba isotope distributions in individual presolar SiC grains. We find that the Ba isotopic composition in mainstream SiC grains is consistent with models of nucleosynthesis in low to intermediate mass asymptotic giant branch (AGB) stars. Additional information is contained in the original extended abstract.

  8. An Earth-Moon silicon isotope model to track silicic magma origins

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Zambardi, Thomas

    2015-10-01

    A comparison between terrestrial and lunar igneous rocks reveals that Si isotope compositions become slightly, though significantly enriched in heavy isotopes from basalts to granites and anorthosites as a function of the rock SiO2 concentration and/or tectosilicate content. This is interpreted as the result of a global igneous differentiation process that leads to an increased amount of tectosilicates in the rocks. This relationship of increasing degree of melt polymerization with increasingly heavy silicon isotope composition is particularly apparent in lunar rocks. The terrestrial trend, however, is more scattered. Given the sensitivity of Si isotopes to water-rock interactions, it is likely that the more erratic terrestrial trend reveals the involvement of water that does not occur on the Moon. Hence, Si isotopes appear to reflect the occurrence of low temperature water-rock interaction products, like clay minerals, in the source of peraluminous leucogranites. Conversely, the heavy silicon isotope composition of some andesites possibly trace the input of fluids involved in subduction zones and/or interaction of the oceanic crust with isotopically heavy seawater before subduction.

  9. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  10. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.

    PubMed

    Robert, François; Chaussidon, Marc

    2006-10-26

    The terrestrial sediment record indicates that the Earth's climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today's to global glaciation events. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments), but the long-term cooling of the oceans inferred from those data has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 degrees C 3,500 million years ago to about 20 degrees C 800 million years ago.

  11. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Harry C.; Fang, Ho T.

    1991-01-01

    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.

  12. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, G. J.; Vartabedian, A. M.; Wade, J. A.; White, C. S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP'ed Si3N4 with 4wt% Y2O3 (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  13. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    SciTech Connect

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  14. ``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems

    NASA Astrophysics Data System (ADS)

    Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.

    2010-12-01

    The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.

  15. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.

    1985-01-01

    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.

  16. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    SciTech Connect

    Tabrizian, R.; Ayazi, F.

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  17. Can silicon isotopes be used to assess anthropogenic impacts and nutrient utilisation in Lake Baikal, Siberia?

    NASA Astrophysics Data System (ADS)

    Swann, G. E. A.; Panizzo, V. N.; Mackay, A. W.; Roberts, S.; Vologina, E.; Horstwood, M. S.

    2014-12-01

    Silicon isotope geochemistry (28Si, 29Si, 30Si) represents a growing field in Earth Sciences providing information to constrain and understand biogeochemical cycling on land and in oceans. Here we present records of δ30Si (30Si/28Si) from the Lake Baikal drainage basin in central Siberia to understand silicon cycling through the dominant river tributaries and into Lake Baikal itself, the world's deepest and most voluminous lake containing one fifth of all freshwater not stored in glaciers and ice caps.Waters were collected along an upstream transect for the five dominant Lake Baikal inflows as well as from the Selenga Delta which account for >50% of the annual riverine flow to the lake. Samples for dissolved silicon (DSi) concentrations and silicon isotopic signatures (δ30SiDSi) were filtered and acidified in the field with isotopic analyses conducted on a Neptune + Multi-Collector ICP-MS using wet plasma mode with Mg doping of samples and standard-sample-standard bracketing. Analytical reproducibility is 0.11‰ (2σ) and blanks are <1% of signal intensity. The DSi concentration of all river inflow samples varies from c. 2.5-6.3 ppm, which contrasts with concentrations of < 1ppm from the Angara River, the lake's only outflow. Combined with river δ30SiDSi values of c. + 0.94 to +1.52‰ and lake water and outflow values of c. +2.50‰, the results show significant (up to 60%) biological utilisation of silicon entering the lake.With the Lake Baikal having been designated a World Heritage Site since 1996, due to its high level of biological endemicity, the work in combination with sediment cores from the lake provides an insight into the transportation and fate of silicon in the basin and an assessment of how climate change and expanding anthropogenic activities in the region including urbanisation, deforestation, agriculture and mining have impacted biogeochemical cycling.

  18. Silicon Isotope Fractionation by Banana Under Continuous Nutrient and Silica Flux

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Cardinal, D.; Henriet, C.; Delvaux, B.; André, L.

    2004-12-01

    Silicon is absorbed by plants as aqueous H4SiO4 with other essential nutrients, and precipitates in aerial parts of the plant as phytolith, a biogenic opal. Phytoliths are restored to the soil by decomposition of organic debris from plant material. The role of higher plants in the biogeochemical cycle of silicon is therefore major although it is still poorly studied. Biomineralization processes are known to fractionate the three stable silicon isotopes with a preferential uptake of light isotopes. Therefore, following some preliminary results from Douthitt (1982), and studies presented in recent conferences (Ziegler et al., 2002; Ding et al., 2003), we suspect that phytolith production by plants could also fractionate the silicon isotopes. Inversely, intensity of phytolith-related isotopic fractionations might contribute to a better understanding of the soil-plant silicon cycle. Our study focused on banana, a silicon accumulating plant (>1% Si, dry weight).Musa acuminata cv Grande Naine has been grown in hydroponics under controlled conditions (light, temperature, humidity, nutrients) during six weeks. The nutrient supply was kept constant: three batches of five plants were grown with a continuous nutrient solution flow of 5, 50 and 100 ppm SiO2 respectively. Si isotopic compositions were measured in the source solution, and in silica extracted from the various parts of banana (roots, pseudostems, midribs and petioles, leaves), using a Nu Plasma multicollector mass spectrometer (MC-ICP-MS) operating in dry plasma mode. The results are expressed as δ 29Si relatively to the NBS28 standard, with an average precision of ± 0.03‰ . Silicon contents and morphological studies of phytoliths were also achieved. Banana δ 29Si varied between -0.18 and -0.76‰ with a source solution at -0.02‰ . Values of δ 29Si were less fractionated, relatively to the nutrient solution, in roots, where no phytoliths have been observed until now, than in upper parts of banana where

  19. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.

    2016-09-01

    The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

  20. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    PubMed Central

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device. PMID:27389874

  1. Silicon isotope ratios affected by sodium-induced broadband interference in high resolution multicollector-ICPMS.

    PubMed

    Pramann, Axel; Rienitz, Olaf; Schiel, Detlef

    2012-12-04

    The measurement of isotope ratios of silicon highly enriched in (28)Si ("Si28", x((28)Si) > 99.99%) is influenced by a significant interference (20%) on the (30)Si(+) signal when using a cup configuration of C ((29)Si(+)) and H3 ((30)Si(+)) on a Neptune MC-ICPMS. This interference was observed in silicon solutions with aqueous NaOH (w(NaOH) > 0.001 g/g) and in highly concentrated aqueous NaOH blank solutions (e.g., w(NaOH) = 0.25 g/g) but never in KOH solutions. By redirecting the ions, the interference was detected with all other Faraday cups except the center cup. The interference can be explained by ion scattering induced by the presence of large amounts of sodium. Due to its shielded location, these stray ions were not detected in the center cup. This effect explains an anomalous increase of the abundance of the (30)Si(+) signal in (30)Si/(29)Si isotope ratio measurements made using aqueous NaOH blank solutions with w(NaOH) ≥ 0.001 g/g. For silicon isotopic measurements, it is recommended to use alkaline solutions for sample dissolution and dilution that do not contain sodium. The effects of this interference are extremely important for the experimental determination of the Avogadro constant N(A) using the "silicon sphere approach". It can also have a significant effect on Si isotope analyses in matrices with a naturally high concentration of sodium (e.g., seawater).

  2. Species-dependent silicon isotope fractionation in unialgal cultures of marine diatoms

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Varela, D. E.; Brzezinski, M. A.; Beucher, C.

    2011-12-01

    Variations in the natural abundance of stable isotopes of silicon (expressed as δ30Si in %) are a key tool for studying the marine silicon (Si) cycle in modern and ancient oceans. In particular, this tool can be used to track relative differences in silicic acid drawdown in surface waters by siliceous microplankton. Diatoms are siliceous phytoplankton that dominate the cycling of Si in the oceans. They represent a major source of primary production and are important in the transfer of Si, nitrogen, phosphorus, and atmospheric carbon to the deep sea. Previous investigations of Si isotope fractionation in diatom cultures have ruled out the influence of temperature (12-22°C) and shown that Si fractionation was invariant in different species of temperate diatoms (De La Rocha et al. 1997). However, the application of this proxy for marine paleo-silicon reconstructions has typically only been used in polar regions, such as the Southern Ocean, where high primary production rates give rise to diatom-rich sediments. Here, we present results on the fractionation of Si isotopes by four species of polar diatoms grown in semi-continuous cultures (Chaetoceros brevis, Fragilariopsis kerguelensis, Porosira glacialis, and Thalassiosira antarctica). To compare with previous studies (De La Rocha et al, 1997), we also tested Si isotope fractionation by two species of temperate diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii). The temperate species yielded Si isotope fractionation (Δ30Si) values of -0.81 % (±0.12, SD, n=11) for T. pseudonana and -1.03% (±0.09, SD, n=3) for T. weissflogii, that are identical to the previously reported fractionation of -1.1 % (±0.4, SD, n=6) (De La Rocha et al. 1997). Similarly, our data for polar species F. kerguelensis, P. glacialis and T. antarctica suggest a fractionation of -0.7 to -1.1 %. Interestingly, our preliminary results from Chaetoceros brevis cultures show a Si isotope fractionation value of about -2.61 % (±0.05, SD

  3. Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Reynolds, Ben C.; Rickli, Jörg; Frank, Martin; Saito, Mak A.; Gerringa, Loes J. A.; Bourdon, Bernard

    2012-06-01

    The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N-NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.

  4. Joining and Integration of Silicon Carbide for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv

    2010-01-01

    The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.

  5. Adsorption Behavior of Metasilicate on N-Methyl d-Glucamine Functional Groups and Associated Silicon Isotope Fractionation.

    PubMed

    Wang, Wei; Wei, Hai-Zhen; Jiang, Shao-Yong; Eastoe, Christopher J; Guo, Qi; Lin, Yi-Bo

    2016-09-06

    Significant isotope fractionation of silicon provides a powerful geochemical tracer for biological and physicochemical processes in terrestrial and marine environments. The exact mechanism involved in silicon uptake as part of the biological process is not well known. The silicon uptake in biological processes is investigated using silicate adsorption onto the N-methylglucamine functional group (sugarlike structure, abbreviated as L) of Amberlite IRA-743 resin as an analogue of the formation of silicate-sugar complexes in plants. This study provides new evidence that certain sugars can react readily with basic silicic acid to form sugar-silicate chelating complexes, and the equilibrium adsorption behavior of silicate can be well described by the Langmuir isotherm with a Gibbs free energy (ΔG) of -11.94 ± 0.21 kJ·mol(-1) at 293 K. The adsorption kinetics corresponds well to a first-order kinetic model in which the adsorption rate constant ka of 1.25 × 10(-4) s(-1) and the desorption rate constant kd of 4.00 × 10(-6) s(-1) are obtained at 293 K. Both ka and kd increase with increasing temperature. The bonding configurations of silicate-sugar complexes imply the principal coordination complex of hexacoordinated silicon (silicon/L = 1:3) in the liquid phase and the dominant tetracoordinated silicon in the solid phase. Similar to those of many natural processes, the biological uptake via the sugar-silicate chelating complexes favors the preferential enrichment of light Si isotopes into solids, and the Rayleigh model controls the dynamic isotope fractionation with an estimated silicon isotope fractionation factor (i.e., αsolid-solution = [Formula: see text]) of 0.9971. This study advanced the fundamental understanding of the dynamic isotope fractionation of silicon during silicon cycling from the lithosphere to the biosphere and hydrosphere in surficial processes.

  6. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Rossman, George R.; Young, Edward D.; Ziegler, Karen; Moynier, Fréderic; Eiler, John M.; Hurowitz, Joel A.

    2015-11-01

    Silicon stable isotopes are fractionated by a host of low-temperature aqueous processes, making them potentially useful as a weathering proxy. Here we characterize the silicon isotope signature of surficial chemical weathering of glassy basaltic lava flows at Kilauea Volcano, Hawaii. Fresh basalt flow surfaces (<40 years old) frequently feature opaque amorphous silica surface coatings up to 80 μm thick. These silica coatings and associated silica cements are enriched in the heavier isotopes of Si (δ30SiNBS-28 = +0.92‰ to +1.36‰) relative to their basaltic substrate (δ30SiNBS-28 = -0.3‰ to -0.2‰). Secondary clays and opals are typically depleted in 30Si relative to the dissolved reservoirs from which they precipitated, so this sense of isotopic fractionation is unusual. Mechanisms capable of producing isotopically heavy secondary minerals were explored by conducting batch alteration experiments on fresh basaltic glass. Batch acidic alteration of basalt glass in HCl, H2SO4, and HF produced silica-rich surface layers resembling the Hawaiian surface coatings. Differences in fluid chemical composition affected the direction and magnitude of Si isotope fractionation. Basalt leaching in HCl or H2SO4 produced 30Si-enriched fluids (1000 ln αprecip-Si(aq) ≅ -0.8‰) and 30Si-depleted secondary silica layers. In contrast, HF-bearing experiments produced highly 30Si-depleted fluid compositions (1000 ln αprecip-Si(aq) up to +8‰). Larger isotopic fractionations were observed in experiments with lower fluid-rock ratios. In Hawaii, where altering fluids contain H2SO4 and HCl but minimal HF, high δ30Si values for the silica coatings were likely achieved by Rayleigh fractionation. Aqueous 30Si-enriched silica was released during incongruent basalt dissolution then subsequently transported and deposited from an evaporating solution at the flow surface. Our results indicate that (1) altering fluid chemistry and fluid-rock ratio impact the Si isotope signature of

  7. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    PubMed

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra.

  8. Interface engineering of Graphene-Silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2016-11-01

    Graphene has attracted great research interests due to its unique mechanical, electrical and optical properties, which opens up a huge number of opportunities for applications. Recently, Graphene-Silicon (Grsbnd Si) solar cell has been recognized as one interesting candidate for the future photovoltaic. Since the first Grsbnd Si solar cell reported in 2010, Grsbnd Si solar cell has been intensively investigated and the power converse efficiency (PCE) of it has been developed to 15.6%. This review presents and discusses current development of Grsbnd Si solar cell. Firstly, the basic concept and mechanism of Grsbnd Si solar cell are introduced. Then, several key technologies are introduced to improve the performance of Grsbnd Si solar cells, such as chemical doping, annealing, Si surface passivation and interlayer insertion. Particular emphasis is placed on strategies for Grsbnd Si interface engineering. Finally, new pathways and opportunities of "MIS-like structure" Grsbnd Si solar cells are described.

  9. Adsorption of Silica on Synthetic Iron Oxides Fractionates Stable Silicon Isotopes

    NASA Astrophysics Data System (ADS)

    Delstanche, S.; Opfergelt, S.; Cardinal, D.; André, L.; Delvaux, B.

    2006-12-01

    Recent advances show that the quantification of silicon isotopic fractionation by biotic and abiotic processes readily contributes to the understanding of the continental cycle of silicon, involving a.o. Si transfers between aqueous solutions, living organisms and soil minerals. Si uptake by biota, silicate weathering and clay formation all fractionate Si isotopes. Yet, silica may also be quantitatively retrieved from aqueous solutions through specific adsorption of uncharged monosilicic acid (H4SiO4) on oxide surfaces. Iron oxides are ubiquitous in sediments, weathered rocks and soils, where they appear as crystalline and/or short-range ordered (sro) minerals. Here, we report on silicon mass fractionation by H4SiO4 adsorption on two iron oxides: goethite and ferrihydrite. The respective crystalline and sro oxides were synthesized silicon-free and characterized through elementary analysis, selective dissolution, X-ray diffraction and Transmission Electronic Microscopy (TEM). The surface area, as determined by ethylene glycol monoethyl ether (EGME), is 147 m2.g-1 for goethite and 338 m2.g-1 for ferrihydrite. The adsorption of H4SiO4 was measured in batch experiment series designed as function of time (0-504 h) and initial Si concentration in solution (0.2-1.8 mM), at 20°C, constant pH (5.5) and ionic force. The solid:solution ratio was 5g:1000ml. After equilibration, isotopic compositions of 20 selected solution samples were measured on a Nu Plasma Multicollector Mass Spectrometer (MC-ICP-MS) operating in dry plasma mode with external Mg doping. The results were expressed as δ^{29}Si relatively to the NBS28- standard, with an average precision of ± 0.08‰ (± 2σM). With respect to oxide mass but not to EGME-surface area, ferrihydrite (74%) adsorbed more Si than goethite (46%) relatively to initial Si input (at 1.1 mM Si initial concentration after 504 h of contact). Measured against its initial composition (0.00 ± 0.09‰), the equilibrium solution was

  10. Silicon isotope fractionation in silicate minerals: Insights from first-principles models of phyllosilicates, albite and pyrope

    NASA Astrophysics Data System (ADS)

    Méheut, Merlin; Schauble, Edwin A.

    2014-06-01

    Isotopic fractionation factors for oxygen and silicon in phyllosilicates (pyrophyllite, talc), albite and pyrope have been calculated using first-principles methods based on density functional theory. Based on exhaustive analysis of numerical convergence, we also update our previous calculations on enstatite and forsterite silicon fractionation properties. Calculated oxygen isotope fractionations agree well with existing estimates for talc and albite. In the case of silicon, qualitative agreement is found with natural data. For phyllosilicates (kaolinite, lizardite, pyrophyllite, talc), Si isotope fractionation properties appear to be correlated with stoichiometry: 1000 ln α30Si={aMg(T)·Mg+aAl(T)·Al}/{Si}, where Sieq. =#Si, Al={3}/{4}#Al and Mg={1}/{2}#Mg (cation equivalents) are the charge-weighed stoichiometric coefficients of each cation, normalized to the charge of the silicon atom, and aX(T) are proportionality coefficients depending on temperature. It is suggested that the effect of cation X on Si isotope fractionation (i.e. aX(T)) will increase with decreasing electronegativity of X. Si isotope fractionation is further correlated with Si-O distances, suggesting a crystal chemical explanation for relation (1) in terms of electron donation effects. This relationship appears valid for quartz, pyrope and enstatite (R2=0.99, n=7), but forsterite is strongly anomalous (error of 0.7‰ at 600 °C). These models indicate that attention should be given to chemical compositions in Si isotope studies. Relation (1) would explain the enrichment in heavy silicon isotopes accompanying magmatic differentiation.

  11. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of (29)Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO(+) and SiO2(+) ion species was performed, and we found that SiO(+) ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO3). For SiO2(+), no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. (28)Si(16)O(18)O(+), (30)Si(16)O(16)O(+)). The developed method was validated by measuring a series of reference solutions with different (29)Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  12. Silicon isotope fractionation during silica precipitation from hot-spring waters

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  13. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  14. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  15. Substitution of ceramics for high temperature alloys. [advantages of using silicon carbides and silicon nitrides in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1978-01-01

    The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.

  16. Ion-beam induced atomic mixing in isotopically controlled silicon multilayers

    NASA Astrophysics Data System (ADS)

    Radek, M.; Bracht, H.; Liedke, B.; Böttger, R.; Posselt, M.

    2016-11-01

    Implantation of germanium (Ge), gallium (Ga), and arsenic (As) into crystalline and preamorphized isotopically controlled silicon (Si) multilayer structures at temperatures between 153 K and 973 K was performed to study the mechanisms mediating ion-beam induced atomic mixing. Secondary-ion-mass-spectrometry was applied to determine concentration-depth profiles of the stable isotopes before and after ion implantation. The intermixing is analytically described by a depth-dependent displacement function. The maximum displacement is found to depend not only on temperature and microstructure but also on the doping type of the implanted ion. Molecular dynamics calculations evaluate the contribution of cascade mixing, i.e., thermal-spike mixing, to the overall observed atomic mixing. Calculated and experimental results on the temperature dependence of ion-beam mixing in the amorphous and crystalline structures provide strong evidence for ion-beam induced enhanced crystallization and enhanced self-diffusion, respectively. On the other hand, the former process is confirmed by channeling Rutherford backscattering analyses of the amorphous layer thickness remaining after implantation, the latter process is consistently attributed to the formation of highly mobile Si di-interstitials formed under irradiation and in the course of damage annealing. The observed ion-beam mixing in Si is compared to recent results on ion-beam mixing of Ge isotope multilayers that, in contrast to Si, are fully described by thermal-spike mixing only.

  17. In situ analysis of silicon isotopes using UV-femtosecond laser ablation MC-ICP- MS

    NASA Astrophysics Data System (ADS)

    Chmeleff, J.; Horn, I.; Steinhoefel, G.; von Blanckenburg, F.

    2006-12-01

    Here we present results from the development of a novel in situ approach to measure accurate and precise ^{30}Si/^{28}Si and ^{29}Si/^{28}Si ratios in minerals and glasses. Silicon is the most abundant non- volatile element in the solar system and after oxygen, the second most abundant in upper crust. It is the dominant solute in rivers that drain our continents, supplying 80% of the dissolved Si entering the oceans. Weathering of continents is thus providing material for the formation of clays and soils, and nutrients for the aquatic biosphere. The ratios of stable silicon isotopes fingerprint many of these processes, and them ^{30}Si/^{28}Si ratios in terrestrial reservoirs (represented as δ ^{30}Si) range from -4 to +3 per mil. To date, most silicon isotope studies have been measured by gas source MS or, more recently, MC- ICPMS after sample decomposition and Si purification. While SIMS studies have presented the first in situ- measurements, laser ablation stable isotope ratio analysis is an obvious alternative. However, principle limitations of the ablation physics introduced by the nanosecond lasers traditionally employed have prevented the measurement of accurate isotope ratios. Our in-house built 196nm UV-femtosecond laser ablation system coupled to high-resolution MC-ICPMS avoids these difficulties (Horn et al. 2006, GCA 70). We have developed an in situ-method for precise and rapid measurements of ^{29}Si/^{28}Si and ^{30}Si/^{28}Si ratios in silicates at a spatial resolution of 50 micrometers. Sample-standard bracketing is used to correct for the mass discrimination and the possible drift occurring between two measurements. δ^{30}Si is calculated with NIST NBS28 (synthetic quartz sand) as bracketing standard. Two international standards were measured and compared: IRMM017 (pure metal) gives a δ^{29}Si of -0.680±0.030 (2 sigma n=25) per mil and δ^{30}Si of -1.32±0.040 (2 sigma n=25) per mil against NBS28, which is in accordance with previous

  18. Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.

    1993-01-01

    We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.

  19. Neutron transmutation doped natural and isotopically engineered germanium thermistors

    NASA Astrophysics Data System (ADS)

    Haller, Eugene E.; Itoh, K. M.; Beeman, Jeffrey W.; Hansen, William L.; Ozhogin, V. I.

    1994-06-01

    We report on the development, fabrication and performance of a new class of thermal sensors for far IR and millimeter wave detection. These devices consist of small single crystal samples of ultra-pure, natural or isotopically engineered germanium which have been doped by the neutron transmutation doping (NTD) technique. The concentrations of the acceptor and donor dopants (N(subscript A),N(subscript D)) can be accurately controlled with this technique. They depend on the thermal neutron fluence, the neutron absorption cross sections and the atomic fractions of (superscript 70)Ge (for the Ga acceptors) and (superscript 74)Ge (for the As donors), respectively. The values of N(subscript A) and N(subscript D) and their ratio result in a predictable resistivity of the Ge crystals down to temperatures of a few milliKelvin. The excellent control of the resistivity down to very low temperatrues, together with the development of ohmic contacts working at the lowest temperatures, allows the fabrication of high sensitivity bolometer arrays with over 100 pixels and highly uniform response.

  20. Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.

    2012-01-01

    The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.

  1. CORRELATED STRONTIUM AND BARIUM ISOTOPIC COMPOSITIONS OF ACID-CLEANED SINGLE MAINSTREAM SILICON CARBIDES FROM MURCHISON

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Gyngard, Frank; Käppeler, Franz; Cristallo, Sergio; Dillmann, Iris

    2015-04-10

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated {sup 88}Sr/{sup 86}Sr and {sup 138}Ba/{sup 136}Ba ratios in mainstream SiC grains, we are able to resolve the effect of {sup 13}C concentration from that of {sup 13}C-pocket mass on s-process nucleosynthesis, which points toward the existence of large {sup 13}C pockets with low {sup 13}C concentrations in asymptotic giant branch stars. The presence of such large {sup 13}C pockets with a variety of relatively low {sup 13}C concentrations seems to require multiple mixing processes in parent asymptotic giant branch stars of mainstream SiC grains.

  2. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  3. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  4. Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Brzezinski, Mark A.; Jones, Janice L.

    2015-06-01

    The distribution of silicon isotopes within silicic acid, δ30Si(OH)4, was examined along a section in the North Atlantic from the Cape Verde Islands off Africa to Cape Cod, Massachusetts in North America. Surface water displayed elevated δ30Si(OH)4 associated with biological fractionation of Si during silica production. Below 300 m variations in δ30Si(OH)4 were closely tied to the distribution of water masses as diagnosed through optimum multiparameter analysis, confirming a tight relationship between δ30Si(OH)4 and the meridional overturning circulation in the Atlantic. A linear relationship between δ30Si(OH)4 and the inverse of silicic acid concentration supported control of Si isotope distribution by conservative mixing of end member water masses of different isotopic composition in the Atlantic. There was a suggestion of a weak local minimum in δ30Si(OH)4 in deep waters above the Trans-Atlantic Geotraverse hydrothermal zone on the mid-Atlantic Ridge consistent with the light δ30Si(OH)4 of hydrothermal waters. The lightest δ30Si(OH)4 values were observed in the deep western and deep eastern basins where Antarctic Bottom Water (AABW) dominated. The heaviest values in subsurface waters occurred in North Atlantic Deep Water due to strong ventilation and the contribution of heavy northern source waters that are influenced by the Arctic Ocean. The concept of a silicon isotope bipole is introduced to explain how the isotopic differences between the northern and southern end-member water masses arise, and how they influence Si isotope distributions. Northern end-member water masses are heavy due to the influence of the Arctic Ocean. Bottom topography prevents light deep waters from entering the Arctic and the further removal of light isotopes through local biological productivity results in extremely heavy δ30Si(OH)4 within the Arctic. Light AABW dominates the southern end member. The Southern Ocean silicic acid trap distills heavier isotopes of Si out of the

  5. Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Young, Edward D.

    2007-05-01

    Silicon isotope ratios of a typical CAI from the Leoville carbonaceous chondrite, obtained in situ by laser ablation MC-ICPMS, together with existing 25Mg/ 24Mg data, reveal a detailed picture of the astrophysical setting of CAI melting and subsequent heating. Models for the chemical and isotopic effects of evaporation of the molten CAI are used to produce a univariant relationship between PH 2 and time during melting. The result shows that this CAI was molten for a cumulative time of no more than 70 days and probably less than 15 days depending on temperature. The object could have been molten for an integrated time of just a few hours if isotope ratio zoning was eliminated after melting by high subsolidus temperatures (e.g., > 1300 K) for ˜ 500 yr. In all cases subsolidus heating sufficient to produce diffusion-limited isotope fractionation at the margin of the solidified CAI is required. These stable isotope data point to a two-stage history for this igneous CAI involving melting for a cumulative timescale of hours to months followed by subsolidus heating for years to hundreds of years. The thermobarometric history deduced from combining Si and Mg isotope ratio data implicates thermal processing in the disk, perhaps by passage through shockwaves, following melting. This study underscores the direct link between the meaning of stable isotope ratio zoning, or lack thereof, and the inferred astrophysical setting of melting and subsequent processing of CAIs.

  6. Tracing diatom utilisation, and its fate, in Lake Baikal, Siberia: the application of silicon isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Panizzo, V. N.; Swann, G. E. A.; Mackay, A. W.; Roberts, S.; Vologina, E.; Sturm, M.; Horstwood, M. S.

    2014-12-01

    The global biogeochemical cycling of silicon (Si) is intrinsically linked to the fate of CO2 in the earth's atmosphere. To date, most research has focused on the oceanic cycling of Si over glacial/interglacial timescales although, the importance of continental Si cycling (via abiotic and biotic processes) is now being addressed. Especially as the significant potential for Si sequestration in continental lake systems has been recently highlighted [1]. We present the first large-scale silicon isotope (δ30SiDSi) profiles of Lake Baikal's water column, where a comparison between both pre- and post-diatom growing season δ30SiDSi signatures are made. Samples were collected along a water profile (surface to 180 m) at numerous sites across Lake Baikal, with deep-water endmembers at 400 m and c. 1,500 m. All isotopic analyses were conducted on a Neptune + Multi-Collector ICP-MS at NIGL, UK, using wet plasma mode with Mg doping of samples and standard-sample-standard bracketing. Analytical reproducibility is 0.12‰ (2σ) and blanks are <1% of signal intensity. DSi concentrations of March water surface samples (South Basin only) range between c. 0.74 and 1.23 ppm while those collected in August are all <0.70 ppm, following seasonal biological utilisation. In turn Chlorophyll a values from South Basin profiles in August are greater (between c. 1.46 to 3.18 mg l-1) than March surface values (<0.70 mg l-1). Indeed, March δ30SiDSi surface values range between c. +2.16 and +2.45‰ while summer surface values range between c. +2.20 and +2.84‰, reflecting residual pool depletion after summer biological utilisation. δ30SiDSi values are >1‰ more enriched than dominant lake water inflows again reflecting diatom Si uptake. Annual open sediment traps deployed down Lake Baikal's water column yield δ30Sidiatom signatures of +1.25‰, which suggests that down-column diatom dissolution is minimal. Applying the diatom fractionation factor of -1.1‰[2] and adopting a closed system

  7. Silicon Isotope Geochemistry of Ocean Island Basalts: Search for Deep Mantle Heterogeneities and Evidence for Recycled Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.

    2014-12-01

    Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but debate about the degree and cause of variability persists. The study of silicon (Si) isotopes in OIBs has the potential to elucidate mantle heterogeneities. Relatively large (~several per mil) Si isotopic fractionation occurs in low-temperature environments during precipitation from dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1], but only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed due to high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material in OIB source regions in a manner similar to more conventional stable isotope systems, such as oxygen. Here we present the first comprehensive suite of high-precision Si isotopic data obtained by MC-ICP-MS for a diverse set of OIBs representing the EM-1, EM-2, and HIMU mantle components. In general, the Si isotopic compositions of OIBs analyzed here are agreement with previous estimates for Bulk Silicate Earth (BSE). However, small systematic variations are present; the HIMU end-member Mangaia and HIMU-type Cape Verde island São Nicolau are enriched in the light isotopes of Si (δ30Si = -0.37 ± 0.06‰ and δ30Si = -0.39 ± 0.04‰, respectively; errors are 2sd), with compositions intermediary between Mid Ocean Ridge Basalts and chondritic values. Additionally, Iceland samples from volcanic complexes in the Northern Rift Zone show similar Si isotope compositions (on average, δ30Si = -0.40 ± 0.06‰). In contrast, the δ30Si averages of the EM-1 end-member Pitcairn (-0.28 ± 0.07‰), the EM-2 end-member Samoa (-0.31 ± 0.07‰) and other OIB localities do not show any significant difference from previous estimates for the δ30Si value of BSE [3]. The Si isotopic variability in some HIMU-type and Icelandic OIBs most likely reflects the incorporation of

  8. Silicon isotope fractionation during silica precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter Z.; Keller, Nicole S.; Gudbrandsson, Snorri; Stefánsson, Andri; van Bergen, Manfred J.

    2015-09-01

    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along outflowing streams, covering a temperature range between 20 and 100 °C, were relatively constant around +0.2‰, whereas the δ30Si signatures of associated opaline sinters from the streambeds were between -0.1‰ and -4.0‰, becoming progressively more negative in the downstream parts of the aprons. Here, the deposited sinters represent some of the most 30Si depleted abiotically produced terrestrial materials documented to date. Compared to the data reported for Icelandic basalts, considered to be the source of the silicon, the δ30Si values of the fluids and sinter deposits are higher and lower, respectively. The resulting values for apparent solid-water isotope fractionation (Δ30Sisolid-water) decreased with decreasing temperature from ca. -0.7‰ at ∼80 °C to -3.7‰ at ∼20 °C, locally down to -4.4‰. This temperature relationship was reproducible in each of the investigated hot spring systems and is qualitatively consistent with recent findings in laboratory experiments on kinetic fractionation for a flowing fluid. However, the apparent fractionation magnitudes observed in the field are ca. -2‰ more negative and thus significantly larger. We infer that solid-water silicon isotope fractionation during deposition of amorphous silica from a flowing fluid correlates inversely with temperature, but is essentially a function of the precipitation rate, such that the fractionation factor decreases with increasing rate. As an important corollary, the effective fractionation behavior during precipitation of silica from saturated solutions is a system-dependent feature, which should be taken into account when using silicon isotopes for paleo-environmental reconstructions.

  9. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    The study of Silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to elucidate between possible heterogeneities in the mantle. Relatively large (~several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1]. In contrast, only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed in high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material (derived from low-temperature surface processes) in OIB source regions in a manner similar to more conventional stable isotope systems, such as O. Here we present the first comprehensive set of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIBs, including new data for the Canary Islands. Samples represent the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. Average δ30Si values for OIBs representing the EM-1 (-0.32 ± 0.06‰, 2 sd), EM-2 (-0.30 ± 0.01‰, 2 sd), and HIMU (-0.34 ± 0.09‰, 2 sd) mantle components are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth [3]. However, small systematic variations are present; HIMU (Mangaia, Cape Verde, La Palma) and Iceland OIBs are enriched in the lighter isotopes of Si (δ30Si values lower than MORB). Further, the difference in Si isotope composition between La Palma and El Heirro (Canary Islands) has previously been observed for O isotopes [4], suggesting a relationship between the Si and O isotope mantle systematics. The Si isotope variations among OIBs may be explained by the sampling of a primitive mantle reservoir enriched in the light isotopes of Si, as suggested by [5], but most likely reflects the incorporation of recycled

  10. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  11. Grain boundary engineering for improved thin silicon photovoltaics.

    PubMed

    Raghunathan, Rajamani; Johlin, Eric; Grossman, Jeffrey C

    2014-09-10

    In photovoltaic devices, the bulk disorder introduced by grain boundaries (GBs) in polycrystalline silicon is generally considered to be detrimental to the physical stability and electronic transport of the bulk material. However, at the extremum of disorder, amorphous silicon is known to have a beneficially increased band gap and enhanced optical absorption. This study is focused on understanding and utilizing the nature of the most commonly encountered Σ3 GBs, in an attempt to balance incorporation of the advantageous properties of amorphous silicon while avoiding the degraded electronic transport of a fully amorphous system. A combination of theoretical methods is employed to understand the impact of ordered Σ3 GBs on the material properties and full-device photovoltaic performance.

  12. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  13. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications

    SciTech Connect

    Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. )

    1990-04-01

    This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

  14. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    SciTech Connect

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  15. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources

  16. Silicon carbide whisker composites. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the manufacture and applications of silicon carbide whisker reinforced composites. Citations discuss the preparation of whiskers and the processing of composites containing the whiskers. Applications include aerospace engines, automotive components, engine components, and surgical implants. Physical properties such as bending strength, crack propagation, creep, fracture toughness, and stress strain curves are covered. Ceramic matrix, metal matrix, and carbon-carbon composites are examined. (Contains a minimum of 248 citations and includes a subject term index and title list.)

  17. Quantum engineering at the silicon surface using dangling bonds

    PubMed Central

    Schofield, S. R.; Studer, P.; Hirjibehedin, C. F.; Curson, N. J.; Aeppli, G.; Bowler, D. R.

    2013-01-01

    Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy. PMID:23552064

  18. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Huberty, Jason M.; Kita, Noriko T.; Ushikubo, Takayuki; Kozdon, Reinhard; Valley, John W.

    2011-10-01

    Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (˜10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (˜3.8 Ga); Hamersley Group, Western Australia (˜2.5 Ga); Transvaal Group, South Africa (˜2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (˜1.9 Ga). Values of δ 18O range from +7.9‰ to +27.5‰ and include the highest reported δ 18O values for BIF quartz. Values of δ 30Si have a range of ˜5‰ from -3.7‰ to +1.2‰ and extend to the lowest δ 30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ 18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ 30Si up to 3‰, similar to the range in δ 30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ 30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ˜1 mm. We interpret differences in δ 30Si between microlaminae as preserved from primary

  19. Understanding the mechanisms of Si-K-Ca glass alteration using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Sessegolo, Loryelle; Saheb, Mandana; Valle, Nathalie; Ausset, Patrick; Losno, Rémi; Mangin, Denis; Lombardo, Tiziana; Chabas, Anne; Loisel, Claudine

    2017-04-01

    It is important to understand glass alteration mechanisms and to determine their associated kinetics in order to develop models able to predict the alteration of nuclear, basaltic or archaeological glasses. Recent studies revealed that the respective contributions of diffusion, dissolution, condensation and precipitation processes in alteration are still a matter for debate. In this work, the alteration of a medieval-type glass (Si-K-Ca) was investigated as it presents a specific composition (without B and with low Al). Experiments were performed using a dynamic device, at 30 °C, at pH 8 and 9 and during 1 month in order to simulate alteration in contact with water (rainfall or condensation). The solution was doped in 29Si to discriminate between the silicon from glass (mainly 28Si) and from solution. The results showed that the external region of the alteration layer is devoid of modifier cations (K, Ca) and presents a 29Si/28Si ratio close to the solution one. This excludes that the alteration layer is a glass skeleton and highlights a progressive hydrolysis/condensation process, even if non-hydrolyzed silica tetrahedra could remain when the Si isotopic equilibrium is not reached. The internal zone appears to be gradually depleted in modifier cations and partly enriched in 29Si, but the thickness of this zone is overestimated using SEM-EDS and SIMS techniques. Even if in these experiments the dissolution mechanism is favored, the contribution of interdiffusion cannot be neglected to explain the weathering of ancient stained glassed windows in the atmosphere. The respective contribution of diffusion and dissolution are also discussed as a function of glass composition and surface texture, as well as of experimental conditions (alkaline pH, renewal of the solution).

  20. ESR measurements of phosphorus dimers in isotopically enriched 28Si silicon

    NASA Astrophysics Data System (ADS)

    Shankar, S.; Tyryshkin, A. M.; Lyon, S. A.

    2015-06-01

    Dopants in silicon have been studied for many decades using optical and electron spin resonance (ESR) spectroscopy. Recently, new features have been observed in the spectra of dopants in isotopically enriched 28Si since the reduced inhomogeneous linewidth in this material improves spectral resolution. With this in mind, we measured ESR on exchange coupled phosphorus dimers in 28Si and report two results. First, a fine structure is observed in the ESR spectrum arising from state mixing by the hyperfine coupling to the 31P nuclei, which is enhanced when the exchange energy is comparable to the Zeeman energy. This fine structure enables us to spectroscopically address two separate dimer subensembles, the first with exchange (J ) coupling ranging from 2 to 7 GHz and the second with J ranging from 6 to 60 GHz. Next, the average spin relaxation times T1 and T2 of both dimer subensembles were measured using pulsed ESR at 0.35 T. Both T1 and T2 for transitions between triplet states of the dimers were found to be identical to the relaxation times of isolated phosphorus donors in 28Si, with T2=4 ms at 1.7 K limited by spectral diffusion due to dipolar interactions with neighboring donor electron spins. This result, consistent with theoretical predictions, implies that an exchange coupling of 2-60 GHz does not limit the dimer T1 and T2 in bulk Si at the 10-ms time scale.

  1. Anisotropy engineering in Co nanodiscs fabricated using prepatterned silicon pillars

    NASA Astrophysics Data System (ADS)

    Thirion, C.; Wernsdorfer, W.; Kläui, M.; Vaz, C. A. F.; Lewis, P.; Ahmed, H.; Bland, J. A. C.; Mailly, D.

    2006-04-01

    Magnetic nanodiscs are fabricated by depositing cobalt onto 10-30 nm diameter silicon nanopillars, which were prepatterned using gold colloids as etch masks. The magnetic anisotropy energy of individual nanodiscs is studied by measuring the angular dependence of switching fields using the micro-SQUID technique. The Stoner-Wohlfarth model, describing the magnetization reversal by unifom rotation, is used to analyse the data. The switching astroids of pure Co exhibit a cubic magnetocrystalline anisotropy indicating that the Co crystallites are fcc. After controlled oxidation of the nanoparticles, the anisotropy is dominated by a defect-induced uniaxial anisotropy, which means that the anisotropy can be used as a quality gauge.

  2. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.

    PubMed

    Yao, Yimin; Zeng, Xiaoliang; Pan, Guiran; Sun, Jiajia; Hu, Jiantao; Huang, Yun; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2016-11-16

    Polymer composites with high thermal conductivity have attracted much attention, along with the rapid development of electronic devices toward higher speed and better performance. However, high interfacial thermal resistance between fillers and matrix or between fillers and fillers has been one of the primary bottlenecks for the effective thermal conduction in polymer composites. Herein, we report on engineering interfacial structure of silicon carbide nanowire/cellulose microcrystal paper by generating silver nanostructures. We show that silver nanoparticle-deposited silicon carbide nanowires as fillers can effectively enhance the thermal conductivity of the matrix. The in-plane thermal conductivity of the resultant composite paper reaches as high as 34.0 W/m K, which is one order magnitude higher than that of conventional polymer composites. Fitting the measured thermal conductivity with theoretical models qualitatively demonstrates that silver nanoparticles bring the lower interfacial thermal resistances both at silicon carbide nanowire/cellulose microcrystal and silicon carbide nanowire/silicon carbide nanowire interfaces. This interfacial engineering approach provides a powerful tool for sophisticated fabrication of high-performance thermal-management materials.

  3. Laser photochemical lead isotopes separation for harmless nuclear power engineering

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.

    2016-09-01

    The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.

  4. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect

    Voldrich, W.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  5. Impact of the pH-DEPENDENT Speciation of Silicic Acid on the Silicon Isotope Composition of Diatoms

    NASA Astrophysics Data System (ADS)

    Mataliotaki, I.; de La Rocha, C.; Passow, U.; Wolf-Gladrow, D.

    2003-04-01

    Variations in the natural abundances of the stable isotopes of silicon (δ30Si) are a useful tracer of the silica cycle, tracking relative differences in silicic acid drawdown in surface waters by diatoms at times in the past. Refinement of this tracer for silicic acid utilization requires understanding the impact of environmental variables (e.g. temperature, phytoplankton growth rate, pH) on the δ30Si of diatom silica. Initial investigation into the impacts of temperature and growth rate suggested that they do not significantly affect the δ30Si of marine diatoms but no look has been taken at the influence of pH. At the typical seawater pH range of 7.5 to 8.5 most silicic acid is in the undissociated form, Si(OH)_4. By pH 10.5, however, SiO(OH)_3^- predominates. Silicon isotopic fractionation with speciation has never been investigated but if it were 5% of the magnitude suggested for boron isotope fractionation (as might be expected for a secondary isotope effect) then there should be a 1 ppm difference between Si(OH)_4 and SiO(OH)_3^-. Cultures of the diatom, Thalassiosira weissflogii (which utilizes Si(OH)_4 and not SiO(OH)_3^-), grown at pH 7.8 and pH 9.5 display a δ30Si difference of 0.7 ppm, which is consistent with a silicon isotope fractionation on the order of 1 ppm between the different species of silicic acid. In the oceans this should not contribute significantly to the δ30Si variations recorded in diatom silica, as even in dense phytoplankton blooms pH rarely exceeds 8.5. In environments, such as lakes, estuaries, and sea ice brine, where phytoplankton may grow at higher pHs the speciation of silicic acid may make a contribution to diatom δ30Si that cannot be ignored.

  6. Optical pulse engineering and processing using optical nonlinearities of nanostructured waveguides made of silicon

    NASA Astrophysics Data System (ADS)

    Lavdas, Spyros; You, Jie; Osgood, Richard M.; Panoiu, Nicolae C.

    2015-08-01

    We present recent results pertaining to pulse reshaping and optical signal processing using optical nonlinearities of silicon-based tapered photonic wires and photonic crystal waveguides. In particular, we show how nonlinearity and dispersion engineering of tapered photonic wires can be employed to generate optical similaritons and achieve more than 10× pulse compression. We also discuss the properties of four-wave mixing pulse amplification and frequency conversion efficiency in long-period Bragg waveguides and photonic crystal waveguides. Finally, the influence of linear and nonlinear optical effects on the transmission bit-error rate in uniform photonic wires and photonic crystal waveguides made of silicon is discussed.

  7. Nutrients cycling in response to opal productivity during the last 600 kyr in the Bering Sea (IODP Exp. 323 Site U1343): diatom silicon isotope and sedimentary nitrogen isotope

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Takahashi, Kozo; Kanematsu, Yoshiyuki; Asahi, Hirofumi; Ikehara, Minoru; Khim, Boo-Keun

    2014-05-01

    Multidisciplinary paleoceanographic proxies (biogenic opal, diatom silicon isotope, and sedimentary nitrogen isotope, benthic foraminifera oxygen isotope) were analyzed for Site U1343 of IODP Exp. 323, in order to investigate the degree of nutrient utilization in response to glacial-interglacial changes of opal productivity in the Bering Sea. According to oxygen isotope of benthic foraminifera, an age model for Site U1343 represents a record of 600 ka. High diatom silicon isotope values during interglacial periods were attributed to increased opal production under nutrient-replete conditions, which would have resulted in higher silicic acid utilization along with increased diatom productivity. In contrast, low diatom silicon isotope values during glacial periods were caused by reduced opal production due to extensive sea ice. Such condition can lead to lower silicic acid utilization along with decreased diatom productivity. Thus, silicic acid cycling between subsurface and surface waters was active during interglacial periods, but weak during glacial periods. High sedimentary nitrogen isotope values generally occurred with high biogenic opal, particularly during warm (low oxygen isotope) periods, indicating higher nitrate utilization with increased diatom productivity. In contrast, low sedimentary nitrogen isotope values were found primarily in conjunction with low biogenic opal particularly during cold (high oxygen isotope) periods, reflecting lower nitrate utilization with decreased diatom productivity. Thus, nitrate cycling between subsurface and surface waters was active during warm periods and weak during cold periods. Diatom productivity at Site U1343 was significantly restricted owing to extensive sea ice during glacial/cold periods, emphasizing the important role in controlling orbital-scale nutrient utilization by diatoms in the slope area of the Bering Sea.

  8. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  9. Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance.

    PubMed

    Satterthwaite, Peter F; Scheuermann, Andrew G; Hurley, Paul K; Chidsey, Christopher E D; McIntyre, Paul C

    2016-05-25

    Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.

  10. Barium isotopes in individual presolar silicon carbide grains from the Murchison meteorite.

    SciTech Connect

    Savina, M. R.; Davis, A. M.; Tripa, C. E.; Pellin, M. J.; Clayton, R. N.; Lewis, R. S.; Amari, S.; Gallino, R.; Lugaro, M.; Univ. of Chicago; Washington Univ.; Univ. di Torino; Cambridge Univ.

    2003-09-01

    Barium isotopic compositions of single 2.3-5.3 {mu}m presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.

  11. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    PubMed

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  12. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    PubMed

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  13. Silicon carbide whisker composites. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the manufacture and applications of silicon carbide whisker reinforced composites. Citations discuss the preparation of whiskers and the processing of composites containing the whiskers. Applications include aerospace engines, automotive components, engine components, and surgical implants. Physical properties such as bending strength, crack propagation, creep, fracture toughness, and stress strain curves are covered. Ceramic matrix, metal matrix, and carbon-carbon composites are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    SciTech Connect

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-02-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ``Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration`` which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report.

  15. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Xiong, Zhifang; Li, Tiegang; Algeo, Thomas; Doering, Kristin; Frank, Martin; Brzezinski, Mark A.; Chang, Fengming; Opfergelt, Sophie; Crosta, Xavier; Jiang, Fuqing; Wan, Shiming; Zhai, Bin

    2015-07-01

    The cause of massive blooms of Ethmodiscus rex laminated diatom mats (LDMs) in the eastern Philippine Sea (EPS) during the Last Glacial Maximum (LGM) remains uncertain. In order to better understand the mechanism of formation of E. rex LDMs from the perspective of dissolved silicon (DSi) utilization, we determined the silicon isotopic composition of single E. rex diatom frustules (δ30SiE. rex) from two sediment cores in the Parece Vela Basin of the EPS. In the study cores, δ30SiE. rex varies from -1.23‰ to -0.83‰ (average -1.04‰), a range that is atypical of marine diatom δ30Si and that corresponds to the lower limit of reported diatom δ30Si values of any age. A binary mixing model (upwelled silicon versus eolian silicon) accounting for silicon isotopic fractionation during DSi uptake by diatoms was constructed. The binary mixing model demonstrates that E. rex dominantly utilized DSi from eolian sources (i.e., Asian dust) with only minor contributions from upwelled seawater sources (i.e., advected from Subantarctic Mode Water, Antarctic Intermediate Water, or North Pacific Intermediate Water). E. rex utilized only ~24% of available DSi, indicating that surface waters of the EPS were eutrophic with respect to silicon during the LGM. Our results suggest that giant diatoms did not always use a buoyancy strategy to obtain nutrients from the deep nutrient pool, thus revising previously proposed models for the formation of E. rex LDMs.

  16. Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1983-01-01

    A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.

  17. Point defect engineering strategies to suppress A-center formation in silicon

    NASA Astrophysics Data System (ADS)

    Chroneos, A.; Londos, C. A.; Sgourou, E. N.; Pochet, P.

    2011-12-01

    We investigate the impact of tin doping on the formation of vacancy-oxygen pairs (VO or A-centers) and their conversion to VO2 clusters in electron-irradiated silicon. The experimental results are consistent with previous reports that Sn doping suppresses the formation of the A-center. We introduce a model to account for the observed differences under both Sn-poor and Sn-rich doping conditions. Using density functional theory calculations, we propose point defect engineering strategies to reduce the concentration of the deleterious A-centers in silicon. We predict that doping with lead, zirconium, or hafnium will lead to the suppression of the A-centers.

  18. Direct surface engineering of silicon nanoparticles prepared by collinear double-pulse ns laser ablation

    NASA Astrophysics Data System (ADS)

    Mahdieh, M. H.; Momeni, A.

    2017-01-01

    In this paper we study the photoluminescence properties of colloidal silicon nanoparticles (Si NPs) in distilled water, with the aim of clarifying the role of surface characteristics on the emission properties. We will show that double-pulse ns laser ablation (DPLA) of a silicon target in water with different inter-pulse delay times of i.e. 5 and 10 ns can result in production of colloidal Si NPs with different PL emission intensities at the visible spectral range of 550-650 nm. The results reveal that DPLA process at the different delay times can induce different oxide related surface characteristics on the Si NPs through the direct surface engineering of the nanoparticles. A detailed analysis of the PL emissions using the stochastic quantum confinement model explained that the different emission behaviors of the colloids are associated with the oxide-related surface states which are contributed as radiative centers in the PL process.

  19. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  20. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-03-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics.

  1. Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon.

    PubMed

    Kanda, Hiroyuki; Uzum, Abdullah; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2016-12-14

    Engineering of photonics for antireflection and electronics for extraction of the hole using 2.5 nm of a thin Au layer have been performed for two- and four-terminal tandem solar cells using CH3NH3PbI3 perovskite (top cell) and p-type single crystal silicon (c-Si) (bottom cell) by mechanically stacking. Highly transparent connection multilayers of evaporated-Au and sputtered-ITO films were fabricated at the interface to be a point-contact tunneling junction between the rough perovskite and flat silicon solar cells. The mechanically stacked tandem solar cell with an optimized tunneling junction structure was ⟨perovskite for the top cell/Au (2.5 nm)/ITO (154 nm) stacked-on ITO (108 nm)/c-Si for the bottom cell⟩. It was confirmed the best efficiency of 13.7% and 14.4% as two- and four-terminal devices, respectively.

  2. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    NASA Astrophysics Data System (ADS)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  3. Differences between mono-generic and mixed diatom silicon isotope compositions trace present and past nutrient utilisation off Peru

    NASA Astrophysics Data System (ADS)

    Doering, Kristin; Ehlert, Claudia; Grasse, Patricia; Crosta, Xavier; Fleury, Sophie; Frank, Martin; Schneider, Ralph

    2016-03-01

    In this study we combine for the first time silicon (Si) isotope compositions of small mixed diatom species (δ30SibSiO2) and of large handpicked mono-generic (i.e. genus = Coscinodiscus) diatom samples (δ30SiCoscino) with diatom assemblages extracted from marine sediments in the Peruvian upwelling region in order to constrain present and past silicate utilisation. The extension of a previous core-top data set from the Peruvian shelf demonstrates that δ30SiCoscino values record near-complete Si utilisation, as these are similar to the isotopic composition of the subsurface source waters feeding the upwelling. In contrast, the δ30SibSiO2 of small mixed diatom species increase southward along the shelf as well as towards the shore. We attribute highest δ30SibSiO2 values partly to transient iron limitation but primarily to the gradual increase of Si isotope fractionation within the seasonal diatom succession, which are mainly recorded by small diatom species during intense bloom events. In contrast, lower δ30SibSiO2 values are related to initial Si isotope utilisation during periods of weak upwelling, when low Si(OH)4 concentrations do not permit intense blooms and small diatom species record substantially lower δ30Si signatures. As such, we propose that the intensity of the upwelling can be deduced from the offset between δ30SibSiO2 and δ30SiCoscino (Δ30Sicoscino-bSiO2), which is low for strong upwelling conditions and high for prevailing weak upwelling. We apply the information extracted from surface sediments to generate a record of the present-day main upwelling region covering the past 17,700 years and find that this location has also been characterized by a persistent offset (Δ30Sicoscino-bSiO2). By comparison with the diatom assemblages we show that the coastal upwelling system changed markedly between weak and strong upwelling conditions. In addition, our model calculations to quantify species-specific Si isotope fractionation effects based on the

  4. Transfer of InP thin films from engineered porous silicon substrates

    NASA Astrophysics Data System (ADS)

    Joshi, Monali B.; Goorsky, Mark S.

    2010-01-01

    Engineered composite substrates for thin film layer transfer applications are fabricated by incorporating the techniques of anodic etching, wafer bonding, and hydrogen-induced exfoliation. Silicon substrates (p /p+) are subjected to anodic electrochemical etching in 25% HF electrolyte to create double layer (40%/60% porosity) structures, which provide the means for subsequent mechanical transfer. Indium phosphide (InP) layers are transferred to the porous Si/Si substrate via silicon nitride interlayer bonding and hydrogen exfoliation. After chemical mechanical polishing, the transferred InP layers have a surface roughness of 0.6 nm and high crystalline quality. Metal-organic chemical vapor deposition on the composite substrate shows that residual ion implantation defects present in the InP template layer do not extend into epilayers, and the substrate maintains its high crystalline quality and mechanical integrity. Transfer of the epitaxial layers from the porous silicon handle wafer to a secondary substrate was achieved via fracture along the double porous layer interface, with no impact on the epilayer strain.

  5. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering.

    PubMed

    Yu, Peichen; Tsai, Chia-Ying; Chang, Jan-Kai; Lai, Chih-Chung; Chen, Po-Han; Lai, Yi-Chun; Tsai, Pei-Ting; Li, Ming-Chin; Pan, Huai-Te; Huang, Yang-Yue; Wu, Chih-I; Chueh, Yu-Lun; Chen, Shih-Wei; Du, Chen-Hsun; Horng, Sheng-Fu; Meng, Hsin-Fei

    2013-12-23

    Interface carrier recombination currently hinders the performance of hybrid organic-silicon heterojunction solar cells for high-efficiency low-cost photovoltaics. Here, we introduce an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer into hybrid heterojunction solar cells based on silicon nanowires (SiNWs) and conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS). The highest power conversion efficiency reaches a record 13.01%, which is largely ascribed to the modified organic surface morphology and suppressed saturation current that boost the open-circuit voltage and fill factor. We show that the insertion of TAPC increases the minority carrier lifetime because of an energy offset at the heterojunction interface. Furthermore, X-ray photoemission spectroscopy reveals that TAPC can effectively block the strong oxidation reaction occurring between PEDOT:PSS and silicon, which improves the device characteristics and assurances for reliability. These learnings point toward future directions for versatile interface engineering techniques for the attainment of highly efficient hybrid photovoltaics.

  6. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    PubMed Central

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-01-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515

  7. Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications.

    PubMed

    Yin, Yongguang; Tan, Zhiqiang; Hu, Ligang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2017-03-08

    The rapidly growing applicability of metal-containing engineered nanoparticles (MENPs) has made their environmental fate, biouptake, and transformation important research topics. However, considering the relatively low concentration of MENPs and the high concentration of background metals in the environment and in organisms, tracking the fate of MENPs in environment-related scenarios remains a challenge. Intrinsic labeling of MENPs with radioactive or stable isotopes is a useful tool for the highly sensitive and selective detection of MENPs in the environment and organisms, thus enabling tracing of their transformation, uptake, distribution, and clearance. In this review, we focus on radioactive/stable isotope labeling of MENPs for their environmental and biological tracing. We summarize the advantages of intrinsic radioactive/stable isotopes for MENP labeling and discuss the considerations in labeling isotope selection and preparation of labeled MENPs, as well as exposure routes and detection of labeled MENPs. In addition, current practice in the use of radioactive/stable isotope labeling of MENPs to study their environmental fate and bioaccumulation is reviewed. Future perspectives and potential applications are also discussed, including imaging techniques for radioactive- and stable-isotope-labeled MENPs, hyphenated multistable isotope tracers with speciation analysis, and isotope fractionation as a MENP tracer. It is expected that this critical review could provide the necessary background information to further advance the applications of isotope tracers to study the environmental fate and bioaccumulation of MENPs.

  8. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering.

    PubMed

    Pattnaik, Soumitri; Nethala, Sricharan; Tripathi, Anjali; Saravanan, Sekaran; Moorthi, Ambigapathi; Selvamurugan, Nagarajan

    2011-12-01

    A scaffold harboring the desired features such as biodegradation, biocompatibility, porous structure could serve as template for bone tissue engineering. In the present study, chitosan (CS), nano-scaled silicon dioxide (Si) and zirconia (Zr) were combined by freeze drying technique to fabricate a bio-composite scaffold. The bio-composite scaffold (CS/Si/Zr) was characterized by SEM, XRD and FT-IR studies. The scaffold possessed a porous nature with pore dimensions suitable for cell infiltration and colonization. The presence of zirconia in the CS/Si/Zr scaffold decreased swelling and increased biodegradation, protein adsorption and bio-mineralization properties. The CS/Si/Zr scaffold was also found to be non-toxic to rat osteoprogenitor cells. Thus, we suggest that CS/Si/Zr bio-composite scaffold is a potential candidate to be used for bone tissue engineering.

  9. Four-wave mixing in slow light engineered silicon photonic crystal waveguides.

    PubMed

    Monat, C; Ebnali-Heidari, M; Grillet, C; Corcoran, B; Eggleton, B J; White, T P; O'Faolain, L; Li, J; Krauss, T F

    2010-10-25

    We experimentally investigate four-wave mixing (FWM) in short (80 μm) dispersion-engineered slow light silicon photonic crystal waveguides. The pump, probe and idler signals all lie in a 14 nm wide low dispersion region with a near-constant group velocity of c/30. We measure an instantaneous conversion efficiency of up to -9dB between the idler and the continuous-wave probe, with 1W peak pump power and 6 nm pump-probe detuning. This conversion efficiency is found to be considerably higher (>10 × ) than that of a Si nanowire with a group velocity ten times larger. In addition, we estimate the FWM bandwidth to be at least that of the flat band slow light window. These results, supported by numerical simulations, emphasize the importance of engineering the dispersion of PhC waveguides to exploit the slow light enhancement of FWM efficiency, even for short device lengths.

  10. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-07-20

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy.

  11. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis.

    PubMed

    Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh

    2017-03-08

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

  12. O-18/O-16 and Si-30/Si-28 studies of some Apollo 15, 16, and 17 samples. [oxygen and silicon isotope ratios

    NASA Technical Reports Server (NTRS)

    Taylor, H. P., Jr.; Epstein, S.

    1973-01-01

    A study of lunar rock samples from eight sites on the near side of the moon showed oxygen isotope abundance variations much smaller than those in meteorites and earth material. The grain-surface coatings of the lunar fines were found to be generally depleted in oxygen relative to silicon. The lunar soils, on the other hand, were somewhat richer in both O18 and Si30 than the lunar crystalline rock.

  13. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  14. Metallic-like bonding in plasma-born silicon nanocrystals for nanoscale bandgap engineering.

    PubMed

    Vach, Holger; Ivanova, Lena V; Timerghazin, Qadir K; Jardali, Fatme; Le, Ha-Linh Thi

    2016-10-27

    Based on ab initio molecular dynamics simulations, we show that small nanoclusters of about 1 nm size spontaneously generated in a low-temperature silane plasma do not possess tetrahedral structures, but are ultrastable. Apparently small differences in the cluster structure result in substantial modifications in their electric, magnetic, and optical properties, without the need for any dopants. Their non-tetrahedral geometries notably lead to electron deficient bonds that introduce efficient electron delocalization that strongly resembles the one of a homogeneous electron gas leading to metallic-like bonding within a semiconductor nanocrystal. As a result, pure hydrogenated silicon clusters that form by self-assembly in a plasma reactor possess optical gaps covering most of the solar spectrum from 1.0 eV to 5.2 eV depending simply on their structure and, in turn, on their degree of electron delocalization. This feature makes them ideal candidates for future bandgap engineering not only for photovoltaics, but also for many nano-electronic devices employing nothing else but silicon and hydrogen atoms.

  15. Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator.

    PubMed

    Hosseini, Amir; Xu, Xiaochuan; Subbaraman, Harish; Lin, Che-Yun; Rahimi, Somayeh; Chen, Ray T

    2012-05-21

    We present a dispersion engineered slow light silicon-based photonic crystal waveguide PIN modulator. Low-dispersion slow light transmission over 18 nm bandwidth under the silica light line with a group index of 26.5 is experimentally confirmed. We investigate the variations of the modulator figure of merit, V(π) × L, as a function of the optical carrier wavelength over the bandwidth of the fundamental photonic crystal waveguide defect mode. A large signal operation with a record low maximum V(π )× L of 0.0464 V · mm over the low-dispersion optical spectral range is demonstrated. We also report the device operation at 2 GHz.

  16. Microplasma surface engineering of silicon nanocrystals for improved inorganic/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Mitra, Somak; Svrcek, Vladimir; Maguire, Paul; Mariotti, Davide; Vladimir Svrcek Collaboration

    2013-09-01

    Improved optoelectronic properties have been achieved by direct current (DC) microplasma-induced 3-dimesional (3D) surface engineering of silicon nanocrystals (SiNCs) in water with (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS). Specifically, we have successfully shown that photoluminescence (PL) of SiNCs inside a water-based solution increases after microplasma processing. The experimental results show that optical properties of SiNCs do not deteriorate over time and remain stable in water with potential application impact for bio-related applications. We have also shown that fast oxidation process in water is prevented over longer period of time due to the microplasma processing in comparison to the unprocessed sample. Furthermore, the improved surface characteristics allow for the formation of water-soluble nanocomposites with improved opto-electronic properties; this can have direct implications for higher performance opto-electronic devices including solar cells.

  17. Vibrational lifetimes and isotope effects of interstitial oxygen in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Sun, Baozhou; Yang, Qiguang; Newman, Ron; Pajot, Bernard; Marie, Tolk, Norman; Feldman, Len; Luepke, Gunter

    2004-03-01

    The lifetimes of the asymmetric stretch mode of interstitial ^16O and ^17O isotopes in Si are measured directly by time-resolved, transient bleaching spectroscopy to be 11.5 and 4.5 ps, respectively. We calculated the three-phonon density of states and found that the ^17O mode lies in the highest phonon density resulting from 2TO + 1TA phonon combinations. The lifetime of the ^16O mode in Ge is measured to be 125 ps, i.e., ˜ 10 times longer than in Si. The interaction between the local modes and the lattice vibrations is discussed according to the activity of phonon combinations. This work was supported in part by DOE through grant DE-FG02-99ER45781 (C.W.M. and V.U.), ONR (C.W.M. and V.U.), NSF through grants DMR-00-76027, DMR-02-42316 (C.W.M.), and the Thomas F. and Kate Miller Jeffress Memorial Trust through grant J-545 (C.W.M.).

  18. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  19. NOx and ammonium isotopic fingerprints of anammox in natural and engineered systems: Implications for N isotope budgets and the use of NOx isotopes to diagnose process stability in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Stöcklin, N.; Brunner, B.; Frame, C. H.; Joss, A.; Kipf, M.; Kuhn, T.; Wunderlin, P.

    2014-12-01

    The anaerobic oxidation of ammonium with nitrite (anammox) has been identified as a very important fixed nitrogen (N) sink, accounting for a large fraction of global fixed N loss in marine, freshwater, and semi-terrestrial environments. In engineered systems, combined nitritation-anammox is an efficient process to remove N from ammonium-rich wastewater, with nitrite as the central intermediate. During the anammox process, nitrate is being produced, providing reducing equivalents for carbon fixation. Measuring the N isotope ratios in fixed N species (i.e., ammonium, nitrite, nitrate) has proven to be a valuable tool to track N cycling in freshwater and marine ecosystems, yet its application in wastewater treatment as a tool to diagnose nitrate production pathways is novel. In this presentation we will elucidate, and compare, the N isotope effects associated with anammox 1) in vitro, 2) in a lacustrine setting, and 3) in a small-scale batch reactor for wastewater treatment. We demonstrate that the anammox nitrite/nitrate isotopic signatures are modulated by the superposition of strong kinetic (normal and inverse) and equilibrium (nitrite-nitrate) N isotope fractionation. The ammonium N isotope effect is driven by kinetic N isotope fractionation, and is similar to that of nitrification. We will discuss the possible controls on the expression of the anammox N isotope effects in the natural environment. We will also evaluate the use of nitrate/nitrite N (and O) isotope signatures to distinguish between nitrate production by anammox versus nitrite oxidation, which is important for optimizing process efficiency during wastewater treatment.

  20. Physics with chemically and isotopically pure semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1993-05-01

    Chemically and isotopically pure semiconductors offer a wealth of interesting physics. We review a number of impurity complexes which were discovered in ultrapure Germanium. They have led the way to the widely pursued studies of hydrogen in numerous semiconductors. Isotope related effects and processes include neutron transmutation doping, a technique used for a number of silicon and germanium devices. Isotopically pure and deliberately mixed crystals of germanium have been grown recently and have been used to study the dependence of the indirect bandgap and phonon properties on the mass and mass disorder of the nuclei. The large number of stable isotopes of the various semiconductors present a great potential for basic and applied studies. Semi-conductor isotope engineering may become a reality because of the new economic and political world order.

  1. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    PubMed

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  2. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering.

    PubMed

    Le, Thi Duy Hanh; Bonani, Walter; Speranza, Giorgio; Sglavo, Vincenzo; Ceccato, Riccardo; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio

    2016-02-01

    Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions.

  3. Reduction of the bulk absorption coefficient in silicon optics for high-energy lasers through defect engineering.

    PubMed

    Goodman, W A; Goorsky, M S

    1995-06-20

    We engineered a factor-of-4 reduction in the bulk absorption coefficient over the 2.6-to-3.0-µm bandwidth in single-crystal Czochralski silicon optics for high-energy infrared lasers with high-temperature annealing treatments. Defect engineering adapted from the integrated circuit industry has been used to reduce the absorption coefficient across the 1.5-to-5-µm bandwidth for substrates up to 5 cm thick. A high-temperature oxygen-dispersion anneal dissolves precipitates and thermal donors that are present in the as-grown material. The process has been verified experimentally with Fourier transform infrared spectroscopy, infrared laser calorimetry, and Hall measurements. Reduction of the absorption coefficient results in less substrate heating and thermal distortion of the optical surface. The process is appropriate for other silicon infrared optics applications such as thermal-imaging systems, infrared windows, and spectrophotometers.

  4. Moisture-cured silicone-urethanes-candidate materials for tissue engineering: a biocompatibility study in vitro.

    PubMed

    Mrówka, P; Kozakiewicz, J; Jurkowska, A; Sienkiewicz, E; Przybylski, J; Lewandowski, Z; Przybylski, J; Lewandowska-Szumieł, M

    2010-07-01

    This study was performed to verify the response of human bone-derived cells (HBDCs) to moisture-cured silicone-urethanes (mcSUUs) in vitro, as the first step toward using them as scaffolds for bone tissue engineering. Good surgical handling, tissue cavity filling, stable mechanical properties, and potentially improved oxygen supply to cells after implantation justify the investigation of these nondegradable elastomers. A set of various mcSUUs were obtained by moisture-curing NCO-terminated prepolymers, synthesized from oligomeric siloxane diols of two different oligosiloxane chain lengths, and two different diisocyanates (MDI and IPDI), using two different NCO/OH molar ratios. Dibutyltindilaurate (DBTL) or N-dimethylethanolamine (N-met) served as catalysts. After 7 days of culture, cell number, viability, and alkaline phosphatase (ALP) activity were determined, and after 21 days, cell viability and collagen production were determined. Material characteristics significantly influenced the cell response. The mcSUUs prepared with DBTL (widely used in the syntheses of biomaterials) were cytotoxic. The MDI-based mcSUUs were significantly more favored by HBDCs than the IPDI-based ones in all performed tests. MDI-based material with low 2/1 NCO/OH and short chain length was the best support for cells, comparable with tissue-culture polystyrene (with ALP activity even higher). HBDCs cultured on porous scaffolds from this mcSUU produced a tissue-like structure in culture. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  5. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wagesreither, Stefan; Bertagnolli, Emmerich; Kawase, Shinya; Isono, Yoshitada; Lugstein, Alois

    2014-11-01

    In this paper we demonstrate the fabrication and application of an electrostatic actuated tensile straining test (EATEST) device enabling strain engineering in individual suspended nanowires (NWs). Contrary to previously reported approaches, this special setup guarantees the application of pure uniaxial tensile strain with no shear component of the stress while e.g. simultaneously measuring the resistance change of the NW. To demonstrate the potential of this approach we investigated the piezoresistivity of about 3 μm long and 100 nm thick SiNWs but in the same way one can think about the application of such a device on other geometries, other materials beyond Si as well as the use of other characterization techniques beyond electrical measurements. Therefore single-crystal SiNWs were monolithically integrated in a comb drive actuated MEMS device based on a silicon-on-insulator (SOI) wafer using the vapor-liquid-solid (VLS) growth technique. Strain values were verified by a precise measurement of the NW elongation with scanning electron microscopy (SEM). Further we employed confocal μ-Raman microscopy for in situ, high spatial resolution measurements of the strain in individual SiNWs during electrical characterization. A giant piezoresistive effect was observed, resulting in a fivefold increase in conductivity for 3% uniaxially strained SiNWs. As the EATEST approach can be easily integrated into an existing Si technology platform this architecture may pave the way toward a new generation of nonconventional devices by leveraging the strain degree of freedom.

  6. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation

    NASA Astrophysics Data System (ADS)

    Xue, Zhaoguo; Xu, Mingkun; Zhao, Yaolong; Wang, Jimmy; Jiang, Xiaofan; Yu, Linwei; Wang, Junzhuan; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2016-09-01

    The ability to program highly modulated morphology upon silicon nanowires (SiNWs) has been fundamental to explore new phononic and electronic functionalities. We here exploit a nanoscale locomotion of metal droplets to demonstrate a large and readily controllable morphology engineering of crystalline SiNWs, from straight ones into continuous or discrete island-chains, at temperature <350 °C. This has been accomplished via a tin (Sn) droplet mediated in-plane growth where amorphous Si thin film is consumed as precursor to produce crystalline SiNWs. Thanks to a significant interface-stretching effect, a periodic Plateau-Rayleigh instability oscillation can be stimulated in the liquid Sn droplet, and the temporal oscillation of the Sn droplets is translated faithfully, via the deformable liquid/solid deposition interface, into regular spatial modulation upon the SiNWs. Combined with a unique self-alignment and positioning capability, this new strategy could enable a rational design and single-run fabrication of a wide variety of nanowire-based optoelectronic devices.

  7. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation

    PubMed Central

    Xue, Zhaoguo; Xu, Mingkun; Zhao, Yaolong; Wang, Jimmy; Jiang, Xiaofan; Yu, Linwei; Wang, Junzhuan; Xu, Jun; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2016-01-01

    The ability to program highly modulated morphology upon silicon nanowires (SiNWs) has been fundamental to explore new phononic and electronic functionalities. We here exploit a nanoscale locomotion of metal droplets to demonstrate a large and readily controllable morphology engineering of crystalline SiNWs, from straight ones into continuous or discrete island-chains, at temperature <350 °C. This has been accomplished via a tin (Sn) droplet mediated in-plane growth where amorphous Si thin film is consumed as precursor to produce crystalline SiNWs. Thanks to a significant interface-stretching effect, a periodic Plateau-Rayleigh instability oscillation can be stimulated in the liquid Sn droplet, and the temporal oscillation of the Sn droplets is translated faithfully, via the deformable liquid/solid deposition interface, into regular spatial modulation upon the SiNWs. Combined with a unique self-alignment and positioning capability, this new strategy could enable a rational design and single-run fabrication of a wide variety of nanowire-based optoelectronic devices. PMID:27682161

  8. Thermal and Chemical Analyses of Silicone Polymers for Component Engineering Lifetime Assessments

    SciTech Connect

    Balazs, B; Maxwell, R S

    2002-05-14

    Accurate predictions of a polymer component's functional lifetime at best arc tenuous when one has only relatively short term chemical or mechanical property data to extrapolate. We have analyzed a series of silica-filled siloxanes to determine the chemical and microstructural signatures of aging, and we are incorporating these data into rational methodologies for assessing a component's lifetime measured against as-designed engineering properties. We are monitoring changes in mechanical properties, crystallization kinetics, cross-link density changes, and motional dynamics with a variety of analysis methods: Modulated DSC, Dynamic Mechanical Analysis, and Solid-state Nuclear Magnetic Resonance. Previous work has shown that the addition of phenyl side groups to polydimethylsiloxane (PDMS) polymer chains reduces the rate and extent of crystallization of the co-polymer compared to that of pure PDMS. Crystallization has been observed in copolymer systems up to 6.5 mol % phenyl composition by DSC and up to 8 mol % phenyl by XRD. The PDMS-PDPS-silica composite materials studied here are silica reinforced random block copolymers consisting of dimethyl and diphenyl monomer units with 11.2 mol. % polydiphenylsiloxane. Based on this previous work, it is not expected that this material would exhibit crystallization in the polymer network; however, these silicones do, in fact, exhibit crystallization phenomena. This report focuses primarily on our efforts to assess the information content of the crystallization phenomena with respect to aging signatures and mechanisms that may be limiting the functional lifetime of the composite materials.

  9. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ˜70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ˜10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium

  10. Strontium and Barium Isotopes in Type X Presolar Silicon Carbide Grains Analyzed with CHILI — Two Types of Supernova Grains

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Trappitsch, R.; Davis, A. M.; Gyngard, F.; Hoppe, P.; Pellin, M. J.

    2016-08-01

    Using the Chicago Instrument for Laser Ionization, we have measured Sr and Ba isotopes in 10 presolar SiC grains, including 3 X grains. One grain is X1, the other two are X2 grains. Both X grain types show distinct properties in Sr and Ba isotopes.

  11. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report

    SciTech Connect

    Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H.; Kim, K.

    1993-05-01

    This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

  12. Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-05-01

    The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS

  13. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  14. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    PubMed

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.

  15. Engineering of silicon/HfO{sub 2} interface by variable energy proton irradiation

    SciTech Connect

    Maurya, Savita Maringanti, Radhakrishna; Tribedi, L. C.

    2014-08-18

    Surfaces and interfaces between materials are of paramount importance for various phenomena, such as painting a house, catalyst driven chemical reactions, intricate life processes, corrosion of materials, and fabrication of various semiconductor devices. Interface of silicon or other such substrates with any of the oxides has profound effect on the performance of metal oxide field effect transistors and other similar devices. Since a surface is an abrupt termination of a periodic crystal, surface atoms will have some unsaturated valence electrons and these unsaturated bonds at the semiconductor surface make it chemically highly reactive. Other than annealing, there is not much that can be done to manage these unsaturated bonds. This study was initiated to explore the possibility of repairing these unsaturated dangling bonds that are formed at the silicon and oxide interface during the deposition of oxide layer above silicon, by the use of proton irradiation. In order to improve the interface characteristics, we present a method to modify the interface of silicon and hafnium dioxide after its fabrication, through proton irradiation. Results of the study are promising and probably this method might be used along with other methods such as annealing to modify the interface, after its fabrication.

  16. Bandgap and Carrier Transport Engineering of Quantum Confined Mixed Phase Nanocrystalline/Amorphous Silicon

    SciTech Connect

    Guan, Tianyuan; Klafehn, Grant; Kendrick, Chito; Theingi, San; Airuoyo, Idemudia; Lusk, Mark T.; Stradins, Paul; Taylor, Craig; Collins, Reuben T.

    2016-11-21

    Mixed phase nanocrystalline/amorphous-silicon (nc/a-Si:H) thin films with band-gap higher than bulk silicon are prepared by depositing silicon nanoparticles (SiNPs), prepared in a separate deposition zone, and hydrogenated amorphous silicon (a-Si:H), simultaneously. Since the two deposition phases are well decoupled, optimized parameters for each component can apply to the growth process. Photoluminescence spectroscopy (PL) shows that the embedded SiNPs are small enough to exhibit quantum confinement effects. The low temperature PL measurements on the mixed phase reveal a dominant emission feature, which is associated with SiNPs surrounded by a-Si:H. In addition, we compare time dependent low temperature PL measurements for both a-Si:H and mixed phase material under intensive laser exposure for various times up to two hours. The PL intensity of a-Si:H with embedded SiNPs degrades much less than that of pure a-Si:H. We propose this improvement of photostability occurs because carriers generated in the a-Si:H matrix quickly transfer into SiNPs and recombine there instead of recombining in a-Si:H and creating defect states (Staebler-Wronski Effect).

  17. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    NASA Astrophysics Data System (ADS)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2015-09-01

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using natSi/28Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800-950 °C. The behavior of Si self-interstitials is investigated through the 30Si self-diffusion. The experimental 30Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental 30Si profiles.

  18. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    SciTech Connect

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental {sup 30}Si profiles.

  19. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  20. Isotopic Composition of Molybdenum and Barium in Single Presolar Silicon Carbide Grains of Type A+B

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2003-01-01

    Presolar SiC grains fall into several groups based on C, N, and Si isotopic compositions. Approximately 93% are defined as mainstream, having 10 less than C-12/C-13 less than 100 and N-14/N-15 ranging from 50 to 20,000. A number of studies have shown that the most likely sources of mainstream grains are low mass asymptotic giant branch stars. Models of nucleosynthesis in AGB stars reproduce the s-process enhancements seen in the heavy elements in mainstream SiC grains. Among the less common grains, A+B grains, which comprise approximately 3-4% of presolar SiC, are perhaps the least well understood. Recent studies by Amari et al. show that A+B grains can be divided into at least 4 groups based on their trace element concentration patterns. Of 20 grains studied, 7 showed trace element patterns consistent with condensation from a gas of solar system composition, while the rest had varying degrees of process enhancements. Our previous measurements on 3 A+B grains showed Mo of solar isotopic composition, but Zr with a strong enhancement in 96Zr, which is an r-process isotope but can be made in an sprocess if the neutron density is high enough to bridge the unstable Zr-95 (T(sub 1/2)= 64 d). The observation of Mo with solar system isotopic composition in the same grains is puzzling however. Meyer et al. have recently shown that a neutron burst mechanism can produce a high Zr-96/Zr-94 without enhancing Mo-100, however this model leads to enhancements in Mo-95 and Mo-97 not observed in A+B grains. We report here results of Mo measurements on 7 additional A+B grains, and Ba measurements on 2 A+B grains, and compare these to the previous studies.

  1. Heavy silicon isotopic composition of silicic acid and biogenic silica in Arctic waters over the Beaufort shelf and the Canada Basin

    NASA Astrophysics Data System (ADS)

    Varela, D. E.; Brzezinski, M. A.; Beucher, C. P.; Jones, J. L.; Giesbrecht, K. E.; Lansard, B.; Mucci, A.

    2016-06-01

    The silicon isotopic composition of silicic acid (δ30Si(OH)4) and biogenic silica (δ30Si-bSiO2) were measured for the first time in marine Arctic waters from the Mackenzie River delta to the deep Canada Basin in the late summer of 2009. In the upper 100 m of the water column, δ30Si(OH)4 signals (+1.82‰ to +3.08‰) were negatively correlated with the relative contribution of Mackenzie River water. The biogenic Si isotope fractionation factor estimated using an open system model, 30ɛ = -0.97 ± 0.17‰, agrees well with laboratory and global-ocean estimates. Nevertheless, the δ30Si dynamics of this region may be better represented by closed system isotope models that yield lower values of 30ɛ, between -0.33‰ and -0.41‰, depending on how the contribution of sea-ice diatoms is incorporated. In the upper 400 m, δ30Si-bSiO2 values were among the heaviest ever measured in marine suspended bSiO2 (+2.03‰ to +3.51‰). A positive correlation between δ30Si-bSiO2 and sea-ice cover implies that heavy signals can result from isotopically heavy sea-ice diatoms introduced to pelagic assemblages. Below the surface bSiO2 production zone, the δ30Si(OH)4 distribution followed that of major water masses. Vertical δ30Si(OH)4 profiles showed a minimum (average of +1.84 ± 0.10‰) in the upper halocline (125-200 m) composed of modified Pacific water and heavier average values (+2.04 ± 0.11‰) in Atlantic water (300-500 m deep). In the Canada Basin Deep Water (below 2000 m), δ30Si(OH)4 averaged +1.88 ± 0.12‰, which represents the most positive value ever measured anywhere in the deep ocean. Since most Si(OH)4 enters the Arctic from shallow depths in the Atlantic Ocean, heavy deep Arctic δ30Si(OH)4 signals likely reflect the influx of relatively heavy intermediate Atlantic waters. A box model simulation of the global marine δ30Si(OH)4 distribution successfully reproduced the observed patterns, with the δ30Si(OH)4 of the simulated deep Arctic Ocean being the

  2. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides.

    PubMed

    Monat, Christelle; Corcoran, Bill; Ebnali-Heidari, Majid; Grillet, Christian; Eggleton, Benjamin J; White, Thomas P; O'Faolain, Liam; Krauss, Thomas F

    2009-02-16

    We report nonlinear measurements on 80microm silicon photonic crystal waveguides that are designed to support dispersionless slow light with group velocities between c/20 and c/50. By launching picoseconds pulses into the waveguides and comparing their output spectral signatures, we show how self phase modulation induced spectral broadening is enhanced due to slow light. Comparison of the measurements and numerical simulations of the pulse propagation elucidates the contribution of the various effects that determine the output pulse shape and the waveguide transfer function. In particular, both experimental and simulated results highlight the significant role of two photon absorption and free carriers in the silicon waveguides and their reinforcement in the slow light regime.

  3. Porous silicon-based scaffolds for tissue engineering and other biomedical applications

    NASA Astrophysics Data System (ADS)

    Coffer, Jeffery L.; Whitehead, Melanie A.; Nagesha, Dattatri K.; Mukherjee, Priyabrata; Akkaraju, Giridhar; Totolici, Mihaela; Saffie, Roghieh S.; Canham, Leigh T.

    2005-06-01

    This work describes the formation of porous composite materials based on a combination of bioactive mesoporous silicon and bioerodible polymers such as poly-caprolactone (PCL). The fabrication of a range of composites prepared by both salt leaching and microemulsion techniques are discussed. Particular attention to the influence of Si content in the composite on in vitro calcification assays are assessed. For each system, cytotoxicity and cellular proliferation are explicitly evaluated through fibroblast cell culture assays.

  4. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect

    Buonassisi, Tonio

    2013-02-26

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  5. The source of dissolved silicon in soil surface solutions of a temperate forest ecosystem: Ge/Si and Si isotope ratios as biogeochemical tracers

    NASA Astrophysics Data System (ADS)

    Cornelis, J.; Delvaux, B.; Cardinal, D.; André, L.; Ranger, J.; Opfergelt, S.

    2010-12-01

    Understand the biogeochemical cycle of silicon (Si) in the Earth’s critical zone and the dissolved Si transfer from the litho-pedosphere into the hydrosphere is of great interest for the global balance of biogeochemical processes, including the global C cycle. Indeed, the interaction between Si and C cycles regulates the atmospheric CO2 through the chemical weathering of silicate minerals, the C sequestration in stable organo-mineral compounds and the Si nutrition of phytoplankton CO2-consumers in oceans. H4SiO4 released by mineral dissolution contributes to the critical zone evolution through neoformation of secondary minerals, adsorption onto hydroxyl-bearing phases and recycling by vegetation and return of phytoliths on topsoil. The neoformation of secondary precipitates (clay minerals and phytoliths polymerized in plants) and adsorption of Si onto Fe and Al (hydr)oxides are processes favoring the light Si isotope incorporation, generating rivers enriched in heavy Si isotopes. On the other hand, clay minerals and phytoliths display contrasting Ge/Si ratios since clay-sized weathering products are enriched in Ge and phytoliths are depleted in Ge. Thus stable Si isotope and Ge/Si ratios constitute very interesting proxies to trace transfer of Si in the critical zone. Here we report Si isotopic and Ge/Si ratios of the different Si pools in a temperate soil-tree system (Breuil experimental forest, France) involving various tree species grown on Alumnic Cambisol derived from granitic bedrock. Relative to granitic bedrock (δ30Si = -0.07 ‰; Ge/Si = 2.5 µmol/mol), clay-sized minerals are enriched in 28Si (-1.07 ‰) and Ge (6.2 µmol/mol) while phytoliths are enriched in 28Si (-0.28 to -0.64 ‰) and depleted in Ge (0.1 to 0.3 µmol/mol). This contrast allows us to infer the relative contribution of litho/pedogenic and biogenic mineral dissolution on the release of H4SiO4 in soil surface solutions. The Si-isotope signatures and Ge/Si ratios of forest floor

  6. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties.

    PubMed

    Li, Xiang; Li, Peng; Saravanan, Rathi; Basu, Anindya; Mishra, Biswajit; Lim, Suo Hon; Su, Xiaodi; Tambyah, Paul Anantharajah; Leong, Susanna Su Jan

    2014-01-01

    Catheter-associated urinary tract infections (CAUTIs) are often preceded by pathogen colonization on catheter surfaces and are a major health threat facing hospitals worldwide. Antimicrobial peptides (AMPs) are a class of new antibiotics that hold promise in curbing CAUTIs caused by antibiotic-resistant pathogens. This study aims to systematically evaluate the feasibility of immobilizing two newly engineered arginine/lysine/tryptophan-rich AMPs with broad antimicrobial spectra and salt-tolerant properties on silicone surfaces to address CAUTIs. The peptides were successfully immobilized on polydimethylsiloxane and urinary catheter surfaces via an allyl glycidyl ether (AGE) polymer brush interlayer, as confirmed by X-ray photoelectron spectroscopy and water contact angle analyses. The peptide-coated silicone surfaces exhibited excellent microbial killing activity towards bacteria and fungi in urine and in phosphate-buffered saline. Although both the soluble and immobilized peptides demonstrated membrane disruption capabilities, the latter showed a slower rate of kill, presumably due to reduced diffusivity and flexibility resulting from conjugation to the polymer brush. The synergistic effects of the AGE polymer brush and AMPs prevented biofilm formation by repelling cell adhesion. The peptide-coated surface showed no toxicity towards smooth muscle cells. The findings of this study clearly indicate the potential for the development of AMP-based coating platforms to prevent CAUTIs.

  7. Method of protecting a surface with a silicon-slurry/aluminide coating. [coatings for gas turbine engine blades and vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1982-01-01

    A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.

  8. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    ERIC Educational Resources Information Center

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  9. Deglacial changes in subarctic Pacific surface water hydrography and nutrient dynamics - a fresh perspective from diatom oxygen and silicon stable isotopes

    NASA Astrophysics Data System (ADS)

    Maier, E.; Abelmann, A.; Gersonde, R.; Meheust, M.; Chapligin, B.; Ren, J.; Stein, R. H.; Meyer, H.; Tiedemann, R.

    2014-12-01

    Deglacial variations in upper ocean stratification in high latitudes are generally thought to have played a key role in changing atmospheric CO2 concentrations. Deglacial destratification especially in the Southern Ocean may have provided a pathway for CO2 exchange between the deep ocean and the atmosphere, thereby increasing atmospheric CO2 concentrations e.g. during Heinrich Stadial 1, as recorded in ice cores. During the past decade the subarctic Pacific received increased paleoceanographic attention with the aim to examine its potential for influencing the past nutrient cycle and oceanic release of CO2 via deep/intermediate-water formation, upwelling as well as associated changes in biogenic productivity. Today, the subarctic Pacific is considered a weak sink for CO2, despite incomplete nutrient utilization in surface waters. Accordingly, changes in subarctic Pacific upper ocean stratification and/or biological nutrient utilization and export production have the potential to effectively influence the oceanic-atmospheric gas exchange. Here, we present diatom oxygen and silicon isotope records from the North-East Pacific (Core SO202-27-6, Alaskan Gyre) and the North-West Pacific (Core MD01-2416, Western Subarctic Gyre), to investigate the development of surface water hydrography and silicic acid utilization in the open subarctic Pacific over the last glacial-interglacial transition. Diatom isotope records are interpreted in combination with new records e.g. on subsurface water development, export production, sea surface temperature (alkenone-based) and sea ice. The obtained results enable a fresh perspective on the relationship between subarctic Pacific and North Atlantic climate development and provide new information on the role of the subarctic Pacific during the last deglacial atmospheric CO2 development.

  10. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    SciTech Connect

    Johnsen, Amanda M.; Heidrich, Brenden; Durrant, Chad; Bascom, Andrew; Unlu, Kenan

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  11. Silicon in Mars' Core: A Prediction Based on Mars Model Using Nitrogen and Oxygen Isotopes in SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Mohapatra, R. K.; Murty, S. V. S.

    2002-01-01

    Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.

  12. Effect of carbon situating at end-of-range defects on silicon self-diffusion investigated using pre-amorphized isotope multilayers

    NASA Astrophysics Data System (ADS)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2016-03-01

    The effect of implanted carbon (C) on silicon (Si) self-diffusion has been investigated using pre-amorphized 28Si/natSi multilayers. The isotope multilayers were pre-amorphized by Ge implantation followed by C implantation, and annealed at 950 °C. Because of the presence of C, the Si self-diffusion was slower in 30 min annealing than the self-diffusion without C. This was attributed to the trapping of Si self-interstitials by C. On the other hand, the Si self-diffusion with C was faster in 2 h annealing than the self-diffusion without C, except in the end-of-range (EOR) defect region. The cause of this enhanced diffusion was understood as the retardation of Ostwald ripening of EOR defects by C trapped at the defects. In the EOR defect region, however, Si self-diffusion was slower than the self-diffusion without C in both 30 min and 2 h annealing owing to the presence of C. Relaxation of the tensile strain associated with the EOR defects by the trapped C was proposed to be the main cause of the retarded diffusion in the EOR region.

  13. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, Jangsun; Hwang, Mintai P.; Choi, Moonhyun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2016-10-01

    Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications – a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+.

  14. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles

    PubMed Central

    Hwang, Jangsun; Hwang, Mintai P.; Choi, Moonhyun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2016-01-01

    Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications – a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+. PMID:27752120

  15. Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Kepesidis, K. V.; Lemonde, M.-A.; Norambuena, A.; Maze, J. R.; Rabl, P.

    2016-12-01

    We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.

  16. Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2014-01-01

    Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch Δk is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametric gain suppression when the Stokes-pump input ratio is sufficiently large. The Stokes gain increases with the increase of Δk, whereas efficient wavelength conversion needs appropriate Δk under different pump intensities. The conversion efficiency at exact linear phase matching (Δk = 0) is smaller than that at optimal linear phase mismatch by a factor of about 28 dB when the pump intensity is 2 GW cm-2.

  17. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    NASA Astrophysics Data System (ADS)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  18. Quantification of protein deposits on silicone hydrogel materials using stable-isotopic labeling and multiple reaction monitoring.

    PubMed

    Omali, Negar Babaei; Zhao, Zhenjun; Zhong, Ling; Raftery, Mark J; Zhu, Hua; Ozkan, Jerome; Willcox, Mark

    2012-01-01

    This study was designed to use multiple reaction monitoring (MRM) for accurate quantification of contact lens protein deposits. Worn lenses used with a multipurpose disinfecting solution were collected after wear. Individual contact lenses were extracted and then digested with trypsin. MRM in conjunction with stable-isotope-labeled peptide standards was used for protein quantification. The results show that lysozyme was the major protein detected from both lens types. The amount of protein extracted from contact lenses was affected by the lens material. Except for keratin-1 (0.83 ± 0.61 vs 0.77 ± 0.20, p = 0.81) or proline rich protein-4 (0.11 ± 0.04 vs 0.15 ± 0.12, p = 0.97), the amounts of lysozyme, lactoferrin, or lipocalin-1 extracted from balafilcon A lenses (12.9 ± 9.01, 0.84 ± 0.50 or 2.06 ± 1.6, respectively) were significantly higher than that extracted from senofilcon A lenses (0.88 ± 0.13, 0.50 ± 0.10 or 0.27 ± 0.23, respectively) (p < 0.05). The amount of protein extracted from contact lenses was dependent on both the individual wearer and the contact lens material. This may have implications for the development of clinical responses during lens wear for different people and with different types of contact lenses. The use of MRM-MS is a powerful analytical tool for the quantification of specific proteins from single contact lenses after wear.

  19. Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering.

    PubMed

    Toor, Fatima; Miller, Jeffrey B; Davidson, Lauren M; Nichols, Logan; Duan, Wenqi; Jura, Michael P; Yim, Joanne; Forziati, Joanne; Black, Marcie R

    2016-10-14

    There are a range of different methods to generate a nanostructured surface on silicon (Si) but the most cost effective and optically interesting is the metal assisted wet chemical etching (MACE) (Koynov et al 2006 Appl. Phys. Lett. 88 203107). MACE of Si is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features or 'black silicon'. MACE-fabricated nanowires (NWs) provide improved antireflection and light trapping functionality (Toor et al 2016 Nanoscale 8 15448-66) compared with the traditional 'iso-texturing' (Campbell and Green 1987 J. Appl. Phys. 62 243-9). The resulting lower reflection and improved light trapping can lead to higher short circuit currents in NW solar cells (Toor et al 2011 Appl. Phys. Lett. 99 103501). In addition, NW cells can have higher fill factors and voltages than traditionally processed cells, thus leading to increased solar cell efficiencies (Cabrera et al 2013 IEEE J. Photovolt. 3 102-7). MACE NW processing also has synergy with next generation Si solar cell designs, such as thin epitaxial-Si and passivated emitter rear contact (Toor et al 2016 Nanoscale 8 15448-66). While several companies have begun manufacturing black Si, and many more are researching these techniques, much of the work has not been published in traditional journals and is publicly available only through conference proceedings and patent publications, which makes learning the field challenging. There have been three specialized review articles published recently on certain aspects of MACE or black Si, but do not present a full review that would benefit the industry (Liu et al 2014 Energy Environ. Sci. 7 3223-63; Yusufoglu et al 2015 IEEE J. Photovolt. 5 320-8; Huang et al 2011 Adv. Mater. 23 285-308). In this feature article, we review the chemistry of MACE and explore how changing parameters in the wet etch process effects the resulting texture

  20. Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1976-01-01

    The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value

  1. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    PubMed

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning.

  2. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering.

    PubMed

    Zreiqat, Hala; Ramaswamy, Yogambha; Wu, Chengtie; Paschalidis, Angelo; Lu, ZuFu; James, Barbara; Birke, Oliver; McDonald, Michelle; Little, David; Dunstan, Colin R

    2010-04-01

    In this study we developed novel scaffolds through the controlled substitution and incorporation of strontium and zinc into a calcium-silicon system to form Sr-Hardystonite (Sr-Ca(2)ZnSi(2)O(7), Sr-HT). The physical and biological properties of Sr-HT were compared to Hardystonite (Ca(2)ZnSi(2)O(7)) [HT]. We showed that Sr-HT scaffolds are porous with interconnected porous network (interconnectivity: 99%) and large pore size (300-500 microm) and an overall porosity of 78%, combined with a relatively high compressive strength (2.16+/-0.52 MPa). These properties are essential for enhancing bone ingrowth in load-bearing applications. Sr-HT ceramic scaffolds induced the attachment and differentiation of human bone derived cells (HOB), compared to that for the HT scaffolds. Sr-HT scaffolds enhanced expression of alkaline phosphatase, Runx-2, osteopontin, osteocalcin and bone sialoprotein. The in vivo osteoconductivity of the scaffolds was assessed at 3 and 6 weeks following implantation in tibial bone defects in rats. Histological staining revealed rapid new growth of bone into the pores of the 3D scaffolds with the Sr-HT and HT, relative to the beta-tricalcium phosphate (beta-TCP). In vivo, HT and Sr-HT produced distinct differences in the patterns of degradation of the materials, and their association with TRAP positive osteoclast-like cells with HT appearing more resistant compared to both Sr-HT and beta-TCP.

  3. Silicon-Based Ceramic-Matrix Composites for Advanced Turbine Engines: Some Degradation Issues

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U. J.

    2000-01-01

    SiC/BN/SiC composites are designed to take advantage of the high specific strengths and moduli of non-oxide ceramics, and their excellent resistance to creep, chemical attack, and oxidation, while circumventing the brittleness inherent in ceramics. Hence, these composites have the potential to take turbine engines of the future to higher operating temperatures than is achievable with metal alloys. However, these composites remain developmental and more work needs to be done to optimize processing techniques. This paper highlights the lingering issue of pest degradation in these materials and shows that it results from vestiges of processing steps and can thus be minimized or eliminated.

  4. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  5. An engineer at AeroVironment's Design Development Center inspects a set of silicon solar cells for p

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An engineer at AeroVironment's Design Development Center in Simi Valley, California, closely inspects a set of silicon solar cells for potential defects. The cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights in 2003 with the aid of a regenerative fuel cell-based energy storage system now in development.

  6. Band-edge engineering of Silicon by Surface Functionalization: a Combined Ab-initio and Photoemission Study

    NASA Astrophysics Data System (ADS)

    Li, Yan; O'Leary, Leslie; Lewis, Nathan; Galli, Giulia

    2012-02-01

    The electrode material choice is limited in solar to fuel formation devices because of the requirement of band-edge matching to the fixed fuel formation potential. This limitation can be relieved via band-edge engineering. The changes of band-edge positions of Si electrodes induced by the adsorption of H-, Cl-, Br- and short-chain alkyl groups were investigated by combining density functional (DFT), many-body perturbation theory (MBPT), and ultraviolet photoelectron spectroscopy. The band edge shifts are related to the formation of surface dipole moments, and determine the barrier height of electrons and holes in doped silicon surfaces. We find that the trends of the sign and magnitude of the computed surface dipoles as a function of the adsorbate may be explained by simple electronegative rules. We show that quasi-particle energies obtained within MBPT are in good agreement with experiment, while DFT values may exhibit substantial errors. However computed band edge differences are in good agreement with spectroscopic and electrical measurements even at the DFT level of theory. [1] Y. Li and G. Galli, Phys. Rev. B 82, 045321 (2010). [2] Y. Li, L. O'Leary, N. Lewis and G. Galli, to be submitted.

  7. Intravitreal controlled release of dexamethasone from engineered microparticles of porous silicon dioxide.

    PubMed

    Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2014-12-01

    Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterification Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and

  8. Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Miller, Jeffrey B.; Davidson, Lauren M.; Nichols, Logan; Duan, Wenqi; Jura, Michael P.; Yim, Joanne; Forziati, Joanne; Black, Marcie R.

    2016-10-01

    There are a range of different methods to generate a nanostructured surface on silicon (Si) but the most cost effective and optically interesting is the metal assisted wet chemical etching (MACE) (Koynov et al 2006 Appl. Phys. Lett. 88 203107). MACE of Si is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features or ‘black silicon’. MACE-fabricated nanowires (NWs) provide improved antireflection and light trapping functionality (Toor et al 2016 Nanoscale 8 15448-66) compared with the traditional ‘iso-texturing’ (Campbell and Green 1987 J. Appl. Phys. 62 243-9). The resulting lower reflection and improved light trapping can lead to higher short circuit currents in NW solar cells (Toor et al 2011 Appl. Phys. Lett. 99 103501). In addition, NW cells can have higher fill factors and voltages than traditionally processed cells, thus leading to increased solar cell efficiencies (Cabrera et al 2013 IEEE J. Photovolt. 3 102-7). MACE NW processing also has synergy with next generation Si solar cell designs, such as thin epitaxial-Si and passivated emitter rear contact (Toor et al 2016 Nanoscale 8 15448-66). While several companies have begun manufacturing black Si, and many more are researching these techniques, much of the work has not been published in traditional journals and is publicly available only through conference proceedings and patent publications, which makes learning the field challenging. There have been three specialized review articles published recently on certain aspects of MACE or black Si, but do not present a full review that would benefit the industry (Liu et al 2014 Energy Environ. Sci. 7 3223-63 Yusufoglu et al 2015 IEEE J. Photovolt. 5 320-8 Huang et al 2011 Adv. Mater. 23 285-308). In this feature article, we review the chemistry of MACE and explore how changing parameters in the wet etch process effects the resulting

  9. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin

    PubMed Central

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J.; Freeman, William R.; Cheng, Lingyun

    2015-01-01

    Purpose. To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Methods. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. Results. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Conclusions. Porous silicon–based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. PMID:25613937

  10. Intravitreal Controlled Release of Dexamethasone from Engineered Microparticles of Porous Silicon Dioxide

    PubMed Central

    Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R.; Cheng, Lingyun

    2014-01-01

    Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterificaion Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and

  11. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    DOE PAGES

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; ...

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less

  12. Germanium-on-Silicon Strain Engineered Materials for Improved Device Performance Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Bharathan, Jayesh Moorkoth

    The primary goal of this research is to develop a chemical vapor deposition process for growing epitaxial films of germanium on silicon (001) substrates with two-dimensional (2-D) morphology, and a low density of threading dislocations. Growth was carried out in a reduced-pressure chemical vapor deposition (RPCVD) system by a two-step growth technique. An accurate knowledge of elastic constants of thin films is important in understanding the effect of strain on material properties. Residual thermal strain was used to measure the Poisson ratio of Ge films grown on Si(001) substrates, by the sin2Psi method and highresolution x-ray diffraction. The Poisson ratio of the Ge films was measured to be 0.25, compared to the bulk value of 0.27. The result was found to be independent of film thickness and defect density, which confirmed that the strain is associated with the elastic response of the film. The study showed that the use of Poisson ratio instead of bulk compliance values yields a more accurate description of the state of in-plane strain present in the film. The experimentally measured in-plane strain in Ge films was found to be lower than the theoretical calculations based on the differential thermal expansion coefficients of Si and Ge. The mechanism of thermal misfit strain relaxation in epitaxial Ge films grown on Si(001) substrates was investigated by x-ray diffraction, and transmission electron microscopy. Lattice misfit strain associated with Ge/(001)Si mismatched epitaxy is relieved by a network of Lomer edge misfit dislocations during the first step of the growth technique. However, thermal misfit strain energy during growth is relieved by interdiffusion mechanism at the heterointerface. Two SiGe compositions containing 0.5 and 6.0 atomic percent Si were detected that relieve the thermal mismatch strain associated with the two steps of the growth process. This study discusses the importance of interdiffusion mechanism in relieving small misfit strains

  13. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    SciTech Connect

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-02-28

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  14. Orbital forcing of glacial/interglacial variations in chemical weathering and silicon cycling within the upper White Nile basin, East Africa: Stable-isotope and biomarker evidence from Lakes Victoria and Edward

    NASA Astrophysics Data System (ADS)

    Cockerton, Helen E.; Street-Perrott, F. Alayne; Barker, Philip A.; Leng, Melanie J.; Sloane, Hilary J.; Ficken, Katherine J.

    2015-12-01

    On Quaternary time scales, the global biogeochemical cycle of silicon is interlocked with the carbon cycle through biotic enhancement of silicate weathering and uptake of dissolved silica by vascular plants and aquatic microalgae (notably diatoms, for which Si is an essential nutrient). Large tropical river systems dominate the export of Si from the continents to the oceans. Here, we investigate variations in Si cycling in the upper White Nile basin over the last 15 ka, using sediment cores from Lakes Victoria and Edward. Coupled measurements of stable O and Si isotopes on diatom separates were used to reconstruct past changes in lake hydrology and Si cycling, while the abundances of lipid biomarkers characteristic of terrestrial/emergent higher plants, submerged/floating aquatic macrophytes and freshwater algae document past ecosystem changes. During the late-glacial to mid-Holocene, 15-5.5 ka BP, orbital forcing greatly enhanced monsoon rainfall, forest cover and chemical weathering. Riverine inputs of dissolved silica from the lake catchments exceeded aquatic demand and may also have had lower Si-isotope values. Since 5.5 ka BP, increasingly dry climates and more open vegetation, reinforced by the spread of agricultural cropland over the last 3-4 ka, have reduced dissolved silica inputs into the lakes. Centennial-to millennial-scale dry episodes are also evident in the isotopic records and merit further investigation.

  15. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    SciTech Connect

    Buchholz, B A; Mueller, C J; Upatnieks, A; Martin, G C; Pitz, W J; Westbrook, C K

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{sub 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.

  16. Development of silicon pad detectors and readout electronics for a Compton camera

    NASA Astrophysics Data System (ADS)

    Studen, A.; Cindro, V.; Clinthorne, N. H.; Czermak, A.; Dulinski, W.; Fuster, J.; Han, L.; Jalocha, P.; Kowal, M.; Kragh, T.; Lacasta, C.; Llosá, G.; Meier, D.; Mikuž, M.; Nygård, E.; Park, S. J.; Roe, S.; Rogers, W. L.; Sowicki, B.; Weilhammer, P.; Wilderman, S. J.; Yoshioka, K.; Zhang, L.

    2003-03-01

    Applications in nuclear medicine and bio-medical engineering may profit using a Compton camera for imaging distributions of radio-isotope labelled tracers in organs and tissues. These applications require detection of photons using thick position-sensitive silicon sensors with the highest possible energy and good spatial resolution. In this paper, research and development on silicon pad sensors and associated readout electronics for a Compton camera are presented. First results with low-noise, self-triggering VATAGP ASIC's are reported. The measured energy resolution was 1.1 keV FWHM at room temperature for the 241Am photo-peak at 59.5 keV.

  17. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis

    NASA Astrophysics Data System (ADS)

    Reddy, Thiruchelvi R.; Zheng, Xin-Yuan; Roden, Eric E.; Beard, Brian L.; Johnson, Clark M.

    2016-10-01

    Microbial dissimilatory iron reduction (DIR) is a deeply rooted metabolism in the Bacteria and Archaea. In the Archean and Proterozoic, the most likely electron acceptor for DIR in marine environments was Fe(III)-Si gels. It has been recently suggested that the Fe and Si cycles were coupled through sorption of aqueous Si to iron oxides/hydroxides, and through release of Si during DIR. Evidence for the close association of the Fe and Si cycles comes from banded iron formations (BIFs), which consist of alternating bands of Fe-bearing minerals and quartz (chert). Although there has been extensive study of the stable Fe isotope fractionations produced by DIR of Fe(III)-Si gels, as well as studies of stable Fe isotope fractionations in analogous abiologic systems, no studies to date have investigated stable Si isotope fractionations produced by DIR. In this study, the stable Si isotope fractionations produced by microbial reduction of Fe(III)-Si gels were investigated in simulated artificial Archean seawater (AAS), using the marine iron-reducing bacterium Desulfuromonas acetoxidans. Microbial reduction produced very large 30Si/28Si isotope fractionations between the solid and aqueous phase at ˜23 °C, where Δ30Sisolid-aqueous isotope fractionations of -3.35 ± 0.16‰ and -3.46 ± 0.09‰ were produced in two replicate experiments at 32% Fe(III) reduction (solid-phase Fe(II)/FeTotal = 0.32). This isotopic fractionation was substantially greater than that observed in two abiologic controls that had solid-phase Fe(II)/FeTotal = 0.02-0.03, which produced Δ30Sisolid-aqueous isotope fractionations of -2.83 ± 0.24‰ and -2.65 ± 0.28‰. In a companion study, the equilibrium Δ30Sisolid-aqueous isotope fractionation was determined to be -2.3‰ for solid-phase Fe(II)/FeTotal = 0. Collectively, these results highlight the importance of Fe(II) in Fe-Si gels in producing large changes in Si isotope fractionations. These results suggest that DIR should produce highly

  18. Silicon germanium carbon heteroepitaxial growth on silicon

    NASA Astrophysics Data System (ADS)

    Mayer, James W.

    1993-10-01

    This project represents the initiation of band-gap engineering of Si-based devices at Arizona State University by James W. Mayer. While at Cornell, he directed the Microscience and Technology program supported by the Semiconductor Research Corporation. His Work on heteoepitaxy of SiGe on silicon convinced him that heteroepitaxy on Si was a viable technique for forming smaller band gap layers on silicon but the requirement was for larger energy-gap materials. In the fall of 1991, James Mayer visited Tom Picraux of Sandia National Laboratories and Clarence Tracy of Motorola Semiconductor Products to discuss the possibility of a joint program to investigate Silicon Germanium Carbon Heteroepitaxial Growth on Silicon. This represented a new research and development initiate for band gap engineering.

  19. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    SciTech Connect

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; Georg, R. Bastian; Spicuzza, Michael J.; Valley, John W.

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up to 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.

  20. Material and device engineering in fully depleted silicon-on-insulator transistors to realize a steep subthreshold swing using negative capacitance

    NASA Astrophysics Data System (ADS)

    Ota, Hiroyuki; Migita, Shinji; Hattori, Junichi; Fukuda, Koichi; Toriumi, Akira

    2016-08-01

    This paper discusses material and device engineering in field-effect transistors (FETs) with HfO2-based ferroelectric gate insulators to attain a precipitous subthreshold swing (SS) by exploiting negative capacitance. Our physical analysis based on a new concept of a negative dielectric constant reveals that fully depleted silicon-on-insulator (FD-SOI) channels with a modest remnant polarization P r (3 µC/cm2 at most) are more suitable for realizing SS < 60 mV/decade than a higher P r of 10 µC/cm2, which is commonly reported for HfO2-based ferroelectric materials. We also confirm SS < 60 mV/decade in more than 5 orders of the subthreshold current in FD-SOI FETs with ferroelectric HfO2 gate insulators by device simulation.

  1. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  2. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  3. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the U.S. Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta H-2 and as delta 0-18, respectively. The values in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respec- tively. The values in water from the 38 ground- water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

  4. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-11-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

  5. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  6. Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Chaujar, Rishu

    2016-08-01

    In this paper, we have investigated the small-signal behaviour and RF noise performance of gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) MOSFET, and the results so obtained are simultaneously compared with SiNW and conventional MOSFET at THz frequency range. This work examines reflection and transmission coefficients, noise conductance, minimum noise figure and cross-correlation factor. Results reveal significant reduction in input/output reflection coefficient and an increase in forward/reverse transmission coefficient owing to improved transconductance in GEWE-SiNW in comparison with conventional counterparts. It is also observed that minimum noise figure and noise conductance of GEWE-SiNW is reduced by 17.4 and 31.2 %, respectively, in comparison with SiNW, thus fortifying its potential application for low-noise amplifiers (LNAs) at radio frequencies. Moreover, the efficacy of gate metal workfunction engineering is also studied and the results validate that tuning of workfunction difference results further improvement in device small-signal behaviour and noise performance.

  7. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  8. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers.

    PubMed

    Cooper, Scott P; Finlay, John A; Cone, Gemma; Callow, Maureen E; Callow, James A; Brennan, Anthony B

    2011-09-01

    Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.

  9. In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics.

    PubMed

    Shin, Jae Cheol; Kim, Kyou Hyun; Yu, Ki Jun; Hu, Hefei; Yin, Leijun; Ning, Cun-Zheng; Rogers, John A; Zuo, Jian-Min; Li, Xiuling

    2011-11-09

    We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.

  10. Silicon in the Earth's core.

    PubMed

    Georg, R Bastian; Halliday, Alex N; Schauble, Edwin A; Reynolds, Ben C

    2007-06-28

    Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.

  11. Isotopic Tracing of Fuel Components in Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-In-Diesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2001-03-20

    Accelerator Mass Spectrometry (AMs) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuel blends and a control diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol ({approx}400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMs analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0.% ethanol fuels, respectively). The distribution of the oxygen, not just the quantity, was an important factor in reducing PM emissions.

  12. Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends

    SciTech Connect

    Cheng, A.S.; Dibble, R.W.; Buchholz, B.

    1999-11-22

    Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol (>400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively).

  13. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  14. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs.

    PubMed

    Ondič, Lukáš; Varga, Marian; Hruška, Karel; Fait, Jan; Kapusta, Peter

    2017-03-03

    Silicon vacancy (SiV) centers are optically active defects in diamond. The SiV centers, in contrast to nitrogen vacancy (NV) centers, possess narrow and efficient luminescence spectrum (centered at ≈738 nm) even at room temperature, which can be utilized for quantum photonics and sensing applications. However, most of light generated in diamond is trapped in the material due to the phenomenon of total internal reflection. In order to overcome this issue, we have prepared two-dimensional photonic crystal slabs from polycrystalline diamond thin layers with high density of SiV centers employing bottom-up growth on quartz templates. We have shown that the spectral overlap between the narrow light emission of the SiV centers and the leaky modes extracting the emission into almost vertical direction (where it can be easily detected) can be obtained by controlling the deposition time. More than 14-fold extraction enhancement of the SiV centers photoluminescence was achieved compared to an uncorrugated sample. Computer simulation confirmed that the extraction enhancement originates from the efficient light-matter interaction between light emitted from the SiV centers and the photonic crystal slab.

  15. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  16. Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide.

    PubMed

    Corcoran, Bill; Pelusi, Mark D; Monat, Christelle; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Eggleton, Benjamin J

    2011-05-01

    We demonstrate all-optical demultiplexing of a high-bandwidth, time-division multiplexed 160 Gbit/s signal to 10 Gbit/s channels, exploiting slow light enhanced four-wave mixing in a dispersion engineered, 96 μm long planar photonic crystal waveguide. We report error-free (bit error rate<10⁻⁹) operation of all 16 demultiplexed channels, with a power penalty of 2.2-2.4 dB, highlighting the potential of these structures as a platform for ultracompact all-optical nonlinear processes.

  17. Engineering of phase matching for mid-infrared coherent anti-Stokes Raman wavelength conversion with orthogonally polarized pump and Stokes waves in silicon-on-sapphire waveguides.

    PubMed

    Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2013-11-20

    The conversion efficiency of mid-infrared wavelength conversion based on coherent anti-Stokes Raman scattering with TE-polarized pump and TM-polarized Stokes waves is theoretically investigated in silicon-on-sapphire (SOS) waveguides. The peak conversion efficiency of -10  dB is obtained when the linear propagation loss is 1  dB/cm at Δk=0; however, it is reduced to -13.6  dB when the linear propagation loss is 2  dB/cm. The phase matching for wavelength conversion with orthogonally polarized pump and Stokes waves can be realized by engineering the birefringence in SOS waveguides, because proper phase mismatch induced by birefringence together with material dispersion-induced phase mismatch can counteract the large phase mismatch induced by waveguide dispersion. Moreover, compared with the phase matching for identically polarized pump and Stokes waves, the phase matching for orthogonally polarized pump and Stokes waves can be realized in a SOS waveguide with much smaller cross section, which reduces the power requirement for optical systems.

  18. Experimental and Theoretical Analysis of Strain Engineered Aluminium Nitride on Silicon for High Quality Aluminium(x)Indium(y)Gallium(1-x-y)Nitride Epitaxy

    NASA Astrophysics Data System (ADS)

    Tungare, Mihir

    III-Nitrides on Si are of great technological importance due to the availability of large area, epi ready Si substrates and the ability to heterointegrate with mature silicon micro and nanoelectronics. The major roadblock with realizing this is the large difference in thermal expansion coefficients and lattice constants between the two material systems. A novel technique developed in our research lab shows the potential of simultaneous and substantial reduction in dislocation and crack density in GaN on Si (111). Research undertaken in the current doctoral dissertation, validates the superior GaN quality on Si obtained using our technique and determines the factors responsible for its successful implementation. Detailed study of the stress evolution and dislocation reduction mechanism within overgrown GaN on as-grown and engineered AlN/Si substrates is carried out. Based on the conclusions obtained in this study, a pulsed metal-organic chemical vapor deposition (MOCVD) technique for the growth of AlN on Si (111) is developed to achieve a smoother AlN buffer with larger islands. A 14× reduction in surface pit density for overgrown GaN is attained on these AlN/Si substrates after substrate engineering. Deep green emission at 560 nm from InGaN/GaN MQWs with 10× increase in photoluminescence (PL) intensity is obtained on these templates. Molecular dynamics (MD) is used with an ultimate goal to theoretically understand the stress dilution mechanism and assist in improving the technique experimentally. Plausible models to accurately simulate wurtzite AlN (w-AlN) and AlN on Si (111) are developed. Motion of Si islands on Si (111) bulk substrate is examined to assess the required simulation conditions, their compliance with experimental set-up, and the limitations. Homoepitaxial growth of w-AlN is carried out to simulate epitaxial deposition as a starting point for heteroepitaxy of AlN on Si (111) and also to eventually build the entire complex film stack that closely

  19. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    NASA Astrophysics Data System (ADS)

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.

    2009-04-01

    In France, the concept of a geological disposal of high-activity and long-period nuclear wastes requires the use of concrete and cement-bearing materials as building structures or as waste containment packages, in conjunction with clayey barriers (e.g., compacted bentonite as an engineered barrier and/or argillite-type rocks as a geological barrier). Hydrolysis of cementitious phases is however known to produce hyper-alkaline pore fluids with pH ranging from 10 to 13.5 that will be in disequilibrium with the geological setting environment (argillite pore-water pH around 8). The disturbance of clayey rocks in contact with such materials is thus an important task in safety assessment studies of deep geological storage. This concerns the knowledge of mineral / solution paths but also the spatial extent of the alkaline plume into the clayey material. Experimental and modelling approaches were performed this last decade to answer these questions. In addition to these approaches, natural or engineered contexts in which a clayey formation has been in contact with cementitious materials can be considered as analogues of a deep geological storage for the study of argillite /cement interaction. Such contexts can be found in the IRSN Tournemire experimental platform in Aveyron (France). This platform is based on a tunnel, excavated between 1882 and 1886 through Domerian marls and Toarcian argillites, which is dedicated since 1990 to multidisciplinary research programs. In the frameworks of these programs, exploration boreholes were realized from the basement of the tunnel in the 1990 years. The boreholes were then filled with concrete and cement that are presently in contact with the Toarcian argillites for 15-20 years. One of this borehole - DM borehole - was overcored in 2005 in order to collect the Toarcian argillites in contact with the cement and the concrete. Mineralogical, petrographic and microstructural analyses have argued for a clear disturbance of the Toarcian

  20. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars.

  1. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  2. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  3. Determination of Silicon in Hydrazine

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Mast, Dion; Greene, Ben; Maes, Miguel J.

    2006-01-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a highly sensitive technique sometimes used for the trace determination of silicon at a mass-to-charge (m/z) ratio of 28, the most abundant natural isotope of silicon. Unfortunately, ICP-MS is unable to differentiate between other sources of m/z 28 and false positive results for silicon will result when other sources of m/z 28 are present. Nitrogen was a major source of m/z 28 and contributes to the m/z 28 signal when hydrazine sample or nitric acid preservative is introduced into the plasma. Accordingly, this work was performed to develop a sample preparation step coupled with an ICP-MS analysis that minimized non-silicon sources of m/z 28. In the preparatory step of this method, the hydrazine sample was first decomposed predominately to nitrogen gas and water with copper-catalyzed hydrogen peroxide. In the analysis step, ICP-MS was used without nitric acid preservative in samples or standards. Glass, a potential source of silicon contamination, was also avoided where possible. The method was sensitive, accurate, and reliable for the determination of silicon in monopropellant grade hydrazine (MPH) in AF-E-332 elastomer leaching tests. Results for silicon in MPH were comparable to those reported in the literature for other studies.

  4. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  5. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    types of stellar sources, corresponding to the r-process, s-process, and p-process. Presolar silicon carbide grains, extracted from primitive meteorites, contain molybdenum that has been subject to s-process neutron capture in red-giant stars, resulting in large enrichments of isotopes at masses 95, 96, 97, 98, and severe depletions (up to 100%) of isotopes at masses 92 and 94 (p-process) and 100 (r-process) (Nicolussi et al., 1998). Complementary patterns have been found in whole-rock samples of several meteorites, with >1,000-fold smaller amplitude, suggesting the preservation of a small fraction of the initial isotopic heterogeneity ( Yin et al., 2002; Dauphas et al., 2002). Oxygen is another element for which primordial isotopic heterogeneity might be preserved. This is discussed further below.It would be highly desirable to have samples of oxygen-rich mineral grains that have formed in stellar atmospheres and have recorded the nucleosynthetic processes in individual stars. Similar samples are already available for carbon-rich grains, in the form of SiC and graphite, primarily from asymptotic giant branch (AGB) stars and supernovae (Anders and Zinner, 1993). These presolar grains have provided a wealth of detailed information concerning nucleosynthesis of carbon, nitrogen, silicon, calcium, titanium, and heavier elements (see Chapter 1.02). It is thought that such carbon-rich minerals should form only in environments with C/O>1, as in the late stages of AGB evolution, or in carbon-rich layers of supernovae. By analogy, one would expect to form oxide and silicate minerals in environments with C/O<1, as is common for most stars. Indeed there is evidence in infrared spectra for the formation of Al2O3 (corundum) and silicates, such as olivine (Speck et al., 2000) around evolved oxygen-rich stars. However, searches for such grains in meteorites have yielded only a very small population of corundum grains, a few grains of spinel and hibonite, and no silicates ( Nittler et

  6. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  7. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  8. Silicon spintronics.

    PubMed

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  9. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  10. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analysis was continued for the HSC process (Hemlock Semiconductor Corporation) in which solar cell silicon is produced in a 1,000 MT/yr plant. Progress and status are reported for the primary engineering activities involved in the preliminary process engineering design of the plant base case conditions (96%), reaction chemistry (96%), process flow diagram (85%), material balance (85%), energy balance (60%), property data (60%), equipment design (40%), major equipment list (30%) and labor requirements (10%). Engineering design of the second distillation column (D-02, TCS column) in the process was completed. The design is based on a 97% recovery of the light key (TCS, trichlorosilane) in the distillate and a 97% recovery of the heavy key (TET, silicon tetrachloride) in the bottoms. At a reflux ratio of 2, the specified recovery of TCS and TET is achieved with 20 trays (equilibrium stages, N=20). Respective feed tray locations are 9, 12 and 15 (NF sub 1 = 9, NF sub 2 = 12,, and NF sub 3 = 15). A total condenser is used for the distillation which is conducted at a pressure of 90 psia.

  11. Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp.

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Swann, G. E. A.; Leng, M. J.; Sloane, H. J.; Goodwin, C.; Berman, J.; Maldonado, M.

    2014-12-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotopic composition of spicules has been shown to relate to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship. Less is known about how the oxygen isotope composition of sponge spicule silica relates to environmental conditions during growth. Here, we investigate the biological vital effects on silica silicon and oxygen isotope composition in a carnivorous sponge, Asbestopluma sp., from the Southern Ocean. We find significant variations in silicon and oxygen isotopic composition within the specimen that appear related to unusual spicule silicification. The largest variation in both isotope systems was associated to the differential distribution of an unconventional, hypersilicified spicule type (desma) along the sponge body. The absence of an internal canal in the desmas suggests an unconventional silicification pattern leading to an unusually heavy isotopic signature. Additional internal variability derives from a systematic offset between the peripheral skeleton of the body having systematically a higher isotopic composition than the internal skeleton. A simplified silicon isotope fractionation model, in which desmas were excluded, suggests that the lack of a system for seawater pumping in carnivorous sponges favours a low replenishment of dissolved silicon within the internal tissues, causing kinetic fractionation during silicification that impacts the isotopic signature of the internal skeleton. Analysis of multiple spicules should be carried out to "average out" any artefacts in order to produce more robust downcore measurements.

  12. Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp.

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Swann, G. E. A.; Leng, M. J.; Sloane, H. J.; Goodwin, C.; Berman, J.; Maldonado, M.

    2015-06-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotope composition of spicules has been shown to relate to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship. Less is known about how the oxygen isotope composition of sponge spicule silica relates to environmental conditions during growth. Here, we investigate the vital effects on silica, silicon and oxygen isotope composition in a carnivorous sponge, Asbestopluma sp., from the Southern Ocean. We find significant variations in silicon and oxygen isotopic composition within the specimen that are related to unusual spicule silicification. The largest variation in both isotope systems was associated with the differential distribution of an unconventional, hypersilicified spicule type (desma) along the sponge body. The absence an internal canal in the desmas suggests an unconventional silicification pattern leading to an unusually heavy isotope signature. Additional internal variability derives from a systematic offset between the peripheral skeleton of the body having systematically a higher isotopic composition than the internal skeleton. A simplified silicon isotope fractionation model, in which desmas were excluded, suggests that the lack of a system for seawater pumping in carnivorous sponges favours a low replenishment of dissolved silicon within the internal tissues, causing kinetic fractionation during silicification that impacts the isotope signature of the internal skeleton. Analysis of multiple spicules should be carried out to "average out" any artefacts in order to produce more robust downcore measurements.

  13. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  14. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  15. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  16. Silicon based materials for drug delivery devices and implants.

    PubMed

    Bernik, Delia L

    2007-01-01

    This patent review focuses on silicon based materials for drug delivery systems and implant devices devoted to medical applications. The article describes some representative examples of the most depictive silicon based compounds associated with drug release formulations and tissue engineering biomaterials. Ranging from inorganic to organic and hybrid inorganic-organic silicon compounds, the paper referrers to patents describing inventions which make use of the best properties of silicon dioxide, silica aerogel and xerogel, silicon bioactive materials, silicones and ormosils, pointing out the usefulness of each kind of compound within the invention embodiment.

  17. Stimulation of 450, 650 and 850-nm optical emissions from custom designed silicon LED devices by utilizing carrier energy and carrier momentum engineering

    NASA Astrophysics Data System (ADS)

    Snyman, L. W.; Polleux, J.-L.; Xu, K.

    2016-02-01

    Optical emission probabilities from silicon were analyzed by appropriate modelling, taking the silicon energy band structure, available carrier energy spread, and available carrier momentum spreads that can be realized with typical device design and operating conditions as available in current silicon technologies. The analyses showed that creation of micron-dimensioned conduction channels as made possible by using a RF bipolar fabrication process, appropriate doping and variations in the channel utilizing Boron, Phosphorous and Germanium doping, and using reversed biased junctions to energize specifically electrons, appropriately controlling carrier energy and carrier density, and control over carrier momentum through appropriate impurity scattering technology; particularly, 280nm, 650nm and 850nm emissions can be stimulated. Particularly, using p+nn and p+np+ device designs with appropriate control over carrier energy, carrier type balancing and implementing enhanced impurity scattering in some device regions, show the greatest potential to enhance these emissions. First iteration empirically conducted device realizations results show interesting peaking features and nonuniform high intensity behaviors. Particularly, it was succeeded to increase the emissions at 650nm with about two orders of magnitude. Internal electrical- to- optical conversion efficiencies of up to 10-4 and intensity emissions of up to 200 nW μm2 are derived, with further prospects to increase emissions further. The attained results compare extremely favorable, and in some cases exceeds, results as published by Venter et al, Kuindersma et al and Du Plessis et al using related technologies.

  18. Compelling Research Opportunities using Isotopes

    SciTech Connect

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  19. Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97

    SciTech Connect

    E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay

    2000-05-30

    >From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

  20. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  1. Fractal Hierarchy in Isotopic Positional Correlations in Crystals

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2007-03-01

    From subatomic particles to superclusters of galaxies, nature has nested hierarchial fractal-like organization (R.L. Oldershaw). Earlier I discussed formation of isotopic superlattices due to self organizational dynamics among isotopes (A.A. Berezin, SolidStComm, 1988). Informationally (in spirit of ``Maxwell's demon'' engine), formation of isotopic superlattices can be inferred from Maximum Entropy Principle (C.E. Shannon, E.T. Jaynes). In spite that effects of gravitation for isotopes (due to their nuclear mass difference) are very small, they can, nevertheless, manifest in such subtle effects as gravitationally-induced reduction (collapse) of wave functions (F. Karolyhazy, R. Penrose, A.A. Berezin). Since Planck mass (which is combination of h, G and c) is about 0.02 mg, size of desired isotopic fluctuation should be about 100 mkm (mesoscipic). Experimentally, isotopic correlations, micron and sub-millimeter isotopic fluctuations, isotopic clusters and isotopic fractal-type distribution can be probed by Rayleigh scattering (sampling at various wavelengths) and/or such high electric field effects as hopping conductivity (B. Ya. Shklovsky) in which isotopic clusters act as trapping or scattering centers. Other aspects of purposeful isotopic structuring (isotopic engineering) include isotopic fiber optics (A.A. Berezin) when core and cladding has varied (step or gradual) isotopic content which causes total internal reflection and light confinement.

  2. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.

  3. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1995-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.

  4. Silicon microdosimetry.

    PubMed

    Agosteo, Stefano; Pola, Andrea

    2011-02-01

    Silicon detectors are being studied as microdosemeters since they can provide sensitive volumes of micrometric dimensions. They can be applied for assessing single-event effects in electronic instrumentation exposed to complex fields around high-energy accelerators or in space missions. When coupled to tissue-equivalent converters, they can be used for measuring the quality of radiation therapy beams or for dosimetry. The use of micrometric volumes avoids the contribution of wall effects to the measured spectra. Further advantages of such detectors are their compactness, cheapness, transportability and a low sensitivity to vibrations. The following problems need to be solved when silicon devices are used for microdosimetry: (i) the sensitive volume has to be confined in a region of well-known dimensions; (ii) the electric noise limits the minimum detectable energy; (iii) corrections for tissue-equivalency should be made; (iv) corrections for shape equivalency should be made when referring to a spherical simulated site of tissue; (v) the angular response should be evaluated carefully; (vi) the efficiency of a single detector of micrometric dimensions is very poor and detector arrays should be considered. Several devices have been proposed as silicon microdosemeters, based on different technologies (telescope detectors, silicon on insulator detectors and arrays of cylindrical p-n junctions with internal amplification), in order to satisfy the issues mentioned above.

  5. Valleys in a silicon/silicon-germanium quantum point contact

    NASA Astrophysics Data System (ADS)

    McGuire, Lisa M.

    This thesis develops a method for performing spectroscopy on a quantum point contact and extracting the energies that contribute to the spectrum, most notably in this case, the valley splitting. Valleys in silicon are of interest from a materials point of view when implementing quantum computing in silicon, because quantum computing relies on the existence of two well defined states, and the presence of valleys possibly interferes with that requirement. While silicon is of great interest for this application due to its low spin-orbit coupling and the abundance of an isotope with zero nuclear spin, two of the main sources for decoherence, silicon also has a near degeneracy in the conduction band minimum (valley), possibly leading to another source of decoherence. Recent measurements have shown the valley splitting to be acceptably large in the presence of confinement. This thesis builds on those results by investigating the fundamental mechanisms of valley splitting by taking into account the coupling of the valleys in different transverse confinement modes of a quantum point contact and the dependence of valley splitting on the relevant properties of the substrate and material, namely the miscut angle and device orientation. Also included are estimates of the uncertainty and explanation of how we defined the uncertainty and the methods we used to calculate it. A comparison between previously published results and those presented in this thesis shows that they are consistent with each other and the valley splitting is indeed larger than the spin splitting.

  6. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  7. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S. W.; Röckmann, T.; Reimann, S.

    2012-03-01

    Molecular hydrogen (H2), its stable isotope signature (δD), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally depleted compared to ambient intake air, while CO was significantly elevated. These findings contradict the often assumed co-occurring net H2 and CO emissions in combustion processes and suggest that previous H2 emissions from combustion may have been overestimated when scaled to CO emissions. For the heater exhausts, H2 and δD generally decrease with increasing fuel-to-air ratio, from ambient values of ∼0.5 ppm and +130‰ to 0.2 ppm and -206‰, respectively. These results are interpreted as a combination of an isotopically light H2 source from fossil fuel combustion and a D/H kinetic isotope fractionation of hydrogen in the advected ambient air during its partial removal during combustion. Diesel exhaust measurements from dynamometer test stand driving cycles show elevated H2 and CO emissions during cold-start and some acceleration phases. Their molar H2/CO ratios are <0.25, significantly smaller than those for gasoline combustion. Using H2/CO emission ratios, along with CO global emission inventories, we estimate global H2 emissions for 2000, 2005, and 2010. For road transportation (gasoline and diesel), we calculate 8.6 ± 2.1 Tg, 6.3 ± 1.5 Tg, and 4.1 ± 1.0 Tg, respectively, whereas the contribution from diesel vehicles has increased from 5% to 8% over this time. Other fossil fuel emissions are believed to be negligible but H2 emissions from coal combustion are unknown. For residential (domestic) emissions, which are likely dominated by biofuel combustion, emissions for the same years are estimated at 2.7 ± 0.7 Tg, 2.8 ± 0.7 Tg, and 3.0 ± 0.8 Tg, respectively. Our wood combustion measurements are combined with results from the literature to calculate

  8. Isotope fractionation

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rash of new controversy has emerged around the subject of mass-independent isotope fractionation effects, particularly in the case of the oxygen isotopes. To be sure, the controversy has been around for awhile, but it has been given new impetus by the results of a recent study by Mark H. Thiemens and John E. Heidenreich III of the University of California, San Diego (Science, March 4, 1983).Gustav Arrhenius has been trying to convince the planetary science community that chemical effects in isotope fractionation processes could explain observations in meteorites that appear to be outside of the traditionally understood mass-dependent fractionations (G. Arrhenius, J . L. McCrumb, and N. F. Friedman, Astrophys. Space Sci, 65, 297, 1974). Robert Clayton had made the basic observations of oxygen in carbonaceous chondrites that the slope of the δ17 versus δ18 line was 1 instead of the slope of ½ characteristic of terrestrial rocks and lunar samples (Ann. Rev. Nucl. Part. Sci., 28, 501, 1978). The mass-independent effects were ascribed to the apparent contribution of an ancient presolar system component of O16.

  9. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy.

  10. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  11. Dissolution of bulk specimens of silicon nitride

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  12. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S. W.; Röckmann, T.; Reimann, S.

    2012-07-01

    Molecular hydrogen (H2), its stable isotope signature (δD), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally depleted compared to ambient intake air, while CO was significantly elevated. These findings contradict the often assumed co-occurring net H2 and CO emissions in combustion processes and suggest that previous H2 emissions from combustion may have been overestimated when scaled to CO emissions. For the gas and oil-fired heater exhausts, H2 and δD generally decrease with increasing CO2, from ambient values of ~0.5 ppm and +130‰ to 0.2 ppm and -206‰, respectively. These results are interpreted as a combination of an isotopically light H2 source from fossil fuel combustion and a D/H kinetic isotope fractionation of hydrogen in the advected ambient air during its partial removal during combustion. Diesel exhaust measurements from dynamometer test stand driving cycles show elevated H2 and CO emissions during cold-start and some acceleration phases. While H2 and CO emissions from diesel vehicles are known to be significantly less than those from gasoline vehicles (on a fuel-energy base), we find that their molar H2/CO ratios (median 0.026, interpercentile range 0.12) are also significantly less compared to gasoline vehicle exhaust. Using H2/CO emission ratios, along with CO global emission inventories, we estimate global H2 emissions for 2000, 2005, and 2010. For road transportation (gasoline and diesel), we calculate 8.3 ± 2.2 Tg, 6.0 ± 1.5 Tg, and 3.8 ± 0.94 Tg, respectively, whereas the contribution from diesel vehicles is low (0.9-1.4%). Other fossil fuel emissions are believed to be negligible but H2 emissions from coal combustion are unknown. For residential (domestic) emissions, which are likely dominated by biofuel combustion, emissions for the same years are

  13. Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)

    SciTech Connect

    Schock, A.

    1983-04-29

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

  14. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment.

    PubMed

    Sampaio, Maria-Manuel; Santos, Helena; Boos, Winfried

    2003-01-01

    We report the construction of an Escherichia coli mutant that harbors two compatible plasmids and that is able to synthesize labeled 2-O-alpha-D-mannosyl-D-glycerate from externally added labeled mannose without the loss of specific isotopic enrichment. The strain carries a deletion in the manA gene, encoding phosphomannose isomerase. This deletion prevents the formation of fructose-6-phosphate from mannose-6-phosphate after the uptake of mannose from the medium by mannose-specific enzyme II of the phosphotransferase system (PtsM). The strain also has a deletion of the cps gene cluster that prevents the synthesis of colanic acid, a mannose-containing polymer. Plasmid-encoded phosphomannomutase (cpsG) and mannose-1-phosphate guanylyltransferase (cpsB) ensure the formation of GDP-mannose. A second plasmid harbors msg, a gene from Rhodothermus marinus that encodes mannosylglycerate synthase, which catalyzes the formation of 2-O-alpha-D-mannosyl-D-glycerate from GDP-mannose and endogenous glycerate. The rate-limiting step in 2-O-alpha-D-mannosyl-D-glycerate formation is the transfer of GDP-mannose to glycerate. 2-O-alpha-D-mannosyl-D-glycerate can be released from cells by treatment with cold-water shock. The final product is formed in a yield exceeding 50% the initial quantity of labeled mannose, including loss during preparation and paper chromatography.

  15. Surface Engineering of Polycrystalline Silicon for Long-term Mechanical Stress Endurance Enhancement in Flexible Low Temperature Poly-Si Thin-Film Transistors.

    PubMed

    Chen, Bo-Wei; Chang, Ting-Chang; Hung, Yu-Ju; Huang, Shin-Ping; Chen, Hua-Mao; Liao, Po-Yung; Lin, Yu-Ho; Huang, Hui-Chun; Chiang, Hsiao-Cheng; Yang, Chung-I; Zheng, Yu-Zhe; Chu, Ann-Kuo; Li, Hung-Wei; Tsai, Chih-Hung; Lu, Hsueh-Hsing; Wang, Terry Tai-Jui; Chang, Tsu-Chiang

    2017-02-08

    Surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used. This paper investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Our simulated results show that the non-uniform stress in the gate insulator is more pronounced near the polysilicon/gate insulator edge and at the two sides of the polysilicon protrusion. This stress results in defects in the gate insulator and leads to a non-uniform degradation phenomenon, which affects both the performance and reliability in thin-film transistors (TFTs). The degree of degradation is similar regardless of bending axis (channel-length axis, channel-width axis) or bending type (compression, tension), which means that the degradation is dominated by the protrusion effects. Furthermore, by utilizing long-term electrical bias stresses after undergoing long-tern bending stress, it is apparent that the carrier injection is severe in the sub-channel region, which confirms that the influence of protrusions is crucial. To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height. The device with lowest protrusions demonstrates the smallest degradation after undergoing long-term bending.

  16. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  17. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  18. Retrograde Melting and Internal Liquid Gettering in Silicon

    SciTech Connect

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  19. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K. Y.; Hopper, J. R.; Fang, C. S.; Hansen, K. C.

    1981-01-01

    Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials.

  20. Methods of Si based ceramic components volatilization control in a gas turbine engine

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  1. Modeling of microporous silicon betaelectric converter with 63Ni plating in GEANT4 toolkit*

    NASA Astrophysics Data System (ADS)

    Zelenkov, P. V.; Sidorov, V. G.; Lelekov, E. T.; Khoroshko, A. Y.; Bogdanov, S. V.; Lelekov, A. T.

    2016-04-01

    The model of electron-hole pairs generation rate distribution in semiconductor is needed to optimize the parameters of microporous silicon betaelectric converter, which uses 63Ni isotope radiation. By using Monte-Carlo methods of GEANT4 software with ultra-low energy electron physics models this distribution in silicon was calculated and approximated with exponential function. Optimal pore configuration was estimated.

  2. Solar energy innovation and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  3. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    PubMed

    Sapcariu, Sean C; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  4. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  5. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    USGS Publications Warehouse

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  6. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1993

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that equaled or exceeded their reporting levels. The ethylbenzene concentration in one water sample exceeded the reporting level.

  7. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  8. Ca isotope fractionation on the moon

    NASA Technical Reports Server (NTRS)

    Russell, W. A.; Papanastassiou, D. A.; Tombrello, T. A.; Epstein, S.

    1977-01-01

    Ca has been measured in a lunar soil in order to establish the presence of isotopically mass-fractionated components. Ca was extracted by a series of water leaches after the soils were 'activated' by brief exposures to fluorine gas. The O2 obtained by this fluorination is found to have delta (O-18) of +21 per mil and to be, therefore, significantly mass-fractionated. Ca obtained in the leaches was analyzed using the double-spike technique. Very small Ca isotope fractionation is found in the leaches of this soil of up to 1 per mil per mass unit difference. The small Ca effects are in marked contrast to the measured delta (O-18) for the same sample and to large effects observed in many soils for oxygen, silicon, sulfur, and potassium. The data on Ca provide stringent constraints on models which attempt to explain the isotope mass-fractionation effects in lunar soils.

  9. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is

  10. Silicon carbide

    SciTech Connect

    Ault, N.N.; Crowe, J.T. )

    1991-05-01

    This paper reports that, since silicon carbide (SiC) does not occur in nature, it must be synthesized by a high-temperature chemical reaction. The first commercial production began at the end of the 19th century when Acheson developed a process of reacting sand and coke in a resistance furnace. This process is still the basic SiC manufacturing process used today. High-quality silica sand (99.5% SiO{sub 2}), low-sulfur petroleum coke, and electricity (23.8 MJ/kg) are the major ingredients in the production of SiC. The reaction takes place in a trough-like furnace with a removable refractory side (or some similar configuration) and with permanent refractory ends holding carbon electrodes. When the furnace is started, the carbon electrodes are joined by the graphite core laid the length of the furnace near the center of the mixture which fills the furnace.

  11. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  12. New engine and advanced component design

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the proceedings on new engine and advance component design. Topics covered include: development of low emission high performance four valve engines, the effect of engine build options on powerplant inertias, silicon nitride turbocharger rotor for high performance automotive engines and development of Toyota reflex Burn (TRB) system in DI diesel.

  13. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  14. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  15. The isotopic composition of enriched Si: a data analysis

    NASA Astrophysics Data System (ADS)

    Bulska, E.; Drozdov, M. N.; Mana, G.; Pramann, A.; Rienitz, O.; Sennikov, P.; Valkiers, S.

    2011-04-01

    To determine the Avogadro constant by counting the atoms in quasi-perfect spheres made of a silicon crystal highly enriched with 28Si, the isotopic composition of the crystal was measured in different laboratories by different measurement methods. This paper examines the consistency of the measurement results.

  16. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  17. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  18. Silicon micro- and nanofabrication for medicine.

    PubMed

    Fine, Daniel; Grattoni, Alessandro; Goodall, Randy; Bansal, Shyam S; Chiappini, Ciro; Hosali, Sharath; van de Ven, Anne L; Srinivasan, Srimeenkashi; Liu, Xuewu; Godin, Biana; Brousseau, Louis; Yazdi, Iman K; Fernandez-Moure, Joseph; Tasciotti, Ennio; Wu, Hung-Jen; Hu, Ye; Klemm, Steve; Ferrari, Mauro

    2013-05-01

    This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.

  19. Silicon Micro- and Nanofabrication for Medicine

    PubMed Central

    Fine, Daniel; Goodall, Randy; Bansal, Shyam S.; Chiappini, Ciro; Hosali, Sharath; van de Ven, Anne L.; Srinivasan, Srimeenkashi; Liu, Xuewu; Godin, Biana; Brousseau, Louis; Yazdi, Iman K.; Fernandez-Moure, Joseph; Tasciotti, Ennio; Wu, Hung-Jen; Hu, Ye; Klemm, Steve; Ferrari, Mauro

    2013-01-01

    This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation. PMID:23584841

  20. Silicon-film{trademark} on ceramic solar cells. Final report

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1993-02-01

    The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

  1. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  2. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  3. Evaluation of silicon-nitride ceramic valves.

    SciTech Connect

    Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

    2008-01-01

    Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

  4. Improved "Green" Forming Of Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Freedman, Marc R.; Sanders, William A.; Kiser, James D.

    1988-01-01

    Advanced processing techniques reduce incidence of critical flaws. Critical flaws reduced by processing of powders to avoid organic and metallic contamination and combination of colloidal techniques with innovative slurry-pressing technique avoiding agglomeration. Silicon nitride considered for many applications ranging from components of turbine engines to industrial heat exchangers.

  5. Breast Implants: Saline vs. Silicone

    MedlinePlus

    ... to women of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with ... likely be inserted at the same time. Ruptured silicone implant If a silicone breast implant ruptures, you ...

  6. Catastrophic Impact of Silicon on Silicon: Unraveling the Genesis Impact Using Sample 61881

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Kim, H.; Jurewicz, A. J. G.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind were stopped in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. The current work is motivated by the need to understand the interaction of the Genesis payload with contamination during the crash in the Utah desert. Silicon contamination has been found to be notoriously difficult to remove from silicon samples despite multiple cleanings with multiple techniques. However, the question has been posed, "Does the silicon really need to be removed for large area analyses?." If the recalcitrant silicon contamination is all pure silicon from fractured collectors, only a very tiny fraction of that bulk material will contain solar wind, which could skew the analyses. This could be complicated if the silicon trapped other materials and/or gases as it impacted the surface.

  7. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    SciTech Connect

    Petrie, Christian M.; McDuffee, Joel Lee; Katoh, Yutai; Terrani, Kurt A.

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  8. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  9. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  10. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  11. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  12. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  13. Intravitreal properties of porous silicon photonic crystals

    PubMed Central

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  14. Sampling Artifacts from Conductive Silicone Tubing

    SciTech Connect

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

    2009-05-15

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

  15. Atomistic investigation into the interface engineering and heteroepitaxy of functional oxides on hexagonal silicon carbide through the use of a magnesium oxide template layer for the development of a multifunctional heterostructure

    NASA Astrophysics Data System (ADS)

    Goodrich, Trevor L.

    Advancements in integrated circuit technology are quickly approaching the threshold of silicon semiconductor electronics. In order to break away from the confinements of standard device architecture and silicon's intrinsic material limitations, it is necessary to make an innovational change toward a new generation of novel materials with diverse functionality and superior mechanical, electrical, and magnetic properties that can perform under high-power, high-frequency, high-temperature application requirements. In order for the realization of a next-generation device, it will be necessary to diverge from traditional semiconductor processing into a wide bandgap semiconductor platform. Further, the realization of a next-generation device necessitates the development of novel functional materials that can accommodate the increased performance requirements of both the wide bandgap semiconductor platform and enable multifunctionality; one device interacting with the environment in multiple ways. The novel materials proposed are functional oxides, which can be tuned statically or dynamically to interact with their environment in different ways and can couple with each other to make multifunctional heterostructure devices. Through molecular beam epitaxy, this research explores the use of a magnesium oxide (MgO) template layer and the interface formation mechanism of an oxygen bridge for effective heteroepitaxy of high-quality, ferroelectric barium titanate (BTO) on 6H-SiC. High quality, single crystalline MgO(111) is obtained with a smooth surface (RMS < 0.5 nm) and a stepped morphology conformal to the underlying 6H-SiC morphology, but is inherently twinned due to the ionic nature of a (111) oriented rocksalt structure. The smooth, conformal 2-D growth mechanism of MgO prefers to grow in tension with a 3.3% lattice mismatch, requires the presence of atomic oxygen, and transitions to a more 3-D growth mode when the thickness reaches ˜10 nm. The engineered MgO surface is

  16. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  17. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  18. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  19. A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials.

    PubMed

    Zhang, Xiaoning; Brodus, DaShan; Hollimon, Valerie; Hu, Hongmei

    2017-01-01

    Silicon and silicon-based materials are essential to our daily life. They are widely used in healthcare and manufacturing. However, silicon and silicon-based materials are susceptible to bio-fouling, which is of great concern in numerous applications. To date, interdisciplinary research in surface science, polymer science, biology, and engineering has led to the implementation of antifouling strategies for silicon-based materials. However, a review to discuss those antifouling strategies for silicon-based materials is lacking. In this article, we summarized two major approaches involving the functionalization of silicon and silicon-based materials with molecules exhibiting antifouling properties, and the fabrication of silicon-based materials with nano- or micro-structures. Both approaches lead to a significant reduction in bio-fouling. We critically reviewed the designs that prevent fouling due to proteins, bacteria, and marine organisms on silicon and silicon-based materials. Graphical abstractStrategies used in the designs that prevent bio-fouling on silicon and silicon-based materials.

  20. First results from the SLD silicon calorimeters

    NASA Astrophysics Data System (ADS)

    Berridge, S. C.; Bugg, W. M.; Kroeger, R. S.; Weidemann, A. W.; White, S. L.; Brau, J. E.; Frey, R.; Furuno, K.; Huber, J.; Hwang, H.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68-190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X(sub 0) sampling, while the MASC has 10 layers of 1.74 X(sub 0) sampling. We present results from the first run of the SLC with the SLD on beamline.

  1. First results from the SLD silicon calorimeters

    SciTech Connect

    Berridge, S.C.; Bugg, W.M.; Kroeger, R.S.; Weidemann, A.W.; White, S.L.; Brau, J.E.; Frey, R.; Furuno, K.; Huber, J.; Hwang, H.; Park, H.; Pitts, K.T.; Zeitlin, C.J.; Gioumousis, A.; Haller, G.; Seward, P.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68--190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X{sub 0} sampling, while the MASC has 10 layers of 1.74 X{sub 0} sampling. We present results from the first run of the SLC with the SLD on beamline.

  2. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  3. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  4. Sputtering - Its relationship to isotopic fractionation on the lunar surface

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Kaplan, I. R.

    1978-01-01

    Silicon, oxygen, sulfur and, possibly, potassium show systematic enrichment of heavier isotopes with increasing soil maturity, probably as a result of solar-wind sputtering, but such a pattern is not exhibited by solar wind-implanted species. Apparently sputter-erosion is not penetrating to their implantation depth, about 200 A. This suggests that sputtering on the moon is being impeded by deposition of vapor condensate following meteoritic impact. Although neither secular variation in the isotopic composition at the source of regolith carbon, probably the solar wind, nor isotopic fractionation of carbon after implantation in the regolith can be ruled out, carbon isotope systematics currently yield no evidence in support of either process.

  5. Generation of Radixenon Isotopes

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  6. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  7. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  8. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Musser, Jim

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  9. Silicon Brains

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation <1 kW. For a balanced view on intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  10. Silicon Carbide Growth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Andrew Trunek has focused on supporting the Sic team through the growth of Sic crystals, making observations and conducting research that meets the collective needs and requirements of the team while fulfilling program commitments. Cancellation of the Ultra Efficient Engine Technology (UEET) program has had a significant negative impact on resources and research goals. This report highlights advancements and achievements made with this cooperative agreement over the past year. NASA Glenn Research Center (GRC) continues to make advances in silicon carbide (SiC) research during the past year. Step free surfaces were used as substrates for the deposition of GaN epilayers that yielded very low dislocation densities. Defect free 3C- SiC was successfully nucleated on step free mesas and test diodes were fabricated. Web growth techniques were used to increase the usable surface area of dislocation free SiC by approximately equal to 40%. The greatest advancement has been attained on stepped surfaces of SiC. A metrology standard was developed using high temperature etching techniques titled "Nanometer Step Height Standard". This development culminated in being recognized for a 2004 R&D100 award and the process to produce the steps received a NASA Space Act award.

  11. Nanocrystalline silicon/amorphous silicon dioxide superlattices

    SciTech Connect

    Fauchet, P.M.; Tsybeskov, L.; Zacharias, M. |; Hirschman, K. |

    1998-12-31

    Thin layers made of densely packed silicon nanocrystals sandwiched between amorphous silicon dioxide layers have been manufactured and characterized. An amorphous silicon/amorphous silicon dioxide superlattice is first grown by CVD or RF sputtering. The a-Si layers are recrystallized in a two-step procedure (nucleation + growth) for form layers of nearly identical nanocrystals whose diameter is given by the initial a-Si layer thickness. The recrystallization is monitored using a variety of techniques, including TEM, X-Ray, Raman, and luminescence spectroscopies. When the a-Si layer thickness decreases (from 25 nm to 2.5 nm) or the a-SiO{sub 2} layer thickness increases (from 1.5 nm to 6 nm), the recrystallization temperature increases dramatically compared to that of a single a-Si film. The removal of the a-Si tissue present between the nanocrystals, the passivation of the nanocrystals, and their doping are discussed.

  12. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  13. Silicon on graphite cloth

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Thomas, C.J.; Ingram, A.E.; Bai, Y.B.; Ruffins, T.R.; Barnett, A.M.

    1994-12-31

    A new polycrystalline silicon solar cell has been developed that utilizes commercially available graphite cloth as a substrate. This solar cell has achieved an energy conversion efficiency of 13.4% (AM1.5G). It is believed that this is a record efficiency for a silicon solar cell formed on a graphite substrate. The silicon-on-fabric structure is comprised of a thin layer of polycrystalline silicon grown directly on the graphite fabric substrate. The structure is fabricated by a low-cost ribbon process that avoids the expense and waste of wafering. The fabric substrate gives structural support to the thin device. Critical to the achievement of device quality silicon layers is control over impurities in the graphite fabric. The silicon-on-fabric technology has the potential to supply lightweight, low-cost solar cells to weight-sensitive markets at a fraction of the cost of conventionally thinned wafers.

  14. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  15. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  16. Comparing ostomates' perceptions of hydrocolloid and silicone seals: a survey.

    PubMed

    Cutting, Keith

    2016-12-08

    Most stoma flanges are made of hydrocolloid material. Hydrocolloid is a hydrophilic material that attracts water, potentially resulting in moisture becoming trapped between the flange and skin. Also, as hydrocolloids are absorbent, the material breaks down over time, and there is a risk that some of the adhesive can remain on the skin on removal. Unlike hydrocolloids, silicone comprises fully cross-linked silicone polymers whose properties have been engineered to manage moisture without breaking down (i.e. manage the transepidermal water loss (TEWL)). A questionnaire survey was undertaken to determine ostomates' perceptions of silicone versus hydrocolloid stoma care products (both flanges and seals). The survey was sent to 229 ostomates who had used silicone seals, of whom 78 returned it (a response rate of 34%). The results suggest that use of the silicone seals resulted in a improvement in the condition of the peristomal skin condition, reduced leakage and increased wear time. Further research into this area is required.

  17. Process Feasibility Study in Support of Silicon Material Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).

  18. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  19. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.

    PubMed

    Qi, Chengzhu; Striemer, Christopher C; Gaborski, Thomas R; McGrath, James L; Fauchet, Philippe M

    2014-07-23

    Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.

  20. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  1. Silicon Carbide Shapes.

    DTIC Science & Technology

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  2. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  3. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  4. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  5. Compounding with Silicones.

    PubMed

    Allen, Loyd V

    2015-01-01

    Since the 1940s, methylchlorosilanes have been used to treat glassware to prevent blood from clotting. The use of silicones in pharmaceutical and medical applications has grown to where today they are used in many life-saving devices (pacemakers, hydrocephalic shunts) and pharmaceutical applications from tubing, to excipients in topical formulations, to adhesives to affix transdermal drug delivery systems, and are also being used in products as active pharmaceutical ingredients, such as antiflatulents. About 60% of today's skin-care products now contain some type of silicone where they are considered safe and are known to provide a pleasant "silky-touch," non-greasy, and non-staining feel. Silicones exhibit many useful characteristics, and the safety of these agents supports their numerous applications; their biocompatibility is partially due to their low-chemical reactivity displayed by silicones, low-surface energy, and their hydrophobicity. Silicones are used both as active ingredients and as excipients. In addition is their use for "siliconization," or surface treatment, of many parenteral packaging components. Dimethicone and silicone oil are used as lubricants on stoppers to aid machineability, in syringes to aid piston movement, or on syringe needles to reduce pain upon injection. Silicones are also useful in pharmaceutical compounding as is discussed in this artiele included with this article are in developing formulations with silicones.

  6. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  7. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  8. SILICON METABOLISM IN DIATOMS

    PubMed Central

    Lewin, Joyce C.

    1954-01-01

    1. Cells of the fresh water diatom Navicula pelliculosa may be grown in a mineral medium containing a low concentration of silicon. When transferred to a fresh silicate solution and incubated under non-growing conditions such deficient cells rapidly take up silicon from the medium. 2. The utilization of silicon is an aerobic process. 3. When deficient cells are washed with distilled water or saline, their ability to utilize silicon is impaired whereas respiration is unaffected. 4. The ability of washed cells to take up silicon can be partially restored with sulfate or ascorbic acid, and is completely restored by Na2S, Na2S2O3, glutathione, l-cysteine, dl-methionine, or ascorbic acid plus sulfate. 5. The sulfhydryl reagent, CdCl2, inhibits silicon utilization of unwashed cells at concentrations which do not affect respiration. This inhibition similarly is reversed by glutathione or cysteine. 6. However, sodium iodoacetate or sodium arsenite inhibits respiration and silicon utilization at the same concentrations. 7. The silicon taken up by deficient cells is deposited at the cell surface as a thickening of the existing silica frustules. 8. Sulfhydryl groups in the cell membrane may be involved in silicon uptake by diatoms. PMID:13163359

  9. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  10. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia E.; Van Buuren, Anthony; Terminello, Louis; Hart, Bradley R.

    2006-12-26

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  11. Electrical Spin-Injection into Silicon and Spin FET

    DTIC Science & Technology

    2010-02-18

    MgO/silicon tunneling emitter NPN bipolar transistors . Device simulations revealed that the NDTC was the consequence of an inversion layer at...2009. He is now a research engineer at Intel Semiconductor Company. The aim of the project was to explore a tunneling emitter bipolar transistor as a...possible spin injector into silicon, and we have succeeded in that goal. The transistor has a metallic emitter that as a spin-injector will be a 1

  12. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  13. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  14. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  15. Sputtering and codeposition of silicon carbide with deuterium

    NASA Astrophysics Data System (ADS)

    Causey, Rion A.

    2003-03-01

    Due to its excellent thermal properties, silicon carbide is being considered as a possible plasma-facing material for fusion devices. If used as a plasma-facing material, the energetic hydrogen isotope ions and charge-exchanged neutrals escaping from the plasma will sputter the silicon carbide. To assess the tritium inventory problems that will be generated by the use of this material, it is necessary that we know the codeposition properties of the redeposited silicon carbide. To determine the codeposition properties, the deuterium plasma experiment at Sandia National Laboratories in Livermore, California has been used to directly compare the deuterium sputtering and codeposition of silicon carbide with that of graphite. A Penning discharge at a flux of 6×10 19 D/m 2 and an energy of ≈300 eV was used to sputter silicon and carbon from a pair of 0.05 m diameter silicon carbide disks. The removal rate of deuterium gas from the fixed volume of the system isolated from all other sources and sinks was used to measure the codeposition probability (probability that a hydrogen isotope atom will be removed through codeposition per ion striking the sample surface). A small catcher plate used to capture a fraction of the codeposited film was analyzed using Auger spectroscopy. This analysis showed the film to begin with a high carbon to silicon ratio due to preferential sputtering of the carbon. As the film became thicker, the ratio of the depositing material changed over to the (1:1) value that must eventually be attained.

  16. Silicon Detectors for PET and SPECT

    NASA Astrophysics Data System (ADS)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  17. Re-determination of the reaction path parameters of silicon deposition for aerospace silicon carbide composites via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chandrasekaram, Sandeep D.

    Development of air travel technology is always increasing and fuel efficiency is one of the most important factors that's being looked into. For a 25% increase in fuel efficiency in the future aeroplanes, reduction in the weight of the engine is one of the factors that should be addressed while increasing the strength and power generated. For this purpose, General Electric Aviation has chosen Silicon Carbide as the material to build the turbine blades of its engines. Silicon carbide works best as it is strong, can withstand high temperature and lightweight. The downside of this material is that it reacts with water vapor at temperatures greater than 2700°F to form volatile Silicon hydroxide from Silicon dioxide, its protective layer; and furthermore it reduces to Silicon monoxide that vaporizes. To counter this problem, scientists at the National Aeronautics & Space Administration (NASA) have found that a rare earth silicate could be used as an environmental barrier coating (EBC) to prevent the exposure of Silicon Carbide to water vapor. The EBC can't be directly coated on the Silicon Carbide surface as it isn't chemically adhesive enough, therefore Silicon was chosen to act as the bond coat between the Silicon Carbide and EBC. The goal of this research is to design a reactor for the composites to be coated with Silicon using the reaction and diffusion kinetics determined at higher temperatures and different partial pressures compared to the standard electronics industry. Chemical Vapor Deposition is the technique that will be used in determining the necessary parameters. The findings from this research can be further used in optimizing the utilization of the reagents and optimizing the process economically.

  18. Toward a Kinetic Model of Silicon Carbide Condensation in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan A. N.

    2017-01-01

    One of the most interesting types of dust grain extracted from terrestrial meteorites is the silicon carbide X-grain (SiC-X). These grains bear distinct isotopic signatures which classify them as supernova condensates, but their formation within the ejecta has not been well-studied. Using a kinetic chemistry network, we investigate possible pathways that lead to the formation of silicon carbide grains in the cooling outflows of type II supernovae.

  19. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  20. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  1. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  2. Loss of oxygen, silicon, sulfur, and potassium from the lunar regolith

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.; Mayeda, T. K.; Hurd, J. M.

    1974-01-01

    The processes of formation and maturation of lunar soils lead to enrichments in the heavy stable isotopes of oxygen, silicon, sulfur, and potassium. The isotopic enrichment implies substantial losses of these elements from the moon. Vaporization by micrometeorite impact and by ion sputtering have removed at least 1% of the mass of the regolith. The losses of sulfur and potassium amount to at least 20-30% of their original abundance in the regolith.

  3. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  4. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  5. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  6. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  7. Silicon Carbide Photoconductive Switches

    DTIC Science & Technology

    1994-09-01

    The optoelectronic properties of p-type 6-H silicon carbide (6H-SiC) have been investigated in an experiment that used lateral and vertical...and the bandgap was determined to be approximately 3.1 eV. 6H-SiC, Photoconductive, Photovoltaic, Absorption coefficient, Switch, Silicon carbide

  8. SILICON CARBIDE DATA SHEETS

    DTIC Science & Technology

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  9. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  10. Silicones in medical electronics.

    PubMed

    Bruner, Stephen

    2008-01-01

    The use of silicones, although already extensive, is set to grow in medical electronics. Silicones used in medical device applications as tubing or moulded parts should also be considered for electronic applications in the same device. This article outlines the potential reduction in complexity that this solution offers. Benefits include eliminating negative materials interactions and avoiding bonding problems.

  11. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  12. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    PubMed

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.

  13. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    PubMed Central

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  14. EDITORIAL: Special issue on silicon photonics

    NASA Astrophysics Data System (ADS)

    Reed, Graham; Paniccia, Mario; Wada, Kazumi; Mashanovich, Goran

    2008-06-01

    The technology now known as silicon photonics can be traced back to the pioneering work of Soref in the mid-1980s (see, for example, Soref R A and Lorenzo J P 1985 Electron. Lett. 21 953). However, the nature of the research conducted today, whilst it builds upon that early work, is unrecognizable in terms of technology metrics such as device efficiency, device data rate and device dimensions, and even in targeted applications areas. Today silicon photonics is still evolving, and is enjoying a period of unprecedented attention in terms of research focus. This has resulted in orders-of-magnitude improvement in device performance over the last few years to levels many thought were impossible. However, despite the existence of the research field for more than two decades, silicon is still regarded as a 'new' optical material, one that is being manipulated and modified to satisfy the requirements of a range of applications. This is somewhat ironic since silicon is one of the best known and most thoroughly studied materials, thanks to the electronics industry that has made silicon its material of choice. The principal reasons for the lack of study of this 'late developer' are that (i) silicon is an indirect bandgap material and (ii) it does not exhibit a linear electro-optic (Pockels) effect. The former condition means that it is difficult to make a laser in silicon based on the intrinsic performance of the material, and consequently, in recent years, researchers have attempted to modify the material to artificially engineer the conditions for lasing to be viable (see, for example, the review text, Jalali B et al 2008 Silicon Lasers in Silicon Photonics: The State of the Art ed G T Reed (New York: Wiley)). The latter condition means that optical modulators are intrinsically less efficient in silicon than in some other materials, particularly when targeting the popular telecommunications wavelengths around 1.55 μm. Therefore researchers have sought alternative

  15. Silicone-containing composition

    DOEpatents

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  16. Intraventricular Silicone Oil

    PubMed Central

    Mathis, Stéphane; Boissonnot, Michèle; Tasu, Jean-Pierre; Simonet, Charles; Ciron, Jonathan; Neau, Jean-Philippe

    2016-01-01

    Abstract Intracranial silicone oil is a rare complication of intraocular endotamponade with silicone oil. We describe a case of intraventricular silicone oil fortuitously observed 38 months after an intraocular tamponade for a complicated retinal detachment in an 82 year-old woman admitted in the Department of Neurology for a stroke. We confirm the migration of silicone oil along the optic nerve. We discuss this rare entity with a review of the few other cases reported in the medical literature. Intraventricular migration of silicone oil after intraocular endotamponade is usually asymptomatic but have to be known of the neurologists and the radiologists because of its differential diagnosis that are intraventricular hemorrhage and tumor. PMID:26735537

  17. Silicon Nanocrystal Laser

    SciTech Connect

    Yu, J

    2005-03-09

    The purpose of this feasibility study project was to attempt to demonstrate the silicon-nanocrystal-based laser. Such a silicon laser (made using conventional silicon-manufacturing technologies) would provide the crucial missing link that would enable a completely-silicon-based photonic system. We prepared thin layers of silicon nanocrystal material by ion-implanting Si in fused silica substrates, followed by a high temperature anneal process. These Si nanocrystals produced intense photoluminescence when optically pumped with ultraviolet light. Laser structures based on Fabry-Perot cavity and distributed feedback (DFB) designs were fabricated using the Si nanocrystals as the ''lasing'' medium. We optically pumped the samples with CW lasers at 413nm wavelength to quickly assess the feasibility of making lasers out of the Nanocrystal Si material and to verify the gain coefficients reported by other research groups.

  18. Reversible Cycling of Silicon and Silicon Alloys

    NASA Astrophysics Data System (ADS)

    Obrovac, Mark

    2012-02-01

    Lithium ion batteries typically use a graphite negative electrode. Silicon can store more lithium than any other element and has long been considered as an attractive replacement for graphite. The theoretical lithium storage capacity of silicon is nearly ten times higher than graphite volumetrically and three times higher gravimetrically. The equilibrium Si-Li binary system is well known. Completely new phase behaviors are observed at room temperature. This includes the formation of a new phase, Li15Si4, which is the highest lithium containing phase at room temperature [1]. The formation of Li15Si4 is accompanied by a 280 percent volume expansion of silicon. During de-alloying this phase contracts, forming amorphous silicon. The volume expansion of alloys can cause intra-particle fracture and inter-particle disconnection; leading to loss of cycle life. To overcome issues with volume expansion requires a detailed knowledge of Li-Si phase behavior, careful design of the composition and nanostructure of the alloy and the microstructure of the negative electrode [2]. In this presentation the phase behavior of the Li-Si system will be described. Using this knowledge alone, strategies can be developed so that silicon can be reversibly cycled in a battery hundreds of times. Further increases in energy density and efficiency can be gained by alloying silicon with other elements, while controlling microstructure [2]. Coupled with negative electrode design strategies, practical negative electrodes for lithium ion cells can be developed based on bulk materials, with significant energy density improvement over conventional electrodes. [4pt] [1] M.N. Obrovac and L.J. Krause, J. Electrochem. Soc., 154 (2007) A103. [0pt] [2] M.N. Obrovac, Leif Christensen, Dinh Ba Le, and J.R. Dahn, J. Electrochem. Soc., 154 (2007) A849

  19. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  20. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  1. Hybrid silicon/silicone (polydimethylsiloxane) microsystem for cell culture.

    PubMed

    Christen, Jennifer Blain; Andreou, Andreas G

    2006-01-01

    We discuss the design, fabrication and testing of a hybrid microsystem for stand-alone cell culture and incubation. The micro-incubator is engineered through the integration of a silicon CMOS die for the heater and temperature sensor, with multilayer silicone PDMS (polydimethylsiloxane) structures namely, fluidic channels and a 4 mm diameter, 30 microL, culture well. A 25 micron thick PDMS membrane covers the top of the culture well, acting as barrier to contaminants while allowing the cells to exchange gases with the ambient environment. The packaging for the microsystem includes a flexible polyimide electronic ribbon cable and four fluidic ports that provide external interfaces to electrical energy, closed loop sensing and electronic control as well as solid and liquid supplies. The complete structure has a size of (2.5x2.5x0.6 cm3). We have employed the device to successfully culture BHK-21 cells autonomously over a sixty hour period in ambient environment.

  2. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kovačević, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  3. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  4. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-28

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  5. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ˜50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3-10% lower or higher than that of silicon for wavelengths below or beyond ˜815-900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10-100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  6. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  7. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  8. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  9. Isotope Generated Electron Density in Silicon Carbide Direct Energy Converters

    DTIC Science & Technology

    2006-10-01

    output of a diode into a resistively loaded circuit. This paper describes the use of a nuclear scattering code ( MCNPX ) to calculate the increased...used in the MCNPX calculations . The range constant supplied in section 3.2 (9) must be multiplied by the density of the material used. The density... MCNPX code. Instead, we are only modeling the SiC material and attempting to calculate how many free-electrons are being generated within as a

  10. Process Feasibility Study in Support of Silicon Material, Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.

  11. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Pálmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltán; Nagy, Lívia Naszályi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated.

  12. Extreme oxygen isotope ratios in the early Solar System.

    PubMed

    Aléon, Jérôme; Robert, François; Duprat, Jean; Derenne, Sylvie

    2005-09-15

    The origins of the building blocks of the Solar System can be studied using the isotopic composition of early planetary and meteoritic material. Oxygen isotopes in planetary materials show variations at the per cent level that are not related to the mass of the isotopes; rather, they result from the mixture of components having different nucleosynthetic or chemical origins. Isotopic variations reaching orders of magnitude in minute meteoritic grains are usually attributed to stellar nucleosynthesis before the birth of the Solar System, whereby different grains were contributed by different stars. Here we report the discovery of abundant silica-rich grains embedded in meteoritic organic matter, having the most extreme 18O/16O and 17O/16O ratios observed (both approximately 10(-1)) together with a solar silicon isotopic composition. Both O and Si isotopes indicate a single nucleosynthetic process. These compositions can be accounted for by one of two processes: a single exotic evolved star seeding the young Solar System, or irradiation of the circumsolar gas by high energy particles accelerated during an active phase of the young Sun. We favour the latter interpretation, because the observed compositions are usually not expected from nucleosynthetic processes in evolved stars, whereas they are predicted by the selective trapping of irradiation products.

  13. The eight micron band of silicon monoxide in the expanding cloud around VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.; Lacy, J. H.; Beck, S. C.

    1978-01-01

    Observations of vibration-rotation transitions of silicon monoxide in VY CMa show that the lines originate in accelerating, expanding, and cool (600 K) layers of a circumstellar cloud at a distance of roughly 0.15 minutes from the central star. The central stellar velocity, as estimated from observed SiO P Cygni line profiles, is somewhat redshifted from the midpoint of the maser emission features. Most of the silicon is probably in the form of dust grains. The isotopic ratios of silicon are nearly terrestrial.

  14. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  15. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-05

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  16. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  17. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  18. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  19. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.

  20. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  1. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  2. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  3. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  4. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  5. Recrystallization of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  6. Advanced silicon on insulator technology

    NASA Technical Reports Server (NTRS)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  7. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  8. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Shuleiko, D. V.; Ilin, A. S.

    2016-08-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa93/Si3N4 and SiN0.8/Si3N4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals.

  9. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer

    Dobson, Patrick

    2013-02-11

    Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  10. Fine Collimator Grids Using Silicon Metering Structure

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol

    1998-01-01

    The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.

  11. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  12. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  13. Silicone azide fireproof material

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Finely powdered titanium oxide was added to silicone azide as the sintering agent to produce a nonflammable material. Mixing proportions, physical properties, and chemical composition of the fireproofing material are included.

  14. High gas velocity burner tests on silicon carbide and silicon nitride at 1200 C

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Probst, H. B.

    1973-01-01

    Specimens of silicon carbide and silicon nitride were exposed to a Mach one gas velocity burner simulating a turbine engine environment. Cyclic tests up to 100 hour duration were conducted at specimen temperatures of 1200 C. A specimen geometry was used that develops thermal stresses during thermal cycling in a manner similar to blades and vanes of a gas turbine engine. Materials were compared on a basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, failure mode, and general appearance. One hot pressed SiC, one reaction sintered SiC, and three hot pressed Si3N4 specimens survived the program goal of 100 one-hour cycle exposures. Of the materials that failed to meet the program goal, thermal fatigue was identified as the exclusive failure mode.

  15. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  16. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  17. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  18. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  19. Silicon-polymer hybrid materials for drug delivery.

    PubMed

    McInnes, Steven J P; Voelcker, Nicolas H

    2009-09-01

    Silicon and its oxides are widely used in biomaterials research, tissue engineering and drug delivery. These materials are highly biocompatible, easily surface functionalized, degrade into nontoxic silicic acid and can be processed into various forms such as micro- and nano-particles, monoliths, membranes and micromachined structures. The large surface area of porous forms of silicon and silica (up to 1200 m2/g) permits high drug loadings. The degradation kinetics of silicon- and silica-based materials can be tailored by coating or grafting with polymers. Incorporation of polymers also improves control over drug-release kinetics. The use of stimuli-responsive polymers has enabled environmental stimuli-triggered drug release. Simultaneously, silicon microfabrication techniques have facilitated the development of sophisticated implantable drug-delivery microdevices. This paper reviews the synthesis, novel properties and biomedical applications of silicon-polymer hybrid materials with particular emphasis on drug delivery. The biocompatible and bioresorptive properties of mesoporous silica and porous silicon make these materials attractive candidates for use in biomedical applications. The combination of polymers with silicon-based materials has generated a large range of novel hybrid materials tailored to applications in localized and systemic drug delivery.

  20. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  1. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  2. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  3. Fertilizer nitrogen isotope signatures.

    PubMed

    Bateman, Alison S; Kelly, Simon D

    2007-09-01

    There has been considerable recent interest in the potential application of nitrogen isotope analysis in discriminating between organically and conventionally grown crops. A prerequisite of this approach is that there is a difference in the nitrogen isotope compositions of the fertilizers used in organic and conventional agriculture. We report new measurements of delta15N values for synthetic nitrogen fertilizers and present a compilation of the new data with existing literature nitrogen isotope data. Nitrogen isotope values for fertilizers that may be permitted in organic cultivation systems are also reported (manures, composts, bloodmeal, bonemeal, hoof and horn, fishmeal and seaweed based fertilizers). The delta15N values of the synthetic fertilizers in the compiled dataset fall within a narrow range close to 0 per thousand with 80% of samples lying between-2 and 2 per thousand and 98.5% of the data having delta15N values of less than 4 per thousand (mean=0.2 per thousand n=153). The fertilizers that may be permitted in organic systems have a higher mean delta15N value of 8.5 per thousand and exhibit a broader range in delta15N values from 0.6 to 36.7 per thousand (n=83). The possible application of the nitrogen isotope approach in discriminating between organically and conventionally grown crops is discussed in light of the fertilizer data presented here and with regard to other factors that are also important in determining crop nitrogen isotope values.

  4. Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes

    NASA Astrophysics Data System (ADS)

    Mao, Xianglei; Bol'shakov, Alexander A.; Choi, Inhee; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman; Russo, Richard E.

    2011-11-01

    The experimental details are reported of Laser Ablation Molecular Isotopic Spectrometry (LAMIS) and its application for performing optical isotopic analysis of solid strontium-containing samples in ambient atmospheric air at normal pressure. The LAMIS detection method is described for strontium isotopes from samples of various chemical and isotopic compositions. The results demonstrate spectrally resolved measurements of the three individual 86Sr, 87Sr, and 88Sr isotopes that are quantified using multivariate calibration of spectra. The observed isotopic shifts are consistent with those calculated theoretically. The measured spectra of diatomic oxide and halides of strontium generated in laser ablation plasmas demonstrate the isotopic resolution and capability of LAMIS. In particular, emission spectra of SrO and SrF molecular radicals provided clean and well resolved spectral signatures for the naturally occurring strontium isotopes. A possibility is discussed of using LAMIS of strontium isotopes for radiogenic age determination.

  5. Study of the mechanism of diatom cell division by means of 29Si isotope tracing

    NASA Astrophysics Data System (ADS)

    Audinot, J.-N.; Guignard, C.; Migeon, H.-N.; Hoffmann, L.

    2006-07-01

    Diatoms are delicate unicellular organisms enclosed in a silica frustule, that is made up of two valves. Multiplication of the diatoms occurs by ordinary mitotic cell division. During cell division each cell produces two daughter cells, each of them keeping one of the two valves of the mother cell and producing a new valve by absorbing the silicon present in the environment. The NanoSIMS 50 allows ion imaging to be performed on diatoms in order to determine the site of fixation of silicon. The aim of this study was to observe and compare the mechanism of the construction of the new valve after cell division. To this end, different types of diatoms have been transferred in a culture medium enriched with 29Si and after several days, the distribution of the different isotopes of silicon has been determined by NanoSIMS50 imaging. The construction of new valves has been observed and the isotopic ratio has been determined.

  6. Coated silicon comprising material for protection against environmental corrosion

    NASA Technical Reports Server (NTRS)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  7. Magnetic spin resonance of hydrogenic phosphorus donors in silicon

    NASA Astrophysics Data System (ADS)

    Itoh, Kohei

    2010-03-01

    A variety of electron paramagnetic resonance (EPR) measurements of an ensemble of phosphorus donors in silicon has lead to following intriguing discoveries. Electrically detected magnetic resonance (EDMR) at low magnetic fields (<200G) has revealed transitions involving superposition states between phosphorus electron and nuclear spins. Such states emerge because the hyperfine term overwhelm the electron Zeeman term at such low magnetic fields. A continuous control of the degree of the superposition by applied magnetic field has been demonstrated. Extremely long coherence times ˜0.6 s at 2K of electron spins bound to phosphorus and ˜3 s at 6K of ^31P nuclear spins have been obtained by pulse-EPR and ENDOR of an isotopically enriched ^28Si single crystal (99.992%). Making the Si crystal nearly monoisotopic led to elimination of docoherence due to ^29Si nuclear spins. Not only the electron spin but also phosphorus nuclear spin decoherence time was found to depend strongly on the phosphorus concentration in the range 8x10^13-4x10^15 cm-3. Unexpected observation of shifts in ^31P nuclear transition energies (ENDOR peak positions) with the change in the background silicon isotopic composition is also reported. The four nearest neighbor silicon isotopes of phosphorus are shown to affect strongly the nuclear transition energy of ^31P. Experimental results will be discussed in the context of isotope effect arising from differences in the nuclear mass and spins. This work has been performed in collaborations with S. Tojo, H. Morishita, M. Eto, L. S. Vlasenko, and groups lead by K. Semba, M. L. W. Thewalt, S. A. Lyon, J. J. L. Morton, and M. S. Brandt. Financial supports by Grant-in-Aid for Scientific Research #18001002, NONOQUINE, JST-DFG Strategic Cooperative Program, and Global Center of Excellence at Keio University are greatly appreciated.

  8. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  9. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  10. Silicon/silicon-germanium quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Simmons, Christine B.

    Gate-defined quantum dots are tunable devices that are capable of trapping individual electrons. This thesis presents measurements of gate-defined quantum dots formed in Si/SiGe semiconductor heterostuctures. The motivation for this work is the development of a solid state electron spin qubit for quantum information processing. The fundamental properties of silicon make it an attractive option for spin qubit development, because electron spins are weakly coupled to the material. In particular, the coherence time for electron spins in silicon is expected to be long because of relatively weak spin-orbit coupling and the natural abundance of 28Si, a spin-zero nuclear isotope. The results presented in this thesis demonstrate significant advances in the manipulation and measurement of electrons in Si/SiGe quantum dots, including the first demonstration of a single electron quantum dot. An integrated quantum point contact is utilized as a local sensor to detect charge transitions on the neighboring quantum dot and to determine the absolute number of electrons on the dot. Gated control of the dot tunnel barriers enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of the tunnel rate to the leads in combination with fast, pulsed-gate manipulation of individual electrons enables a spectroscopy technique to identify electronic excited states. Using this technique, the Zeeman split spin qubit levels were observed. A 3-level voltage pulse sequence was utilized to perform single-shot readout of the spin state of individual electrons, to demonstrate tunable spin-selective loading, and to measure the spin relaxation time T1 . Double quantum dots are important for achieving two-qubit operations. Here, charge sensing measurements on a double dot are demonstrated. Analysis of the interdot transfer of a single electron is used to measure the tunnel coupling between the dots, and control of a single gate voltage is used to tune this coupling by over an

  11. Bond Angles in the Crystalline Silicon/Silicon Nitride Interface

    NASA Astrophysics Data System (ADS)

    Leonard, Robert H.; Bachlechner, Martina E.

    2006-03-01

    Silicon nitride deposited on a silicon substrate has major applications in both dielectric layers in microelectronics and as antireflection and passivation coatings in photovoltaic applications. Molecular dynamic simulations are performed to investigate the influence of temperature and rate of externally applied strain on the structural and mechanical properties of the silicon/silicon nitride interface. Bond-angles between various atom types in the system are used to find and understand more about the mechanisms leading to the failure of the crystal. Ideally in crystalline silicon nitride, bond angles of 109.5 occur when a silicon atom is at the vertex and 120 angles occur when a nitrogen atom is at the vertex. The comparison of the calculated angles to the ideal values give information on the mechanisms of failure in silicon/silicon nitride system.

  12. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  13. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  14. Hybrid III-V Silicon Lasers

    NASA Astrophysics Data System (ADS)

    Bowers, John

    2014-03-01

    Abstract: A number of important breakthroughs in the past decade have focused attention on Si as a photonic platform. We review here recent progress in this field, focusing on efforts to make lasers, amplifiers, modulators and photodetectors on or in silicon. We also describe optimum quantum well design and distributed feedback cavity design to reduce the threshold and increase the efficiency and power output. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications and on silicon electronics is reviewed. Biography: John Bowers holds the Fred Kavli Chair in Nanotechnology, and is the Director of the Institute for Energy Efficiency and a Professor in the Departments of Electrical and Computer Engineering and Materials at UCSB. He is a cofounder of Aurrion, Aerius Photonics and Calient Networks. Dr. Bowers received his M.S. and Ph.D. degrees from Stanford University and worked for AT&T Bell Laboratories and Honeywell before joining UC Santa Barbara. Dr. Bowers is a member of the National Academy of Engineering and a fellow of the IEEE, OSA and the American Physical Society. He is a recipient of the OSA/IEEE Tyndall Award, the OSA Holonyak Prize, the IEEE LEOS William Streifer Award and the South Coast Business and Technology Entrepreneur of the Year Award. He and coworkers received the EE Times Annual Creativity in Electronics (ACE) Award for Most Promising Technology for the hybrid silicon laser in 2007. Bowers' research is primarily in optoelectronics and photonic integrated circuits. He has published ten book chapters, 600 journal papers, 900 conference papers and has received 54 patents. He has published 180 invited papers and conference papers, and given 16 plenary talks at conferences. As well as Chong Zhang.

  15. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian

    USGS Publications Warehouse

    Leung, I.; Guo, W.; Friedman, I.; Gleason, J.

    1990-01-01

    Considerable debate surrounds the existence of silicon carbide in nature, mostly owing to the problem of possible contamination by man-made SiC. Recently, Gurney1 reviewed reports of rare SiC inclusions in diamonds, and noted that SiC can only be regarded as a probable rather than proven cogenetic mineral. Here we report our observation of clusters of SiC coexisting with diamond in a kimberlite from Fuxian, China. Macrocrysts of ??-SiC are overgrown epitaxially by ??-SiC, and both polymorphs are structurally well ordered. We have also measured the carbon isotope compositions of SiC and diamonds from Fuxian. We find that SiC is more enriched in 12C than diamond by 20% relative to the PDB standard. Isotope fractionation might have occurred through an isotope exchange reaction in a common carbon reservoir. Silicon carbide may thus ultimately provide information on carbon cycling in the Earth's mantle.

  16. Nanoscale thermal and thermoelectric transport in silicon

    NASA Astrophysics Data System (ADS)

    Ryu, Hyuk Ju

    Hotspots on microchips are a major challenge for the semiconductor industry. To understand heat conduction from hotspots on silicon, measurements of the thermal resistance and transfer function have been performed using patterned nanoheater/sensor pairs with width from 100 nm up to 5000 nm at temperature range of 30 ˜ 300 K. Calculations of the thermal resistance based on a simple thermal model, considering resistances by spreading, interface, and localized heating match with the measurements. The results reveal several important trends indicating the prevalence of localized heating or sub-continuum transport phenomena in the vicinity of a nanoscale hotspot. Thermoelectric cooling is a possible solution to cope with the hotspot issue. Silicon, in a nanostructured form, is an interesting thermoelectric material, because of significantly reduced thermal conductivity. However, further improvement in thermoelectric efficiency is highly desirable. Thermopower measurements of silicon nanoribbons with an integrated gate have been performed. The gate in the device is used to provide strong carrier confinement and enable tunability of the carrier density over a wide range, which is fully compatible with conventional silicon processing and microelectronics. It therefore offers a promising alternative to doping when considering the thermoelectric engineering of nanostructures. An enhancement of thermoelectric power factor has been observed in silicon nanoribbons. This enhancement can be understood by considering its behavior as a function of carrier density. We identify the underlying mechanisms for the power factor in the nanoribbon, which include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon drag contribution.

  17. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  18. Research on Silicon, Carbon, and Silicon Carbide Heterostructures

    DTIC Science & Technology

    1990-09-14

    0Innr Jc9&9b 1. TITLE (Include Security Classification) Research on Silicon, Carbon, and Silicon Carbide Heterostructures Z. PERSONAL AUTHOR(S) W. D...and identify by block number) FIELD I GROUP SUB-GROUP PLASMAS. DEPOSITION. THIN FILMS. SILICON CARBIDE . DIAMOND. SURFACES. DESORPTION. CHARACTERIZATION...AND SILICON CARBIDE HETEROSTRUCTURES W. D. Partlow (P.I.), W. J. Choyke, J. T. Yates, Jr., C. C. Cheng, H. Gutleben, L. E. Kline, R. R. Mitchell, J

  19. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  20. Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers towards donor qubits in silicon

    SciTech Connect

    Lo, Cheuk Chi; Persaud, Arun; Dhuey, Scott; Olynick, Deirdre; Borondics, Ferenc; Martin, Michael C.; Bechtel, Hans A.; Bokor, Jeffrey; Schenkel, Thomas

    2009-06-10

    We report fabrication of transistors in a FinFET geometry using isotopically purified silicon-28 -on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits, and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.

  1. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  2. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  3. Bondability of RTV silicon rubber

    NASA Technical Reports Server (NTRS)

    Delollis, N. J.; Montoya, O.

    1972-01-01

    Glow discharge method for producing a bondable Room Temperature Vulcanizing (RTV) silicone is described. Mechanical and chemical properties of silicone specimens are described. Theory concerning the relationship between surface characteristics and bondability is examined with respect to the polymer specimen.

  4. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  5. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  6. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  7. Constraining the oceanic barium cycle with stable barium isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Zhimian; Siebert, Christopher; Hathorne, Ed C.; Dai, Minhan; Frank, Martin

    2016-01-01

    The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to + 0.3 ‰), the δ137BaDBa values in the upper water column are significantly higher (+ 0.9 ‰) than those in the deep waters (+ 0.5 ‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land-sea interactions and ocean mixing processes.

  8. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  9. Quantum Optomechanics with Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Safavi-Naeini, Amir H.

    Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram scale mirrors for gravitational wave detection measuring motion at its quantum limits, and the motion of single ions being used to link qubits for quantum computation. Optomechanics is a field primarily concerned with coupling light to the motion of mechanical structures. This thesis contains descriptions of recent work with mechanical systems in the megahertz to gigahertz frequency range, formed by nanofabricating novel photonic/phononic structures on a silicon chip. These structures are designed to have both optical and mechanical resonances, and laser light is used to address and manipulate their motional degrees of freedom through radiation pressure forces. We laser cool these mechanical resonators to their ground states, and observe for the first time the quantum zero-point motion of a nanomechanical resonator. Conversely, we show that engineered mechanical resonances drastically modify the optical response of our structures, creating large effective optical nonlinearities not present in bulk silicon. We experimentally demonstrate aspects of these nonlinearities by proposing and observing ``electromagnetically induced transparency'' and light slowed down to 6 m/s, as well as wavelength conversion, and generation of nonclassical optical radiation. Finally, the application of optomechanics to longstanding problems in quantum and classical communications are proposed and investigated.

  10. The electrophotonic silicon biosensor

    PubMed Central

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  11. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  12. Crystalline oxides on silicon.

    PubMed

    Reiner, James W; Kolpak, Alexie M; Segal, Yaron; Garrity, Kevin F; Ismail-Beigi, Sohrab; Ahn, Charles H; Walker, Fred J

    2010-07-20

    This review outlines developments in the growth of crystalline oxides on the ubiquitous silicon semiconductor platform. The overall goal of this endeavor is the integration of multifunctional complex oxides with advanced semiconductor technology. Oxide epitaxy in materials systems achieved through conventional deposition techniques is described first, followed by a description of the science and technology of using atomic layer-by-layer deposition with molecular beam epitaxy (MBE) to systematically construct the oxide-silicon interface. An interdisciplinary approach involving MBE, advanced real-space structural characterization, and first-principles theory has led to a detailed understanding of the process by which the interface between crystalline oxides and silicon forms, the resulting structure of the interface, and the link between structure and functionality. Potential applications in electronics and photonics are also discussed.

  13. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  14. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  15. Scriber for silicon wafers

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A.; Fortier, E. P. (Inventor)

    1981-01-01

    A device for dividing silicon wafers into rectangular chips is characterized by a base including a horizontally oriented bed with a planar support surface, a vacuum chuck adapted to capture a silicon wafer seated on the support for translation in mutually perpendicular directions. A stylus support mounted on the bed includes a shaft disposed above and extended across the bed and a truck mounted on the shaft and supported thereby for linear translation along a path extended across the bed a vertically oriented scribe has a diamond tip supported by the truck also adapted as to engage a silicon wafer captured by the chuck and positioned beneath it in order to form score lines in the surface of the wafer as linear translation is imparted to the truck. A chuck positioning means is mounted on the base and is connected to the chuck for positioning the chuck relative to the stylus.

  16. Floating Silicon Method

    SciTech Connect

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  17. Silicon optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J.

    2010-08-01

    Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

  18. Silicon carbide thyristor

    NASA Technical Reports Server (NTRS)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  19. Thick silicon growth techniques

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  20. Cell technology: Advanced silicon sheet

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1986-01-01

    The Flat-plate Solar Array (FSA)-sponsored Fourth Silicon Stress/Strain Workshop reviewed, coordinated, and assessed the progress in understanding and controlling stress and strain during the crystal growth of silicon ribbons. dislocation electrical activity and limits on solar cell efficiency, and on studying the effects of dopants on EFG characteristics. Work on silicon for high-efficiency solar cells, stress-strain relationships in silicon ribbon, and high temperature deformation of dendritic web ribbon was also discussed.

  1. Substrate for silicon solar cells

    SciTech Connect

    Thomas, D.E.

    1982-08-10

    A substrate is made for silicon solar cells by heating a sheet of large-grained silicon steel at a temperature of at least about 1300* C. In an atmosphere of hydrogen and tungsten hexafluo (Or hexachloride) at a partial pressure ratio of hydrogen to tungsten hexafluoride of about 3 to about 6 to deposit an epitaxial layer of tungsten on said sheet of silicon steel. Epitaxial silicon can then be deposited in a conventional manner on the layer of epitaxial tungsten.

  2. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  3. Micromachined silicon electrostatic chuck

    SciTech Connect

    Anderson, R.A.; Seager, C.H.

    1994-12-31

    In the field of microelectronics, and in particular the fabrication of microelectronics during plasma etching processes, electrostatic chucks have been used to hold silicon wafers during the plasma etching process. Current electrostatic chucks that operate by the {open_quotes}Johnson-Rahbek Effect{close_quotes} consist of a metallic base plate that is typically coated with a thick layer of slightly conductive dielectric material. A silicon wafer of approximately the same size as the chuck is placed on top of the chuck and a potential difference of several hundred volts is applied between the silicon and the base plate of the electrostatic chuck. This causes an electrostatic attraction proportional to the square of the electric field in the gap between the silicon wafer and the chuck face. When the chuck is used in a plasma filled chamber the electric potential of the wafer tends to be fixed by the effective potential of the plasma. The purpose of the dielectric layer on the chuck is to prevent the silicon wafer from coming into direct electrical contact with the metallic part of the chuck and shorting out the potential difference. On the other hand, a small amount of conductivity appears to be desirable in the dielectric coating so that much of its free surface between points of contact with the silicon wafer is maintained near the potential of the metallic base plate; otherwise, a much larger potential difference would be needed to produce a sufficiently large electric field in the vacuum gap between the wafer and chuck. Typically, the face of the chuck has a pattern of grooves in which about 10 torr pressure of helium gas is maintained. This gas provides cooling (thermal contact) between the wafer and the chuck. A pressure of 10 torr is equivalent to about 0.2 psi.

  4. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    NASA Technical Reports Server (NTRS)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  5. Electrochemical thinning of silicon

    DOEpatents

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  6. Electrochemical thinning of silicon

    DOEpatents

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  7. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  8. Fracture toughness of silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1980-01-01

    The paper presents a study to determine the fracture toughness and to characterize fracture modes of silicon as a function of the orientation of single-crystal and polycrystalline material. It is shown that bar specimens cracked by Knoop microhardness indentation and tested to fracture under four-point bending at room temperature were used to determine the fracture toughness values. It is found that the lowest fracture toughness value of single crystal silicon was 0.82 MN/m to the 3/2 in the 111 plane type orientation, although the difference in values in the 111, 110, and 100 planes was small.

  9. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  10. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  11. High Atomic Weight Isotope Separator.

    DTIC Science & Technology

    This patent discusses a method of separating one isotopic species of a given element from a mixture. Collisionless plasma instabilities slow down the ions and oppositely charged electrodes separate the isotopes.

  12. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  13. Pair distribution functions of silicon/silicon nitride interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Deng; Bachlechner, Martina E.

    2006-03-01

    Using molecular dynamics simulations, we investigate different mechanical and structural properties of the silicon/silicon nitride interface. One way to characterize the structure as tensile strain is applied parallel to the interface is to calculate pair distribution functions for specific atom types. The pair distribution function gives the probability of finding a pair of atoms a distance r apart, relative to the probability expected for a completely random distribution at the same density. The pair distribution functions for bulk silicon nitride reflect the fracture of the silicon nitride film at about 8 % and the fact that the centerpiece of the silicon nitride film returns to its original structure after fracture. The pair distribution functions for interface silicon atoms reveal the formation of bonds for originally unbound atom pairs, which is indicative of the interstitial-vacancy defect that causes failure in silicon.

  14. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  15. Porous silicon confers bioactivity to polycaprolactone composites in vitro.

    PubMed

    Henstock, J R; Ruktanonchai, U R; Canham, L T; Anderson, S I

    2014-04-01

    Silicon is an essential element for healthy bone development and supplementation with its bioavailable form (silicic acid) leads to enhancement of osteogenesis both in vivo and in vitro. Porous silicon (pSi) is a novel material with emerging applications in opto-electronics and drug delivery which dissolves to yield silicic acid as the sole degradation product, allowing the specific importance of soluble silicates for biomaterials to be investigated in isolation without the elution of other ionic species. Using polycaprolactone as a bioresorbable carrier for porous silicon microparticles, we found that composites containing pSi yielded more than twice the amount of bioavailable silicic acid than composites containing the same mass of 45S5 Bioglass. When incubated in a simulated body fluid, the addition of pSi to polycaprolactone significantly increased the deposition of calcium phosphate. Interestingly, the apatites formed had a Ca:P ratio directly proportional to the silicic acid concentration, indicating that silicon-substituted hydroxyapatites were being spontaneously formed as a first order reaction. Primary human osteoblasts cultured on the surface of the composite exhibited peak alkaline phosphatase activity at day 14, with a proportional relationship between pSi content and both osteoblast proliferation and collagen production over 4 weeks. Culturing the composite with J744A.1 murine macrophages demonstrated that porous silicon does not elicit an immune response and may even inhibit it. Porous silicon may therefore be an important next generation biomaterial with unique properties for applications in orthopaedic tissue engineering.

  16. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  17. Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code

    SciTech Connect

    Duc T. Vo; Thomas E. Sampson

    1999-05-01

    FRAM is the acronym for Fixed-energy Response-function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type.

  18. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  19. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  20. Esophageal tissue engineering.

    PubMed

    Luc, Guillaume; Durand, Marlène; Collet, Denis; Guillemot, Fabien; Bordenave, Laurence

    2014-03-01

    Esophageal tissue engineering is still in an early state, and ideal methods have not been developed. Since the beginning of the 20th century, advances have been made in the materials that can be used to produce an esophageal substitute. Three approaches to scaffold-based tissue engineering have yielded good results. The first development concerned non-absorbable constructs based on silicone and collagen. The need to remove the silicone tube is the main disadvantage of this material. Polymeric absorbable scaffolds have been used since the 1990s. The main polymeric material used is poly (glycolic) acid combined with collagen. The problem of stenosis remains prevalent in most studies using an absorbable construct. Finally, decellularized scaffolds have been used since 2000. The promises of this new approach are unfulfilled. Indeed, stenosis occurs when the esophageal defect is circumferential regardless of the scaffold materials. Cell supplementation can decrease the rate of stenosis, but the type(s) of cells and their roles have not been defined. Finally, esophageal tissue engineering cannot provide a functional esophageal substitute, and further development is necessary prior to conducting human clinical studies.

  1. Silicon Carbide Metallization

    NASA Astrophysics Data System (ADS)

    Lescoat, F.; Tanguy, F.; Durand, P.

    2016-05-01

    A study has been done to assess the feasibility of metallization of Silicon Carbide (SiC) in order to simplify design and mounting of one or more ground reference rail needed to provide an electrical reference for electronics mounted on an SiC structure.

  2. Silicon Raman polarizer.

    PubMed

    Kozlov, Victor V; Wabnitz, Stefan

    2012-02-15

    We theoretically investigate the polarization properties of Raman amplifiers based on silicon-on-insulator waveguides, and show that it is possible to realize a waveguide Raman polarizer. The Raman polarizer is a special type of Raman amplifier with the property of producing an amplified and highly repolarized beam when it is fed by a relatively weak and unpolarized signal.

  3. Composition Comprising Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  4. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  5. Characterization of Silicon Carbide.

    DTIC Science & Technology

    The various electrical and structural measurement techniques for silicon carbide are described. The electrical measurements include conductivity, resistivity, carrier concentration, mobility, doping energy levels, and lifetime. The structural measurements include polytype determination and crystalline perfection. Both bulk and epitaxial films are included.

  6. Analysis of porous silicon

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; Farr, J. P. G.; Grzeszczyk, P. E.; Sturland, I.; Keen, J. M.

    1985-06-01

    Porous silicon, suitable after oxidation for dielectric isolation, has been produced successfully by anodizing silicon in strong HF. The oxidized layer has been shown to have promise in device manufacture, providing high packing densities and radiation hardness. Anodizing has been carried out using both single and double cells, following the effects of current density. HF concentration and silicon resistivity. The resultant porous layers have been characterised with respect to composition and structure. The materials produced differ considerably in lattice strain, composition and reactivities. Prompt radiation analyses 19F(p,αγ), 16O(d,α), 12C(d,p), are useful for monitoring the anodizing procedures and subsequent oxidation: currently, interest centres on the mechanistic information obtained. RBS analysis using α-particles gives a much lower Si response from porous than from bulk silicon. Glancing angle proton recoil analyses reveal considerable quantities of hydrogen in the porous layers. These mutually consistent findings have considerable mechanistic significance; extensive Si-H bonding occurs following a 2 equivalent Faradaic process.

  7. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  8. Microgravity Silicon Zoning Investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1985-01-01

    This research program is directed toward the understanding of the float zone crystal growth process, the melt interactions which lead to crystal inhomogeneities, and the influence of microgravity on reducing these inhomogeneities. Silicon was selected as the model crystal because its inhomogeneities lead to known variations in device performance, and because the mechanisms involved in its growth are understood better than for other high temperature crystals. The objective of the program is to understand the growth mechanisms in float zone growth and thereby determine the feasibility and advantages of float zone growth of silicon under microgravity conditions. This will be done by characterizing the growth at g = 1, projecting the changes in melt flows due to microgravity, observing these in space growth and determining the effects on defective inhomogeneities. A Thin Rod Zoner was constructed as a laboratory prototype for flight growth of 5 mm diameter silicon crystals, which can be done within the power and cooling capabilities of shuttle flights. A new method of zoning silicon, using resistance heating, has resulted in melting 5 mm diameter ingots.

  9. The Wacker approach to low-cost silicon material technology

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    Proprietary, long-term materials research programs concerned with processes having high cost/energy-saving potential for the production of high-purity solar cell silicon are discussed. Program goals include the development of rugged, high-throughput rate production equipment, and impurity handling, or defect engineering standards, which will yield photovoltaic solar energy conversion efficiencies of a minimum of 10%. Different starting materials for a variety of low-cost crystallization techniques, the machining and slicing of silicon, and such diagnostic techniques as topographic methods, multielement analysis, identification of point defects, and photovoltaic evaluation, are discussed.

  10. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  11. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  12. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  13. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  14. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  15. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  16. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1975-01-01

    Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.

  17. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    NASA Astrophysics Data System (ADS)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  18. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  19. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  20. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    USGS Publications Warehouse

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  1. Tunable plasticity in amorphous silicon carbide films.

    PubMed

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  2. High temperature mechanical performance of a hot isostatically pressed silicon nitride

    SciTech Connect

    Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J.

    1996-01-01

    Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

  3. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  4. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  5. Lead in petrol. The isotopic lead experiment

    SciTech Connect

    Facchetti, S. )

    1989-10-01

    Many studies were dedicated to the evaluation of the impact of automotive lead on the environment and to the assessment of its absorption in the human population. They can be subdivided into two groups, those based on changes of air and blood lead concentrations and those based on changes of air and blood lead isotopic compositions. According to various authors, 50-66% of the lead added to petrol is mobilized in the atmosphere, while most of the remainder adheres to the walls of the exhaust system from which it is expelled by mechanical and thermal shocks in the forms of easily sedimented particles. The fraction directly emitted by engine exhaust fumes is found in the form of fine particles, which can be transferred a long way from the emitting sources. However important the contribution of petrol lead to the total airborne lead may be, our knowledge does not permit a straightforward calculation of the percentage of petrol lead in total blood lead, which of course can also originate from other sources (e.g., industrial, natural). To evaluate this percentage in 1973, the idea of the Isotopic Lead Experiment (ILE project) was conceived to label, on a regional scale, petrol with a nonradioactive lead of an isotopic composition sufficiently different from that of background lead and sufficiently stable in time. This Account summarizes the main results obtained by the ILE project.

  6. Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram

    NASA Astrophysics Data System (ADS)

    Vocke, R. D., Jr.; Rabb, S. A.; Turk, G. C.

    2014-10-01

    The results of an absolute silicon molar mass determination of two independent sets of samples from the highly 28Si-enriched crystal (AVO28) produced by the International Avogadro Coordination are presented and compared with results published by the Physikalisch-Technische Bundesanstalt (PTB, Germany), the National Research Council (NRC, Canada) and the National Metrology Institute of Japan (NMIJ, Japan). This study developed and describes significant changes to the published protocols for producing absolute silicon isotope ratios. The measurements were made at very high resolution on a multi-collector inductively coupled plasma mass spectrometer using tetramethylammonium hydroxide (TMAH) to dissolve and dilute all samples. The various changes in the measurement protocol and the use of TMAH resulted in significant improvements to the silicon isotope ratio precision over previously reported measurements and in particular, the robustness of the 29Si/30Si ratio of the AVO28 material. These new results suggest that a limited isotopic variability is present in the AVO28 material. The presence of this variability is at present singular and therefore its significance is not well understood. Fortunately, its magnitude is small enough so as to have an insignificant effect on the overall uncertainty of an Avogadro constant derived from the average molar mass of all four AVO28 silicon samples measured in this study. The NIST results confirm the AVO28 molar mass values reported by PTB and NMIJ and confirm that the virtual element-isotope dilution mass spectrometry approach to calibrated absolute isotope ratio measurements developed by PTB is capable of very high precision as well as accuracy. The Avogadro constant NA and derived Planck constant h based on these measurements, together with their associated standard uncertainties, are 6.02214076(19) × 1023 mol-1 and 6.62607017(21) × 10-34 Js, respectively.

  7. Sintered silicon nitrode recuperator fabrication

    NASA Technical Reports Server (NTRS)

    Gatti, A.; Chiu, W. S.; Mccreight, L. R.

    1980-01-01

    The preliminary design and a demonstration of the feasibility of fabricating submodules of an automotive Stirling engine recuperator for waste heat recovery at 370 C are described. Sinterable silicon nitride (Sialon) tubing and plates were fabricated by extrusion and hydrostatic pressing, respectively, suitable for demonstrating a potential method of constructing ceramic recuperator-type heat exchangers. These components were fired in nitrogen atmosphere to 1800 C without significant scale formation so that they can be used in the as-fired condition. A refractory glass composition (Al2O3 x 4.5 CaO.MgO x 11SiO2) was used to join and seal component parts by a brazing technique which formed strong recuperator submodules capable of withstanding repeated thermal cycling to 1370 C. The corrosion resistance of these materials to Na2SO4 + NaCl carbon mixtures was also assessed in atmospheres of air, hydrogen and CO2-N2-H2O mixtures at both 870 C and 1370 C for times to 1000 hours. No significant reaction was observed under any of these test conditions.

  8. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-01-01

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design.

  9. Effects of silicon on gastrointestinal absorption of aluminium

    SciTech Connect

    Edwardson, J.A.; Moore, P.B.; Ferrier, I.N.; Lilley, J.S.; Newton, G.W.A.; Barker, J.; Templar, J.; Day, J.P.

    1993-07-24

    The reported geographical association between Alzheimer's disease and levels of aluminium (Al) in water supplies may reflect the inverse relation between Al and silicon (Si) concentrations in water, and the potential for Si to reduce the bioavailability of the metal. The authors tested this hypothesis using isotopic [sup 26]Al tracer administered orally to five healthy volunteers in the presence and absence of Si. Dissolved Si, at a concentration found in some water supplies reduced the peak plasma [sup 26]Al concentration to 15% of the value obtained in the absence of Si. The results indicate that dissolved Si is an important factor in limiting the absorption of dietary Al.

  10. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites.

    PubMed

    Obata, Akiko; Tokuda, Shingo; Kasuga, Toshihiro

    2009-01-01

    A biodegradable composite with silicon-species releasability was prepared using poly(l-lactic acid) (PLLA) and silicon-doped vaterite (SiV) particles. SiV with particle diameters of approximately 1 mum was prepared using aminopropyltriethoxysilane (APTES) as the silicon species by a carbonation process and then mixed with PLLA in methylene chloride according to a SiV to PLLA weight ratio of 1:2, resulting in the preparation of composite slurry. A composite film was prepared by dipping a cover glass in the slurry. The composite films were incubated in a culture medium for 7 days and the silicon concentration of the medium was measured to estimate the species releasability of the composites. A trace amount of silicon species was continuously released from the composites for 7 days, the amount depending on the content of APTES in SiV. On the composite releasing silicon species, mouse osteoblast-like cells (MC3T3-E1 cells) were significantly stimulated to proliferate and differentiate in comparison with those on a composite containing no silicon species. The proliferation of the cells on the composites releasing larger amounts of silicon species (0.51mgl(-1)day(-1)) was higher than that on the composites releasing smaller amount of the species (0.21mgl(-1)day(-1)). The silicon species in the composites were effective in enhancing the cellular functions. The composites were expected to be useful as a scaffold material for bone tissue engineering.

  11. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  12. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  13. Geochemical and isotopic characteristics of groundwater from Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Grassa, Fausto; Mori, Nataša; Verbovšek, Timotej

    2016-04-01

    The Velenje Basin in Slovenia is one of the largest actively mined coal basins in central Europe, producing around 4 million tons of lignite per year. Large amounts of groundwater are extracted from aquifers to facilitate underground mining of coal, and coal seam gas outbursts are a serious mine safety concern. This study analyses the geochemical and isotopic composition of groundwater to provide a general understanding of hydrogeological and geochemical processes in groundwater. Thirty-eight groundwater samples were taken from dewatering objects in the mine and at the surface in years 2014-2015. Groundwater in the Triassic aquifer is dominated by hydrogen carbonate, calcium, magnesium and isotopic composition of dissolved inorganic carbon in the range from -19.3 to -2.8‰ indicating degradation of soil organic matter and dissolution of carbonate minerals. In contrast, groundwater in the Pliocene aquifers is enriched in magnesium, sodium, calcium, potassium, and silicon, and has high alkalinity, with isotopic composition of dissolved inorganic carbon in the range of -14.4 to +4.6‰ . Based on isotopic composition of dissolved inorganic carbon values in all aquifers (Pliocene and Triassic), influencing processes are the dissolution of carbonate minerals and dissolution of organic matter, and additionally methanogenesis in the Pliocene aquifers. Based on the Principal Component Analysis (PCA) we can conclude that following different types of groundwater in Velenje Basin could be distinguished based on geochemical and isotopic data: Triassic aquifers with higher pH and lower conductivity and chloride, Pliocene, Pliocene 1 and Pliocene 2 aquifers with lower pH and higher conductivity and chloride contents, and Pliocene 3 and Pliocene 2, 3 aquifers with the highest pH and lowest conductivity and chloride contents. Major dissolved gas component in groundwater are carbon dioxide, nitrogen and methane. Concentrations of dissolved gases dewatering Triassic strata are low

  14. Vibrational Spectra and Structures of Silicon - Clusters

    NASA Astrophysics Data System (ADS)

    Presilla-Marquez, Jose-Domingo

    1992-01-01

    Fourier transform studies of silicon-carbon clusters produced by vaporizing mixtures of silicon and carbon-12 or carbon-13 and quenching the products in argon, have enabled the identification of new vibrational spectra and structures. The far infrared nu_3(b_2) fundamental has been found at 160.4 cm ^{-1} for SiC_2 . Its structure is now described as T-shaped with ionic bonding. In the case of Si_2C, a previously observed vibration at 1188.4 cm^ {-1} has been confirmed as the nu_3(b_2), antisymmetric Si -C stretching mode, and a new vibration at 839.5 cm ^{-1} has been identified as the nu_1(a_1), symmetric Si-Si stretching fundamental. The nu_2(a _1) bending mode has not been observed; however, the nu_2(a_1) + nu_3(b_2) combination band has been identified at 1354.8 cm^{-1} . The results of force constant adjustment calculations confirm the ground state geometry of Si_2 C as a floppy, bent symmetrical structure. Five out of six fundamental modes have been identified for the Si_3C cluster which is observed here for the first time: the symmetric breathing vibration, nu_1(a_1) = 658.2 cm ^{-1}; the Si_ beta-Si_alpha -Si_beta symmetric deformation vibration, nu_2(a_1) = 511.8 cm^{-1}; the Si beta-C-Si_{beta } symmetric deformation vibration, nu_3(a_1) = 309.5 cm ^{-1}; the Si_beta -C antisymmetric stretching vibration, nu_5(b_2) = 1101.4 cm ^{-1}; and the Si_ alpha-Si_beta antisymmetric stretching vibration, nu_6(b _2) = 357.6 cm^{-1} . The fundamental frequencies, relative intensities, and isotopic shifts are in excellent agreement with the results of ab initio calculations predicting a rhomboidal structure of C_{2v} symmetry for Si_3C, with carbon-silicon transannular bonding between the two equivalent Si atoms. Another new silicon-carbon cluster, rhombic Si _2C_2, has been identified and the nu_3(b_ {rm 1u}) = 982.9 and nu _4(b_{rm 2u}) = 382.2 cm^{-1} fundamentals have been assigned. These results are in excellent agreement with ab initio calculations. The first

  15. Top-Coating Silicon Onto Ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Nelson, L. D.; Zook, J. D.

    1985-01-01

    Polycrystalline silicon for solar cells produced at low cost. Molten silicon poured from quartz trough onto moving carbon-coated ceramic substrate. Doctor blade spreads liquid silicon evenly over substrate. Molten material solidifies to form sheet of polycrystalline silicon having photovoltaic conversion efficiency greater than 10 percent. Method produces 100-um-thick silicon coatings at speed 0.15 centimeter per second.

  16. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for

  17. Processing, texture and mechanical properties of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Landfermann, H.; Hausner, H.

    1988-01-01

    With regard to its favorable properties, in particular those shown at high temperatures, silicon carbide is of great interest for applications related to the construction of engines and turbines. Thus, silicon carbide could replace heat-resisting alloys with the objective to achieve a further increase in operational temperature. The present investigation is concerned with approaches which can provide silicon carbide material with suitable properties for the intended applications, taking into account the relations between characteristics of the raw material, material composition, sinter conditions, and results of the sintering process. The effects of density and texture formation on the mechanical properties are studied. It is found that a dense material with a fine-grained microstructure provides optimal mechanical properties, while any deviation from this ideal condition can lead to a considerable deterioration with respect to the material properties.

  18. Europium Silicide – a Prospective Material for Contacts with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-05-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  19. Spin-photon entanglement interfaces in silicon carbide defect centers

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Dev, Pratibha

    2016-12-01

    Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. In this work we develop explicit schemes for spin-photon entanglement in several SiC defects: the silicon monovacancy, the silicon divacancy, and the NV center in SiC. Distinct approaches are given for (i) single-photon and spin entanglement and (ii) the generation of long strings of entangled photons. The latter are known as cluster states and comprise a resource for measurement-based quantum information processing.

  20. Europium Silicide – a Prospective Material for Contacts with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  1. Spin-photon entanglement interfaces in silicon carbide defect centers.

    PubMed

    Economou, Sophia E; Dev, Pratibha

    2016-12-16

    Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. In this work we develop explicit schemes for spin-photon entanglement in several SiC defects: the silicon monovacancy, the silicon divacancy, and the NV center in SiC. Distinct approaches are given for (i) single-photon and spin entanglement and (ii) the generation of long strings of entangled photons. The latter are known as cluster states and comprise a resource for measurement-based quantum information processing.

  2. Next Generation Device Grade Silicon-Germanium on Insulator

    PubMed Central

    Littlejohns, Callum G.; Nedeljkovic, Milos; Mallinson, Christopher F.; Watts, John F.; Mashanovich, Goran Z.; Reed, Graham T.; Gardes, Frederic Y.

    2015-01-01

    High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment. PMID:25656076

  3. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  4. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  5. Rapid Silicon Dioxide Film Formation on Clean Silicon Surfaces

    DTIC Science & Technology

    1992-10-19

    devices, and demands for higher reliability, thereby requiring further refinements of silicon planar technology . An understanding of the kinetics of film...110)) reveal the dependence of the refractive index of SiO. as a function of oxide thickness. No orientation effects were found. Kinetic measurements...further refinements of silicon planar technology . An understanding of the kinetics of film formation and optical properties of ultrathin silicon

  6. New Isotope 263Hs

    SciTech Connect

    Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Dvorak, J.; Ellison, P.A.; Gates, J.M.; Nelson, S.L.; Stavsetra, L.; Nitsche, H.

    2010-03-16

    A new isotope of Hs was produced in the reaction 208Pb(56Fe, n)263Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope 263Hs. The measured cross section was 21+13-8.4 pb at 276.4 MeV lab-frame center-of-target beam energy. 263Hs decays with a half-life of 0.74 ms by alpha-decay and the measured alpha-particle energies are 10.57 +- 0.06, 10.72 +- 0.06, and 10.89 +- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)].

  7. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  8. Iron isotope biosignatures.

    PubMed

    Beard, B L; Johnson, C M; Cox, L; Sun, H; Nealson, K H; Aguilar, C

    1999-09-17

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  9. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  10. Silicon Carbide Electronic Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.

    2001-01-01

    The status of emerging silicon carbide (SiC) widebandgap semiconductor electronics technology is briefly surveyed. SiC-based electronic devices and circuits are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot function. Projected performance benefits of SiC electronics are briefly illustrated for several applications. However, most of these operational benefits of SiC have yet to be realized in actual systems, primarily owing to the fact that the growth techniques of SiC crystals are relatively immature and device fabrication technologies are not yet sufficiently developed to the degree required for widespread, reliable commercial use. Key crystal growth and device fabrication issues that limit the performance and capability of high-temperature and/or high-power SiC electronics are identified. The electrical and material quality differences between emerging SiC and mature silicon electronics technology are highlighted.

  11. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  12. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  13. Haematic silicon in drowning.

    PubMed

    Pierucci, Giovanni; Merlano, Federica; Chen, Yao; Sturini, Michela; Maraschi, Federica; Profumo, Antonella

    2016-04-01

    The aim of this paper was to evaluate silicon (Si) concentration in human whole ventricular blood as a further potential chemical marker in the diagnosis of drowning. We employed an acidic digestion for the extraction of soluble Si, and an alkaline digestion for the determination of total Si, including particulate matter, both arising from drowning medium. 29 suspected drowning situations, 24 in fresh water (Fw) and 5 in seawater (Sw), were examined. The difference in Si concentration between the left and right ventricular blood (Si ΔL-R) was measured and alkaline Si ΔL-R seems, indeed, a potentially significant complementary tool in the diagnosis of Fw drowning, because insoluble silicon fraction does not undergo hemo-dilution or hemo-concentration, and the ΔL-R is not affected by exogenous factors. In spite of the limited number of cases investigated, a good correlation was observed between the analytical results and the macro-microscopic autoptic findings.

  14. A silicon electromechanical photodetector.

    PubMed

    Tallur, Siddharth; Bhave, Sunil A

    2013-06-12

    Optomechanical systems have enabled wide-band optical frequency conversion and multichannel all-optical radio frequency amplification. Realization of an on-chip silicon communication platform is limited by photodetectors needed to convert optical information to electrical signals for further signal processing. In this paper we present a coupled silicon microresonator, which converts near-IR optical intensity modulation at 174.2 MHz and 1.198 GHz into motional electrical current. This device emulates a photodetector which detects intensity modulation of continuous wave laser light in the full-width-at-half-maximum bandwidth of the mechanical resonance. The resonant principle of operation eliminates dark current challenges associated with convetional photodetectors. While the results presented here constitute a purely classical demonstration, the device can also potentially be extended to the quantum regime to realize a photon-phonon translator.

  15. Germanium epitaxy on silicon

    PubMed Central

    Ye, Hui; Yu, Jinzhong

    2014-01-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics. PMID:27877657

  16. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  17. Germanium epitaxy on silicon.

    PubMed

    Ye, Hui; Yu, Jinzhong

    2014-04-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.

  18. Germanium epitaxy on silicon

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Yu, Jinzhong

    2014-04-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.

  19. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    NASA Astrophysics Data System (ADS)

    Lindsay, L.

    2016-11-01

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements, isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach, the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where κ values of isotopically pure systems (6LiH ,7L i2H , and 6LiF ) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these κ differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This paper provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.

  20. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems (6LiH, 7Li2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less