A differential CDM model for fatigue of unidirectional metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1992-01-01
A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.
2016-01-01
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammoun, S.; Brassart, L.; Doghri, I.
A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individuallymore » according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.« less
NASA Astrophysics Data System (ADS)
Kammoun, S.; Brassart, L.; Robert, G.; Doghri, I.; Delannay, L.
2011-05-01
A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.
NASA Technical Reports Server (NTRS)
Nagar, Arvind (Editor)
1992-01-01
The latest developments in the area of fracture and damage at high temperatures are discussed, in particular: modeling; analysis and experimental techniques for interface damage in composites including the effects of residual stresses and temperatures; and crack growth, inelastic deformation and fracture parameters for isotropic materials. Also included are damage modeling and experiments at elevated temperatures.
Levrero-Florencio, Francesc; Pankaj, Pankaj
2018-01-01
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
NASA Astrophysics Data System (ADS)
Ross, Z. E.; Ben-Zion, Y.; Zhu, L.
2015-02-01
We analyse source tensor properties of seven Mw > 4.2 earthquakes in the complex trifurcation area of the San Jacinto Fault Zone, CA, with a focus on isotropic radiation that may be produced by rock damage in the source volumes. The earthquake mechanisms are derived with generalized `Cut and Paste' (gCAP) inversions of three-component waveforms typically recorded by >70 stations at regional distances. The gCAP method includes parameters ζ and χ representing, respectively, the relative strength of the isotropic and CLVD source terms. The possible errors in the isotropic and CLVD components due to station variability is quantified with bootstrap resampling for each event. The results indicate statistically significant explosive isotropic components for at least six of the events, corresponding to ˜0.4-8 per cent of the total potency/moment of the sources. In contrast, the CLVD components for most events are not found to be statistically significant. Trade-off and correlation between the isotropic and CLVD components are studied using synthetic tests with realistic station configurations. The associated uncertainties are found to be generally smaller than the observed isotropic components. Two different tests with velocity model perturbation are conducted to quantify the uncertainty due to inaccuracies in the Green's functions. Applications of the Mann-Whitney U test indicate statistically significant explosive isotropic terms for most events consistent with brittle damage production at the source.
NASA Technical Reports Server (NTRS)
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
NASA Technical Reports Server (NTRS)
Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.
1991-01-01
Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.
NASA Technical Reports Server (NTRS)
Kelkar, A. D.
1984-01-01
In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.
Heat transfer in damaged material
NASA Astrophysics Data System (ADS)
Kruis, J.
2013-10-01
Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.
NASA Astrophysics Data System (ADS)
Okabe, Tomonaga; Yashiro, Shigeki
This study proposes the cohesive zone model (CZM) for predicting fatigue damage growth in notched carbon-fiber-reinforced composite plastic (CFRP) cross-ply laminates. In this model, damage growth in the fracture process of cohesive elements due to cyclic loading is represented by the conventional damage mechanics model. We preliminarily investigated whether this model can appropriately express fatigue damage growth for a circular crack embedded in isotropic solid material. This investigation demonstrated that this model could reproduce the results with the well-established fracture mechanics model plus the Paris' law by tuning adjustable parameters. We then numerically investigated the damage process in notched CFRP cross-ply laminates under tensile cyclic loading and compared the predicted damage patterns with those in experiments reported by Spearing et al. (Compos. Sci. Technol. 1992). The predicted damage patterns agreed with the experiment results, which exhibited the extension of multiple types of damage (e.g., splits, transverse cracks and delaminations) near the notches.
A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.
1994-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.
Fatigue life prediction modeling for turbine hot section materials
NASA Technical Reports Server (NTRS)
Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.
1989-01-01
A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.
Fatigue life prediction modeling for turbine hot section materials
NASA Technical Reports Server (NTRS)
Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.
1988-01-01
A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.
Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Nottorf, Eric W.
1989-01-01
A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
A nonlinear CDM based damage growth law for ductile materials
NASA Astrophysics Data System (ADS)
Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar
2018-02-01
A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.
NASA Astrophysics Data System (ADS)
Zhang, Jiu-Chang
2018-02-01
Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.
Impact and damage of an armor composite
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Parry, S.; Bourne, N. K.; Townsend, D.; James, B. J.
2015-06-01
The use of carbon fiber composites under shock and impact loading in aerospace, defense and automotive applications is increasingly important. Therefore prediction of the composite behavior and damage in these conditions is critical. Influence of anisotropy, fiber orientation and the rate of loading during the impact is considered in the present study and validated by comparison with experiments. The experiments deal with the plane, ballistic and Taylor impacts accompanied by high-speed photography observations and tomography of recovered samples. The CTH hydrocode is employed as the modeling platform with an advanced rate sensitive material model used for description of the deformation and damage of the transversely isotropic composite material.
Sandia fracture challenge 2: Sandia California's modeling approach
Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; ...
2016-03-09
The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less
Damage-plasticity model of the host rock in a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz
The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less
NASA Astrophysics Data System (ADS)
Ji, Zhaojie; Guan, Zhidong; Li, Zengshan
2017-10-01
In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.
Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach
NASA Technical Reports Server (NTRS)
Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.
2016-01-01
A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.
A LATIN-based model reduction approach for the simulation of cycling damage
NASA Astrophysics Data System (ADS)
Bhattacharyya, Mainak; Fau, Amelie; Nackenhorst, Udo; Néron, David; Ladevèze, Pierre
2017-11-01
The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.
Characteristics of Creep Damage for 60Sn-40Pb Solder Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Y.; Chow, C.L.; Fang, H.E.
This paper presents a viscoplasticity model taking into account the effects of change in grain or phase size and damage on the characterization of creep damage in 60Sn-40Pb solder. Based on the theory of damage mechanics, a two-scalar damage model is developed for isotropic materials by introducing the free energy equivalence principle. The damage evolution equations are derived in terms of the damage energy release rates. In addition, a failure criterion is developed based on the postulation that a material element is said to have ruptured when the total damage accumulated in the element reaches a critical value. The damagemore » coupled viscoplasticity model is discretized and coded in a general-purpose finite element program known as ABAQUS through its user-defined material subroutine UMAT. To illustrate the application of the model, several example cases are introduced to analyze, both numerically and experimentally, the tensile creep behaviors of the material at three stress levels. The model is then applied to predict the deformation of a notched specimen under monotonic tension at room temperature (22 C). The results demonstrate that the proposed model can successfully predict the viscoplastic behavior of the solder material.« less
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang
An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters ismore » carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.« less
A theory of viscoplasticity accounting for internal damage
NASA Technical Reports Server (NTRS)
Freed, A. D.; Robinson, D. N.
1988-01-01
A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.
NASA Astrophysics Data System (ADS)
Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng
2017-11-01
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.
NASA Astrophysics Data System (ADS)
Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena
2015-12-01
Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.
Two-dimensional strain gradient damage modeling: a variational approach
NASA Astrophysics Data System (ADS)
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Kwon, Young S.; Sankar, Bhavani V.
1992-01-01
Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2018-05-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2017-11-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
Tan, J L Y; Deshpande, V S; Fleck, N A
2016-07-13
A damage-based finite-element model is used to predict the fracture behaviour of centre-notched quasi-isotropic carbon-fibre-reinforced-polymer laminates under multi-axial loading. Damage within each ply is associated with fibre tension, fibre compression, matrix tension and matrix compression. Inter-ply delamination is modelled by cohesive interfaces using a traction-separation law. Failure envelopes for a notch and a circular hole are predicted for in-plane multi-axial loading and are in good agreement with the observed failure envelopes from a parallel experimental study. The ply-by-ply (and inter-ply) damage evolution and the critical mechanisms of ultimate failure also agree with the observed damage evolution. It is demonstrated that accurate predictions of notched compressive strength are obtained upon employing the band broadening stress for microbuckling, highlighting the importance of this damage mode in compression. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Kriz, R. D.; Stinchcomb, W. W.; Tenney, D. R.
1980-01-01
Classical laminate theory and a finite element model were used to predict stress states prior to the first formation of damage in laminates fabricated from T/300/5208. Crack patterns characteristic of the laminate in a wet or dry condition were also predicted using a shear lag model. Development of edge damage was recorded and observed during the test by transferring an image of the damage from the edge surface on to a thin acetate sheet such that the damage imprinted could be immediately viewed on a microfiche card reader. Moisture was shown to significantly alter the interior and edge dry stress states due to swelling and a reduction of elastic properties and to reduce the transverse strength in 90 deg plies. A model was developed in order to predict changes in first ply failure laminate loads due to differences in stacking sequence together with a wet or dry environmental condition.
Numerical study of multi-point forming of thick sheet using remeshing procedure
NASA Astrophysics Data System (ADS)
Cherouat, A.; Ma, X.; Borouchaki, H.; Zhang, Q.
2018-05-01
Multi-point forming MPF is an innovative technology of manufacturing complex thick sheet metal products without the need for solid tools. The central component of this system is a pair of the desired discrete matrices of punches, and die surface constructed by changing the positions of the tools though CAD and a control system. Because reconfigurable discrete tools are used, part-manufacturing costs are reduced and manufacturing time is shorten substantially. Firstly, in this work we develop constitutive equations which couples isotropic ductile damage into various flow stress based on the Continuum Damage Mechanic theory. The modified Johnson-Cook flow model fully coupled with an isotropic ductile damage is established using the quasi-unilateral damage evolution for considering both the open and the close of micro-cracks. During the forming processes severe mesh distortion of elements occur after a few incremental forming steps. Secondly, we introduce 3D adaptive remeshing procedure based on linear tetrahedral element and geometrical/physical errors estimation to optimize the element quality, to refine the mesh size in the whole model and to adapt the deformed mesh to the tools geometry. Simulation of the MPF process (see Fig. 1) and the unloading spring-back are carried out using adaptive remeshing scheme using the commercial finite element package ABAQUS and OPTIFORM mesher. Subsequently, influencing factors of MPF spring-back are researched to investigate the MPF spring-back tendency with the proposed remeshing procedure.
Fatigue damage prognosis using affine arithmetic
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey; Kim, Daewon
2014-02-01
Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.
NASA Technical Reports Server (NTRS)
Nelson, Richard S.; Schoendorf, John F.
1986-01-01
As gas turbine technology continues to advance, the need for advanced life prediction methods for hot section components is becoming more and more evident. The complex local strain and temperature histories at critical locations must be accurately interpreted to account for the effects of various damage mechanisms (such as fatigue, creep, and oxidation) and their possible interactions. As part of the overall NASA HOST effort, this program is designed to investigate these fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines.
A simple model of space radiation damage in GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stith, J. J.; Stock, L. V.
1983-01-01
A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.
Application of the Refined Zigzag Theory to the Modeling of Delaminations in Laminated Composites
NASA Technical Reports Server (NTRS)
Groh, Rainer M. J.; Weaver, Paul M.; Tessler, Alexander
2015-01-01
The Refined Zigzag Theory is applied to the modeling of delaminations in laminated composites. The commonly used cohesive zone approach is adapted for use within a continuum mechanics model, and then used to predict the onset and propagation of delamination in five cross-ply composite beams. The resin-rich area between individual composite plies is modeled explicitly using thin, discrete layers with isotropic material properties. A damage model is applied to these resin-rich layers to enable tracking of delamination propagation. The displacement jump across the damaged interfacial resin layer is captured using the zigzag function of the Refined Zigzag Theory. The overall model predicts the initiation of delamination to within 8% compared to experimental results and the load drop after propagation is represented accurately.
Deformation mechanisms in negative Poisson's ratio materials - Structural aspects
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
This paper studied the machinability of hybrid CFRP/Ti stack via the numerical approach. To this aim, an original FE model consisting of three fundamental physical constituents, i.e., CFRP phase, interface and Ti phase, was established in the Abaqus Explicit/code to construct the machining behavior of the composite-to-metal alliance. The CFRP phase was modeled as an equivalent homogeneous material (EHM) by considering its anisotropic behavior relative to the fiber orientation (θ) while the Ti alloy phase was assumed to exhibit isotropic and elastic-plastic behavior. The "interface" linking the "CFRP-to-Ti" contact boundary was physically modeled as an intermediate transition region through the concept of cohesive zone (CZ). Different constitutive laws and damage criteria were implemented to simulate the chip separation process of the bi-material system. The key cutting responses including specific cutting energy consumption, induced subsurface damage, and interface delamination were precisely addressed via the comprehensive FE analyses, and several key conclusions were drawn from this study.
Impact and damage of an armour composite
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Parry, S.; Bourne, N. K.; Townsend, D.; James, B.
2017-01-01
The current study assesses the application of the Taylor Test to validate hydrocode modelling of composite materials. 0° in-plane and through-thickness rods were cut from a 25 mm thick composite panel, made from autoclave cured 0°, 90° uni-directional carbon/epoxy prepreg. The rods were fired against a semi-infinite steel anvil and high-speed video imaging was used to capture the difference in rod shape and damage patterns during the experiments. Results of simulation with a rate sensitive, transversely isotropic composite material model implemented in the CTH hydrocode were compared with the present experiments. The model showed good correlation with global deformation of the rods, and was used to qualitatively assess some of the asymmetric deformation features in the material. As the present model implementation did not account for damage at this stage, it did not predict inter-ply delamination normal to the impact face for the in-plane 0° rods and that parallel to the impact face in the through-thickness samples.
Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1997-12-31
The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. Whenmore » subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.« less
Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model
NASA Astrophysics Data System (ADS)
Wen, Y.; Chen, Z. H.; Zang, Y.
2013-11-01
In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Li, W.; Wilt, Thomas E.
1997-01-01
The scope of the work in this presentation focuses on the development of algorithms for the integration of rate dependent constitutive equations. In view of their robustness; i.e., their superior stability and convergence properties for isotropic and anisotropic coupled viscoplastic-damage models, implicit integration schemes have been selected. This is the simplest in its class and is one of the most widely used implicit integrators at present.
Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F
2014-01-01
Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.
Formability prediction for AHSS materials using damage models
NASA Astrophysics Data System (ADS)
Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara
2017-05-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.
NASA Astrophysics Data System (ADS)
Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham
2016-09-01
The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.
Damage Processes in a Quasi-Isotropic Composite Short Beam Under Three- Point Loading
1992-01-01
American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE...three- point bend test Is investigated for a composite with a quasi-isotropic layup. Failue is found to Initiate iri a region near the point of...Composites Technology & Research, Winter 1991 Copyright American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103 REFERENCE
NASA Technical Reports Server (NTRS)
Nemeth, Noel
2013-01-01
Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software
Simulation of Anisotropic Rock Damage for Geologic Fracturing
NASA Astrophysics Data System (ADS)
Busetti, S.; Xu, H.; Arson, C. F.
2014-12-01
A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (<1m) brittle continuum damage reflects microcracking, grain boundary separation, grain crushing, or fine delamination, such as in shale. At outcrop (1m-100m), seismic (10m-1000m), and tectonic (>1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage model to couple damage evolution with plasticity and with permeability for more geologically realistic simulation.
Damage Detection in Composite Structures with Wavenumber Array Data Processing
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
Interacting damage models mapped onto ising and percolation models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toussaint, Renaud; Pride, Steven R.
The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in themore » system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model to standard statistical mechanics.« less
Compression of thick laminated composite beams with initial impact-like damage
NASA Technical Reports Server (NTRS)
Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.
1992-01-01
While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.
NASA Astrophysics Data System (ADS)
Schwarz, W.; Schwub, S.; Quering, K.; Wiedmann, D.; Höppel, H. W.; Göken, M.
2011-09-01
During their operational life-time, actively cooled liners of cryogenic combustion chambers are known to exhibit a characteristic so-called doghouse deformation, pursued by formation of axial cracks. The present work aims at developing a model that quantitatively accounts for this failure mechanism. High-temperature material behaviour is characterised in a test programme and it is shown that stress relaxation, strain rate dependence, isotropic and kinematic hardening as well as material ageing have to be taken into account in the model formulation. From fracture surface analyses of a thrust chamber it is concluded that the failure mode of the hot wall ligament at the tip of the doghouse is related to ductile rupture. A material model is proposed that captures all stated effects. Basing on the concept of continuum damage mechanics, the model is further extended to incorporate softening effects due to material degradation. The model is assessed on experimental data and quantitative agreement is established for all tests available. A 3D finite element thermo-mechanical analysis is performed on a representative thrust chamber applying the developed material-damage model. The simulation successfully captures the observed accrued thinning of the hot wall and quantitatively reproduces the doghouse deformation.
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Downing, R. G.
1984-01-01
Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.
Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves
NASA Technical Reports Server (NTRS)
Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.
2013-01-01
Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.
NASA Astrophysics Data System (ADS)
Rogers-Martinez, M. A.; Sammis, C. G.; Ezzedine, S. M.
2017-12-01
As part of the New England Damage Experiment (NEDE) a 122.7 kg Heavy ANFO charge was detonated at a depth of 13 m in a granite quarry in Barre Vt. Subsequent drill cores from the source region revealed that most of the resultant fracturing was concentrated in the rift plane of the highly anisotropic Barre granite. We simulated this explosion using a dynamic damage mechanics model embedded in the ABAQUS 3D finite element code. The damage mechanics was made anisotropic by taking the critical stress intensity factor to be a function of azimuth in concert with the physics of interacting parallel fractures and laboratory studies of anisotropic granite. In order to identify the effects of anisotropy, the explosion was also simulated assuming 1) no initial damage (pure elasticity) and 2) isotropic initial damage. For the anisotropic case, the calculated fracture pattern simulated that observed in NEDE. The simulated seismic radiation looked very much like that from a tensile fracture oriented in the rift plane, and similar to the crack-like moment tensor observed in the far field of many nuclear explosions.
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy approach to brittle fracture in strain-gradient modelling.
Placidi, Luca; Barchiesi, Emilio
2018-02-01
In this paper, we exploit some results in the theory of irreversible phenomena to address the study of quasi-static brittle fracture propagation in a two-dimensional isotropic continuum. The elastic strain energy density of the body has been assumed to be geometrically nonlinear and to depend on the strain gradient. Such generalized continua often arise in the description of microstructured media. These materials possess an intrinsic length scale, which determines the size of internal boundary layers. In particular, the non-locality conferred by this internal length scale avoids the concentration of deformations, which is usually observed when dealing with local models and which leads to mesh dependency. A scalar Lagrangian damage field, ranging from zero to one, is introduced to describe the internal state of structural degradation of the material. Standard Lamé and second-gradient elastic coefficients are all assumed to decrease as damage increases and to be locally zero if the value attained by damage is one. This last situation is associated with crack formation and/or propagation. Numerical solutions of the model are provided in the case of an obliquely notched rectangular specimen subjected to monotonous tensile and shear loading tests, and brittle fracture propagation is discussed.
NASA Astrophysics Data System (ADS)
Nyathi, Mhlwazi S.
2011-12-01
Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.
Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys
NASA Astrophysics Data System (ADS)
McCullough, Robert Ross
In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.
Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.
1985-01-01
The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.
Cosmological models with homogeneous and isotropic spatial sections
NASA Astrophysics Data System (ADS)
Katanaev, M. O.
2017-05-01
The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space-time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.
Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures
NASA Astrophysics Data System (ADS)
Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele
2017-09-01
Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.
Nishino, Ko; Lombardi, Stephen
2011-01-01
We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.
Development of Encapsulated Dye for Surface Impact Damage Indicator System.
1987-09-01
GROUP SUB-GROUP Composites Ultrasonics Dye Impact Microcapsules 11 04 NDE polyurethane 11 1 0Encapsulation Paint 19. ABSTRACT (Continue on reverse if...encapsulation, microencapsule incorporation into the USAF polyurethane paint, dnd initial correlation study of impact damage to impact coating indication. It is...project were to: 1. Refine the microcapsule formulation to be compatible with MIL-C-83286 paint. 2. Fabricate composite panels from isotropic graphite
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1983-01-01
The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.
NASA Technical Reports Server (NTRS)
Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.
1990-01-01
Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.
Effective orthorhombic anisotropic models for wavefield extrapolation
NASA Astrophysics Data System (ADS)
Ibanez-Jacome, Wilson; Alkhalifah, Tariq; Waheed, Umair bin
2014-09-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth's subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
Thermal fatigue durability for advanced propulsion materials
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1989-01-01
A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.
Advances in structural damage assessment using strain measurements and invariant shape descriptors
NASA Astrophysics Data System (ADS)
Patki, Amol Suhas
Energy conservation has become one of the most important topic of engineering research over the last couple of decades all around the world and implies reduced energy consumption in order to preserve rapidly depleting natural resources. Along with development of fuel-efficient power plants and technology utilizing alternate fuel to traditional fossil fuels, the design and manufacturing of light-weight energy-efficient structures plays a major role in energy conservation. However this reduction in material and/or weight cannot be achieved at the expense of safety. Thus it is essential to either increase the confidence in the analysis of mechanics of traditional isotropic materials to reduce safety factors or develop new structural materials, such as fiber-reinforced (FRP) polymer matrix composites, which tend to have a higher strength to weight ratio. This doctoral research work will focus on two problems faced by the structural mechanics community viz. effects of closure and overloads on fatigue cracks and structural health monitoring of composites. Fatigue life prediction is largely empirical which in recent years has been shown to be a conservative design model. Investigation of crack growth mechanisms, such as crack closure can lead to design optimization. However, the lack of understanding and accepted theories introduces a degree of uncertainty in such models. Many of the complexity and uncertainty arise from the lack of an experimental technique to quantify crack closure. In this context, this research work offers the most compelling evidence to date of the effects of overload retardation and a confirmation of the Wheeler model using direct experimental observations of the stress field and crack tip plastic zone with the aid of thermoelastic stress analysis. On the other hand, the uncertainties in the post-damage behavior of energy saving FRP-composite materials increase their capital cost and maintenance cost. Damage in isotropic materials tends to be local to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.
Modeling the effect of orientation on the shock response of a damageable composite material
NASA Astrophysics Data System (ADS)
Lukyanov, Alexander A.
2012-10-01
A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.
High-speed blanking of copper alloy sheets: Material modeling and simulation
NASA Astrophysics Data System (ADS)
Husson, Ch.; Ahzi, S.; Daridon, L.
2006-08-01
To optimize the blanking process of thin copper sheets ( ≈ 1. mm thickness), it is necessary to study the influence of the process parameters such as the punch-die clearance and the wear of the punch and the die. For high stroke rates, the strain rate developed in the work-piece can be very high. Therefore, the material modeling must include the dynamic effects.For the modeling part, we propose an elastic-viscoplastic material model combined with a non-linear isotropic damage evolution law based on the theory of the continuum damage mechanics. Our proposed modeling is valid for a wide range of strain rates and temperatures. Finite Element simulations, using the commercial code ABAQUS/Explicit, of the blanking process are then conducted and the results are compared to the experimental investigations. The predicted cut edge of the blanked part and the punch-force displacement curves are discussed as function of the process parameters. The evolution of the shape errors (roll-over depth, fracture depth, shearing depth, and burr formation) as function of the punch-die clearance, the punch and the die wear, and the contact punch/die/blank-holder are presented. A discussion on the different stages of the blanking process as function of the processing parameters is given. The predicted results of the blanking dependence on strain-rate and temperature using our modeling are presented (for the plasticity and damage). The comparison our model results with the experimental ones shows a good agreement.
A damage tolerance comparison of IM7/8551 and IM8G/8553 carbon/epoxy composites
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
A damage tolerance study of two new toughened carbon fiber/epoxy resin systems was undertaken as a continuation of ongoing work into screening new opposites for resistance to foreign object impact. This report is intended to be a supplement to NASA TP 3029 in which four new fiber/resin systems were tested for damage tolerance. Instrumented drop weight impact testing was used to inflict damage to 16-ply quasi-isotropic specimens. Instrumented output data and cross-sectional examinations of the damage zone were utilized to quantify the damage. It was found that the two fiber/resin systems tested in this study were much more impact resistant than an untoughened composite such as T300/934, but were not as impact resistant as other materials previously studied.
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.
1986-01-01
The far-field displacements in an infinite transversely isotropic elastic medium subjected to an oscillatory concentrated force are derived. The concepts of velocity surface, slowness surface and wave surface are used to describe the geometry of the wave propagation process. It is shown that the decay of the wave amplitudes depends not only on the distance from the source (as in isotropic media) but also depends on the direction of the point of interest from the source. As an example, the displacement field is computed for a laboratory fabricated unidirectional fiberglass epoxy composite. The solution for the displacements is expressed as an amplitude distribution and is presented in polar diagrams. This analysis has potential usefulness in the acoustic emission (AE) and ultrasonic nondestructive evaluation of composite materials. For example, the transient localized disturbances which are generally associated with AE sources can be modeled via this analysis. In which case, knowledge of the displacement field which arrives at a receiving transducer allows inferences regarding the strength and orientation of the source, and consequently perhaps the degree of damage within the composite.
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Annealing results on low-energy proton-irradiated GaAs solar cells
NASA Technical Reports Server (NTRS)
Kachare, R.; Anspaugh, B. E.; O'Meara, L.
1988-01-01
AlGaAs/GaAs solar cells with an approximately 0.5-micron-thick Al(0.85)Ga(0.15)As window layer were irradiated using normal and isotropic incident protons having energies between 50 and 500 keV with fluence up to 1 x 10 to the 12th protons/sq cm. The irradiated cells were annealed at temperatures between 150 and 300 C in nitrogen ambient. The annealing results reveal that significant recovery in spectral response at longer wavelengths occurred. However, the short-wavelength spectral response showed negligible annealing, irrespective of the irradiation energy and annealing conditions. This indicates that the damage produced near the AlGaAs/GaAs interface and the space-charge region anneals differently than damage produced in the bulk. This is explained by using a model in which the as-grown dislocations interact with irradiation-induced point defects to produce thermally stable defects.
Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P
2017-12-01
Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of skew angle on second harmonic guided wave measurement in composite plates
NASA Astrophysics Data System (ADS)
Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.
2017-02-01
Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.
Composite materials: Fatigue and fracture. Vol. 3
NASA Technical Reports Server (NTRS)
O'Brien, T. K. (Editor)
1991-01-01
The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.
Doblaré, M; García, J M
2001-09-01
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.
Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A
2018-03-12
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.
Strain Rate Dependant Material Model for Orthotropic Metals
NASA Astrophysics Data System (ADS)
Vignjevic, Rade
2016-08-01
In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In addition the constitutive model is coupled with a vector shock equation of state which allows for modelling of shock wave propagation in orthotropic the material. Parameters for the new constitutive model are typically derived on the basis of the tensile tests (performed over a range of temperatures and strain rates), plate impact tests and Taylor anvil tests. The model was applied to simulate explosively driven fragmentation, blast loading and cold spraying impacts.
Experimental and Numerical Analysis of Notched Composites Under Tension Loading
NASA Astrophysics Data System (ADS)
Aidi, Bilel; Case, Scott W.
2015-12-01
Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.
A note on antenna models in a warm isotropic plasma
NASA Technical Reports Server (NTRS)
Singh, N.
1980-01-01
The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.
Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1990-01-01
Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Miguel, E.; Rull, L.F.; Gubbins, K.E.
Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters {kappa}=3 and {kappa}{prime}=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientationmore » is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase.« less
Simplified computational methods for elastic and elastic-plastic fracture problems
NASA Technical Reports Server (NTRS)
Atluri, Satya N.
1992-01-01
An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, Vito; Nissley, David; Lin, Li-Sen Jim
1985-01-01
The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.
Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks
NASA Astrophysics Data System (ADS)
Dinç, Özge; Scholtès, Luc
2018-05-01
A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.
Influence of particle size distribution on reflected and transmitted light from clouds.
Kattawar, G W; Plass, G N
1968-05-01
The light reflected and transmitted from clouds with various drop size distributions is calculated by a Monte Carlo technique. Six different models are used for the drop size distribution: isotropic, Rayleigh, haze continental, haze maritime, cumulus, and nimbostratus. The scattering function for each model is calculated from the Mie theory. In general, the reflected and transmitted radiances for the isotropic and Rayleigh models tend to be similar, as are those for the various haze and cloud models. The reflected radiance is less for the haze and cloud models than for the isotropic and Rayleigh models/except for an angle of incidence near the horizon when it is larger around the incident beam direction. The transmitted radiance is always much larger for the haze and cloud models near the incident direction; at distant angles it is less for small and moderate optical thicknesses and greater for large optical thicknesses (all comparisons to isotropic and Rayleigh models). The downward flux, cloud albedo, and ean optical path are discussed. The angular spread of the beam as a function of optical thickness is shown for the nimbostratus model.
NASA Astrophysics Data System (ADS)
Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong
2018-04-01
The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.
Damage assessment in composite laminates via broadband Lamb wave.
Gao, Fei; Zeng, Liang; Lin, Jing; Shao, Yongsheng
2018-05-01
Time of flight (ToF) based method for damage detection using Lamb waves is widely used. However, due to the energy dissipation of Lamb waves and the non-ignorable size of damage in composite structure, the performance of damage detection is restricted. The objective of this research is to establish an improved method to locate and assess damages in composite structure. To choose appropriate excitation parameters, the propagation characters of Lamb waves in quasi-isotropic composite laminates are firstly studied and the broadband excitation is designed. Subsequently, the pulse compression technique is adopted for energy concentration and high-accuracy distance estimation. On this basis, the gravity center of intersections of path loci is employed for damage localization and the convex envelop of identified damage edge points is taken for damage contour estimation. As a result, both damage location and size can be evaluated, thereby providing the information for quantitative damage detection. The experiment consisting of five different sizes of damage is carried for method verification and the identified results show the efficiency of the proposed method. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, K.A.
1992-12-01
This study investigated the behavior of the SCS6/Ti-15-3 metal matrix composite with a quasi-isotropic layup when tested under static and fatigue conditions. Specimens were subjected to in-phase and out-of-phase thermo-mechanical and isothermal fatigue loading. In-phase and isothermal loading produced a fiber dominated failure while the out-of-phase loading produced a matrix dominated failure. Also, fiber domination in all three profiles was present at higher maximum applied loads and al three profiles demonstrated matrix domination at lower maximum applied loads. Thus, failure is both profile dependent and load equipment. Additional analyses, using laminated plate theory, Halpin-Tsai equations, METCAN, and the Linear Lifemore » Fraction Model (LLFM), showed: the as-received specimens contained plies where a portion of the fibers are debonded from the matrix; during fatigue cycling, the 90 deg. plies and a percentage of the 45 deg. plies failed immediately with greater damage becoming evident with additional cycles; and, the LLFM suggests that there may be a non-linear combination of fiber and matrix domination for in-phase and isothermal cycling.« less
A Simple Mechanical Model for the Isotropic Harmonic Oscillator
ERIC Educational Resources Information Center
Nita, Gelu M.
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)
Brown, Judith A.; Bishop, Joseph E.
2016-07-20
An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less
Blood Flow Characterization According to Linear Wall Models of the Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Williamson, Shobha; Rayz, Vitaliy; Berger, Stanley; Saloner, David
2004-11-01
Previous studies of the arterial wall include linearly isotropic, isotropic with residual stresses, and anisotropic models. This poses the question of how the results of each method differ when coupled with flow. Hence, the purpose of this study was to compare flow for these material models and subsequently determine if variations exist. Results show that displacement at the bifurcation and internal carotid bulb was noticeably larger in the orthotropic versus the isotropic model with subtle differences toward the inlet and outlets, which are fixed in space. In general, the orthotropic wall is further distended than the isotropic wall for the entire cycle. This apparent distention of the orthotropic wall clearly affects the flow. In diastole, the combination of slower flow and larger wall distention due to lumen pressure creates a sinuous velocity profile, particularly in the orthotropic model where the recirculation zone created displaces the core flow to a smaller area thereby increasing the velocity magnitudes nearly 60
NASA Astrophysics Data System (ADS)
Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.
2017-07-01
A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.
The isotropic radio background revisited
NASA Astrophysics Data System (ADS)
Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco
2014-04-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
Nonequilibrium phase transitions in isotropic Ashkin-Teller model
NASA Astrophysics Data System (ADS)
Akıncı, Ümit
2017-03-01
Dynamic behavior of an isotropic Ashkin-Teller model in the presence of a periodically oscillating magnetic field has been analyzed by means of the mean field approximation. The dynamic equation of motion has been constructed with the help of a Glauber type stochastic process and solved for a square lattice. After defining the possible dynamical phases of the system, phase diagrams have been given and the behavior of the hysteresis loops has been investigated in detail. The hysteresis loop for specific order parameter of isotropic Ashkin-Teller model has been defined and characteristics of this loop in different dynamical phases have been given.
NASA Technical Reports Server (NTRS)
Adams, M. L.; Yang, T.; Pace, S. E.
1989-01-01
A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.
Material parameter computation for multi-layered vocal fold models.
Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A; Döllinger, Michael
2011-04-01
Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one's livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations.
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Li, C.; Liao, Y. F.
2017-12-01
Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.
NASA Astrophysics Data System (ADS)
Sliseris, J.; Yan, L.; Kasal, B.
2017-09-01
Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.
Buganza Tepole, A; Kuhl, E
2016-01-01
Wound healing is a synchronized cascade of chemical, biological, and mechanical phenomena, which act in concert to restore the damaged tissue. An imbalance between these events can induce painful scarring. Despite intense efforts to decipher the mechanisms of wound healing, the role of mechanics remains poorly understood. Here, we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of scar formation. First, we introduce the generic problem of coupled chemo-bio-mechanics. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. We explore the cross-talk between chemical, biological, and mechanical signals and show that all three fields have a significant impact on scar formation. Our model is the first step toward rigorous multiscale, multifield modeling in wound healing. Our formulation has the potential to improve effective wound management and optimize treatment on an individualized patient-specific basis.
NASA Technical Reports Server (NTRS)
Vandermey, Nancy E.; Morris, Don H.; Masters, John E.
1991-01-01
Damage initiation and growth under compression-compression fatigue loading were investigated for a stitched uniweave material system with an underlying AS4/3501-6 quasi-isotropic layup. Performance of unnotched specimens having stitch rows at either 0 degree or 90 degrees to the loading direction was compared. Special attention was given to the effects of stitching related manufacturing defects. Damage evaluation techniques included edge replication, stiffness monitoring, x-ray radiography, residual compressive strength, and laminate sectioning. It was found that the manufacturing defect of inclined stitches had the greatest adverse effect on material performance. Zero degree and 90 degree specimen performances were generally the same. While the stitches were the source of damage initiation, they also slowed damage propagation both along the length and across the width and affected through-the-thickness damage growth. A pinched layer zone formed by the stitches particularly affected damage initiation and growth. The compressive failure mode was transverse shear for all specimens, both in static compression and fatigue cycling effects.
Explosive shock damage potential in space structures
NASA Technical Reports Server (NTRS)
Mortimer, R. W.
1972-01-01
The effects of a pulse shape on the transient response of a cylindrical shell are presented. Uniaxial, membrane, and bending theories for isotropic shells were used in this study. In addition to the results of the analytical study, the preliminary results of an experimental study into the generation and measurement of shear waves in a cylindrical shell are included.
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio
It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.
ERIC Educational Resources Information Center
Xuan, Yue; Zhang, Zhaoyan
2014-01-01
Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…
Shear Wave Generation by Explosions in Anisotropic Crystalline Rock
NASA Astrophysics Data System (ADS)
Rogers-Martinez, M. A.; Sammis, C. G.; Stroujkova, A. F.
2015-12-01
The use of seismic waves to discriminate between earthquakes and underground explosions is complicated by the observation that explosions routinely radiate strong S waves. Whether these S waves are primarily generated by non-linear processes at the source, or by mode conversions and scattering along the path remains an open question. It has been demonstrated that S waves are generated at the source by any mechanism that breaks the spherical symmetry of the explosion. Examples of such mechanisms include tectonic shear stress, spall, and anisotropy in the emplacement medium. Many crystalline rock massifs are transversely isotropic because they contain aligned fractures over a range of scales from microfractures at the grain scale (called the rift) to regional sets of joints. In this study we use a micromechanical damage mechanics to model the fracture damage patterns and seismic radiation generated by explosions in a material in which the initial distribution of fractures has a preferred direction. Our simulations are compared with a set of field experiments in a granite quarry in Barre, VT conducted by New England Research and Weston Geophysical. Barre granite has a strong rift plane of aligned microfractures. Our model captures two important results of these field studies: 1) the spatial extent of rock fracture and generation of S waves depends on the burn-rate of the explosion and 2) the resultant damage is anisotropic with most damage occurring in the preferred direction of the microfractures (the rift plane in the granite). The physical reason damage is enhanced in the rift direction is that the mode I stress intensity factor is large for each fracture in the array of parallel fractures in the rift plane. Tensile opening on the rift plane plus sliding on the preexisting fractures make strong non-spherical contributions to the moment tensor in the far-field.
A probabilisitic based failure model for components fabricated from anisotropic graphite
NASA Astrophysics Data System (ADS)
Xiao, Chengfeng
The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.
[Evaluation of the thermal effects of the plasma microtorch by infrared thermography].
Lhuisset, F; Zeboulon, S; Bouchier, G
1991-01-01
This study presents a detailed example of the examination of the tooth treated by thermal therapy, by infrared thermography and the different manners to show the results of the examination. The results of the work shows: the thermal diffusion into the tooth is similar to the thermal diffusion into an isotropic environment, the fusion heat of the dentine is reached without any damage to the pulp. The study of the tooth treated by the thermal action of the MICRO PLASMA SYSTEM confirms the thérapeutical effects of the thermal treatment without any damage to the pulp.
A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing
2014-09-01
A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL VARIATION MODEL FOR IMAGE PROCESSING YIFEI LOU∗, TIEYONG ZENG† , STANLEY OSHER‡ , AND JACK...grants DMS-0928427 and DMS-1222507. † Department of Mathematics, Hong Kong Baptist University, Kowloon Tong , Hong Kong. Email: zeng@hkbu.edu.hk. TZ is
Deep Drawing Simulations With Different Polycrystalline Models
NASA Astrophysics Data System (ADS)
Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie
2004-06-01
The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.
Properties of five toughened matrix composite materials
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Dow, Marvin B.
1992-01-01
The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.
Homogeneous Universes in Extended Inflation II
NASA Astrophysics Data System (ADS)
Guzmán, Enrique
1997-04-01
It is shown that the scalar field π of the Brans-Dicke theory in the Bianchi TypeVIo-VIh-VIIh-VIII and IX models has the same form that in the isotropic Robertson-Walker case. It is shown that the Universe will be isotropized very fast, permitting so that the approximation of an Universe Robertson-Walker isotropic to be a good approach in the early Universe.
A non-isotropic multiple-scale turbulence model
NASA Technical Reports Server (NTRS)
Chen, C. P.
1990-01-01
A newly developed non-isotropic multiple scale turbulence model (MS/ASM) is described for complex flow calculations. This model focuses on the direct modeling of Reynolds stresses and utilizes split-spectrum concepts for modeling multiple scale effects in turbulence. Validation studies on free shear flows, rotating flows and recirculating flows show that the current model perform significantly better than the single scale k-epsilon model. The present model is relatively inexpensive in terms of CPU time which makes it suitable for broad engineering flow applications.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.
Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids
NASA Astrophysics Data System (ADS)
Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko
2013-09-01
An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.
NASA Astrophysics Data System (ADS)
Zaichik, Leonid I.; Alipchenkov, Vladimir M.
2009-10-01
The purpose of this paper is twofold: (i) to advance and extend the statistical two-point models of pair dispersion and particle clustering in isotropic turbulence that were previously proposed by Zaichik and Alipchenkov (2003 Phys. Fluids15 1776-87 2007 Phys. Fluids 19, 113308) and (ii) to present some applications of these models. The models developed are based on a kinetic equation for the two-point probability density function of the relative velocity distribution of two particles. These models predict the pair relative velocity statistics and the preferential accumulation of heavy particles in stationary and decaying homogeneous isotropic turbulent flows. Moreover, the models are applied to predict the effect of particle clustering on turbulent collisions, sedimentation and intensity of microwave radiation as well as to calculate the mean filtered subgrid stress of the particulate phase. Model predictions are compared with direct numerical simulations and experimental measurements.
NASA Astrophysics Data System (ADS)
Rama, S. Kalyana
2018-06-01
We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.
Photon Beaming in External Compton models
NASA Astrophysics Data System (ADS)
Hutter, Anne; Spanier, Felix
In attempt to model blazar emission spectra, External Compton models have been employed to fit the observed data. In these models photons from the accretion disk or the CMB are upscat-tered via the Compton effect by the electrons and contribute to the emission. In previous works the resulting scattered photon angular distribution has been calculated for ultrarelativistic elec-trons. This work aims to extend the result to the case of mildly relativistic electrons. Hence, the beaming pattern produced by a relativistic moving blob consisting of isotropic distributed electrons, which scatter photons of an isotropic external radiation is calculated numerically. The isotropic photon density distribution in the blob frame is Lorentz-transformed into the rest frame of the electron and results in an anisotropic distribution with a preferred direction where it is upscattered by the electrons. The photon density distribution is determined and transformed back into the blob frame. As the photons in the rest frame of the electrons are dis-tributed anisotropically the scattering does not reproduce this anisotropic distribution. When transforming back into the blob frame the resulting photon distribution won't be isotropic. Approximations have shown that the resulting photon distribution is boosted more strongly than a distribution assumed to be isotropic in the rest frame of the electrons. Hence, in order to obtain the beaming caused by external Compton it is of particular interest to derive a more exact approximation of the resulting photon angular distribution.
Poroelasticity of the Callovo-Oxfordian Claystone
NASA Astrophysics Data System (ADS)
Belmokhtar, Malik; Delage, Pierre; Ghabezloo, Siavash; Tang, Anh-Minh; Menaceur, Hamza; Conil, Nathalie
2017-04-01
This work is devoted to an experimental investigation of the poroelastic behavior of the Callovo-Oxfordian claystone, a potential host rock for the deep underground repository of high-level radioactive waste in France. Drained, undrained, pore pressure loading and unjacketed tests were carried out in a specially designed isotropic compression cell to determine the poroelastic parameters of fully saturated specimens. Great care was devoted to the saturation procedure, and small loading rates were used to ensure full drainage conditions in drained and pore pressure tests (0.5 kPa/min) and in the unjacketed test (2 kPa/min). High-precision strain measurements were performed by ensuring direct contact between the LVDT stems and the specimen. An analysis in the framework of transverse isotropic poroelasticity provided the Biot effective stress coefficients b 1 (perpendicular to bedding) between 0.85 and 0.87 and b 2 (parallel to bedding) between 0.90 and 0.98 under different stress conditions (pore pressure 4 MPa, total isotropic stresses of 14 and 12 MPa, respectively). A set of equivalent isotropic poroelastic parameters was also determined and a very good compatibility between the results of different tests was found, giving confidence in the parameters determined. The unjacketed test provided a directly reliable measurement of the unjacketed modulus ( K s = 21.7 GPa) that was afterward confirmed by an indirect evaluation that showed the non-dependency of K s with respect to the stress level. These parameters were obtained for specimens cored and trimmed in the laboratory. A parametric study was then conducted so as to provide an estimation of the parameters in situ, i.e., not submitted to the damage supported by laboratory specimens. A minimal value b = 0.77 seems to be a reasonable lower bound for the equivalent isotropic Biot parameter.
NASA Astrophysics Data System (ADS)
Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming
2014-12-01
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.
Lightweight Towed Howitzer Demonstrator. Phase 1 and Partial Phase 2. Volume A. Overview.
1987-04-01
Reliability Floyd Manson............................... Test Plans Errol Quick................................. Systems Engrnq Coordi nati on Bob Schmidt ...FMC Structur*1 Verification o Beam stress calculations on the supporting trails which allow 70kpsi in a quasi-isotropic lay up of graphite epoxy...addressed utilizing a damage tolerant design criteria. o Strength calculations are questionable because of the dry room temperature values used. The
NASA Astrophysics Data System (ADS)
Ritz, E.; Pollard, D. D.
2011-12-01
Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.
Determination of replicate composite bone material properties using modal analysis.
Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander
2017-02-01
Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scherzinger, William M.
2016-05-01
The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.
NASA Technical Reports Server (NTRS)
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
Intralaminar and Interlaminar Progressive Failure Analysis of Composite Panels with Circular Cutouts
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Jaunky, Navin; Johnson, Eric R.; Ambur, Damodar
2002-01-01
A progressive failure methodology is developed and demonstrated to simulate the initiation and material degradation of a laminated panel due to intralaminar and interlaminar failures. Initiation of intralaminar failure can be by a matrix-cracking mode, a fiber-matrix shear mode, and a fiber failure mode. Subsequent material degradation is modeled using damage parameters for each mode to selectively reduce lamina material properties. The interlaminar failure mechanism such as delamination is simulated by positioning interface elements between adjacent sublaminates. A nonlinear constitutive law is postulated for the interface element that accounts for a multi-axial stress criteria to detect the initiation of delamination, a mixed-mode fracture criteria for delamination progression, and a damage parameter to prevent restoration of a previous cohesive state. The methodology is validated using experimental data available in the literature on the response and failure of quasi-isotropic panels with centrally located circular cutouts loaded into the postbuckling regime. Very good agreement between the progressive failure analyses and the experimental results is achieved if the failure analyses includes the interaction of intralaminar and interlaminar failures.
NASA Astrophysics Data System (ADS)
Asinari, P.
2011-03-01
Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).
NASA Technical Reports Server (NTRS)
Parker, Bradford H.
1992-01-01
An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.
Earthquake location in transversely isotropic media with a tilted symmetry axis
NASA Astrophysics Data System (ADS)
Zhao, Aihua; Ding, Zhifeng
2009-04-01
The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a) accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data, and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic, the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%.
Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu
2017-11-01
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.
Quantitative damage imaging using Lamb wave diffraction tomography
NASA Astrophysics Data System (ADS)
Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong
2016-12-01
In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).
An endochronic theory for transversely isotropic fibrous composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1981-01-01
A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.
Survey of four damage models for concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leelavanichkul, Seubpong; Brannon, Rebecca Moss
2009-08-01
Four conventional damage plasticity models for concrete, the Karagozian and Case model (K&C), the Riedel-Hiermaier-Thoma model (RHT), the Brannon-Fossum model (BF1), and the Continuous Surface Cap Model (CSCM) are compared. The K&C and RHT models have been used in commercial finite element programs many years, whereas the BF1 and CSCM models are relatively new. All four models are essentially isotropic plasticity models for which 'plasticity' is regarded as any form of inelasticity. All of the models support nonlinear elasticity, but with different formulations. All four models employ three shear strength surfaces. The 'yield surface' bounds an evolving set of elasticallymore » obtainable stress states. The 'limit surface' bounds stress states that can be reached by any means (elastic or plastic). To model softening, it is recognized that some stress states might be reached once, but, because of irreversible damage, might not be achievable again. In other words, softening is the process of collapse of the limit surface, ultimately down to a final 'residual surface' for fully failed material. The four models being compared differ in their softening evolution equations, as well as in their equations used to degrade the elastic stiffness. For all four models, the strength surfaces are cast in stress space. For all four models, it is recognized that scale effects are important for softening, but the models differ significantly in their approaches. The K&C documentation, for example, mentions that a particular material parameter affecting the damage evolution rate must be set by the user according to the mesh size to preserve energy to failure. Similarly, the BF1 model presumes that all material parameters are set to values appropriate to the scale of the element, and automated assignment of scale-appropriate values is available only through an enhanced implementation of BF1 (called BFS) that regards scale effects to be coupled to statistical variability of material properties. The RHT model appears to similarly support optional uncertainty and automated settings for scale-dependent material parameters. The K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother prediction of transient effects. During softening, all four models require a certain amount of strain to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.« less
Homogeneous cosmological models and new inflation
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Widrow, Lawrence M.
1986-01-01
The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.
NASA Astrophysics Data System (ADS)
Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.
2017-12-01
Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.
2007-05-01
Models of energization of electrons in the Earth's outer radiation belts invoke two classes of processes, radial transport and in-situ wave-particle interactions. Temporal evolution of electron spectra and flux isotropization during energization events provide useful observational constraints on models of electron energization. Events dominated by radial diffusion result in pancake type pitch angle distributions whereas some in-situ wave-particle energization mechanisms include pitch angle scattering leading to rapid flux isotropization. We present a survey of flux isotrpization time scales and electron spectra during relativstic electron enhancement events. We will use data collected by detectors onboard SAMPEX in low earth orbit and Polar which measures electron fluxes at higher altitude to measure flux isotropization. Electron spectra are obtained by pulse height analyzed data from the PET detector onboard SAMPEX.SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and Polar covers the time period from mid 1996 to the present.
Explicit 2-D Hydrodynamic FEM Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakmor, R.; Pfrommer, C.; Simpson, C. M.
2016-06-20
The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, Dan J; Corum, James; Klett, Lynn B
2006-04-01
This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design datamore » and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.« less
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
NASA Astrophysics Data System (ADS)
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
NASA Astrophysics Data System (ADS)
Sorba, Grégoire; Binetruy, Christophe; Chinesta, Francisco
2016-10-01
In this paper a model of Transversely Isotropic Fluid (TIF), developed by Pipkin in [1], is presented and used for example to model in 2D the in-plane shearing of UD prepreg. This problem demonstrates the need to have a continuous fiber tension field over the elements, with the final objective of detecting the wrinkling of fibers during the forming process, at the price of a lower accuracy of the velocity field.
Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation
NASA Astrophysics Data System (ADS)
Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong
2018-04-01
The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.
Analysis of progressive damage in thin circular laminates due to static-equivalent impact loads
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Clamped circular graphite/epoxy plates (25.4, 38.1, and 50.8 mm radii) with an 8-ply quasi-isotropic layup were analyzed for static-equivalent impact loads using the minimum-total-potential-energy method and the von Karman strain-displacement equations. A step-by-step incremental transverse displacement procedure was used to calculate plate load and ply stresses. The ply failure region was calculated using the Tsai-Wu criterion. The corresponding failure modes (splitting and fiber failure) were determined using the maximum stress criteria. The first-failure mode was splitting and initiated first in the bottom ply. The splitting-failure thresholds were relatively low and tended to be lower for larger plates than for small plates. The splitting-damage region in each ply was elongated in its fiber direction; the bottom ply had the largest damage region. The calculated damage region for the 25.4-mm-radius plate agreed with limited static test results from the literature.
Damage tolerance and arrest characteristics of pressurized graphite/epoxy tape cylinders
NASA Technical Reports Server (NTRS)
Ranniger, Claudia U.; Lagace, Paul A.; Graves, Michael J.
1993-01-01
An investigation of the damage tolerance and damage arrest characteristics of internally-pressurized graphite/epoxy tape cylinders with axial notches was conducted. An existing failure prediction methodology, developed and verified for quasi-isotropic graphite/epoxy fabric cylinders, was investigated for applicability to general tape layups. In addition, the effect of external circumferential stiffening bands on the direction of fracture path propagation and possible damage arrest was examined. Quasi-isotropic (90/0/plus or minus 45)s and structurally anisotropic (plus or minus 45/0)s and (plus or minus 45/90)s coupons and cylinders were constructed from AS4/3501-6 graphite/epoxy tape. Notched and unnotched coupons were tested in tension and the data correlated using the equation of Mar and Lin. Cylinders with through-thickness axial slits were pressurized to failure achieving a far-field two-to-one biaxial stress state. Experimental failure pressures of the (90/0/plus or minus 45)s cylinders agreed with predicted values for all cases but the specimen with the smallest slit. However, the failure pressures of the structurally anisotropic cylinders, (plus or minus 45/0)s and (plus or minus 45/90)s, were above the values predicted utilizing the predictive methodology in all cases. Possible factors neglected by the predictive methodology include structural coupling in the laminates and axial loading of the cylindrical specimens. Furthermore, applicability of the predictive methodology depends on the similarity of initial fracture modes in the coupon specimens and the cylinder specimens of the same laminate type. The existence of splitting which may be exacerbated by the axial loading in the cylinders, shows that this condition is not always met. The circumferential stiffeners were generally able to redirect fracture propagation from longitudinal to circumferential. A quantitative assessment for stiffener effectiveness in containing the fracture, based on cylinder radius, slit size, and bending stiffnesses of the laminates, is proposed.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
Natural frequency changes due to damage in composite beams
NASA Astrophysics Data System (ADS)
Negru, I.; Gillich, G. R.; Praisach, Z. I.; Tufoi, M.; Gillich, N.
2015-07-01
Transversal cracks in structures affect their stiffness as well as the natural frequency values. This paper presents a research performed to find the way how frequencies of sandwich beams change by the occurrence of damage. The influence of the locally stored energy, for ten transverse vibration modes, on the frequency shifts is derived from a study regarding the effect of stiffness decrease, realized by means of the finite element analysis. The relation between the local value of the bending moment and the frequency drop is exemplified by a concrete case. It is demonstrated that a reference curve representing the damage severity exists whence any frequency shift is derivable in respect to damage depth and location. This curve is obtained, for isotropic and multi-layer beams as well, from the stored energy (i.e. stiffness decrease), and is similar to that attained using the stress intensity factor in fracture mechanics. Also, it is proved that, for a given crack, irrespective to its depth, the frequency drop ratio of any two transverse modes is similar. This permitted separating the effect of damage location from that of its severity and to define a Damage Location Indicator as a sequence of squared of the normalized mode shape curvatures.
Damage detection in composite materials using Lamb wave methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos
2002-04-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.
Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles
NASA Technical Reports Server (NTRS)
Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.
2010-01-01
Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.
The global phase diagram of the Gay-Berne model
NASA Astrophysics Data System (ADS)
de Miguel, Enrique; Vega, Carlos
2002-10-01
The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.
Damage Tolerance of Sandwich Plates With Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Sankar, Bhavani V.
2001-01-01
A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.
Self-diagnosis of damage in fibrous composites using electrical resistance measurements
NASA Astrophysics Data System (ADS)
Kang, Ji Ho; Paty, Spandana; Kim, Ran Y.; Tandon, G. P.
2006-03-01
The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in situ damage detection and sensing in carbon fiber reinforced plastic (CFRP) composite structures. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested and post-processed with the measurement data. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. Encouraged by the results of coupon specimens, we implemented the measurement system on panel specimens. Three different quasi-isotropic panels were designed and manufactured: a panel with artificial delamination by inserting Teflon film at the midplane, a panel with artificial delamination by inserting Teflon film between the second and third plies from the surface, and an undamaged panel. The first two panels were designed to determine the feasibility of detecting delamination using the developed measurement system. The third panel had no damage at first, and then three different sizes of holes were drilled at a chosen location. Panels were prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrode connections for a panel. All possible pairs of electrodes were scanned and the resistance was measured for each pair. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.
Isotropic cosmological models in F(T,TG) theory
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
2016-09-01
This paper is devoted to study evolution of the isotropic universe models in the framework of F(T,TG) gravity (T represents torsion scalar and TG is the teleparallel equivalent of the Gauss-Bonnet (GB) term). We construct F(T,TG) models by taking different eras of the universe like non-relativistic and relativistic matter eras, dark energy (DE) dominated era and their combinations. It is found that the reconstructed models indicate decreasing behavior for DE dominated era and its combination with other eras. We also discuss stability of each reconstructed model. Finally, we evaluate equation of state (EoS) parameter by considering two models and study its behavior graphically.
Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface
NASA Astrophysics Data System (ADS)
Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel
2015-12-01
The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.
Hencky's model for elastomer forming process
NASA Astrophysics Data System (ADS)
Oleinikov, A. A.; Oleinikov, A. I.
2016-08-01
In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.
A program to calculate pulse transmission responses through transversely isotropic media
NASA Astrophysics Data System (ADS)
Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei
2018-05-01
We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.
Boundary-element modelling of dynamics in external poroviscoelastic problems
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Litvinchuk, S. Yu; Ipatov, A. A.; Petrov, A. N.
2018-04-01
A problem of a spherical cavity in porous media is considered. Porous media are assumed to be isotropic poroelastic or isotropic poroviscoelastic. The poroviscoelastic formulation is treated as a combination of Biot’s theory of poroelasticity and elastic-viscoelastic correspondence principle. Such viscoelastic models as Kelvin–Voigt, Standard linear solid, and a model with weakly singular kernel are considered. Boundary field study is employed with the help of the boundary element method. The direct approach is applied. The numerical scheme is based on the collocation method, regularized boundary integral equation, and Radau stepped scheme.
NASA Astrophysics Data System (ADS)
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi
2015-04-01
Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.
Thermo-mechanical simulations of early-age concrete cracking with durability predictions
NASA Astrophysics Data System (ADS)
Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis
2017-09-01
Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.
NASA Astrophysics Data System (ADS)
Evans, Cherice; Findley, Gary L.
The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.
NASA Astrophysics Data System (ADS)
Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.
2017-12-01
A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.
NASA Astrophysics Data System (ADS)
Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.
2018-05-01
The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.
Hypo-Elastic Model for Lung Parenchyma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Einstein, Daniel R.
2012-03-01
A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Joseph E.; Brown, Judith Alice
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
Bishop, Joseph E.; Brown, Judith Alice
2018-06-15
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
NASA Astrophysics Data System (ADS)
Uprety, Bibhisha
Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.
Preparation Torque Limit for Composites Joined with Mechanical Fasteners
NASA Technical Reports Server (NTRS)
Thomas, Frank P.; Yi, Zhao
2005-01-01
Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.
Mechanism of chemical sputtering of graphite under high flux deuterium bombardment
NASA Astrophysics Data System (ADS)
Ueda, Y.; Sugai, T.; Ohtsuka, Y.; Nishikawa, M.
2000-12-01
Chemical sputtering of graphite materials (isotropic graphite and carbon fiber composite) was studied by irradiation of 5 keV D 3+ beam with a flux up to 4×10 21 m-2 s-1, which is more than one order magnitude higher than previous low flux beam experiments (< 10 20 m-2 s-1) . The chemical sputtering yield was obtained from measurements of the released methane signal with a quadrupole mass analyser. It was found that the methane yield at peak temperatures is almost independent of flux from 5×10 20 to 4×10 21 m-2 s-1. Peak temperatures range between 900 and 1000 K, which is higher than those of the previous low flux experiments (<900 K, <10 20 m-2 s-1) . By comparing our experimental results with calculation results based on Roth's model, the annealing effect of radiation damage to prevent methyl group formation appears to be unimportant.
Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Li, Ling
2010-05-01
An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; García-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto
2014-01-16
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.
Library of Advanced Materials for Engineering (LAME) 4.44.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherzinger, William M.; Lester, Brian T.
Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to s ti ff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco) plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization ofmore » the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.« less
Library of Advanced Materials for Engineering (LAME) 4.48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherzinger, William M.; Lester, Brian T.
Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implement- ing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting imple- mentation. Therefore, to enhance confidence and enable the utilization of themore » LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verifi- cation tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.« less
The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.
Dumais, Jacques; Long, Sharon R; Shaw, Sidney L
2004-10-01
Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.
A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Liao, Jun; Einstein, Daniel R.
2013-11-27
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less
Blue spectra of Kalb-Ramond axions and fully anisotropic string cosmologies
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
1999-03-01
The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop outside the horizon, the growing modes leading, ultimately, to logarithmic energy spectra which are ``red'' in frequency and increase at large distance scales. We show that this conclusion can be avoided not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be ``blue'' in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to blue (or flat) logarithmic energy spectra for axionic fluctuations are likely to be isotropized by the effect of string tension corrections.
Baseline-Subtraction-Free (BSF) Damage-Scattered Wave Extraction for Stiffened Isotropic Plates
NASA Technical Reports Server (NTRS)
He, Jiaze; Leser, Patrick E.; Leser, William P.
2017-01-01
Lamb waves enable long distance inspection of structures for health monitoring purposes. However, this capability is diminished when applied to complex structures where damage-scattered waves are often buried by scattering from various structural components or boundaries in the time-space domain. Here, a baseline-subtraction-free (BSF) inspection concept based on the Radon transform (RT) is proposed to identify and separate these scattered waves from those scattered by damage. The received time-space domain signals can be converted into the Radon domain, in which the scattered signals from structural components are suppressed into relatively small regions such that damage-scattered signals can be identified and extracted. In this study, a piezoelectric wafer and a linear scan via laser Doppler vibrometer (LDV) were used to excite and acquire the Lamb-wave signals in an aluminum plate with multiple stiffeners. Linear and inverse linear Radon transform algorithms were applied to the direct measurements. The results demonstrate the effectiveness of the Radon transform as a reliable extraction tool for damage-scattered waves in a stiffened aluminum plate and also suggest the possibility of generalizing this technique for application to a wide variety of complex, large-area structures.
Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less
Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-11-21
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study canmore » be used as a guide for future development of physics-based transposition models.« less
The Galactic Isotropic γ-ray Background and Implications for Dark Matter
NASA Astrophysics Data System (ADS)
Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj
2018-06-01
We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.
Yu, Chanki; Lee, Sang Wook
2016-05-20
We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.
Common reflection point migration and velocity analysis for anisotropic media
NASA Astrophysics Data System (ADS)
Oropeza, Ernesto V.
An efficient Kirchhoff-style prestack depth migration, called 'parsimonious' migration was developed a decade ago for isotropic 2D and 3D media. The common-reflection point (CRP) migration velocity analysis (MVA) was developed later for isotropic media. The isotropic parsimonious migration produces incorrect images when the media is actually anisotropic. Similarly, isotropic CRP MVA produces incorrect inversions when the medium is anisotropic. In this study both parsimonious depth migration and common-reflection point migration velocity analysis are extended for application to 2D tilted transversely isotropic (TTI) media and illustrated with synthetic P-wave data. While the framework of isotropic parsimonious migration may be retained, the extension to TTI media requires redevelopment of each of the numerical components, including calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle and anisotropic shooting ray-trace algorithm to replace the isotropic one. The 2D model parameterization consists of Thomsen's parameters (Vpo, epsilon, delta) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi-2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The common-reflection point migration velocity analysis for TTI media for P-waves includes (and inverts for) Vpo, epsilon, and delta. The orientation of the anisotropic symmetry axis have to be constrained. If it constrained orthogonal to the layer bottom (as it conventionally is), it is estimated at each CRP and updated at each iteration without intermediate picking. The extension to TTI media requires development of a new inversion procedure to include Vpo, epsilon, and delta in the perturbations. The TTI CRP MVA is applied to a single layer to demonstrate its feasibility. Errors in the estimation of the orientation of the symmetry axis larger that 5 degrees affect the inversion of epsilon and delta while Vpo is less sensitive to this parameter. The TTI CRP MVA is also applied to a version of the TTI BP model by layer stripping so one group of CRPs are used do to inversion top to bottom, constraining the model parameter after each previous group of CRPs converges. Vpo, delta and the orientation of the anisotropic symmetry axis (constrained orthogonal to the local reflector orientation) are successfully inverted. epsilon is less well constrained by the small acquisition aperture in the data .
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.
1991-01-01
Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.
Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Mall, S.
1985-01-01
An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.
Wavefront attributes in anisotropic media
NASA Astrophysics Data System (ADS)
Vanelle, C.; Abakumov, I.; Gajewski, D.
2018-07-01
Surface-measured wavefront attributes are the key ingredient to multiparameter methods, which are nowadays standard tools in seismic data processing. However, most operators are restricted to application to isotropic media. Whereas application of an isotropic operator will still lead to satisfactory stack results, further processing steps that interpret isotropic stacking parameters in terms of wavefront attributes will lead to erroneous results if anisotropy is present but not accounted for. In this paper, we derive relationships between the stacking parameters and anisotropic wavefront attributes that allow us to apply the common reflection surface type operator to 3-D media with arbitrary anisotropy for the zero-offset and finite-offset configurations including converted waves. The operator itself is expressed in terms of wavefront attributes that are measured in the acquisition surface, that is, no model assumptions are made. Numerical results confirm that the accuracy of the new anisotropic operator is of the same magnitude as that of its isotropic counterpart.
New criteria for isotropic and textured metals
NASA Astrophysics Data System (ADS)
Cazacu, Oana
2018-05-01
In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.
Grzebieluch, Wojciech; Będziński, Romuald; Czapliński, Tomasz; Kaczmarek, Urszula
2017-07-01
The FEM is often used in investigations of dentin loading conditions; however, its anisotropy is mostly neglected. The purpose of the study was to evaluate the anisotropy and the elastic properties of an equivalent homogenous material model of human dentin as well as to compare isotropic and anisotropic dentin FE-models. Analytical and numerical dentin homogenization according to Luciano and Barbero was performed and E-modulus (E), Poisson's ratios (v) G-modulus (G) were calculated. The E-modulus of the dentin matrix was 28.0 GPa, Poisson's ratio (v) was 0.3; finite element models of orthotropic and isotropic dentin were created, loaded and compared using Ansys® 14.5 and CodeAster® 11.2 software. Anisotropy of the dentin ranged from 6.9 to 35.2%. E-modulus and G-modulus were as follows: E1 = 22.0-26.0 GPa, E2/E3 = 15.7-23.0 GPa; G12/G13 = 6.96-9.35 GPa and G23 = 6.08-8.09 GPa (highest values in the superficial layer). In FEM analysis of the displacement values were higher in the isotropic than in the orthotropic model, reaching up to 16% by shear load, 37% by compression and 23% in the case of shear with bending. Strain values were higher in the isotropic model, up to 35% for the shear load, 31% for compression and 35% in the case of shear with bending. The decrease in the volumetric fraction and diameter of tubules increased the G and E values. Anisotropy of the dentin applied during FEM analysis decreased the displacements and strain values. The numerical and analytical homogenization of dentin showed similar results.
NASA Astrophysics Data System (ADS)
Mohandas, Gopakumar; Pessah, Martin E.; Heng, Kevin
2018-05-01
We apply the picket fence treatment to model the effects brought about by spectral lines on the thermal structure of irradiated atmospheres. The lines may be due to pure absorption processes, pure coherent scattering processes, or some combination of absorption and scattering. If the lines arise as a pure absorption process, the surface layers of the atmosphere are cooler, whereas this surface cooling is completely absent if the lines are due to pure coherent isotropic scattering. The lines also lead to a warming of the deeper atmosphere. The warming of the deeper layers is, however, independent of the nature of line formation. Accounting for coherent isotropic scattering in the shortwave and longwave continuum results in anti-greenhouse cooling and greenhouse warming on an atmosphere-wide scale. The effects of coherent isotropic scattering in the line and continuum operate in tandem to determine the resulting thermal structure of the irradiated atmosphere.
Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto
2014-01-01
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466
2016-05-01
norm does not cap - ture the geometry completely. The L1−L2 in (c) does a better job than TV while L1 in (b) and L1−0.5L2 in (d) capture the squares most...and isotropic total variation (TV) norms into a relaxed formu- lation of the two phase Mumford-Shah (MS) model for image segmentation. We show...results exceeding those obtained by the MS model when using the standard TV norm to regular- ize partition boundaries. In particular, examples illustrating
NASA Astrophysics Data System (ADS)
Wei, Ding; Cong-cong, Yu; Chen-hui, Wu; Zheng-yi, Shu
2018-03-01
To analyse the strain localization behavior of geomaterials, the forward Euler schemes and the tangent modulus matrix are formulated based on the transversely isotropic yield criterion with non-coaxial flow rule developed by Lade, the program code is implemented based on the user subroutine (UMAT) of ABAQUS. The influence of the material principal direction on the strain localization and the bearing capacity of the structure are investigated and analyzed. Numerical results show the validity and performance of the proposed model in simulating the strain localization behavior of geostructures.
Radiating gravitational collapse with shear viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2000-08-01
A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6Msolar.
NASA Technical Reports Server (NTRS)
Tiwari, Anil
1995-01-01
Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model for unidirectional and cross-ply ceramic composites was formulated. The AUSSR model predicts the strain response to increasing stress levels using real-time AU data and classical laminated plate theory. The Weibull parameters of the AUSSR model are used to calculate the design stress for thermo-structural applications. Real-time AU together with the AUSSR model was used to study the failure mechanisms of SiC/CAS ceramic composites under static and fatigue loading. An S-N curve was generated for a cross-ply SiC/CAS ceramic composite material. The AU results are corroborated and complemented by other NDE techniques, namely, in-situ optical microscope video recordings and edge replication.
Fatigue crack detection and identification by the elastic wave propagation method
NASA Astrophysics Data System (ADS)
Stawiarski, Adam; Barski, Marek; Pająk, Piotr
2017-05-01
In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.
A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process
NASA Astrophysics Data System (ADS)
Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong
2017-11-01
Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.
Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-02
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic panels. Following numerous studies comparing the performance of transposition models, this work aims to understand the quantitative uncertainty in state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models, with one substantially underestimating the diffuse plane-of-array irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of the empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can bemore » used as a guide for the future development of physics-based transposition models and evaluations of system performance.« less
Creep fatigue life prediction for engine hot section materials (ISOTROPIC)
NASA Technical Reports Server (NTRS)
Nelson, R. S.; Schoendorf, J. F.; Lin, L. S.
1986-01-01
The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model.
Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2018-05-01
Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).
Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence
NASA Technical Reports Server (NTRS)
Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto
1990-01-01
The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.
Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes
NASA Astrophysics Data System (ADS)
Berini, Pierre; Wu, Ke
1995-05-01
This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.
NASA Astrophysics Data System (ADS)
Wu, J. Z.; Fang, L.; Shao, L.; Lu, L. P.
2018-06-01
In order to introduce new physics to traditional two-point correlations, we define the second-order correlation of longitudinal velocity increments at three points and obtain the analytical expressions in isotropic turbulence. By introducing the Kolmogorov 4/5 law, this three-point correlation explicitly contains velocity second- and third-order moments, which correspond to energy and energy transfer respectively. The combination of them then shows additional information of non-equilibrium turbulence by comparing to two-point correlations. Moreover, this three-point correlation shows the underlying inconsistency between numerical interpolation and three-point scaling law in numerical calculations, and inspires a preliminary model to correct this problem in isotropic turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hao; Yang, Fan; Pan, Ding
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. Furthermore, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistrymore » through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain.« less
Peridynamics for failure and residual strength prediction of fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Colavito, Kyle
Peridynamics is a reformulation of classical continuum mechanics that utilizes integral equations in place of partial differential equations to remove the difficulty in handling discontinuities, such as cracks or interfaces, within a body. Damage is included within the constitutive model; initiation and propagation can occur without resorting to special crack growth criteria necessary in other commonly utilized approaches. Predicting damage and residual strengths of composite materials involves capturing complex, distinct and progressive failure modes. The peridynamic laminate theory correctly predicts the load redistribution in general laminate layups in the presence of complex failure modes through the use of multiple interaction types. This study presents two approaches to obtain the critical peridynamic failure parameters necessary to capture the residual strength of a composite structure. The validity of both approaches is first demonstrated by considering the residual strength of isotropic materials. The peridynamic theory is used to predict the crack growth and final failure load in both a diagonally loaded square plate with a center crack, as well as a four-point shear specimen subjected to asymmetric loading. This study also establishes the validity of each approach by considering composite laminate specimens in which each failure mode is isolated. Finally, the failure loads and final failure modes are predicted in a laminate with various hole diameters subjected to tensile and compressive loads.
A Study for Anisotropic Wavefield Analysis with Elastic Layered Models
NASA Astrophysics Data System (ADS)
Yoneki, R.; Mikada, H.; Takekawa, J.
2015-12-01
Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.
The effect of gradational velocities and anisotropy on fault-zone trapped waves
NASA Astrophysics Data System (ADS)
Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.
2017-08-01
Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.
Simulating faults and plate boundaries with a transversely isotropic plasticity model
NASA Astrophysics Data System (ADS)
Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.
2016-03-01
In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.
Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra; Ram, Jokhan
2003-08-01
We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.
Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Mall, S.
1986-01-01
An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.
Impact response of graphite/epoxy fabric structures
NASA Technical Reports Server (NTRS)
Lagace, Paul A.; Kraft, Michael J.
1990-01-01
The impact damage resistance and damage tolerance of graphite/epoxy fabric plate (coupon) and cylinder structures were investigated and compared in an analytical and experimental study. Hercules A370-5H/3501-6 five-harness satin weave cloth in a quasi-isotropic (0,45)(sub s) laminate configuration was utilized. Specimens were impacted with 12.7 mm diameter steel spheres at velocities ranging from 10 m/s to 100 m/s. Damage resistance of the specimens was determined through the use of dye penetrant enhanced x-radiography, sectioning, epoxy burnoff, and visual methods. Damage tolerance of the flat plate structures was assessed in a residual tensile test while damage tolerance of the cylinder structures was assessed via pressurization tests. Impacted fabric laminates exhibited matrix crushing, fiber breakage, delamination, and fiber bundle disbonds; the latter being a unique damage mode for fabric laminates. Plate delamination and bundle disbonding was found to be more extensive around the central core area of fiber damage in the coupon specimens than in the cylinder specimens which showed a cleaner damage area due to impact. Damage resistance and damage tolerance were predicted by utilizing a five-step analysis approach previously utilized for coupon configurations. Two of the five steps were adapted to account for the effects of the structural configuration of the pressurized cylinder. The damage resistance analysis provided good correlation to the fiber damage region of both the coupon and cylinder specimens. There was little difference in the size of this region in the two specimen types. However, the analysis was not able to predict the distribution of damage through-the-thickness. This was important in assessing the damage tolerance of the cylinders. The damage tolerance analysis was able to predict the residual tensile strength of the coupons. A general methodology to predict the impact damage resistance and damage tolerance of composite structures utilizing coupon data is presented.
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark
2002-07-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.
Structural damage diagnostics via wave propagation-based filtering techniques
NASA Astrophysics Data System (ADS)
Ayers, James T., III
Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.
Thermoviscoplastic model with application to copper
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
A viscoplastic model is developed which is applicable to anisothermal, cyclic, and multiaxial loading conditions. Three internal state variables are used in the model; one to account for kinematic effects, and the other two to account for isotropic effects. One of the isotropic variables is a measure of yield strength, while the other is a measure of limit strength. Each internal state variable evolves through a process of competition between strain hardening and recovery. There is no explicit coupling between dynamic and thermal recovery in any evolutionary equation, which is a useful simplification in the development of the model. The thermodynamic condition of intrinsic dissipation constrains the thermal recovery function of the model. Application of the model is made to copper, and cyclic experiments under isothermal, thermomechanical, and nonproportional loading conditions are considered. Correlations and predictions of the model are representative of observed material behavior.
Effects of bolt-hole contact on bearing-bypass damage-onset strength
NASA Technical Reports Server (NTRS)
Crews, John H., Jr.; Naik, Rajiv A.
1991-01-01
A combined experimental and analytical study was conducted to investigate the effects of bolt-hole contact on the bearing bypass strength of a graphite-epoxy laminate. Tests were conducted on specimens consisting of 16-ply quasi-isotropic T300/5208 laminates with a centrally located hole. Bearing loads were applied through a clearance-fit steel bolt. Damage onset strength and damage mode were determined for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each measured damage-onset strength. For the tension bearing-bypass cases tested, the bolt contact half-angle was approximately 60 degrees at damage onset. For compression, the contact angle was 20 degrees as the bypass load increased. A corresponding decrease in the bearing damage onset strength was attributed to the decrease in contact angle which made the bearing loads more severe. Hole boundary stresses were also computed by superimposing stresses for separate bearing and bypass loading. Stresses at the specimen net section were accurately approximated by the superposition procedure. However, the peak bearing stresses had large errors because the bolt contact angles were not represented correctly. For compression, peak bearing stress errors of nearly 50 percent were calculated.
Impact experiments in viscous fluid media
NASA Technical Reports Server (NTRS)
Greeley, R.
1984-01-01
Available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, anelastic dispersion, sphericity, and gravity. The resulting models, for average Earth, average ocean, and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low-veocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studied. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggestive. For most of the Earth SHSV in the vicinity of the low-velocity zone. Near the East Pacific Rise, however, SVSH at depth, consistent with ascending flow. Anisotropy is as important as temperature in causing radial and lateral variations in velocity. The models have a high velocity nearly isotropic layer at the top of the mantle that thickens with age. This layer defines the LID, or seismic lithosphere. In the Pacific, the LID thickens with age to a maximum thickness of about 50 km. This thickness is comparable to the thickness of the elastic lithosphere. The LID thickness is thinner than derived using isotropic or pseudo-isotropic procedures A new model for Average Earth is obtained which includes a thin LID. This model extends the fit of a P.R.E.M. type model to shorter period surface waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamatikos, Michael; Band, David L.; JCA/UMBC, Baltimore, MD 21250
2006-05-19
We describe the theoretical modeling and analysis techniques associated with a preliminary search for correlated neutrino emission from GRB980703a, which triggered the Burst and Transient Source Experiment (BATSE GRB trigger 6891), using archived data from the Antarctic Muon and Neutrino Detector Array (AMANDA-B10). Under the assumption of associated hadronic acceleration, the expected observed neutrino energy flux is directly derived, based upon confronting the fireball phenomenology with the discrete set of observed electromagnetic parameters of GRB980703a, gleaned from ground-based and satellite observations, for four models, corrected for oscillations. Models 1 and 2, based upon spectral analysis featuring a prompt photon energymore » fit to the Band function, utilize an observed spectroscopic redshift, for isotropic and anisotropic emission geometry, respectively. Model 3 is based upon averaged burst parameters, assuming isotropic emission. Model 4 based upon a Band fit, features an estimated redshift from the lag-luminosity relation, with isotropic emission. Consistent with our AMANDA-II analysis of GRB030329, which resulted in a flux upper limit of {approx} 0.150GeV /cm2/s for model 1, we find differences in excess of an order of magnitude in the response of AMANDA-B10, among the various models for GRB980703a. Implications for future searches in the era of Swift and IceCube are discussed.« less
Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model
NASA Astrophysics Data System (ADS)
Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.
2015-12-01
We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.
Nematic elastomers: from a microscopic model to macroscopic elasticity theory.
Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette
2008-05-01
A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.
Forward modeling and inversion of tensor CSAMT in 3D anisotropic media
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Kun-Peng; Tan, Han-Dong
2017-12-01
Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.
Sterically controlled mechanochemistry under hydrostatic pressure
Yan, Hao; Yang, Fan; Pan, Ding; ...
2018-02-21
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. Furthermore, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistrymore » through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain.« less
Guided wave and damage detection in composite laminates using different fiber optic sensors.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro
2009-01-01
Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.
NASA Astrophysics Data System (ADS)
Molladavoodi, H.
2013-09-01
Analysis of stresses and displacements around underground openings is necessary in a wide variety of civil, petroleum and mining engineering problems. In addition, an excavation damaged zone (EDZ) is generally formed around underground openings as a result of high stress magnitudes even in the absence of blasting effects. The rock materials surrounding the underground excavations typically demonstrate nonlinear and irreversible mechanical response in particular under high in situ stress states. The dominant cause of irreversible deformations in brittle rocks is damage process. One of the most widely used methods in tunnel design is the convergence-confinement method (CCM) for its practical application. The elastic-plastic models are usually used in the convergence-confinement method as a constitutive model for rock behavior. The plastic models used to simulate the rock behavior, do not consider the important issues such as stiffness degradation and softening. Therefore, the use of damage constitutive models in the convergence-confinement method is essential in the design process of rock structures. In this paper, the basic concepts of continuum damage mechanics are outlined. Then a numerical stepwise procedure for a circular tunnel under hydrostatic stress field, with consideration of a damage model for rock mass has been implemented. The ground response curve and radius of excavation damage zone were calculated based on an isotropic damage model. The convergence-confinement method based on damage model can consider the effects of post-peak rock behavior on the ground response curve and excavation damage zone. The analysis of results show the important effect of brittleness parameter on the tunnel wall convergence, ground response curve and excavation damage radius. Analiza naprężeń i przemieszczeń powstałych wokół otworu podziemnego wymagana jest przy szerokiej gamie projektów z zakresu budownictwa lądowego, inżynierii górniczej oraz naftowej. Ponadto, wokół otworu podziemnego powstaje strefa naruszona działalnością górniczą wskutek oddziaływania wysokich naprężeń, nawet w przypadku gdy nie są prowadzone prace strzałowe. Reakcja materiału skalnego znajdującego się w otoczeniu wyrobisk podziemnych jest zazwyczaj procesem nieliniowym i nieodwracalnym, zwłaszcza w stanach wysokich naprężeń in situ. Główną przyczyną nieodwracalnych odkształceń skał kruchych jest pękanie. Jedną z najczęściej stosowanych metod w projektowaniu tuneli (wyrobisk podziemnych) jest metoda konwergencji i zamknięcia, popularna ze względu na zakres zastosowań. Metoda ta zazwyczaj wykorzystuje modele sprężysto- plastyczne, jako konstytutywne modele zachowania skał. Modele plastyczne wykorzystywane dotychczas do symulacji zachowania skał nie uwzględniają pewnych kluczowych aspektów, takich jak obniżenie sztywności czy rozmiękczanie. Dlatego też zastosowanie konstytutywnych modeli w metodzie konwergencji i zamknięcia jest sprawą kluczową przy projektach obejmujących struktury skalne. W pracy tej omówiono podstawowe założenia modelu continuum uszkodzeń i spękań. Zaimplementowano wielostopniową procedurę do badania tunelu o przekroju kolistym znajdującego się pod polem naprężeń hydrostatycznych, przy wykorzystaniu modelu pękania górotworu. Krzywą odpowiedzi gruntu oraz promień strefy naruszonej wybieraniem obliczono przy wykorzystaniu izotropowego modelu uszkodzeń. Metoda konwergencji i zamykania oparta na tym modelu uwzględnia zachowanie skał po wystąpieniu szczytowych naprężeń i powstaniu strefy naruszonej wybieraniem. Analiza wyników wykazała znaczny wpływ parametrów związanych z kruchością na konwergencję ścian wyrobiska, kształt krzywej odpowiedzi gruntu oraz promień strefy naruszonej wybieraniem.
Veidt, Martin; Ng, Ching-Tai
2011-03-01
This paper investigates the scattering characteristics of the fundamental anti-symmetric (A(0)) Lamb wave at through holes in composite laminates. Three-dimensional (3D) finite element (FE) simulations and experimental measurements are used to study the physical phenomenon. Unidirectional, bidirectional, and quasi-isotropic composite laminates are considered in the study. The influence of different hole diameter to wavelength aspect ratios and different stacking sequences on wave scattering characteristics are investigated. The results show that amplitudes and directivity distribution of the scattered Lamb wave depend on these parameters. In the case of quasi-isotropic composite laminates, the scattering directivity patterns are dominated by the fiber orientation of the outer layers and are quite different for composite laminates with the same number of laminae but different stacking sequence. The study provides improved physical insight into the scattering phenomena at through holes in composite laminates, which is essential to develop, validate, and optimize guided wave damage detection and characterization techniques. © 2011 Acoustical Society of America
2014-06-01
brain tissue and skeletal muscles , is also discussed. transversely isotropic hyperelastic, two fiber families, nearly incompressible, anisotropic...comprised of fibrous structures, such as muscles , ligaments, tendons, intervertebral discs and the brain, often exhibit strong anisotropy along these fiber ...directions, e.g., collagen fibers of the cornea, striated muscle fibers in skeletal muscles , multiple axonal directions within the brain. In each case
Development of a 10 m quasi-isotropic strand assembled from 2G wires
NASA Astrophysics Data System (ADS)
Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe
2018-03-01
Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.
Newtonian self-gravitating system in a relativistic huge void universe model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, Ryusuke; Nakao, Ken-ichi; Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of themore » perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.« less
Evaluation of a vortex-based subgrid stress model using DNS databases
NASA Technical Reports Server (NTRS)
Misra, Ashish; Lund, Thomas S.
1996-01-01
The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971).
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Effects of anisotropy and spatial curvature on the pre-big-bang scenario
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Lidsey, James E.; Tavakol, Reza
1998-08-01
A class of exact, anisotropic cosmological solutions to the vacuum Brans-Dicke theory of gravity is considered within the context of the pre-big-bang scenario. Included in this class are the Bianchi type III, V and VIh models and the spatially isotropic, negatively curved Friedmann-Robertson-Walker universe. The effects of large anisotropy and spatial curvature are determined. In contrast with a negatively curved Friedmann-Robertson-Walker model, there exist regions of the parameter space in which the combined effects of curvature and anisotropy prevent the occurrence of inflation. When inflation is possible, the necessary and sufficient conditions for successful pre-big-bang inflation are more stringent than in the isotropic models. The initial state for these models is established and corresponds in general to a gravitational plane wave.
Materials constitutive models for nonlinear analysis of thermally cycled structures
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
2018-03-20
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
String limit of the isotropic Heisenberg chain in the four-particle sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, A. G., E-mail: aga2@csa.ru; Komarov, I. V., E-mail: ivkoma@rambler.r
2008-05-15
The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.
NASA Astrophysics Data System (ADS)
Liu, Ke; Greitemann, Jonas; Pollet, Lode
2018-01-01
Polyhedral nematics are examples of exotic orientational phases that possess a complex internal symmetry, representing highly nontrivial ways of rotational symmetry breaking, and are subject to current experimental pursuits in colloidal and molecular systems. The classification of these phases has been known for a long time; however, their transitions to the disordered isotropic liquid phase remain largely unexplored, except for a few symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to explore the nature of the underlying nematic-isotropic transition for all three-dimensional polyhedral nematics. The gauge theory can readily be applied to nematic phases with an arbitrary point-group symmetry, including those where traditional Landau methods and the associated lattice models may become too involved to implement owing to a prohibitive order-parameter tensor of high rank or (the absence of) mirror symmetries. By means of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is generically first-order for all polyhedral symmetries. Moreover, we show that this universal result is fully consistent with our expectation from a renormalization group approach, as well as with other lattice models for symmetries already studied in the literature. We argue that extreme fine tuning is required to promote those transitions to second-order ones. We also comment on the nature of phase transitions breaking the O(3 ) symmetry in general cases.
On the Weyl curvature hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less
3D time-domain airborne EM modeling for an arbitrarily anisotropic earth
NASA Astrophysics Data System (ADS)
Yin, Changchun; Qi, Yanfu; Liu, Yunhe
2016-08-01
Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, R. B.; Dion, S.; Konigslow, K. von
Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed.
NASA Astrophysics Data System (ADS)
Schmoldt, Jan-Philipp; Jones, Alan G.
2013-12-01
The key result of this study is the development of a novel inversion approach for cases of orthogonal, or close to orthogonal, geoelectric strike directions at different depth ranges, for example, crustal and mantle depths. Oblique geoelectric strike directions are a well-known issue in commonly employed isotropic 2-D inversion of MT data. Whereas recovery of upper (crustal) structures can, in most cases, be achieved in a straightforward manner, deriving lower (mantle) structures is more challenging with isotropic 2-D inversion in the case of an overlying region (crust) with different geoelectric strike direction. Thus, investigators may resort to computationally expensive and more limited 3-D inversion in order to derive the electric resistivity distribution at mantle depths. In the novel approaches presented in this paper, electric anisotropy is used to image 2-D structures in one depth range, whereas the other region is modelled with an isotropic 1-D or 2-D approach, as a result significantly reducing computational costs of the inversion in comparison with 3-D inversion. The 1- and 2-D versions of the novel approach were tested using a synthetic 3-D subsurface model with orthogonal strike directions at crust and mantle depths and their performance was compared to results of isotropic 2-D inversion. Structures at crustal depths were reasonably well recovered by all inversion approaches, whereas recovery of mantle structures varied significantly between the different approaches. Isotropic 2-D inversion models, despite decomposition of the electric impedance tensor and using a wide range of inversion parameters, exhibited severe artefacts thereby confirming the requirement of either an enhanced or a higher dimensionality inversion approach. With the anisotropic 1-D inversion approach, mantle structures of the synthetic model were recovered reasonably well with anisotropy values parallel to the mantle strike direction (in this study anisotropy was assigned to the mantle region), indicating applicability of the novel approach for basic subsurface cases. For the more complex subsurface cases, however, the anisotropic 1-D inversion approach is likely to yield implausible models of the electric resistivity distribution due to inapplicability of the 1-D approximation. Owing to the higher number of degrees of freedom, the anisotropic 2-D inversion approach can cope with more complex subsurface cases and is the recommended tool for real data sets recorded in regions with orthogonal geoelectric strike directions.
Micellar-shape anisometry near isotropic-liquid-crystal phase transitions
NASA Astrophysics Data System (ADS)
Itri, R.; Amaral, L. Q.
1993-04-01
Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.
Elastic properties of uniaxial-fiber reinforced composites - General features
NASA Astrophysics Data System (ADS)
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
Correction of aeroheating-induced intensity nonuniformity in infrared images
NASA Astrophysics Data System (ADS)
Liu, Li; Yan, Luxin; Zhao, Hui; Dai, Xiaobing; Zhang, Tianxu
2016-05-01
Aeroheating-induced intensity nonuniformity effects severely influence the effective performance of an infrared (IR) imaging system in high-speed flight. In this paper, we propose a new approach to the correction of intensity nonuniformity in IR images. The basic assumption is that the low-frequency intensity bias is additive and smoothly varying so that it can be modeled as a bivariate polynomial and estimated by using an isotropic total variation (TV) model. A half quadratic penalty method is applied to the isotropic form of TV discretization. And an alternating minimization algorithm is adopted for solving the optimization model. The experimental results of simulated and real aerothermal images show that the proposed correction method can effectively improve IR image quality.
Stability of the accelerated expansion in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2017-02-01
This paper is devoted to the phase space analysis of an isotropic and homogeneous model of the universe by taking a noninteracting mixture of the electromagnetic and viscous radiating fluids whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. We establish an autonomous system of equations by introducing normalized dimensionless variables. In order to analyze the stability of the system, we find corresponding critical points for different values of the parameters. We also evaluate the power-law scale factor whose behavior indicates different phases of the universe in this model. It is concluded that the bulk viscosity as well as electromagnetic field enhances the stability of the accelerated expansion of the isotropic and homogeneous model of the universe.
Failure mechanics in low-velocity impacts on thin composite plates
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
Low velocity instrumented impact testing was utilized to examine the effects of an outer lamina of ultra-high molecular weight polyethylene (Spectra) on the damage tolerance of carbon epoxy composites. Four types of 16-ply quasi-isotropic panels (0, +45, 90, -45) were tested. Some panels contained no Spectra, while others had a lamina of Spectra bonded to the top (impacted side), bottom, or both sides of the composite plates. The specimens were impacted with energies up to 8.5 J. Force time plots and maximum force versus impact energy graphs were generated for comparison purposes. Specimens were also subjected to cross-sectional analysis and compression after impact tests. The results show that while the Spectra improved the maximum load that the panels could withstand before fiber breakage, the Spectra seemingly reduced the residual strength of the composites.
Feng, Yuan; Lee, Chung-Hao; Sun, Lining; Ji, Songbai; Zhao, Xuefeng
2017-01-01
Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaichik, Leonid I.; Alipchenkov, Vladimir M.
2007-11-01
The purposes of the paper are threefold: (i) to refine the statistical model of preferential particle concentration in isotropic turbulence that was previously proposed by Zaichik and Alipchenkov [Phys. Fluids 15, 1776 (2003)], (ii) to investigate the effect of clustering of low-inertia particles using the refined model, and (iii) to advance a simple model for predicting the collision rate of aerosol particles. The model developed is based on a kinetic equation for the two-point probability density function of the relative velocity distribution of particle pairs. Improvements in predicting the preferential concentration of low-inertia particles are attained due to refining the description of the turbulent velocity field of the carrier fluid by including a difference between the time scales of the of strain and rotation rate correlations. The refined model results in a better agreement with direct numerical simulations for aerosol particles.
NASA Astrophysics Data System (ADS)
Wu, Bifen; Zhao, Xinyu
2018-06-01
The effects of radiation of water mists in a fire-inspired environment are numerically investigated for different complexities of radiative media in a three-dimensional cubic enclosure. A Monte Carlo ray tracing (MCRT) method is employed to solve the radiative transfer equation (RTE). The anisotropic scattering behaviors of water mists are modeled by a combination of the Mie theory and the Henyey-Greestein relation. A tabulation method considering the size and wavelength dependencies is established for water droplets, to reduce the computational cost associated with the evaluation of the nongray spectral properties of water mists. Validation and verification of the coupled MCRT solver are performed using a one-dimensional slab with gray gas in comparison with the analytical solutions. Parametric studies are then performed using a three-dimensional cubic box to examine radiation of two monodispersed and one polydispersed water mist systems. The tabulation method can reduce the computational cost by a factor of one hundred. Results obtained without any scattering model better conform with results obtained from the anisotropic model than the isotropic scattering model, when a highly directional emissive source is applied. For isotropic emissive sources, isotropic and anisotropic scattering models predict comparable results. The addition of different volume fractions of soot shows that soot may have a negative impact on the effectiveness of water mists in absorbing radiation when its volume fraction exceeds certain threshold.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Woo
A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a parameter study based both on the STL and free wave propagation speeds, the mass, stiffness and damping-controlled regions of the STL were identified. The structural factors that can be adjusted to improve STL performance were also identified.
Multilayered BN Coatings Processed by a Continuous LPCVD Treatment onto Hi-Nicalon Fibers
NASA Astrophysics Data System (ADS)
Jacques, S.; Vincent, H.; Vincent, C.; Lopez-Marure, A.; Bouix, J.
2001-12-01
Boron nitride coatings were deposited onto SiC fibers by means of continuous low-pressure chemical vapor deposition (LPCVD) treatment from BF3/NH3 mixtures. This process lies in unrolling the fiber in the reactor axis. The relationships between the processing parameters and the structure of the BN deposits are presented. Thanks to a temperature gradient present in the reactor, multilayered BN films can be performed by stacking successive isotropic and anisotropic sublayers. Tensile tests show that when the temperature profile is well adapted, the SiC fibers are not damaged by the LPCVD treatment.
NASA Astrophysics Data System (ADS)
Oda, Hitoshi
2005-02-01
We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.
NASA Astrophysics Data System (ADS)
Luna, Byron Quan; Blahut, Jan; Camera, Corrado; van Westen, Cees; Sterlacchini, Simone; Apuani, Tiziana; Akbas, Sami
2010-05-01
For a quantitative risk assessment framework it is essential to assess not only the hazardous process itself but to perform an analysis of their consequences. This quantitative assessment should include the expected monetary losses as the product of the probability of occurrence of a hazard with a given magnitude and its vulnerability. A quantifiable integrated approach of both hazard and risk is becoming a required practice in risk reduction management. Dynamic run-out models for debris flows are able to calculate physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk could suffer an impact. These results are then applied for vulnerability and risk calculations. The risk assessment has been conducted in the Valtellina Valley, a typical Italian alpine valley lying in northern Italy (Lombardy Region). On 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of valley between Morbegno and Berbenno. One of the largest debris flows occurred in Selvetta. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. Also inside the Valtellina valley, between the 22nd and the 23rd of May 1983, two debris flows happened in Tresenda (Teglio municipality), causing casualties and considerable economic damages. On the same location, during the 26th of November 2002, another debris flow occurred that caused significant damage. For the quantification of a new scenario, the outcome results obtained from the event of Selvetta were applied in Tresenda. The Selvetta and Tresenda event were modelled with the FLO2D program. FLO2D is an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. The significance of calculated values of pressure and velocity were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which is defined as the ratio between the monetary loss and the reconstruction value. Two different empirical vulnerability curves were obtained, which are functions of debris flow velocity and pressure, respectively. Prospective economic direct losses were estimated.
Closing in on the large-scale CMB power asymmetry
NASA Astrophysics Data System (ADS)
Contreras, D.; Hutchinson, J.; Moss, A.; Scott, D.; Zibin, J. P.
2018-03-01
Measurements of the cosmic microwave background (CMB) temperature anisotropies have revealed a dipolar asymmetry in power at the largest scales, in apparent contradiction with the statistical isotropy of standard cosmological models. The significance of the effect is not very high, and is dependent on a posteriori choices. Nevertheless, a number of models have been proposed that produce a scale-dependent asymmetry. We confront several such models for a physical, position-space modulation with CMB temperature observations. We find that, while some models that maintain the standard isotropic power spectrum are allowed, others, such as those with modulated tensor or uncorrelated isocurvature modes, can be ruled out on the basis of the overproduction of isotropic power. This remains the case even when an extra isocurvature mode fully anticorrelated with the adiabatic perturbations is added to suppress power on large scales.
Leith diffusion model for homogeneous anisotropic turbulence
Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan
2017-06-01
Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less
Boccia, E.; Luther, S.
2017-01-01
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507234
NASA Astrophysics Data System (ADS)
Boccia, E.; Luther, S.; Parlitz, U.
2017-05-01
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-06
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Dynamical Properties of a Living Nematic
NASA Astrophysics Data System (ADS)
Genkin, Mikhail
The systems, which are made of a large number or interacting particles, or agents that convert the energy stored in the environment into mechanical motion, are called active systems, or active matter. The examples of active matter include both living and synthetic systems. The size of agents varies significantly: bird flocks and fish schools represent macroscopic active systems, while suspensions of living organisms or artificial colloidal particles are examples of microscopic ones. In this work, I studied one of the simplest realization of active matter termed living (or active) nematics, that can be conceived by mixing swimming bacteria and nematic liquid crystal. Using modeling, numerical simulations and experiments I studied various dynamical properties of active nematics. This work hints into new methods of control and manipulation of active matter. Active nematic exhibits complex spatiotemporal behavior manifested by formation, proliferation, and annihilation of topological defects. A new computational 2D model coupling nematic liquid crystal and swimming bacteria dynamics have been proposed. We investigated the developed system of partial differential equations analytically and integrated it numerically using the highly efficient parallel GPU code. The integration results are in a very good agreement with other theoretical and experimental studies. In addition, our model revealed a number of testable phenomena. The major model prediction (bacteria accumulation in positive and depletion in negative topological defects) was tested by a dedicated experiment. We extended our model to study active nematics in a biphasic state, where nematic and isotropic phases coexist. Typically this coexistence is manifested by formation of tactoids - isotropic elongated regions surrounded by nematic phase, or nematic regions surrounded by isotropic phase. Using numerical integration, we revealed fundamental properties of such systems. Our main model outcome - spontaneous negative charging of isotropic-nematic interfaces - was confirmed by the experiment. The provided modeling and experimental results are in a very good qualitative and quantitative agreement. At last, we studied living nematics experimentally. We worked with swimming bacteria Bacillus subtilis suspended in disodium cromoglycate (DSCG) liquid crystal. Using cylindrical confinement, we were able to observe quantization of nematics' bending instability. Our experimental results revealed a complex interplay between bacteria self-propulsion and nematics' elasticity in the presence of cylindrical confinements of different sizes.
Richard, F; Villars, M; Thibaud, S
2013-08-01
The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Temperature effects in ultrasonic Lamb wave structural health monitoring systems.
Lanza di Scalea, Francesco; Salamone, Salvatore
2008-07-01
There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.
Development of damage suppression system using embedded SMA foil in CFRP laminates
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Kobayashi, Masakazu; Okabe, Tomonaga; Takeda, Nobuo
2001-07-01
Some recent studies have suggested possible applications of Shape Memory Alloy (SMA) for a smart health monitoring and suppression of damage growth. The authors have been conducting research and development studies on applications of embedded SMA foil actuators in CFRP laminates as the basic research for next generation aircrafts. First the effective surface treatment for improvement of bonding properties between SMA and CFRP was studied. It was certified that the anodic oxide treatment by 10% NaOH solution was the most effective treatment from the results of peel resistance test and shear strength test. Then, CFRP laminates with embedded SMA foils were successfully fabricated using this effective surface treatment. The damage behavior of quasi-isotropic CFRP laminates with embedded SMA foils was characterized in both quasi-static load-unload and fatigue tests. The relationship between crack density and applied strain was obtained. The recovery stress generated by embedded SMA foils could increase the onset strain of transverse cracking by 0.2%. The onset strain of delmination in CFRP laminates was also increased accordingly. The shear-lag analysis was also conducted to predict the damage evolution in CFRP laminates with embedded SMA foils. The adhesive layers on both sides of SMA foils were treated as shear elements. The theoretical analysis successfully predicted the experimental results.
LIMEPY: Lowered Isothermal Model Explorer in PYthon
NASA Astrophysics Data System (ADS)
Gieles, Mark; Zocchi, Alice
2017-10-01
LIMEPY solves distribution function (DF) based lowered isothermal models. It solves Poisson's equation used on input parameters and offers fast solutions for isotropic/anisotropic, single/multi-mass models, normalized DF values, density and velocity moments, projected properties, and generates discrete samples.
Helicity statistics in homogeneous and isotropic turbulence and turbulence models
NASA Astrophysics Data System (ADS)
Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca
2017-02-01
We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Sethi, M.; Sharma, A.; Vasishth, A.
2017-05-01
The present paper deals with the mathematical modeling of the propagation of torsional surface waves in a non-homogeneous transverse isotropic elastic half-space under a rigid layer. Both rigidities and density of the half-space are assumed to vary inversely linearly with depth. Separation of variable method has been used to get the analytical solutions for the dispersion equation of the torsional surface waves. Also, the effects of nonhomogeneities on the phase velocity of torsional surface waves have been shown graphically. Also, dispersion equations have been derived for some particular cases, which are in complete agreement with some classical results.
A coupled analytical model for hydrostatic response of 1-3 piezocomposites.
Rajapakse, Nimal; Chen, Yue
2008-08-01
This study presents a fully coupled analysis of a unit cell of a 1-3 piezocomposite under hydrostatic loading. The governing equations for coupled axisymmetric electroelastic field of a transversely isotropic piezoelectric medium and a transversely isotropic elastic medium are used. A reduced form of the analytical general solutions expressed in terms of series of modified Bessel functions of the first and second kind are used. The solution of the boundary-value problem corresponding to a unit cell is presented. The effective properties of a 1-3 piezocomposite are obtained for different fiber volume fractions, polymer and piezoceramic properties, and fiber aspect ratios. Comparisons with previously reported simplified and uncoupled models are made.
Wang, Yuhui; Shi, Baodong; He, Yanming; Zhang, Hongwang; Peng, Yan
2018-01-01
A Fe-34.5 wt % Mn-0.04 wt % C ultra-high Mn steel with a fully recrystallised fine-grained structure was produced by cold rolling and subsequent annealing. The steel exhibited excellent cryogenic temperature properties with enhanced work hardening rate, high tensile strength, and high uniform elongation. In order to capture the unique mechanical behaviour, a constitutive model within finite strain plasticity framework based on Hill-type yield function was established with standard Armstrong-Frederick type isotropic hardening. In particular, the evolution of isotropic hardening was determined by the content of martensite; thus, a relationship between model parameters and martensite content is built explicitly. PMID:29414840
Banerjee, Sourav; Kundu, Tribikram
2008-03-01
Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.
Is 2-D turbulence relevant in the atmosphere?
NASA Astrophysics Data System (ADS)
Lovejoy, Shaun; Schertzer, Daniel
2010-05-01
Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate. Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly using SP models to explain their observations include ((Van Zandt, 1982), (Schertzer and Lovejoy, 1985), (Schertzer and Lovejoy, 1987), (Fritts et al., 1988), (Tsuda et al., 1989), (Dewan, 1997; Lazarev et al., 1994), (Gardner et al., 1993), (Hostetler and Gardner, 1994). In addition, many experiments found non-standard vertical scaling exponents thus implicitly supporting the SP position. Today, state-of-the-art lidar vertical sections of passive scalars (Lilley et al., 2004) or satellite vertical radar sections of clouds give direct evidence for the corresponding scaling (power law) stratification of structures. State-of-the-art drop sondes have even been used to show that the IP standard bearer - 3D isotropic Kolmogorov turbulence - apparently doesn't exist in the atmosphere at any scale at least down to 5 m in scale or at any altitude level within the troposphere (Lovejoy et al., 2007). At the same time, massive quantities of high quality satellite data have directly demonstrated the wide range horizontal scaling of the atmospheric forcing (long and short wave radiances; see e.g. (Lovejoy et al., 2009a)) and numerical atmospheric models and reanalyses have been shown to display nearly perfect (scaling) cascade structures over their entire available horizontal ranges (Stolle et al., 2009). This shows also that the source/sink free "inertial ranges" used in IP models are at best academic idealizations. The IP/SP opposition is arguably a main contributor to today's lack of scientific consensus about the scale by scale statistical structure of both the atmosphere and of atmospheric models and reanalyses. In order to resolve the deadlock, either the IP camp must show how the findings of wide range vertical and horizontal scaling can be adequately explained through a hierarchy of isotropic models, or the SP camp must explain the key aircraft and numerical model results cited against them as evidence of two (or more) isotropic regimes. In this talk we review the debate and argue that now exactly such a reinterpretation of the aircraft data has been found (Lovejoy et al., 2009b). We argue that the debate has now been decisively resolved in favour of the SP approaches so that neither 2-D isotropic nor 3D isotropic turbulence - are relevant in the atmosphere. References: J.G. Charney, Geostrophic Turbulence, J. Atmos. Sci 28(1971), p. 1087. J. Cho and E. Lindborg, Horizontal velocity structure functions in the upper troposphere and lower stratosphere i: Observations, J. Geophys. Res. 106(2001), pp. 10223-10232. E. Dewan, Saturated-cascade similtude theory of gravity wave sepctra, J. Geophys. Res. 102(1997), pp. 29799-29817. R. Fjortoft, On the changes in the spectral distribution of kinetic energy in two dimensional, nondivergent flow, Tellus 7(1953), pp. 168-176. D. Fritts, T. Tsuda, T. Sato, S. Fukao and S. Kato, Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, Journal of the Atmospheric Sciences 45(1988), p. 1741. K.S. Gage and G.D. Nastrom, Theoretical Interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP, J. of the Atmos. Sci. 43(1986), pp. 729-740. C.S. Gardner, C.A. Hostetler and S.J. Franke, Gravity Wave models for the horizontal wave number spectra of atmospheric velocity and density flucutations, J. Geophys. Res. 98(1993), pp. 1035-1049. C.A. Hostetler and C.S. Gardner, Observations of horizontal and vertical wave number spectra of gravity wave motions in the stratosphere and mesosphere ove rthe mid-Pacific, J. Geophys. Res. 99(1994), pp. 1283-1302. A.N. Kolmogorov, Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. (English translation: Proc. Roy. Soc. A434, 9-17, 1991), Proc. Acad. Sci. URSS., Geochem. Sect. 30(1941), pp. 299-303. R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Physics of Fluids 10(1967), pp. 1417-1423. A. Lazarev, D. Schertzer, S. Lovejoy and Y. Chigirinskaya, Unified multifractal atmospheric dynamics tested in the tropics: part II, vertical scaling and Generalized Scale Invariance, Nonlinear Processes in Geophysics 1(1994), pp. 115-123. M. Lilley, S. Lovejoy, K. Strawbridge and D. Schertzer, 23/9 dimensional anisotropic scaling of passive admixtures using lidar aerosol data, Phys. Rev. E 70(2004), pp. 036307-036301-036307. S. Lovejoy et al., Atmospheric complexity or scale by scale simplicity? , Geophys. Resear. Lett. 36(2009a), pp. L01801, doi:01810.01029/02008GL035863. S. Lovejoy, A.F. Tuck, S.J. Hovde and D. Schertzer, Is isotropic turbulence relevant in the atmosphere?, Geophys. Res. Lett. L14802, doi:10.1029/2007GL029359.(2007). S. Lovejoy, A.F. Tuck, D. Schertzer and S.J. Hovde, Reinterpreting aircraft measurements in anisotropic scaling turbulence, Atmos. Chem. Phys. Discuss., 9(2009b), pp. 3871-3920. G.D. Nastrom and K.S. Gage, A first look at wave number spectra from GASP data, Tellus 35(1983), p. 383. G.D. Nastrom and K.S. Gage, A climatology of atmospheric wavenumber spectra of wind and temperature by commercial aircraft, J. Atmos. Sci. 42(1985), pp. 950-960. D. Schertzer and S. Lovejoy, The dimension and intermittency of atmospheric dynamics. In: B. Launder, Editor, Turbulent Shear Flow 4, Springer-Verlag (1985), pp. 7-33. D. Schertzer and S. Lovejoy, Physical modeling and Analysis of Rain and Clouds by Anisotropic Scaling of Multiplicative Processes, Journal of Geophysical Research 92(1987), pp. 9693-9714. J. Stolle, S. Lovejoy and D. Schertzer, The stochastic cascade structure of deterministic numerical models of the atmosphere, Nonlin. Proc. in Geophys. 16(2009), pp. 1-15. G.I. Taylor, Statistical theory of turbulence, Proc. Roy. Soc. I-IV, A151(1935), pp. 421-478. T. Tsuda et al., MST radar observations of a saturated gravity wave spectrum, Journal of the Atmospheric Sciences 46(1989), p. 2440. T.E. Van Zandt, A universal spectrum of buoyancy waves in the atmosphere, Geophysical Research Letter 9(1982), pp. 575-578.
The analysis and modelling of dilatational terms in compressible turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.
1991-01-01
It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.
The analysis and modeling of dilatational terms in compressible turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.
1989-01-01
It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.
Viscous propulsion in active transversely isotropic media
NASA Astrophysics Data System (ADS)
Cupples, Gemma; Dyson, Rosemary; Smith, David
2017-11-01
Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude viscous propulsion of a `swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid enhances mean rate of working, independent of the initial fibre orientation. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of fibre tension, or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other parameters. Funding is provided by a Biotechnology and Biological Sciences Research Council (BBSRC) Industrial CASE Studentship (BB/L015587/1).
Investigation of the mechanical behaviour of the foot skin.
Fontanella, C G; Carniel, E L; Forestiero, A; Natali, A N
2014-11-01
The aim of this work was to provide computational tools for the characterization of the actual mechanical behaviour of foot skin, accounting for results from experimental testing and histological investigation. Such results show the typical features of skin mechanics, such as anisotropic configuration, almost incompressible behaviour, material and geometrical non linearity. The anisotropic behaviour is mainly determined by the distribution of collagen fibres along specific directions, usually identified as cleavage lines. To evaluate the biomechanical response of foot skin, a refined numerical model of the foot is developed. The overall mechanical behaviour of the skin is interpreted by a fibre-reinforced hyperelastic constitutive model and the orientation of the cleavage lines is implemented by a specific procedure. Numerical analyses that interpret typical loading conditions of the foot are performed. The influence of fibres orientation and distribution on skin mechanics is outlined also by a comparison with results using an isotropic scheme. A specific constitutive formulation is provided to characterize the mechanical behaviour of foot skin. The formulation is applied within a numerical model of the foot to investigate the skin functionality during typical foot movements. Numerical analyses developed accounting for the actual anisotropic configuration of the skin show lower maximum principal stress fields than results from isotropic analyses. The developed computational models provide reliable tools for the investigation of foot tissues functionality. Furthermore, the comparison between numerical results from anisotropic and isotropic models shows the optimal configuration of foot skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.
2017-09-01
The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.
PP/PS anisotropic stereotomography
NASA Astrophysics Data System (ADS)
Nag, Steinar; Alerini, Mathias; Ursin, Bjørn
2010-04-01
Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.
Seismic velocity and attenuation structures in the Earth's inner core
NASA Astrophysics Data System (ADS)
Yu, Wen-Che
2007-12-01
I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the isotropic upper inner core and 150 to 400 for the anisotropic lower inner core.
Development of a simulation tool to analyze the orientation of LCPs during extrusion process
NASA Astrophysics Data System (ADS)
Ahmadzadegan, Arash
In this thesis, different aspects of the rheology and directionality of the liquid crystalline polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rheological models in different die geometries. The final goal in modeling the rheology and directionality of LCPs is to have a better understanding of their rheology during extrusion processing methods inside extrusion dies and eventually produce more isotropic films of LCPs. An attempt to design a die geometry that produces more isotropic films was made and it was shown that it is possible to use the inertia of the polymer to generate a more isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to alignment of directors along the streamlines and produce an isotropic film of LCP. It is shown that the rheological properties of the LCP should be altered to have a very low viscosity for this type of die to work. To be able to investigate the effect of processing on directionality of LCPs, it is essential to develop a method to simulate the directionality based on processing conditions. As a result, a user defined function (UDF) code was added to ANSYSRTM ~FLUENTRTM~ to simulate the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid model and the consistency index (K) and power-law index (n) were estimated based on the experimental measurements done with capillary rheometry. Three main phenomena that affect the directionality namely effects of Franks elastic energy, the effect of shear and the effect of movement of crystals with the bulk of polymer are investigated. The results of this simulation are close to physical phenomena seen in real LCPs. To quantify the directionality of the LCPs, the order parameter of the domain were calculated and compared for different flow and fluid conditions. All polymers including LCPs are viscoelastic fluids in molten state. To understand the rheology of LCPs, a die-swell experiment was carried out using LCP material and Polypropylene (PP). For this experiment a capillary die with two different land-lengths was designed and built. The die-swell of the materials were measured optically according to ISO standards and the dependence of the die swell for materials on rheological properties is investigated. To simulate the viscoelasticity of LCPs numerically, ANSYSRTM ~POLYFLOWRTM~ was used. ANSYSRTM ~POLYFLOWRTM~ has several viscoelastic models and is designed to simulate extrusion processes. The geometry of the capillary die designed for the experiments was modeled in ANSYSRTM ~POLYFLOWRTM~ and the results were compared with the experimental results obtained for LCP and PP. It is shown that the morphology of the polymer should be considered into account to have a correct simulation of die swell.
NASA Astrophysics Data System (ADS)
Ichinose, G. A.; Saikia, C. K.
2007-12-01
We applied the moment tensor (MT) analysis scheme to identify seismic sources using regional seismograms based on the representation theorem for the elastic wave displacement field. This method is applied to estimate the isotropic (ISO) and deviatoric MT components of earthquake, volcanic, and isotropic sources within the Basin and Range Province (BRP) and western US. The ISO components from Hoya, Bexar, Montello and Junction were compared to recently well recorded recent earthquakes near Little Skull Mountain, Scotty's Junction, Eureka Valley, and Fish Lake Valley within southern Nevada. We also examined "dilatational" sources near Mammoth Lakes Caldera and two mine collapses including the August 2007 event in Utah recorded by US Array. Using our formulation we have first implemented the full MT inversion method on long period filtered regional data. We also applied a grid-search technique to solve for the percent deviatoric and %ISO moments. By using the grid-search technique, high-frequency waveforms are used with calibrated velocity models. We modeled the ISO and deviatoric components (spall and tectonic release) as separate events delayed in time or offset in space. Calibrated velocity models helped the resolution of the ISO components and decrease the variance over the average, initial or background velocity models. The centroid location and time shifts are velocity model dependent. Models can be improved as was done in previously published work in which we used an iterative waveform inversion method with regional seismograms from four well recorded and constrained earthquakes. The resulting velocity models reduced the variance between predicted synthetics by about 50 to 80% for frequencies up to 0.5 Hz. Tests indicate that the individual path-specific models perform better at recovering the earthquake MT solutions even after using a sparser distribution of stations than the average or initial models.
NASA Astrophysics Data System (ADS)
Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.
2015-12-01
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
Muhlestein, Michael B; Haberman, Michael R
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure
Haberman, Michael R.
2016-01-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed. PMID:27616932
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure
NASA Astrophysics Data System (ADS)
Muhlestein, Michael B.; Haberman, Michael R.
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
Continuum mechanical model for cross-linked actin networks with contractile bundles
NASA Astrophysics Data System (ADS)
Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.
2018-01-01
In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.
Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential
Wang, Ying; Zhou, Yu; Zhou, Shuyu
2016-01-01
We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129
In-plane isotropic magnetic and electrical properties of MnAs/InAs/GaAs (111) B hybrid structure
NASA Astrophysics Data System (ADS)
Islam, Md. Earul; Akabori, Masashi
2018-03-01
We characterized in-plane magnetic and electrical properties of MnAs/InAs/GaAs (111) B hybrid structure grown by molecular beam epitaxy (MBE). We observed isotropic easy magnetization in two crystallographic in-plane directions, [ 2 ̅ 110 ] and [ 0 1 ̅ 10 ] of hexagonal MnAs i.e. [ 1 ̅ 10 ] and [ 11 2 ̅ ] of cubic InAs. We also fabricated transmission line model (TLM) devices, and observed almost isotropic electrical properties in two crystallographic in-plane directions, [ 1 ̅ 10 ] and [ 11 2 ̅ ] of cubic InAs. Also we tried to fabricate and characterize lateral spin-valve (LSV) devices from the hybrid structure. We could roughly estimate the spin injection efficiency and the spin diffusion length at room temperature in [ 11 2 ̅ ] direction. We believe that the hybrid structures are helpful to design spintronic device with good flexibility in-plane.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2010-03-12
We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.
Ballistic Impact of Braided Composites With a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike
2004-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites indicate that composites of this type can reasonably be considered as a lightweight alternative to metals for fan cases in commercial jet engines.
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
NASA Astrophysics Data System (ADS)
Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank
2018-06-01
Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.
NASA Astrophysics Data System (ADS)
Jansen van Rensburg, Gerhardus J.; Kok, Schalk; Wilke, Daniel N.
2018-03-01
This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented.
Micromechanics of fatigue in woven and stitched composites
NASA Technical Reports Server (NTRS)
Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Mitchell, M. R.; Morris, W. L.; Schroeder, S.
1991-01-01
The goal is to determine how microstructural factors, especially the architecture of microstructural factors, control fatigue damage in 3D reinforced polymer composites. Test materials were fabricated from various preforms, including stitched quasi-isotropic laminates, and through-the-thickness angle interlock, layer-to-layer angle interlock, and through-the-thickness stitching effect weaves. Preforms were impregnated with a tough resin by a special vacuum infiltration method. Most tests are being performed in uniaxial compression/compression loading. In all cases to date, failure has occurred not by delamination, but by shear failure, which occurs suddenly rather than by gradual macroscopic crack growth. Some theoretical aspects of bridging are also examined.
Free edge effects in laminated composites
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1989-01-01
The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.
NASA Astrophysics Data System (ADS)
Rudoy, Yu. G.; Kotelnikova, O. A.
2012-10-01
The problem of existence of long-range order in the isotropic quantum Heisenberg model on the D=1 lattice is reconsidered in view of the possibility of sufficiently slow decaying exchange interaction with infinite effective radius. It is shown that the macrosopic arguments given by Landau and Lifshitz and then supported microscopically by Mermin and Wagner fail for this case so that the non-zero spontaneous magnetization may yet exist. This result was anticipated by Thouless on the grounds of phenomenological analysis, and we give its microscopic foundation, which amounts to the generalization of Mermin-Wagner theorem for the case of the infinite second moment of the exchange interaction. Two well known in lattice statistics models - i.e., Kac-I and Kac-II - illustrate our results.
Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D
2013-11-01
An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. © 2013 Elsevier Ltd. All rights reserved.
Analysis of Large-scale Anisotropy of Ultra-high Energy Cosmic Rays in HiRes Data
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Koers, H.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration
2010-04-01
Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle θ s . We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless θ s > 10° and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.
Chaotic Lagrangian models for turbulent relative dispersion.
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Chaotic Lagrangian models for turbulent relative dispersion
NASA Astrophysics Data System (ADS)
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
NASA Astrophysics Data System (ADS)
Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.
2018-02-01
An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.
Reversible gelation of rod-like viruses grafted with thermoresponsive polymers.
Zhang, Zhenkun; Krishna, Naveen; Lettinga, M Paul; Vermant, Jan; Grelet, Eric
2009-02-17
The synthesis and selected macroscopic properties of a new model system consisting of poly(N-isopropylacrylamide) (PNIPAM)-coated rod-like fd virus particles are presented. The sticky rod-like colloids can be used to study effect of particle shape on gelation transition, the structure and viscoelasticity of isotropic and nematic gels, and to make both open isotropic as well as ordered nematic particle networks. This model system of rod-like colloids, for which the strength of attraction between the particles is tunable, is obtained by chemically grafting highly monodisperse rod-like fd virus particles with thermoresponsive polymers, e.g. PNIPAM. At room temperature, suspensions of the resulting hybrid PNIPAM-fd are fluid sols which are in isotropic or liquid crystalline phases, depending on the particle concentration and ionic strength. During heating/cooling, the suspensions change reversibly between sol and gel state near a critical temperature of approximately 32 degrees C, close to the lower critical solution temperature of free PNIPAM. The so-called nematic gel, which exhibits a cholesteric feature, can therefore be easily obtained. The gelation behavior of PNIPAM-fd system and the structure of the nematic gel have been characterized by rheology, optical microscopy and small-angle X-ray scattering.
Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene
2011-02-14
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the corresponding experimental measurements on water. Our simulations also suggest that the Jagla potential may reproduce features of the HDA-VHDA transformations observed in glassy water upon compression and decompression. Snapshots of the system during the HDA-VHDA and HDA-LDA transformations reveal a clear segregation between LDA and HDA but not between HDA and VHDA, consistent with the possibility that LDA and HDA are separated by a first order transformation as found experimentally, whereas HDA and VHDA are not. Our results demonstrate that a system of particles with simple isotropic pair interactions, a Jagla potential with two characteristic length scales, can present polyamorphism in the glass state as well as reproducing many of the distinguishing properties of liquid water. While most isotropic pair potential models crystallize readily on simulation time scales at the low temperatures investigated here, the Jagla potential is an exception, and is therefore a promising model system for the study of glass phenomenology.
Towards numerical prediction of cavitation erosion.
Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir
2015-10-06
This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction.
Towards numerical prediction of cavitation erosion
Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir
2015-01-01
This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s−1). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139
Model for the orientational ordering of the plant microtubule cortical array
NASA Astrophysics Data System (ADS)
Hawkins, Rhoda J.; Tindemans, Simon H.; Mulder, Bela M.
2010-07-01
The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.
Light propagation in the averaged universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagheri, Samae; Schwarz, Dominik J., E-mail: s_bagheri@physik.uni-bielefeld.de, E-mail: dschwarz@physik.uni-bielefeld.de
Cosmic structures determine how light propagates through the Universe and consequently must be taken into account in the interpretation of observations. In the standard cosmological model at the largest scales, such structures are either ignored or treated as small perturbations to an isotropic and homogeneous Universe. This isotropic and homogeneous model is commonly assumed to emerge from some averaging process at the largest scales. We assume that there exists an averaging procedure that preserves the causal structure of space-time. Based on that assumption, we study the effects of averaging the geometry of space-time and derive an averaged version of themore » null geodesic equation of motion. For the averaged geometry we then assume a flat Friedmann-Lemaître (FL) model and find that light propagation in this averaged FL model is not given by null geodesics of that model, but rather by a modified light propagation equation that contains an effective Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.« less
Impact response of composite materials
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivasan, K.
1991-01-01
Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.
Delamination onset in polymeric composite laminates under thermal and mechanical loads
NASA Technical Reports Server (NTRS)
Martin, Roderick H.
1991-01-01
A fracture mechanics damage methodology to predict edge delamination is described. The methodology accounts for residual thermal stresses, cyclic thermal stresses, and cyclic mechanical stresses. The modeling is based on the classical lamination theory and a sublaminate theory. The prediction methodology determines the strain energy release rate, G, at the edge of a laminate and compares it with the fatigue and fracture toughness of the composite. To verify the methodology, isothermal static tests at 23, 125, and 175 C and tension-tension fatigue tests at 23 and 175 C were conducted on laminates. The material system used was a carbon/bismaleimide, IM7/5260. Two quasi-isotropic layups were used. Also, 24 ply unidirectional double cantilever beam specimens were tested to determine the fatigue and fracture toughness of the composite at different temperatures. Raising the temperature had the effect of increasing the value of G at the edge for these layups and also to lower the fatigue and fracture toughness of the composite. The static stress to edge delamination was not affected by temperature but the number of cycles to edge delamination decreased.
NASA Astrophysics Data System (ADS)
Munzarova, H.; Plomerova, J.; Kissling, E. H.
2015-12-01
Consideration of only isotropic wave propagation and neglecting anisotropy in tomography studies is a simplification obviously incongruous with current understanding of mantle-lithosphere plate dynamics. Both fossil anisotropy in the mantle lithosphere and anisotropy due to the present-day flow in the asthenosphere may significantly influence propagation of seismic waves. We present a novel code for anisotropic teleseismic tomography (AniTomo) that allows to invert relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. We have modified frequently-used isotropic teleseismic tomography code Telinv by assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D to be, together with heterogeneities, a source of the observed P-wave travel-time residuals. Careful testing of the new code with synthetics, concentrating on strengths and limitations of the inversion method, is a necessary step before AniTomo is applied to real datasets. We examine various aspects of anisotropic tomography and particularly influence of ray coverage on resolvability of individual model parameters and of initial models on the result. Synthetic models are designed to schematically represent heterogeneous and anisotropic structures in the upper mantle. Several synthetic tests mimicking a real tectonic setting, e.g. the lithosphere subduction in the Northern Apennines in Italy (Munzarova et al., G-Cubed, 2013), allow us to make quantitative assessments of the well-known trade-off between effects of seismic anisotropy and heterogeneities. Our results clearly document that significant distortions of imaged velocity heterogeneities may result from neglecting anisotropy.
Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model
NASA Astrophysics Data System (ADS)
Sitnitsky, A. E.
2011-12-01
We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.
Review of fatigue and fracture research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
1988-01-01
Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.
Deformations resulting from the movements of a shear or tensile fault in an anisotropic half space
NASA Astrophysics Data System (ADS)
Sheu, Guang Y.
2004-04-01
Earlier solutions (Bull. Seismol. Soc. Amer. 1985; 75:1135-1154; Bull. Seismol. Soc. Amer. 1992; 82:1018-1040) of deformations caused by the movements of a shear or tensile fault in an isotropic half-space for finite rectangular sources of strain nucleus have been extended for a transversely isotropic half-space. Results of integrating previous solutions (Int. J. Numer. Anal. Meth. Geomech. 2001; 25(10): 1175-1193) of deformations due to a shear or tensile fault in a transversely isotropic half-space for point sources of strain nucleus over the fault plane are presented. In addition, a boundary element (BEM) model (POLY3D:A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth's crust. M.S. Thesis, Stanford University, Department of Geology, 1993; 62) is given. Different from similar researches (e.g. Thomas), the Akaike's view on Bayesian statistics (Akaike Information Criterion Statistics. D. Reidel Publication: Dordrecht, 1986) is applied for inverting deformations due to a fault to obtain displacement discontinuities on the fault plane.
Dependence on sphere size of the phase behavior of mixtures of rods and spheres
NASA Astrophysics Data System (ADS)
Urakami, Naohito; Imai, Masayuki
2003-07-01
By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, F. K.; Eriksen, H. K.; Lilje, P. B.
We repeat and extend the analysis of Eriksen et al. and Hansen et al., testing the isotropy of the cosmic microwave background fluctuations. We find that the hemispherical power asymmetry previously reported for the largest scales l = 2-40 extends to much smaller scales. In fact, for the full multipole range l = 2-600, significantly more power is found in the hemisphere centered at (theta = 107{sup 0} +- 10{sup 0}, phi = 226{sup 0} +- 10{sup 0}) in galactic co-latitude and longitude than in the opposite hemisphere, consistent with the previously detected direction of asymmetry for l = 2-40.more » We adopt a model selection test where the direction and amplitude of asymmetry, as well as the multipole range, are free parameters. A model with an asymmetric distribution of power for l = 2-600 is found to be preferred over the isotropic model at the 0.4% significance level, taking into account the additional parameters required to describe it. A similar direction of asymmetry is found independently in all six subranges of 100 multipoles between l = 2-600. None of our 9800 isotropic simulated maps show a similarly consistent direction of asymmetry over such a large multipole range. No known systematic effects or foregrounds are found to be able to explain the asymmetry.« less
Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Ratcliffe, James G.
2013-01-01
Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa
The transport along membrane nanotubes driven by the spontaneous curvature of membrane components.
Kabaso, Doron; Bobrovska, Nataliya; Góźdź, Wojciech; Gongadze, Ekaterina; Kralj-Iglič, Veronika; Zorec, Robert; Iglič, Aleš
2012-10-01
Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals. Copyright © 2012 Elsevier B.V. All rights reserved.
Spherical 3D isotropic wavelets
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
A new ChainMail approach for real-time soft tissue simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-07-03
This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.
Chen, Jiao; Weihs, Daphne; Vermolen, Fred J
2018-04-01
Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler-Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.
Isotropic stochastic rotation dynamics
NASA Astrophysics Data System (ADS)
Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten
2017-12-01
Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.
ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.
2010-04-10
Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s}more » > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.« less
Simulations of material mixing in laser-driven reshock experiments
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.
2013-02-01
We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.
Stochastic isotropic hyperelastic materials: constitutive calibration and model selection
NASA Astrophysics Data System (ADS)
Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain
2018-03-01
Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.
Guo, Z; Kumar, S
2000-08-20
An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.
Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H
2017-08-01
We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies
NASA Astrophysics Data System (ADS)
Takahashi, Diego; Oliveira, Vanderlei C., Jr.
2017-09-01
A considerable amount of literature has been published on the magnetic modelling of uniformly magnetized ellipsoids since the second half of the nineteenth century. Ellipsoids have flexibility to represent a wide range of geometrical forms, are the only known bodies which can be uniformly magnetized in the presence of a uniform inducing field and are the only finite bodies for which the self-demagnetization can be treated analytically. This property makes ellipsoids particularly useful for modelling compact orebodies having high susceptibility. In this case, neglecting the self-demagnetization may strongly mislead the interpretation of these bodies by using magnetic methods. A number of previous studies consider that the self-demagnetization can be neglected for the case in which the geological body has an isotropic susceptibility lower than or equal to 0.1 SI. This limiting value, however, seems to be determined empirically and there has been no discussion about how this value was determined. In addition, the geoscientific community lacks an easy-to-use tool to simulate the magnetic field produced by uniformly magnetized ellipsoids. Here, we present an integrated review of the magnetic modelling of arbitrarily oriented triaxial, prolate and oblate ellipsoids. Our review includes ellipsoids with both induced and remanent magnetization, as well as with isotropic or anisotropic susceptibility. We also discuss the ambiguity between confocal ellipsoids with the same magnetic moment and propose a way of determining the isotropic susceptibility above which the self-demagnetization must be taken into consideration. Tests with synthetic data validate our approach. Finally, we provide a set of routines to model the magnetic field produced by ellipsoids. The routines are written in Python language as part of the Fatiando a Terra, which is an open-source library for modelling and inversion in geophysics.
Identifying isotropic events using a regional moment tensor inversion
Ford, Sean R.; Dreger, Douglas S.; Walter, William R.
2009-01-17
We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western United States, using a regional time domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. Wemore » investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02–0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity model perturbations that cause less than a half-cycle shift (<5 s) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness of fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50 and 200%. Furthermore, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.« less
Effect of Compliant Walls on Secondary Instabilities in Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Morris, Philip J.
1991-01-01
For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection. A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent flow in external boundary layers. For hydrodynamic applications, a passive device which shows promise for transition delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall, coatings were found that provided transition delays as predicted from the semi-empirical e(sup n) method. Those studies were concerned with the linear stage of transition where the instability of concern is referred to as the primary instability. For the flat-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the shear flow leads to a secondary instability mechanism. This has been theoretical described by Herbert based on Floquet theory. In the present study, Herbert's theory is used to predict the development of secondary instabilities over isotropic and non-isotropic compliant walls. Since oblique waves may be dominant over compliant walls, a secondary theory extention is made to allow for these 3-D primary instabilities. The effect of variations in primary amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude primary disturbances. Both isotropic and non-isotropic compliant walls lead to reduced secondary growth rates compared to the rigid wall results. For high frequencies, the non-isotropic wall suppresses the amplification of the secondary instabilities, while instabilities over the isotropic wall may grow with an explosive rate similar to the rigid wall results. For the more important lower frequencies, both isotropic and non-isotropic compliant walls suppress the amplification of secondary instabilities compared to the rigid wall results. The twofold major discovery and demonstration of the present investigation are: (1) the use of passive devices, such as compliant walls, can lead to significant reductions in the secondary instability growth rates and amplification; (2) suppressing the primary growth rates and subsequent amplification enable delays in the growth of the explosive secondary instability mechanism.
Thermodynamical stability of FRW models with quintessence
NASA Astrophysics Data System (ADS)
Sharif, M.; Ashraf, Sara
2018-03-01
In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.
Wang, Silun; Chen, Yifei; Lal, Bachchu; Ford, Eric; Tryggestad, Erik; Armour, Michael; Yan, Kun; Laterra, John; Zhou, Jinyuan
2011-01-01
Standard MRI cannot distinguish between radiation necrosis and tumor progression; however, this distinction is critical in the assessment of tumor response to therapy. In this study, one delayed radiation necrosis model (dose, 40 Gy; radiation field, 10 × 10 mm2; n = 13) and two orthotopic glioma models in rats (9L gliosarcoma, n = 8; human glioma xenografts, n = 5) were compared using multiple DTI indices. A visible isotropic apparent diffusion coefficient (ADC) pattern was observed in the lesion due to radiation necrosis, which consisted of a hypointense central zone and a hyperintense peripheral zone. There were significantly lower ADC, parallel diffusivity, and perpendicular diffusivity in the necrotic central zone than in the peripheral zone (all p < 0.001). When radiation-induced necrosis was compared with viable tumor, radiation necrosis had significantly lower ADC than 9L gliosarcoma and human glioma xenografts (both p < 0.01) in the central zone, and significantly lower FA than 9L gliosarcoma (p = 0.005) and human glioma xenografts (p = 0.012) in the peripheral zone. Histological analysis revealed parenchymal coagulative necrosis in the central zone, and damaged vessels and reactive astrogliosis in the peripheral zone. These data suggest that qualitative and quantitative analysis of the DTI maps can provide useful information by which to distinguish between radiation necrosis and viable glioma. PMID:21948114
Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice
NASA Astrophysics Data System (ADS)
Matlis, Eric; Corke, Thomas; Hoffman, Anthony
2017-11-01
Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.
NASA Astrophysics Data System (ADS)
Green, D. N.; Neuberg, J.; Cayol, V.
2006-05-01
Surface deformations recorded in close proximity to the active lava dome at Soufrière Hills volcano, Montserrat, can be used to infer stresses within the uppermost 1000 m of the conduit system. Most deformation source models consider only isotropic pressurisation of the conduit. We show that tilt recorded during rapid magma extrusion in 1997 could have also been generated by shear stresses sustained along the conduit wall; these stresses are a consequence of pressure gradients that develop along the conduit. Numerical modelling, incorporating realistic topography, can reproduce both the morphology and half the amplitude of the measured deformation field using a realistic shear stress amplitude, equivalent to a pressure gradient of 3.5 × 104 Pa m-1 along a 1000 m long conduit with a 15 m radius. This shear stress model has advantages over the isotropic pressure models because it does not require either physically unattainable overpressures or source radii larger than 200 m to explain the same deformation.
Progressive mechanical indentation of large-format Li-ion cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan
We used large format Li-ion cells to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. We carried out various sequences of increasing depth indentations using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025 and 0.250 with main indentation increments tests of 0.025 steps. Increment steps of 0.100 and 0.005 were used to pinpoint the onset of internal-short that occurred between 0.245 and 0.250 . The indented cells were disassembled and inspected for internal damage. Loadmore » vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. This study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.« less
Progressive mechanical indentation of large-format Li-ion cells
NASA Astrophysics Data System (ADS)
Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; Allu, Srikanth; Kalnaus, Sergiy; Turner, John A.; Helmers, Jacob C.; Rules, Evan T.; Winchester, Clinton S.; Gorney, Philip
2017-02-01
Large format Li-ion cells were used to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. Various sequences of increasing depth indentations were carried out using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025″ and 0.250″ with main indentation increments tests of 0.025″ steps. Increment steps of 0.100″ and 0.005″ were used to pinpoint the onset of internal-short that occurred between 0.245″ and 0.250″. The indented cells were disassembled and inspected for internal damage. Load vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. Our study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.
Progressive mechanical indentation of large-format Li-ion cells
Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; ...
2016-12-07
We used large format Li-ion cells to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. We carried out various sequences of increasing depth indentations using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025 and 0.250 with main indentation increments tests of 0.025 steps. Increment steps of 0.100 and 0.005 were used to pinpoint the onset of internal-short that occurred between 0.245 and 0.250 . The indented cells were disassembled and inspected for internal damage. Loadmore » vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. This study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.« less
NASA Astrophysics Data System (ADS)
Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.
2015-09-01
In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.
Abdo, A. A.
2010-03-08
Here, we report on the first Fermi Large Area Telescope (LAT) measurements of the so-called “extragalactic” diffuse γ -ray emission (EGB). This component of the diffuse γ -ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic γ -ray emission, the detected LAT sources, and the solar γ -ray emission. We also find the spectrum of the EGB is consistent with a power law with a differential spectral index γ =more » 2.41 ± 0.05 and intensity I ( > 100 MeV ) = ( 1.03 ± 0.17 ) × 10 - 5 cm -2 s - 1 sr - 1 , where the error is systematics dominated. The EGB spectrum, presented here, is featureless, less intense, and softer than that derived from EGRET data.« less
A Linear Viscoelastic Model Calibration of Sylgard 184.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Kevin Nicholas; Brown, Judith Alice
2017-04-01
We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANLmore » data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.« less
Subgrid-scale models for large-eddy simulation of rotating turbulent flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel
2016-11-01
This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.
Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; ...
2015-09-21
The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (xz,yz,xy) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. Moreover, in this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly,more » our Monte Carlo simulations reveal that the fast reduction with doping of the N eel T N and the structural T S transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Finally, our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. Our study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.« less
NASA Astrophysics Data System (ADS)
Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio
2015-09-01
The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.
Statistical anisotropy in free turbulence for mixing layers at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1996-08-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after propagating through free turbulent mixing layers. Shearing interferometers provide a two-dimensional flow visualization that is nonintrusive. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Experiments were performed on an unbounded, plane shear mixing layer of helium and nitrogen gas at fixed velocities and high Reynolds numbers for six locations in the flow development. Statistical autocorrelation functions and structure functions were computed on the reconstructed phase maps. The autocorrelation function results indicated that the turbulence-induced phase fluctuations were not wide-sense stationary. The structure functions exhibited statistical homogeneity, indicating that the phase fluctuations were stationary in first increments. However, the turbulence-corrupted phase was not isotropic. A five-thirds power law is shown to fit orthogonal slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence. Strehl ratios were computed from the phase structure functions and compared with classical estimates that assume isotropy. The isotropic models are shown to overestimate the optical degradation by nearly 3 orders of magnitude compared with the structure function calculations.
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1997-04-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.
The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity
NASA Astrophysics Data System (ADS)
Briard, Antoine; Gomez, Thomas
2018-02-01
Decaying homogeneous and isotropic magnetohydrodynamics (MHD) turbulence is investigated numerically at large Reynolds numbers thanks to the eddy-damped quasi-normal Markovian (EDQNM) approximation. Without any background mean magnetic field, the total energy spectrum scales as -3/2$ in the inertial range as a consequence of the modelling. Moreover, the total energy is shown, both analytically and numerically, to decay at the same rate as kinetic energy in hydrodynamic isotropic turbulence: this differs from a previous prediction, and thus physical arguments are proposed to reconcile both results. Afterwards, the MHD turbulence is made imbalanced by an initial non-zero cross-helicity. A spectral modelling is developed for the velocity-magnetic correlation in a general homogeneous framework, which reveals that cross-helicity can contain subtle anisotropic effects. In the inertial range, as the Reynolds number increases, the slope of the cross-helical spectrum becomes closer to -5/3$ than -2$ . Furthermore, the Elsässer spectra deviate from -3/2$ with cross-helicity at large Reynolds numbers. Regarding the pressure spectrum P$ , its kinetic and magnetic parts are found to scale with -2$ in the inertial range, whereas the part due to cross-helicity rather scales in -7/3$ . Finally, the two rd laws for the total energy and cross-helicity are assessed numerically at large Reynolds numbers.
NASA Astrophysics Data System (ADS)
Ganushkina, N. Y.; Dubyagin, S.; Liemohn, M. W.
2017-12-01
The isotropic boundaries of the energetic protons, which can be routinely observed by low-altitude satellites, have been used as a tool to probe remotely the nightside magnetic configuration in the near-Earth region. The validity of this method is based on the assumption that the isotropic boundary is formed by the particle scattering on the curved field lines in the magnetotail current sheet. However recent results revealed that the wave-particle interaction process often can be responsible for the isotropic boundary formation especially during active times. Using numerous observations of the 30 keV proton isotropic boundaries and conjugated measurements of the magnetic field in the equatorial magnetosphere we demonstrate that isotropic boundary location can be used as a proxy of the magnetotail stretching even during magnetic storms. The results imply that the scattering on the curved field lines still plays major role as a mechanism of the isotropic boundary formation during storm-time. We found that the wave-particle interaction could lead to isotropic boundary formation in 15% of events. In addition, we discuss the morphology of the storm-time energetic proton precipitations.
NASA Astrophysics Data System (ADS)
Yan, Banghua; Stamnes, Knut; Toratani, Mitsuhiro; Li, Wei; Stamnes, Jakob J.
2002-10-01
For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m-3 when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.
Multinuclear NMR studies of relaxor ferroelectrics
NASA Astrophysics Data System (ADS)
Zhou, Donghua
Multinuclear NMR of 93Nb, 45Sc, and 207Pb has been carried out to study the structure, disorder, and dynamics of a series of important solid solutions: perovskite relaxor ferroelectric materials (1-x) Pb(Mg1/3Nb 2/3)O3-x Pb(Sc1/2Nb1/2)O 3 (PMN-PSN). 93Nb NMR investigations of the local structure and cation order/disorder are presented as a function of PSN concentration, x. The superb fidelity and accuracy of 3QMAS allows us to make clear and consistent assignments of spectral intensities to the 28 possible nearest B-site neighbor (nBn) configurations, (NMg, NSc, NNb), where each number ranges from 0 to 6 and their sum is 6. For most of the 28 possible nBn configurations, isotropic chemical shifts and quadrupole product constants have been extracted from the data. The seven configurations with only larger cations, Mg 2+ and Sc3+ (and no Nb5+) are assigned to the seven observed narrow peaks, whose deconvoluted intensities facilitate quantitative evaluation of, and differentiation between, different models of B-site (chemical) disorder. The "completely random" model is ruled out and the "random site" model is shown to be in qualitative agreement with the NMR experiments. To obtain quantitative agreement with observed NMR intensities, the random site model is slightly modified by including unlike-pair interaction energies. To date, 45Sc studies have not been as fruitful as 93Nb NMR because the resolution is lower in the 45Sc spectra. The lower resolution of 45Sc spectra is due to a smaller span of isotropic chemical shift (40 ppm for 45Sc vs. 82 ppm for 93Nb) and to the lack of a fortuitous mechanism that simplifies the 93Nb spectra; for 93Nb the overlap of the isotropic chemical shifts of 6-Sc and 6-Nb configurations results in the alignment of all the 28 configurations along only seven quadrupole distribution axes. Finally we present variable temperature 207Pb static, MAS, and 2D-PASS NMR studies. Strong linear correlations between isotropic and anisotropic chemical shifts show that Pb-O bonds vary from more ionic to more covalent environments. Distributions of Pb-O bond lengthes are also quantitatively described. Such distributions are used to examine two competing models of Pb displacements; the shell model and the unique direction model. Only the latter model is able to reproduce the observed Pb-O distance distribution.
Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).
Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R
2017-10-05
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B 1-25 ) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B 1-25 -induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B 1-25 using 2 H and 31 P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31 P T 2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
NASA Astrophysics Data System (ADS)
Luna, B. Quan; Blahut, J.; van Westen, C. J.; Sterlacchini, S.; van Asch, T. W. J.; Akbas, S. O.
2011-07-01
For a quantitative assessment of debris flow risk, it is essential to consider not only the hazardous process itself but also to perform an analysis of its consequences. This should include the estimation of the expected monetary losses as the product of the hazard with a given magnitude and the vulnerability of the elements exposed. A quantifiable integrated approach of both hazard and vulnerability is becoming a required practice in risk reduction management. This study aims at developing physical vulnerability curves for debris flows through the use of a dynamic run-out model. Dynamic run-out models for debris flows are able to calculate physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk could suffer an impact. These results can then be applied to consequence analyses and risk calculations. On 13 July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of the Valtellina Valley (Lombardy Region, Northern Italy). One of the largest debris flows events occurred in a village called Selvetta. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. The Selvetta event was modelled with the FLO-2D program, an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. The behaviour and run-out of the flow was reconstructed. The significance of calculated values of the flow depth, velocity, and pressure were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which was calculated as the ratio between the monetary loss and the reconstruction value. Three different empirical vulnerability curves were obtained, which are functions of debris flow depth, impact pressure, and kinematic viscosity, respectively. A quantitative approach to estimate the vulnerability of an exposed element to a debris flow which can be independent of the temporal occurrence of the hazard event is presented.
Heat transfer studies on the liquid droplet radiator
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Nelson, M.
1987-01-01
This paper examines radiation transfer in the droplet sheet of a liquid droplet radiator including non-isotropic scattering by the droplets. Non-isotropic scattering becomes significant for small droplets (diameter less than 0.1 mm) and for low emissivity liquids. For droplets with an emittance of 0.1 and for a droplet sheet optical depth or 5, the radiated power varies by about 12 percent, depending on whether scattering is predominantly forward or backward. An experimental measurement of the power emitted by a cylindrical cloud of heated droplets of silicone fluid is also reported. The measured cloud emissivity correlates, within experimental error, with the analytical model.
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
Detached-Eddy Simulation Based on the V2-F Model
NASA Technical Reports Server (NTRS)
Jee, Sol Keun; Shariff, Karim R.
2012-01-01
Detached-eddy simulation (DES) based on the v(sup 2)-f Reynolds-averaged Navier-Stokes (RANS) model is developed and tested. The v(sup 2)-f model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. The v(sup 2)-f RANS model is modified in order the proposed v(sup 2)-f-based DES formulation reduces to a transport equation for the subgrid-scale kinetic energy isotropic turbulence. First, three coefficients in the elliptic relaxation equation are modified, which is tested in channel flows with friction Reynolds number up to 2000. Then, the proposed v(sup 2)-f DES model formulation is derived. The constant, C(sub DES), required in the DES formulation was calibrated by simulating both decaying and statistically-steady isotropic turbulence. After C(sub DES) was calibrated, the v(sub 2)-f DES formulation is tested for flow around a circular cylinder at a Reynolds number of 3900, in which case turbulence develops after separation. Simulations indicate that this model represents the turbulent wake nearly as accurately as the dynamic Smagorinsky model. Spalart-Allmaras-based DES is also included in the cylinder flow simulation for comparison.
On the Space-Time Structure of Sheared Turbulence
NASA Astrophysics Data System (ADS)
de Maré, Martin; Mann, Jakob
2016-09-01
We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according to rapid distortion theory, and Kristensen's longitudinal coherence model, in which eddies are simultaneously advected by larger eddies as well as decaying. The model is compared with data from both observations and large-eddy simulations and is found to predict spatial correlations comparable to the Mann spectral tensor and temporal coherence better than any known model. Within the developed framework, Lagrangian two-point correlations in space and time are also predicted, and the predictions are compared with measurements of isotropic turbulence. The required input to the models, which are formulated as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar-assisted feed forward control and wind-turbine wake modelling.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Yu
2016-12-01
Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schrödinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy are expressed analytically with additional squeezing terms, exhibiting a substantial improvement of the GSRWA. And the ground-state energy in the anisotropic Rabi model confirms the effectiveness of the GSRWA. Due to the squeezing effect, the GSRWA improves the previous methods only with the displacement transformation in a wide range of coupling strengths even for large atom frequency.
Gravitational decoupled anisotropies in compact stars
NASA Astrophysics Data System (ADS)
Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos
2018-05-01
Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacinti, Gwenael; Kirk, John G.
We calculate the large-scale cosmic-ray (CR) anisotropies predicted for a range of Goldreich–Sridhar (GS) and isotropic models of interstellar turbulence, and compare them with IceTop data. In general, the predicted CR anisotropy is not a pure dipole; the cold spots reported at 400 TeV and 2 PeV are consistent with a GS model that contains a smooth deficit of parallel-propagating waves and a broad resonance function, though some other possibilities cannot, as yet, be ruled out. In particular, isotropic fast magnetosonic wave turbulence can match the observations at high energy, but cannot accommodate an energy dependence in the shape ofmore » the CR anisotropy. Our findings suggest that improved data on the large-scale CR anisotropy could provide a valuable probe of the properties—notably the power-spectrum—of the interstellar turbulence within a few tens of parsecs from Earth.« less
Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2016-03-01
The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.
A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
Yousefi, Ali-Akbar Karkhaneh; Nazari, Mohammad Ali; Perrier, Pascal; Panahi, Masoud Shariat; Payan, Yohan
2018-04-11
Material properties of the human tongue tissue have a significant role in understanding its function in speech, respiration, suckling, and swallowing. Tongue as a combination of various muscles is surrounded by the mucous membrane and is a complicated architecture to study. As a first step before the quantitative mechanical characterization of human tongue tissues, the passive biomechanical properties in the superior longitudinal muscle (SLM) and the mucous tissues of a bovine tongue have been measured. Since the rate of loading has a sizeable contribution to the resultant stress of soft tissues, the rate dependent behavior of tongue tissues has been investigated via uniaxial tension tests (UTTs). A method to determine the mechanical properties of transversely isotropic tissues using UTTs and inverse finite element (FE) method has been proposed. Assuming the strain energy as a general nonlinear relationship with respect to the stretch and the rate of stretch, two visco-hyperelastic constitutive laws (CLs) have been proposed for isotropic and transversely isotropic soft tissues to model their stress-stretch behavior. Both of them have been implemented in ABAQUS explicit through coding a user-defined material subroutine called VUMAT and the experimental stress-stretch points have been well tracked by the results of FE analyses. It has been demonstrated that the proposed laws make a good description of the viscous nature of tongue tissues. Reliability of the proposed models has been compared with similar nonlinear visco-hyperelastic CLs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prabhu, A.; Babu, S. B.; Dolado, J. S.; Gimel, J.-C.
2014-07-01
We present a novel simulation technique derived from Brownian cluster dynamics used so far to study the isotropic colloidal aggregation. It now implements the classical Kern-Frenkel potential to describe patchy interactions between particles. This technique gives access to static properties, dynamics and kinetics of the system, even far from the equilibrium. Particle thermal motions are modeled using billions of independent small random translations and rotations, constrained by the excluded volume and the connectivity. This algorithm, applied to a single polymer chain leads to correct static and dynamic properties, in the framework where hydrodynamic interactions are ignored. By varying patch angles, various local chain flexibilities can be obtained. We have used this new algorithm to model step-growth polymerization under various solvent qualities. The polymerization reaction is modeled by an irreversible aggregation between patches while an isotropic finite square-well potential is superimposed to mimic the solvent quality. In bad solvent conditions, a competition between a phase separation (due to the isotropic interaction) and polymerization (due to patches) occurs. Surprisingly, an arrested network with a very peculiar structure appears. It is made of strands and nodes. Strands gather few stretched chains that dip into entangled globular nodes. These nodes act as reticulation points between the strands. The system is kinetically driven and we observe a trapped arrested structure. That demonstrates one of the strengths of this new simulation technique. It can give valuable insights about mechanisms that could be involved in the formation of stranded gels.
On the origin of the electrostatic potential difference at a liquid-vacuum interface.
Harder, Edward; Roux, Benoît
2008-12-21
The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.
Barycentric parameterizations for isotropic BRDFs.
Stark, Michael M; Arvo, James; Smits, Brian
2005-01-01
A bidirectional reflectance distribution function (BRDF) is often expressed as a function of four real variables: two spherical coordinates in each of the the "incoming" and "outgoing" directions. However, many BRDFs reduce to functions of fewer variables. For example, isotropic reflection can be represented by a function of three variables. Some BRDF models can be reduced further. In this paper, we introduce new sets of coordinates which we use to reduce the dimensionality of several well-known analytic BRDFs as well as empirically measured BRDF data. The proposed coordinate systems are barycentric with respect to a triangular support with a direct physical interpretation. One coordinate set is based on the BRDF model proposed by Lafortune. Another set, based on a model of Ward, is associated with the "halfway" vector common in analytical BRDF formulas. Through these coordinate sets we establish lower bounds on the approximation error inherent in the models on which they are based. We present a third set of coordinates, not based on any analytical model, that performs well in approximating measured data. Finally, our proposed variables suggest novel ways of constructing and visualizing BRDFs.
Ballistically Initiated Fire Ball Generation Using M&S: Innovation Grant (Briefing Charts)
2012-01-26
isotropic in nature Phenomenological models for explosives initiation. – HVRB, forest fire etc. Equation of state – Ideal gas, Mie-Gruneisen, JWL ...perfectly plastic description • EOS • Mie Gruneisen • JWL for explosive • Phenomenological Model for EFP • High Explosive input for programmed burn
Sterically controlled mechanochemistry under hydrostatic pressure
NASA Astrophysics Data System (ADS)
Yan, Hao; Yang, Fan; Pan, Ding; Lin, Yu; Hohman, J. Nathan; Solis-Ibarra, Diego; Li, Fei Hua; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Galli, Giulia; Mao, Wendy L.; Shen, Zhi-Xun; Melosh, Nicholas A.
2018-02-01
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. However, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistry through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain. We engineer molecules with mechanically heterogeneous components—a compressible (‘soft’) mechanophore and incompressible (‘hard’) ligands. In these ‘molecular anvils’, isotropic stress leads to relative motions of the rigid ligands, anisotropically deforming the compressible mechanophore and activating bonds. Conversely, rigid ligands in steric contact impede relative motion, blocking reactivity. We combine experiments and computations to demonstrate hydrostatic-pressure-driven redox reactions in metal-organic chalcogenides that incorporate molecular elements that have heterogeneous compressibility, in which bending of bond angles or shearing of adjacent chains activates the metal-chalcogen bonds, leading to the formation of the elemental metal. These results reveal an unexplored reaction mechanism and suggest possible strategies for high-specificity mechanosynthesis.
Stress-induced birefringence in the isotropic phases of lyotropic mixtures
NASA Astrophysics Data System (ADS)
Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.
2018-02-01
In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.
Isotropic matrix elements of the collision integral for the Boltzmann equation
NASA Astrophysics Data System (ADS)
Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.
2017-09-01
We have proposed an algorithm for constructing matrix elements of the collision integral for the nonlinear Boltzmann equation isotropic in velocities. These matrix elements have been used to start the recurrent procedure for calculating matrix elements of the velocity-nonisotropic collision integral described in our previous publication. In addition, isotropic matrix elements are of independent interest for calculating isotropic relaxation in a number of physical kinetics problems. It has been shown that the coefficients of expansion of isotropic matrix elements in Ω integrals are connected by the recurrent relations that make it possible to construct the procedure of their sequential determination.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Dynamic Smagorinsky model on anisotropic grids
NASA Technical Reports Server (NTRS)
Scotti, A.; Meneveau, C.; Fatica, M.
1996-01-01
Large Eddy Simulation (LES) of complex-geometry flows often involves highly anisotropic meshes. To examine the performance of the dynamic Smagorinsky model in a controlled fashion on such grids, simulations of forced isotropic turbulence are performed using highly anisotropic discretizations. The resulting model coefficients are compared with a theoretical prediction (Scotti et al., 1993). Two extreme cases are considered: pancake-like grids, for which two directions are poorly resolved compared to the third, and pencil-like grids, where one direction is poorly resolved when compared to the other two. For pancake-like grids the dynamic model yields the results expected from the theory (increasing coefficient with increasing aspect ratio), whereas for pencil-like grids the dynamic model does not agree with the theoretical prediction (with detrimental effects only on smallest resolved scales). A possible explanation of the departure is attempted, and it is shown that the problem may be circumvented by using an isotropic test-filter at larger scales. Overall, all models considered give good large-scale results, confirming the general robustness of the dynamic and eddy-viscosity models. But in all cases, the predictions were poor for scales smaller than that of the worst resolved direction.
Rogge, Matthew D; Leckey, Cara A C
2013-09-01
Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspections are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure and considerable setup time. Alternatively, a non-contact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure generated by permanently bonded transducers. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Based on simulation results, guidelines for application of the technique are developed. Finally, experimental wavefield data is obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage. The recorded wavefields are analyzed and wavenumber is measured to an accuracy of up to 8.5% in the region of shallow delaminations. These results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates. The technique can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time. Published by Elsevier B.V.
Composite skid landing gear design investigation
NASA Astrophysics Data System (ADS)
Shrotri, Kshitij
A Composite Skid Landing Gear Design investigation has been conducted. Limit Drop Test as per Federal Aviation Regulations (FAR) Part 27.725 and Crash test as per MIL STD 1290A (AV) were simulated using ABAQUS to evaluate performance of multiple composite fiber-matrix systems. Load factor developed during multiple landing scenarios and energy dissipated during crash were computed. Strength and stiffness based constraints were imposed. Tsai-Wu and LaRC04 physics based failure criteria were used for limit loads. Hashin's damage initiation criteria with Davila-Camanho's energy based damage evolution damage evolution law were used for crash. Initial results indicate that all single-composite skid landing gear may no be feasible due to strength concerns in the cross member bends. Hybridization of multiple composites with elasto-plastic aluminum 7075 showed proof of strength under limit loads. Laminate tailoring for load factor optimization under limit loads was done by parameterization of a single variable fiber orientation angle for multiple laminate families. Tsai-Wu failure criterion was used to impose strength contraints. A quasi-isotropic N = 4 (pi/4) 48 ply IM7/8552 laminate was shown to be the optimal solution with a load failure will be initiated as matrix cracking under compression and fiber kinking under in-plane shear and longitudinal compression. All failures under limit loads being reported in the metal-composite hybrid joint region, the joint was simulated by adhesive bonding and filament winding, separately. Simply adhesive bonding the metal and composite regions does not meet strength requirements. A filament wound metal-composite joint shows proof of strength. Filament wound bolted metal-composite joint shows proof of strength. Filament wound composite bolted to metal cross member radii is the final joining methodology. Finally, crash analysis was conducted as per requirements from MIL STD 1290A (AV). Crash at 42 ft/sec with 1 design gross weight (DGW) lift was simulated using ABAQUS. Plastic and friction energy dissipation in the reference aluminum skid landing gear was compared with plastic, friction and damage energy dissipation in the hybrid composite design. Damage in composites was modeled as progressive damage with Hashin's damage initiation criteria and an energy based damage evolution law. The latter meets requirements of aircraft kinetic energy dissipation up to 20 ft/sec (67.6 kJ) as per MIL STD 1290A (AV). Weight saving possibility of up to 49% over conventional metal skid landing gear is reported. The final design recommended includes Ke49/PEEK skids, 48 ply IM7/8552 (or IM7/PEEK) cross member tapered beams and Al 7075 cross member bend radii, the latter bolted to the filament wound composite-metal tapered beam. Concerns in composite skid landing gear designs, testing requirements and future opportunities are addressed.
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states
NASA Astrophysics Data System (ADS)
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva
2016-08-01
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. Electronic supplementary information (ESI) available: Figures of LCST, polymerization kinetics, melt-processed films, DLS, TGA, precipitated fiber and powder, TEM (of isotropic GO), birefringence, OP-data, DMTA-data and DSC. See DOI: 10.1039/c6nr01502f
Gibson, Eli; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Pautler, Stephen; Chin, Joseph L.; Crukley, Cathie; Bauman, Glenn S.; Fenster, Aaron; Ward, Aaron D.
2013-01-01
Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1) How does prostate tissue deform during histology processing? (2) What spatial misalignment of the tissue sections is induced by microtome cutting? (3) How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE) after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]). The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals), while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9° (angle) and 0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and should be flexible enough to model isotropic scaling. PMID:24392245
Spherocylindrical microplane constitutive model for shale and other anisotropic rocks
NASA Astrophysics Data System (ADS)
Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.
2017-06-01
Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially. Finally, comparisons with extensive test data for shale validate the model.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communication services, the equivalent isotropically radiated power transmitted in any direction towards the... coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power... restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... communication services, the equivalent isotropically radiated power transmitted in any direction towards the... coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power... restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... communication services, the equivalent isotropically radiated power transmitted in any direction towards the... coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power... restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the...
Fisher equation for anisotropic diffusion: simulating South American human dispersals.
Martino, Luis A; Osella, Ana; Dorso, Claudio; Lanata, José L
2007-09-01
The Fisher equation is commonly used to model population dynamics. This equation allows describing reaction-diffusion processes, considering both population growth and diffusion mechanism. Some results have been reported about modeling human dispersion, always assuming isotropic diffusion. Nevertheless, it is well-known that dispersion depends not only on the characteristics of the habitats where individuals are but also on the properties of the places where they intend to move, then isotropic approaches cannot adequately reproduce the evolution of the wave of advance of populations. Solutions to a Fisher equation are difficult to obtain for complex geometries, moreover, when anisotropy has to be considered and so few studies have been conducted in this direction. With this scope in mind, we present in this paper a solution for a Fisher equation, introducing anisotropy. We apply a finite difference method using the Crank-Nicholson approximation and analyze the results as a function of the characteristic parameters. Finally, this methodology is applied to model South American human dispersal.
Verzhbitskiy, I A; Kouzov, A P; Rachet, F; Chrysos, M
2011-06-14
A line-mixing shape analysis of the isotropic remnant Raman spectrum of the 2ν(3) overtone of CO(2) is reported at room temperature and for densities, ρ, rising up to tens of amagats. The analysis, experimental and theoretical, employs tools of non-resonant light scattering spectroscopy and uses the extended strong collision model (ESCM) to simulate the strong line mixing effects and to evidence motional narrowing. Excellent agreement at any pressure is observed between the calculated spectra and our experiment, which, along with the easy numerical implementation of the ESCM, makes this model stand out clearly above other semiempirical models for band shape calculations. The hitherto undefined, explicit ρ-dependence of the vibrational relaxation rate is given. Our study intends to improve the understanding of pressure-induced phenomena in a gas that is still in the forefront of the news.
Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents
NASA Astrophysics Data System (ADS)
Wilson, Mark R.; Ilnytskyi, Jaroslav M.; Stimson, Lorna M.
2003-08-01
Molecular dynamics simulations have been carried out to study the structure of a model liquid crystalline dendrimer (LCDr) in solution. A simplified model is used for a third generation carbosilane LCDr in which united atom Lennard-Jones sites are used to represent all heavy atoms in the dendrimer with the exception of the terminal mesogenic groups, which are represented by Gay-Berne potentials. The model dendrimer is immersed in a mesogenic solvent composed of Gay-Berne particles, which can form nematic and smectic-A phases in addition to the isotropic liquid. Markedly different behavior results from simulations in the different phases, with the dendrimer changing shape from spherical to rodlike in moving from isotropic to nematic solvents. In the smectic-A phase the terminal mesogenic units are able to occupy five separate smectic layers. The change in structure of the dendrimer is mediated by conformational changes in the flexible chains, which link the terminal mesogenic moieties to the dendrimer core.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.
2017-10-01
Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.
NASA Astrophysics Data System (ADS)
Pawlik, Marzena; Lu, Yiling
2018-05-01
Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
Chumakov, Sergei G
2008-09-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
Wheatley, Benjamin B.; Fischenich, Kristine M.; Button, Keith D.; Haut, Roger C.; Haut Donahue, Tammy L.
2015-01-01
Inverse finite element (FE) analysis is an effective method to predict material behavior, evaluate mechanical properties, and study differences in biological tissue function. The meniscus plays a key role in load distribution within the knee joint and meniscal degradation is commonly associated with the onset of osteoarthritis. In the current study, a novel transversely isotropic hyper-poro-viscoelastic constitutive formulation was incorporated in a FE model to evaluate changes in meniscal material properties following tibiofemoral joint impact. A non-linear optimization scheme was used to fit the model output to indentation relaxation experimental data. This study is the first to investigate rate of relaxation in healthy versus impacted menisci. Stiffness was found to be decreased (p=0.003), while the rate of tissue relaxation increased (p=0.010) at twelve weeks post impact. Total amount of relaxation, however, did not change in the impacted tissue (p=0.513). PMID:25776872
Compression response of tri-axially braided textile composites
NASA Astrophysics Data System (ADS)
Song, Shunjun
2007-12-01
This thesis is concerned with characterizing the compression stiffness and compression strength of 2D tri-axially braided textile composites (2DTBC). Two types of 2DTBC are considered differing only on the resin type, while the textile fiber architecture is kept the same with bias tows at 45 degrees to the axial tows. Experimental, analytical and computational methods are described based on the results generated in this study. Since these composites are manufactured using resin transfer molding, the intended and as manufactured composite samples differ in their microstructure due to consolidation and thermal history effects in the manufacturing cycle. These imperfections are measured and the effect of these imperfections on the compression stiffness and strength are characterized. Since the matrix is a polymer material, the nonuniform thermal history undergone by the polymer at manufacturing (within the composite and in the presence of fibers) renders its properties to be non-homogenous. The effects of these non-homogeneities are captured through the definition of an equivalent in-situ matrix material. A method to characterize the mechanical properties of the in-situ matrix is also described. Fiber tow buckling, fiber tow kinking and matrix microcracking are all observed in the experiments. These failure mechanisms are captured through a computational model that uses the finite element (FE) technique to discretize the structure. The FE equations are solved using the commercial software ABAQUS version 6.5. The fiber tows are modeled as transversely isotropic elastic-plastic solids and the matrix is modeled as an isotropic elastic-plastic solid with and without microcracking damage. Because the 2DTBC is periodic, the question of how many repeat units are necessary to model the compression stiffness and strength are examined. Based on the computational results, the correct representative unit cell for this class of materials is identified. The computational models and results presented in the thesis provide a means to assess the compressive strength of 2DTBC and its dependence on various microstructural parameters. The essential features (for example, fiber kinking) of 2DTBC under compressive loading are captured accurately and the results are validated by the compression experiments. Due to the requirement of large computational resources for the unit cell studies, simplified models that use less computer resources but sacrifice some accuracy are presented for use in engineering design. A combination of the simplified models is shown to provide a good prediction of the salient features (peak strength and plateau strength) of these materials under compression loading. The incorporation of matrix strain rate effects, a study of the effect of the bias tow angle and the inclusion of viscoelastic/viscoplastic behavior for the study of fatigue are suggested as extensions to this work.
H.M.'s contributions to neuroscience: a review and autopsy studies.
Augustinack, Jean C; van der Kouwe, André J W; Salat, David H; Benner, Thomas; Stevens, Allison A; Annese, Jacopo; Fischl, Bruce; Frosch, Matthew P; Corkin, Suzanne
2014-11-01
H.M., Henry Molaison, was one of the world's most famous amnesic patients. His amnesia was caused by an experimental brain operation, bilateral medial temporal lobe resection, carried out in 1953 to relieve intractable epilepsy. He died on December 2, 2008, and that night we conducted a wide variety of in situ MRI scans in a 3 T scanner at the Massachusetts General Hospital (Mass General) Athinoula A. Martinos Center for Biomedical Imaging. For the in situ experiments, we acquired a full set of standard clinical scans, 1 mm isotropic anatomical scans, and multiple averages of 440 μm isotropic anatomical scans. The next morning, H.M.'s body was transported to the Mass General Morgue for autopsy. The photographs taken at that time provided the first documentation of H.M.'s lesions in his physical brain. After tissue fixation, we obtained ex vivo structural data at ultra-high resolution using 3 T and 7 T magnets. For the ex vivo acquisitions, the highest resolution images were 210 μm isotropic. Based on the MRI data, the anatomical areas removed during H.M.'s experimental operation were the medial temporopolar cortex, piriform cortex, virtually all of the entorhinal cortex, most of the perirhinal cortex and subiculum, the amygdala (except parts of the dorsal-most nuclei-central and medial), anterior half of the hippocampus, and the dentate gyrus (posterior head and body). The posterior parahippocampal gyrus and medial temporal stem were partially damaged. Spared medial temporal lobe tissue included the dorsal-most amygdala, the hippocampal-amygdalo-transition-area, ∼2 cm of the tail of the hippocampus, a small part of perirhinal cortex, a small portion of medial hippocampal tissue, and ∼2 cm of posterior parahippocampal gyrus. H.M.'s impact on the field of memory has been remarkable, and his contributions to neuroscience continue with a unique dataset that includes in vivo, in situ, and ex vivo high-resolution MRI. Copyright © 2014 Wiley Periodicals, Inc.
Local Guided Wavefield Analysis for Characterization of Delaminations in Composites
NASA Technical Reports Server (NTRS)
Rogge, Matthew D.; Campbell Leckey, Cara A.
2012-01-01
Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation
NASA Astrophysics Data System (ADS)
Morse, Llewellyn; Sharif Khodaei, Zahra; Aliabadi, M. H.
2018-01-01
In this work, a reliability based impact detection strategy for a sensorized composite structure is proposed. Impacts are localized using Artificial Neural Networks (ANNs) with recorded guided waves due to impacts used as inputs. To account for variability in the recorded data under operational conditions, Bayesian updating and Kalman filter techniques are applied to improve the reliability of the detection algorithm. The possibility of having one or more faulty sensors is considered, and a decision fusion algorithm based on sub-networks of sensors is proposed to improve the application of the methodology to real structures. A strategy for reliably categorizing impacts into high energy impacts, which are probable to cause damage in the structure (true impacts), and low energy non-damaging impacts (false impacts), has also been proposed to reduce the false alarm rate. The proposed strategy involves employing classification ANNs with different features extracted from captured signals used as inputs. The proposed methodologies are validated by experimental results on a quasi-isotropic composite coupon impacted with a range of impact energies.
Ultraviolet Laser-induced ignition of RDX single crystal
Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao
2016-01-01
The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854
Regularization method for large eddy simulations of shock-turbulence interactions
NASA Astrophysics Data System (ADS)
Braun, N. O.; Pullin, D. I.; Meiron, D. I.
2018-05-01
The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
Anssari-Benam, Afshin; Tseng, Yuan-Tsan; Bucchi, Andrea
2018-05-26
This paper presents a continuum-based transverse isotropic model incorporating rate-dependency and fibre dispersion, applied to the planar biaxial deformation of aortic valve (AV) specimens under various stretch rates. The rate dependency of the mechanical behaviour of the AV tissue under biaxial deformation, the (pseudo-) invariants of the right Cauchy-Green deformation-rate tensor Ċ associated with fibre dispersion, and a new fibre orientation density function motivated by fibre kinematics are presented for the first time. It is shown that the model captures the experimentally observed deformation of the specimens, and characterises a shear-thinning behaviour associated with the dissipative (viscous) kinematics of the matrix and the fibres. The application of the model for predicting the deformation behaviour of the AV under physiological rates is illustrated and an example of the predicted σ-λ curves is presented. While the development of the model was principally motivated by the AV biomechanics requisites, the comprehensive theoretical approach employed in the study renders the model suitable for application to other fibrous soft tissues that possess similar rate-dependent and structural attributes. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Growth of matter perturbation in quintessence cosmology
NASA Astrophysics Data System (ADS)
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
Anisotropic Velocities of Gas Hydrate-Bearing Sediments in Fractured Reservoirs
Lee, Myung W.
2009-01-01
During the Indian National Gas Hydrate Program Expedition 01 (NGHP-01), one of the richest marine gas hydrate accumulations was discovered at drill site NGHP-01-10 in the Krishna-Godavari Basin, offshore of southeast India. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Gas hydrate saturations estimated from P- and S-wave velocities, assuming that gas hydrate-bearing sediments (GHBS) are isotropic, are much higher than those estimated from the pressure cores. To reconcile this difference, an anisotropic GHBS model is developed and applied to estimate gas hydrate saturations. Gas hydrate saturations estimated from the P-wave velocities, assuming high-angle fractures, agree well with saturations estimated from the cores. An anisotropic GHBS model assuming two-component laminated media - one component is fracture filled with 100-percent gas hydrate, and the other component is the isotropic water-saturated sediment - adequately predicts anisotropic velocities at the research site.
A solution to the cosmic ray anisotropy problem
NASA Astrophysics Data System (ADS)
Mertsch, P.; Funk, S.
2015-10-01
Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.
Pickup protons and water ions at Comet Halley - Comparisons with Giotto observations
NASA Astrophysics Data System (ADS)
Ye, G.; Cravens, T. E.; Gombosi, T. I.
1993-02-01
The cometary ion pickup process along the sun-comet line at Comet Halley is investigated using a quasi-linear diffusion model including both pitch angle and energy diffusion, adiabatic compression, and convective motion with the solar wind flow. The model results are compared with energetic ion distributions observed by instruments on board the Giotto spacecraft. The observed power spectrum index of magnetic turbulence (gamma) is 2-2.5. The present simulation shows that when gamma was 2, the calculated proton distributions were much more isotropic than the observed ones. The numerical solutions of the quasi-linear diffusion equations show that the isotropization of the pickup ion distribution, particularly at the pickup velocity, is not complete even close to the bow shock. Given the observed turbulence level, quasi-linear theory yields pickup ion energy distributions that agree with the observed ones quite well and easily produces energetic ions with energies up to hundreds of keV.
Interpretation of the Hubble diagram in a nonhomogeneous universe
NASA Astrophysics Data System (ADS)
Fleury, Pierre; Dupuy, Hélène; Uzan, Jean-Philippe
2013-06-01
In the standard cosmological framework, the Hubble diagram is interpreted by assuming that the light emitted by standard candles propagates in a spatially homogeneous and isotropic spacetime. However, the light from “point sources”—such as supernovae—probes the Universe on scales where the homogeneity principle is no longer valid. Inhomogeneities are expected to induce a bias and a dispersion of the Hubble diagram. This is investigated by considering a Swiss-cheese cosmological model, which (1) is an exact solution of the Einstein field equations, (2) is strongly inhomogeneous on small scales, but (3) has the same expansion history as a strictly homogeneous and isotropic universe. By simulating Hubble diagrams in such models, we quantify the influence of inhomogeneities on the measurement of the cosmological parameters. Though significant in general, the effects reduce drastically for a universe dominated by the cosmological constant.
ESR imaging investigations of two-phase systems.
Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert
2007-06-01
The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Linden, Tim, E-mail: kefang@umd.edu, E-mail: linden.70@osu.edu
Radio observations at multiple frequencies have detected a significant isotropic emission component between 22 MHz and 10 GHz, commonly termed the ARCADE-2 Excess. The origin of this radio emission is unknown, as the intensity, spectrum and isotropy of the signal are difficult to model with either traditional astrophysical mechanisms or novel physics such as dark matter annihilation. We posit a new model capable of explaining the key components of the excess radio emission. Specifically, we show that the re-acceleration of non-thermal electrons via turbulence in merging galaxy clusters are capable of explaining the intensity, spectrum, and isotropy of the ARCADE-2more » data. We examine the parameter spaces of cluster re-acceleration, magnetic field, and merger rate, finding that the radio excess can be reproduced assuming reasonable assumptions for each. Finally, we point out that future observations will definitively confirm or rule-out the contribution of cluster mergers to the isotropic radio background.« less
Study of isotropic compact stars in f(R,T,R_{μν}T^{μν}) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Waseem, Arfa
2016-06-01
In this paper, we investigate physical behavior and stability of compact stars filled with isotropic fluid in f(R,T,R_{μν}T^{μν}) gravity. We consider the static spherically symmetric spacetime and choose the simplest model of this gravity, i.e., R+α R_{μν}T^{μν} . To examine the basic features of compact stars like Her X-1, SAX J 1808.4-3658 and 4U 1820-30, we apply analytic solutions of Krori and Barua metric using the mass-radius relation. We study the behavior of effective energy density, pressure, equation of state parameter and energy conditions in the interior of compact stars. We also explore the stability criteria of compact stars via the speed of sound. It is concluded that all the energy conditions are satisfied and the compact stars are found to be stable at the boundary for this particular model.
Theoretical and observational analysis of spacecraft fields
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Schatten, K. H.
1972-01-01
In order to investigate the nondipolar contributions of spacecraft magnetic fields a simple magnetic field model is proposed. This model consists of randomly oriented dipoles in a given volume. Two sets of formulas are presented which give the rms-multipole field components, for isotropic orientations of the dipoles at given positions and for isotropic orientations of the dipoles distributed uniformly throughout a cube or sphere. The statistical results for an 8 cu m cube together with individual examples computed numerically show the following features: Beyond about 2 to 3 m distance from the center of the cube, the field is dominated by an equivalent dipole. The magnitude of the magnetic moment of the dipolar part is approximated by an expression for equal magnetic moments or generally by the Pythagorean sum of the dipole moments. The radial component is generally greater than either of the transverse components for the dipole portion as well as for the nondipolar field contributions.
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Hsu, Jong-Ping
2018-01-01
Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant `antimatter blackbody,' whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
Coherent pulses in the diffusive transport of charged particles`
NASA Technical Reports Server (NTRS)
Kota, J.
1994-01-01
We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.
Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies
NASA Astrophysics Data System (ADS)
Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Huerta, Antonio
2016-10-01
Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid - TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.
Etch Profile Simulation Using Level Set Methods
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.
Isotropic and anisotropic strain-induced self-assembled oxide nanostructures
NASA Astrophysics Data System (ADS)
Gibert, Marta; Abellan, Patricia; Benedetti, Alessandro; Sandiumenge, Felip; Puig, Teresa; Obradors, Xavier
2009-03-01
The apparition of new functionalities based on size- and shape-dependent properties requires strategies for the formation of well-defined structures at nanometric scale. We present a bottom-up low-cost chemically-derived methodology based on the control of strain and surface energies anisotropies in CeO2/LAO system to tune the lateral aspect ratio, orientation and kinetics of interfacial oxide nanostructures. Self-organized uniform square-based nanopyramids form under isotropic strain [1]. In contrast, highly elongated nanostructures (long/short axis ˜20) grow induced by biaxial anisotropic strain and anisotropic surface energies. Island's distinct crystallographic orientation is the clue of their differentiated shape, and also influences their distinct evolution. The kinetically-limited coarsening of isotropic nanodots contrasts with the ultrafast kinetics of anisotropic islands. Experimental analyses are based on AFM, TEM, XRD and RHEED, and simulations based on a thermodynamic model enables us to confirm the equilibrium shape of each sort of island's shape in relation to its misfit strain and surface characteristics. [1] Gibert, M. et al., Adv.Materials 19 (22), 3937 (2007).
Nanocomposite capsules with directional, pulsed nanoparticle release.
Udoh, Christiana E; Cabral, João T; Garbin, Valeria
2017-12-01
The precise spatiotemporal delivery of nanoparticles from polymeric capsules is required for applications ranging from medicine to materials science. These capsules derive key performance aspects from their overall shape and dimensions, porosity, and internal microstructure. To this effect, microfluidics provide an exceptional platform for emulsification and subsequent capsule formation. However, facile and robust approaches for nanocomposite capsule fabrication, exhibiting triggered nanoparticle release, remain elusive because of the complex coupling of polymer-nanoparticle phase behavior, diffusion, phase inversion, and directional solidification. We investigate a model system of polyelectrolyte sodium poly(styrene sulfonate) and 22-nm colloidal silica and demonstrate a robust capsule morphology diagram, achieving a range of internal morphologies, including nucleated and bicontinuous microstructures, as well as isotropic and non-isotropic external shapes. Upon dissolution in water, we find that capsules formed with either neat polymers or neat nanoparticles dissolve rapidly and isotropically, whereas bicontinuous, hierarchical, composite capsules dissolve via directional pulses of nanoparticle clusters without disrupting the scaffold, with time scales tunable from seconds to hours. The versatility, facile assembly, and response of these nanocomposite capsules thus show great promise in precision delivery.
Polarization of photons scattered by electrons in any spectral distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo, E-mail: jiangyg@ihep.ac.cn
On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incidentmore » bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.« less
Characterizing Relativistic Electrons Flux Enhancement Events using sensors onboard SAMPEX and POLAR
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.
2004-12-01
Relativistic electron fluxes in the Earth's outer Van Allen belt are highly variable with flux enhancements of several orders of magnitude occurring on time scales of a few days. Radiation belt electrons often are energized to relativistic energies when the magnetosphere is subjected to high solar wind speed and the southward turning of the interplanetary magnetic field. Characterization of electron acceleration properties such as electron spectra and flux isotropization are important in understanding acceleration models. We use sensors onboard SAMPEX and POLAR to measure and survey systematically these properties. SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and POLAR covers the time period from mid 1996 to the present. We use the pulse height analyzed data from the PET detector onboard SAMPEX to measure electron spectra. Fluxes measured by the HIST detector onboard POLAR together with the PET measurements are used to characterize isotropization times. This paper presents electron spectra and isotropization time scales for a few representative events. We will eventually extend these measurements and survey the entire solar cycle 23.
Gravity-induced stresses in stratified rock masses
Amadei, B.; Swolfs, H.S.; Savage, W.Z.
1988-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.
Study on the radial vibration and acoustic field of an isotropic circular ring radiator.
Lin, Shuyu; Xu, Long
2012-01-01
Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.
Producing graphite with desired properties
NASA Technical Reports Server (NTRS)
Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.
1971-01-01
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.
Collapse of Composite Cylinders in Bending
NASA Technical Reports Server (NTRS)
Fuchs, Hannes P.; Starnes, James H., Jr.; Hyer, Michael W.
1998-01-01
This paper summarizes the results of a numerical and experimental study of the collapse behavior of small-scale graphite-epoxy cylindrical shells subjected to overall bending loads, and in one case, an initial internal pressure. Shells with quasi-isotropic and orthotropic inplane stiffness properties are studied. Numerical results from geometrically nonlinear finite element analyses and results from experiments using a specially-built apparatus indicate that extensive stable postbuckling responses occur. Orthotropy influences the buckling values and the extent to which the bending moment decreases after buckling. Material damage is observed to initiate in the vicinity of the nodal lines of the postbuckled deflection patterns. Numerical results indicate that the magnitudes of the shear stress resultants are greatest in these nodal regions. Failure of the internally pressurized cylinder is catastrophic.
Field Line Random Walk in Isotropic Magnetic Turbulence up to Infinite Kubo Number
NASA Astrophysics Data System (ADS)
Sonsrettee, W.; Wongpan, P.; Ruffolo, D. J.; Matthaeus, W. H.; Chuychai, P.; Rowlands, G.
2013-12-01
In astrophysical plasmas, the magnetic field line random walk (FLRW) plays a key role in the transport of energetic particles. In the present, we consider isotropic magnetic turbulence, which is a reasonable model for interstellar space. Theoretical conceptions of the FLRW have been strongly influenced by studies of the limit of weak fluctuations (or a strong mean field) (e.g, Isichenko 1991a, b). In this case, the behavior of FLRW can be characterized by the Kubo number R = (b/B0)(l_∥ /l_ \\bot ) , where l∥ and l_ \\bot are turbulence coherence scales parallel and perpendicular to the mean field, respectively, and b is the root mean squared fluctuation field. In the 2D limit (R ≫ 1), there has been an apparent conflict between concepts of Bohm diffusion, which is based on the Corrsin's independence hypothesis, and percolative diffusion. Here we have used three non-perturbative analytic techniques based on Corrsin's independence hypothesis for B0 = 0 (R = ∞ ): diffusive decorrelation (DD), random ballistic decorrelation (RBD) and a general ordinary differential equation (ODE), and compared them with direct computer simulations. All the analytical models and computer simulations agree that isotropic turbulence for R = ∞ has a field line diffusion coefficient that is consistent with Bohm diffusion. Partially supported by the Thailand Research Fund, NASA, and NSF.
NASA Astrophysics Data System (ADS)
Shi, Ming F.; Zhang, Li; Zhu, Xinhai
2016-08-01
The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.
New concepts for Reynolds stress transport equation modeling of inhomogeneous flows
NASA Technical Reports Server (NTRS)
Perot, J. Blair; Moin, Parviz
1993-01-01
The ability to model turbulence near solid walls and other types of boundaries is important in predicting complex engineering flows. Most turbulence modeling has concentrated either on flows which are nearly homogeneous or isotropic, or on turbulent boundary layers. Boundary layer models usually rely very heavily on the presence of mean shear and the production of turbulence due to that mean shear. Most other turbulence models are based on the assumption of quasi-homogeneity. However, there are many situations of engineering interest which do not involve large shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent boundary layers are the prototypical example of such flows, with practical situations being separation and reattachment, bluff body flow, high free-stream turbulence, and free surface flows. Although these situations are not as common as the variants of the flat plate turbulent boundary layer, they tend to be critical factors in complex engineering situations. The models developed are intended to extend classical quasi-homogeneous models into regions of large inhomogeneity. These models do not rely on the presence of mean shear or production, but are still applicable when those additional effects are included. Although the focus is on shear-free boundary layers as tests for these models, results for standard shearing boundary layers are also shown.
Duality linking standard and tachyon scalar field cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avelino, P. P.; Bazeia, D.; Losano, L.
2010-09-15
In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalarmore » field models can be calculated explicitly.« less
Air broadening of the hydrogen halides. I - N2-broadening and shifting in the HCl fundamental
NASA Technical Reports Server (NTRS)
Looney, J. P.; Herman, R. M.
1987-01-01
The resolvent operator formalism of Kolb, Griem (1964), and Baranger (1962) is used to determine the widths and shifts of the fundamental band vibration-rotation lines of HCl under N2 pressure. Time-development operator matrix elements are evaluated accounting for all bilinear and second order anisotropic terms, in addition to isotropic effects to all orders. The method employs the use of a parabolic trajectory model and explicit velocity averaging. The major contributions to the linewidths are found to arise from dipole-quadrupole, quadrupole-quadrupole, and vibrationally dependent isotropic dispersion forces. Good overall agreement is found between calculated and measured widths and linewidths over a 163-295 K temperature range.
Reverse time migration in tilted transversely isotropic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael
2004-07-01
This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength inmore » the vertical direction and 1.5 wavelength in the lateral direction.« less
Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael
2005-03-21
Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less
A spatially homogeneous and isotropic Einstein-Dirac cosmology
NASA Astrophysics Data System (ADS)
Finster, Felix; Hainzl, Christian
2011-04-01
We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.
Beta particle transport and its impact on betavoltaic battery modeling.
Alam, Tariq R; Pierson, Mark A; Prelas, Mark A
2017-12-01
Simulation of beta particle transport from a Ni-63 radioisotope in silicon using the Monte Carlo N-Particle (MCNP) transport code for monoenergetic beta particle average energy, monoenergetic beta particle maximum energy, and the more precise full beta energy spectrum of Ni-63 were demonstrated. The beta particle penetration depth and the shape of the energy deposition varied significantly for different transport approaches. A penetration depth of 2.25±0.25µm with a peak in energy deposition was found when using a monoenergetic beta particle average energy and a depth of 14.25±0.25µm with an exponential decrease in energy deposition was found when using a full beta energy spectrum and a 0° angular variation. For a 90° angular variation, i.e. an isotropic source, the penetration depth was decreased to 12.75±0.25µm and the backscattering coefficient increased to 0.46 with 30.55% of the beta energy escaping when using a full beta energy spectrum. Similarly, for a 0° angular variation and an isotropic source, an overprediction in the short circuit current and open circuit voltage solved by a simplified drift-diffusion model was observed when compared to experimental results from the literature. A good agreement in the results was found when self-absorption and isotope dilution in the source was considered. The self-absorption effect was 15% for a Ni-63 source with an activity of 0.25mCi. This effect increased to about 28.5% for a higher source activity of 1mCi due to an increase in thickness of the Ni-63 source. Source thicknesses of approximately 0.1µm and 0.4µm for these Ni-63 activities predicted about 15% and 28.5% self-absorption in the source, respectively, using MCNP simulations with an isotropic source. The modeling assumptions with different beta particle energy inputs, junction depth of the semiconductor, backscattering of beta particles, an isotropic beta source, and self-absorption of the radioisotope have significant impacts in betavoltaic battery design. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
MacPhail, M. D.; Stump, B. W.; Zhou, R.
2017-12-01
The Source Phenomenology Experiment (SPE - Arizona) was a series of nine, contained and partially contained chemical explosions within the porphyry granite at the Morenci Copper mine in Arizona. Its purpose was to detonate, record and analyze seismic waveforms from these single-fired explosions. Ground motion data from the SPE is analyzed in this study to assess the uniqueness of the time domain moment tensor source representation and its ability to quantify containment and yield scaling. Green's functions were computed for each of the explosions based on a 1D velocity model developed for the SPE. The Green's functions for the sixteen, near-source stations focused on observations from 37 to 680 m. This study analyzes the three deepest, fully contained explosions with a depth of burial of 30 m and yields of 0.77e-3, 3.08e-3 and 6.17e-3 kt. Inversions are conducted within the frequency domain and moment tensors are decomposed into deviatoric and isotropic components to evaluate the effects of containment and yield on the resulting source representation. Isotropic moments are compared to those for other contained explosions as reported by Denny and Johnson, 1991, and are in good agreement with their scaling results. The explosions in this study have isotropic moments of 1.2e12, 3.1e12 and 6.1e13 n*m. Isotropic and Mzz moment tensor spectra are compared to Mueller-Murphy, Denny-Johnson and revised Heard-Ackerman (HA) models and suggest that the larger explosions fit the HA model better. Secondary source effects resulting from free surface interactions including the effects of spallation contribute to the resulting moment tensors which include a CLVD component. Hudson diagrams, using frequency domain moment tensor data, are computed as a tool to assess how these containment scenarios affect the source representation. Our analysis suggests that, within our band of interest (2-20 Hz), as the frequency increases, the source representation becomes more explosion like, peaking at around 20 Hz. These results guide additional analysis of the observational data and the practical resolution of physical phenomenology accompanying underground explosions.
NASA Technical Reports Server (NTRS)
Mahfuz, Hassan; Das, Partha S.; Xue, Dongwei; Krishnagopalan, Jaya; Jeelani, Shaik
1993-01-01
Response of quasi-isotropic laminates of SiC coated Carbon/Carbon (C/C) composites have been investigated under flexural loading at various temperatures. Variation of load-deflection behavior with temperatures are studied. Increase in flexural strength and stiffness are observed with the rise in temperature. Extensive analyses through Optical Microscope (OM) and Non-Destructive Evaluation (NDE) have been performed to understand the failure mechanisms. Damage zone is found only within the neighborhood of the loading plane. Isoparametric layered shell elements developed on the basis of the first order shear deformation theory have been used to model the thin laminates of C/C under flexural loading. Large deformation behavior has been considered in the finite element analysis to account for the non-linearities encountered during the actual test. Data generated using finite element analysis are presented to corroborate the experimental findings, and a comparison in respect of displacement and stress-strain behavior are given to check the accuracy of the finite element analysis. Reasonable correlation between the experimental and finite element results have been established.
Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion
NASA Astrophysics Data System (ADS)
Crowl Erickson, Lindsay; Fogelson, Aaron
2009-11-01
Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.
Rifle bullet penetration into ballistic gelatin.
Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C
2017-03-01
The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul
2016-04-01
Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of transducer shots. AE of the rock during the whole experiment recorded by the surrounding transducers were investigated by location methods developed for anisotropic heterogeneous medium where, the M-shape fracture pattern was observed. AE events occurred in the vicinity of the dilation pseudo-boundaries where, a relatively large velocity gradient was formed and along parallel fractures in the σ1/σ2 plane. This research is contributing to enhanced AE interpretation of fracture growth processes in the rock under laboratory true-triaxial stress conditions.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
Thermomechanical modelling of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.
2018-03-01
A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.
Isotropic vs. anisotropic components of BAO data: a tool for model selection
NASA Astrophysics Data System (ADS)
Haridasu, Balakrishna S.; Luković, Vladimir V.; Vittorio, Nicola
2018-05-01
We conduct a selective analysis of the isotropic (DV) and anisotropic (AP) components of the most recent Baryon Acoustic Oscillations (BAO) data. We find that these components provide significantly different constraints and could provide strong diagnostics for model selection, also in view of more precise data to arrive. For instance, in the ΛCDM model we find a mild tension of ~ 2 σ for the Ωm estimates obtained using DV and AP separately. Considering both Ωk and w as free parameters, we find that the concordance model is in tension with the best-fit values provided by the BAO data alone at 2.2σ. We complemented the BAO data with the Supernovae Ia (SNIa) and Observational Hubble datasets to perform a joint analysis on the ΛCDM model and its standard extensions. By assuming ΛCDM scenario, we find that these data provide H0 = 69.4 ± 1.7 km/s Mpc‑1 as the best-fit value for the present expansion rate. In the kΛCDM scenario we find that the evidence for acceleration using the BAO data alone is more than ~ 5.8σ, which increases to 8.4 σ in our joint analysis.
Scholey, J J; Wilcox, P D; Wisnom, M R; Friswell, M I
2009-06-01
A model for quantifying the performance of acoustic emission (AE) systems on plate-like structures is presented. Employing a linear transfer function approach the model is applicable to both isotropic and anisotropic materials. The model requires several inputs including source waveforms, phase velocity and attenuation. It is recognised that these variables may not be readily available, thus efficient measurement techniques are presented for obtaining phase velocity and attenuation in a form that can be exploited directly in the model. Inspired by previously documented methods, the application of these techniques is examined and some important implications for propagation characterisation in plates are discussed. Example measurements are made on isotropic and anisotropic plates and, where possible, comparisons with numerical solutions are made. By inputting experimentally obtained data into the model, quantitative system metrics are examined for different threshold values and sensor locations. By producing plots describing areas of hit success and source location error, the ability to measure the performance of different AE system configurations is demonstrated. This quantitative approach will help to place AE testing on a more solid foundation, underpinning its use in industrial AE applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorin Zaharia; C.Z. Cheng
In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot bemore » in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.« less
Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate
NASA Astrophysics Data System (ADS)
Coon, Max; Kwok, Ron; Levy, Gad; Pruis, Matthew; Schreyer, Howard; Sulsky, Deborah
2007-11-01
This paper revisits the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling sea ice dynamics. The AIDJEX assumptions were that (1) enough leads were present in a 100 km by 100 km region to make the ice isotropic on that scale; (2) the ice had no tensile strength; and (3) the ice behavior could be approximated by an isotropic yield surface. These assumptions were made during the development of the AIDJEX model in the 1970s, and are now found inadequate. The assumptions were made in part because of insufficient large-scale (10 km) deformation and stress data, and in part because of computer capability limitations. Upon reviewing deformation and stress data, it is clear that a model including deformation on discontinuities and an anisotropic failure surface with tension would better describe the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities. Such a model would require a different class of metrics to validate discontinuities against observations.
NASA Astrophysics Data System (ADS)
Stephanou, Pavlos S.; Kröger, Martin
2018-05-01
The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases—whereas for concentrated polymer solutions it increases—with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.
NASA Astrophysics Data System (ADS)
Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.
2015-11-01
A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.
Bridge toughening in fiber-reinforced composites: A three-dimensional discrete fiber model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, K.X.; Huang, Y.; Chandra, A.
1995-07-01
The fracture behavior of unidirectionally fiber-reinforced composites is the principal focus of this paper. The model proposed here is three-dimensional and accounts for the effects of local fiber-crack interactions on spatial variations of crack tip behavior. The model also consistently accounts for the effect of composite anisotropy by embedding a penny-shaped crack in an orthotropic composite medium. Three factors are identified that influence the reductions of stress intensity factors (SIFS) due to fiber bridging: a dimensionless configuration constant, a fiber distribution pattern, and a fiber volume fraction. The model reveals that the fiber distribution pattern does not alter the spatialmore » mean of the SIFS, although it does affect the oscillational amplitude. The dimensionless configuration constant determines the extent of the bridging effect and provides guidance regarding possible avenues for enhancing bridge toughening. The design curve of SIFs (retarded by fiber bridging) vs the fiber volume fraction shows that the isotropic and orthotropic solutions differ just slightly from each other. However, the energy release rate obtained by an isotropic analysis (widely claimed to be the equivalent of SIFs in bridging models) could, significantly underestimate the bridging effect.« less
CASCADE AND DAMPING OF ALFVEN-CYCLOTRON FLUCTUATIONS: APPLICATION TO SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Yanwei; Petrosian, Vahe; Liu Siming
2009-06-10
It is well recognized that the presence of magnetic fields will lead to anisotropic energy cascade and dissipation of astrophysical turbulence. With the diffusion approximation and linear dissipation rates, we study the cascade and damping of Alfven-cyclotron fluctuations in solar plasmas numerically for two diagonal diffusion tensors, one (isotropic) with identical components for the parallel and perpendicular directions (with respect to the magnetic field) and one with different components (nonisotropic). It is found that for the isotropic case the steady-state turbulence spectra are nearly isotropic in the inertial range and can be fitted by a single power-law function with amore » spectral index of -3/2, similar to the Iroshnikov-Kraichnan phenomenology, while for the nonisotropic case the spectra vary greatly with the direction of propagation. The energy fluxes in both cases are much higher in the perpendicular direction than in the parallel direction due to the angular dependence (or inhomogeneity) of the components. In addition, beyond the MHD regime the kinetic effects make the spectrum softer at higher wavenumbers. In the dissipation range the turbulence spectrum cuts off at the wavenumber, where the damping rate becomes comparable to the cascade rate, and the cutoff wavenumber changes with the wave propagation direction. The angle-averaged turbulence spectrum of the isotropic model resembles a broken power law, which cuts off at the maximum of the cutoff wavenumbers or the {sup 4}He cyclotron frequency. Taking into account the Doppler effects, the model naturally reproduces the broken power-law turbulence spectra observed in the solar wind and predicts that a higher break frequency always comes along with a softer dissipation range spectrum that may be caused by the increase of the turbulence intensity, the reciprocal of the plasma {beta}{sub p}, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by detailed comparisons with more accurate observations.« less
3D modelling of squeeze flow of unidirectional and fabric composite inserts
NASA Astrophysics Data System (ADS)
Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland
2016-10-01
The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.
Anisotropy tensor of the potential model of steady creep
NASA Astrophysics Data System (ADS)
Annin, B. D.; Ostrosablin, N. I.
2014-01-01
The Kelvin approach describing the structure of the generalized Hooke's law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.
Approximate isotropic cloak for the Maxwell equations
NASA Astrophysics Data System (ADS)
Ghosh, Tuhin; Tarikere, Ashwin
2018-05-01
We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.
Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.
Linkmann, Moritz F; Morozov, Alexander
2015-09-25
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.
NASA Astrophysics Data System (ADS)
Rinzema, Kees; ten Bosch, Jaap J.; Ferwerda, Hedzer A.; Hoenders, Bernhard J.
1995-01-01
The diffusion approximation, which is often used to describe the propagation of light in biological tissues, is only good at a sufficient distance from sources and boundaries. Light- tissue interaction is however most intense in the region close to the source. It would therefore be interesting to study this region more closely. Although scattering in biological tissues is predominantly forward peaked, explicit solutions to the transport equation have only been obtained in the case of isotropic scattering. Particularly, for the case of an isotropic point source in an unbounded, isotropically scattering medium the solution is well known. We show that this problem can also be solved analytically if the scattering is no longer isotropic, while everything else remains the same.
Development of a finite element model of the middle ear.
Williams, K R; Blayney, A W; Rice, H J
1996-01-01
A representative finite element model of the healthy ear is developed commencing with a description of the decoupled isotropic tympanic membrane. This model was shown to vibrate in a manner similar to that found both numerically (1, 2) and experimentally (8). The introduction of a fibre system into the membrane matrix significantly altered the modes of vibration. The first mode "remains as a piston like movement as for the isotropic membrane. However, higher modes show a simpler vibration pattern similar to the second mode but with a varying axis of movement and lower amplitudes. The introduction of a malleus and incus does not change the natural frequencies or mode shapes of the membrane for certain support conditions. When constraints are imposed along the ossicular chain by simulation of a cochlear impedance term then significantly altered modes can occur. More recently a revised model of the ear has been developed by the inclusion of the outer ear canal. This discretisation uses geometries extracted from a Nuclear Magnetic resonance scan of a healthy subject and a crude inner ear model using stiffness parameters ultimately fixed through a parameter tuning process. The subsequently tuned model showed behaviour consistent with previous findings and should provide a good basis for subsequent modelling of diseased ears and assessment of the performance of middle ear prostheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, F.; Rutqvist, J.
2010-06-01
The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less
Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J
2015-08-01
In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1989-01-01
The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.
Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy
NASA Astrophysics Data System (ADS)
Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara
2016-04-01
In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and maximum number of isotropic layers). The non-uniqueness of the problem can be addressed by adding high frequency data such as receiver functions, able to map first order discontinuities. We show with synthetic tests that this method enables us to distinguish between intrinsic and apparent anisotropy in tomographic models, as layers with intrinsic anisotropy are only present when required by the data. A real data example is presented based on the latest global model produced at Berkeley.
Source-Type Inversion of the September 03, 2017 DPRK Nuclear Test
NASA Astrophysics Data System (ADS)
Dreger, D. S.; Ichinose, G.; Wang, T.
2017-12-01
On September 3, 2017, the DPRK announced a nuclear test at their Punggye-ri site. This explosion registered a mb 6.3, and was well recorded by global and regional seismic networks. We apply the source-type inversion method (e.g. Ford et al., 2012; Nayak and Dreger, 2015), and the MDJ2 seismic velocity model (Ford et al., 2009) to invert low frequency (0.02 to 0.05 Hz) complete three-component waveforms, and first-motion polarities to map the goodness of fit in source-type space. We have used waveform data from the New China Digital Seismic Network (BJT, HIA, MDJ), Korean Seismic Network (TJN), and the Global Seismograph Network (INCN, MAJO). From this analysis, the event discriminates as an explosion. For a pure explosion model, we find a scalar seismic moment of 5.77e+16 Nm (Mw 5.1), however this model fails to fit the large Love waves registered on the transverse components. The best fitting complete solution finds a total moment of 8.90e+16 Nm (Mw 5.2) that is decomposed as 53% isotropic, 40% double-couple, and 7% CLVD, although the range of isotropic moment from the source-type analysis indicates that it could be as high as 60-80%. The isotropic moment in the source-type inversion is 4.75e16 Nm (Mw 5.05). Assuming elastic moduli from model MDJ2 the explosion cavity radius is approximately 51m, and the yield estimated using Denny and Johnson (1991) is 246kt. Approximately 8.5 minutes after the blast a second seismic event was registered, which is best characterized as a vertically closing horizontal crack, perhaps representing the partial collapse of the blast cavity, and/or a service tunnel. The total moment of the collapse is 3.34e+16 Nm (Mw 4.95). The volumetric moment of the collapse is 1.91e+16 Nm, approximately 1/3 to 1/2 of the explosive moment. German TerraSAR-X observations of deformation (Wang et al., 2017) reveal large radial outward motions consistent with expected deformation for an explosive source, but lack significant vertical motions above the shot point. Forward elastic half-space modeling of the static deformation field indicates that the combination of the explosion and collapse explains the observed deformation to first order. We will present these results as well as a two-step inversion of the explosion in an attempt to better resolve the nature of the non-isotropic radiation of the event.
DNS, LES and Stochastic Modeling of Turbulent Reacting Flows
1994-03-01
NY, 1972. 3 [181 Miller , R. S., Frankel, S. H., Madnia, C. K., and Givi, P., Johnson-Edgeworth Trans- lation for Probability Modeling of Binary Mixing...Givi, " Modeling of Isotropic are also grateful to Richard Miller for many useful discussions. This Reacting Turbulence by a Hybrid Mapping-EDQNM...United State of America * Johnson-Edgeworth Translation for Probability Modeling of Binary Scalar Mixing in Turbulent Flows I R. S. MILLER , S. H
Application of a new K-tau model to near wall turbulent flows
NASA Technical Reports Server (NTRS)
Thangam, S.; Abid, R.; Speziale, Charles G.
1991-01-01
A recently developed K-tau model for near wall turbulent flows is applied to two severe test cases. The turbulent flows considered include the incompressible flat plate boundary layer with the adverse pressure gradients and incompressible flow past a backward facing step. Calculations are performed for this two-equation model using an anisotropic as well as isotropic eddy-viscosity. The model predictions are shown to compare quite favorably with experimental data.
NASA Technical Reports Server (NTRS)
Sundqvist, Jon O.; Owocki, Stanley P.; Cohen, David H.; Leutenegger, Maurice A.; Townsend, Richard H. D.
2002-01-01
We present a generalised formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealised model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of bound-free absorption of X- rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3-D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates.
Guo, X; Fu, B; Ma, K; Chen, L
2000-08-01
Geostatistics combined with GIS was applied to analyze the spatial variability of soil nutrients in topsoil (0-20 cm) in Zunghua City of Hebei Province. GIS can integrate attribute data with geographical data of system variables, which makes the application of geostatistics technique for large spatial scale more convenient. Soil nutrient data in this study included available N (alkaline hydrolyzing nitrogen), total N, available K, available P and organic matter. The results showed that the semivariograms of soil nutrients were best described by spherical model, except for that of available K, which was best fitted by complex structure of exponential model and linear with sill model. The spatial variability of available K was mainly produced by structural factor, while that of available N, total N, available P and organic matter was primarily caused by random factor. However, their spatial heterogeneity degree was different: the degree of total N and organic matter was higher, and that of available P and available N was lower. The results also indicated that the spatial correlation of the five tested soil nutrients at this large scale was moderately dependent. The ranges of available N and available P were almost same, which were 5 km and 5.5 km, respectively. The range of total N was up to 18 km, and that of organic matter was 8.5 km. For available K, the spatial variability scale primarily expressed exponential model between 0-3.5 km, but linear with sill model between 3.5-25.5 km. In addition, five soil nutrients exhibited different isotropic ranges. Available N and available P were isotropic through the whole research range (0-28 km). The isotropic range of available K was 0-8 km, and that of total N and organic matter was 0-10 km.
NASA Technical Reports Server (NTRS)
Sundqvist, Jon O.; Owocki, Stanley P.; Cohen, David H.; Leutenegger, Maurice A.
2011-01-01
We present a generalised formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealised model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of bound-free absorption of X- rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3-D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates.
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Geng, Yu; Innanen, Kristopher A.
2018-05-01
The problem of inverting for multiple physical parameters in the subsurface using seismic full-waveform inversion (FWI) is complicated by interparameter trade-off arising from inherent ambiguities between different physical parameters. Parameter resolution is often characterized using scattering radiation patterns, but these neglect some important aspects of interparameter trade-off. More general analysis and mitigation of interparameter trade-off in isotropic-elastic FWI is possible through judiciously chosen multiparameter Hessian matrix-vector products. We show that products of multiparameter Hessian off-diagonal blocks with model perturbation vectors, referred to as interparameter contamination kernels, are central to the approach. We apply the multiparameter Hessian to various vectors designed to provide information regarding the strengths and characteristics of interparameter contamination, both locally and within the whole volume. With numerical experiments, we observe that S-wave velocity perturbations introduce strong contaminations into density and phase-reversed contaminations into P-wave velocity, but themselves experience only limited contaminations from other parameters. Based on these findings, we introduce a novel strategy to mitigate the influence of interparameter trade-off with approximate contamination kernels. Furthermore, we recommend that the local spatial and interparameter trade-off of the inverted models be quantified using extended multiparameter point spread functions (EMPSFs) obtained with pre-conditioned conjugate-gradient algorithm. Compared to traditional point spread functions, the EMPSFs appear to provide more accurate measurements for resolution analysis, by de-blurring the estimations, scaling magnitudes and mitigating interparameter contamination. Approximate eigenvalue volumes constructed with stochastic probing approach are proposed to evaluate the resolution of the inverted models within the whole model. With a synthetic Marmousi model example and a land seismic field data set from Hussar, Alberta, Canada, we confirm that the new inversion strategy suppresses the interparameter contamination effectively and provides more reliable density estimations in isotropic-elastic FWI as compared to standard simultaneous inversion approach.
Charged Particle Diffusion in Isotropic Random Static Magnetic Fields
NASA Astrophysics Data System (ADS)
Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.
2013-12-01
Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.
Gravity influence on the clustering of charged particles in turbulence
NASA Astrophysics Data System (ADS)
Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond
2010-11-01
We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.
Controllable continuous evolution of electronic states in a single quantum ring
NASA Astrophysics Data System (ADS)
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David
2018-02-01
An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.
Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats
2005-05-13
BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance matrices produced almost identical results in a simulation study. CONCLUSION: With asymmetric radioactivity distribution in PET, reconstruction using FBP, in contrast to OSEM, generates images in which the noise correlation is non-isotropic when the noise magnitude is angular dependent, such as in objects with asymmetric radioactivity distribution. In this respect, iterative reconstruction is superior since it creates isotropic noise correlations in the images.
Non-additive simple potentials for pre-programmed self-assembly
NASA Astrophysics Data System (ADS)
Mendoza, Carlos
2015-03-01
A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so called ``patchy'' particles. Here we follow a completely different approach and introduce a very accessible model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our model consists of a binary mixture of particles that interact through isotropic interactions that is able to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical parameters and interaction strengths. We study the system using Monte Carlo computer simulations and, despite its simplicity, we are able to self assemble potentially useful structures such as chains, stripes, Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model is designed such that it may be implemented using discotic particles or, alternatively, using exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for bottom-up nano-fabrication. Partial Financial Support: DGAPA IN-110613.
Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model
Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent
2016-05-11
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less
NASA Astrophysics Data System (ADS)
Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun
2014-04-01
We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.
Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less
Acoustics of two-component porous materials with anisotropic tortuosity
NASA Astrophysics Data System (ADS)
Albers, Bettina; Wilmanski, Krzysztof
2012-11-01
The paper is devoted to the analysis of monochromatic waves in two-component poroelastic materials described by a Biot-like model whose stress-strain relations are isotropic but the permeability is anisotropic. This anisotropy is induced by the anisotropy of the tortuosity which is given by a second order symmetric tensor. This is a new feature of the model while in earlier papers only isotropic permeabilities were considered. We show that this new model describes four modes of propagation. For our special choice of orientation of the direction of propagation these are two pseudo longitudinal modes P1 and P2, one pseudo transversal mode S2 and one transversal mode S1. The latter becomes also pseudo transversal in the general case of anisotropy. We analyze the speeds of propagation and the attenuation of these waves as well as the polarization properties in dependence on the orientation of the principal directions of the tortuosity. We indicate the practical importance of different shear (transversal) modes of propagation in a possible new nondestructive test of geophysical materials.
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1988-01-01
The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.
3D electromagnetic modelling of a TTI medium and TTI effects in inversion
NASA Astrophysics Data System (ADS)
Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien
2016-04-01
We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.
How does tissue preparation affect skeletal muscle transverse isotropy?
Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.
2016-01-01
The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557
Schoen, Martin; Haslam, Andrew J; Jackson, George
2017-10-24
The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.
NASA Astrophysics Data System (ADS)
Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.
2017-12-01
Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.
Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman
2011-10-06
Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integritymore » of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.« less
Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio
2017-03-01
Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We alsomore » study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krueger, Jens; Micikevicius, Paulius; Williams, Samuel
Reverse Time Migration (RTM) is one of the main approaches in the seismic processing industry for imaging the subsurface structure of the Earth. While RTM provides qualitative advantages over its predecessors, it has a high computational cost warranting implementation on HPC architectures. We focus on three progressively more complex kernels extracted from RTM: for isotropic (ISO), vertical transverse isotropic (VTI) and tilted transverse isotropic (TTI) media. In this work, we examine performance optimization of forward wave modeling, which describes the computational kernels used in RTM, on emerging multi- and manycore processors and introduce a novel common subexpression elimination optimization formore » TTI kernels. We compare attained performance and energy efficiency in both the single-node and distributed memory environments in order to satisfy industry’s demands for fidelity, performance, and energy efficiency. Moreover, we discuss the interplay between architecture (chip and system) and optimizations (both on-node computation) highlighting the importance of NUMA-aware approaches to MPI communication. Ultimately, our results show we can improve CPU energy efficiency by more than 10× on Magny Cours nodes while acceleration via multiple GPUs can surpass the energy-efficient Intel Sandy Bridge by as much as 3.6×.« less
Bertails-Descoubes, Florence; Derouet-Jourdan, Alexandre; Romero, Victor; Lazarus, Arnaud
2018-04-01
Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.
NASA Astrophysics Data System (ADS)
Lee, Mun Bae; Kwon, Oh-In
2018-04-01
Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.
Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles
Wu, Liang; Jackson, George; Müller, Erich A.
2013-01-01
We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962
Liquid crystal phase behaviour of attractive disc-like particles.
Wu, Liang; Jackson, George; Müller, Erich A
2013-08-08
We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.
NASA Astrophysics Data System (ADS)
Bertails-Descoubes, Florence; Derouet-Jourdan, Alexandre; Romero, Victor; Lazarus, Arnaud
2018-04-01
Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.
NASA Astrophysics Data System (ADS)
Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor
2017-04-01
As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.
Characterization of inhomogeneous and anisotropic steel welds by ultrasonic array measurements
NASA Astrophysics Data System (ADS)
Fan, Z.; Lowe, M. J. S.
2013-01-01
Austenitic welds are difficult to inspect non-destructively by ultrasound due to the anisotropic and inhomogeneous material in the weld, which causes spatial deviation of ultrasonic beams. A common way to describe such material is to consider it as transversely isotropic, in which the plane perpendicular to the direction of the grain growth is considered to be isotropic. Therefore a weld performance map which indicates the orientation of the grain growth can be used to describe the material properties in the weld. In our work, we have chosen a weld map based on the parameters of the MINA model which uses the information of the welding procedure and rules for crystalline growth to predict the orientations, and thus has a good physical foundation. We have compared the measured grain orientations for a realistic weld with the predictions from the model. With this model, only a small number of parameters are used to describe the weld properties, therefore enabling the possibility of a well conditioned refining process to determine the weld map from ultrasonic measurements. We have demonstrated the feasibility of doing this, using a ray tracing model, and both simulated and experimental measurements.
NASA Astrophysics Data System (ADS)
Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.
2014-08-01
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.
On the kinematics of scalar iso-surfaces in turbulent flow
NASA Astrophysics Data System (ADS)
Blakeley, Brandon C.; Riley, James J.; Storti, Duane W.; Wang, Weirong
2017-11-01
The behavior of scalar iso-surfaces in turbulent flows is of fundamental interest and importance in a number of problems, e.g., the stoichiometric surface in non-premixed reactions, and the turbulent/non-turbulent interface in localized turbulent shear flows. Of particular interest here is the behavior of the average surface area per unit volume, Σ. We report on the use of direct numerical simulations and sophisticated surface tracking techniques to directly compute Σ and model its evolution. We consider two different scalar configurations in decaying, isotropic turbulence: first, the iso-surface is initially homogenous and isotropic in space, second, the iso-surface is initially planar. A novel method of computing integral properties from regularly-sampled values of a scalar function is leveraged to provide accurate estimates of Σ. Guided by simulation results, modeling is introduced from two perspectives. The first approach models the various terms in the evolution equation for Σ, while the second uses Rice's theorem to model Σ directly. In particular, the two principal effects on the evolution of Σ, i.e., the growth of the surface area due to local surface stretching, and the ultimate decay due to molecular destruction, are addressed.
New developments in isotropic turbulent models for FENE-P fluids
NASA Astrophysics Data System (ADS)
Resende, P. R.; Cavadas, A. S.
2018-04-01
The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Crossover from isotropic to directed percolation
NASA Astrophysics Data System (ADS)
Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin
2012-08-01
We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Filik, T.; Tuncer, T. E.
2009-10-01
In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561
Hevesi, Joseph A.; Istok, Jonathan D.; Flint, Alan L.
1992-01-01
Values of average annual precipitation (AAP) are desired for hydrologic studies within a watershed containing Yucca Mountain, Nevada, a potential site for a high-level nuclear-waste repository. Reliable values of AAP are not yet available for most areas within this watershed because of a sparsity of precipitation measurements and the need to obtain measurements over a sufficient length of time. To estimate AAP over the entire watershed, historical precipitation data and station elevations were obtained from a network of 62 stations in southern Nevada and southeastern California. Multivariate geostatistics (cokriging) was selected as an estimation method because of a significant (p = 0.05) correlation of r = .75 between the natural log of AAP and station elevation. A sample direct variogram for the transformed variable, TAAP = ln [(AAP) 1000], was fitted with an isotropic, spherical model defined by a small nugget value of 5000, a range of 190 000 ft, and a sill value equal to the sample variance of 163 151. Elevations for 1531 additional locations were obtained from topographic maps to improve the accuracy of cokriged estimates. A sample direct variogram for elevation was fitted with an isotropic model consisting of a nugget value of 5500 and three nested transition structures: a Gaussian structure with a range of 61 000 ft, a spherical structure with a range of 70 000 ft, and a quasi-stationary, linear structure. The use of an isotropic, stationary model for elevation was considered valid within a sliding-neighborhood radius of 120 000 ft. The problem of fitting a positive-definite, nonlinear model of coregionalization to an inconsistent sample cross variogram for TAAP and elevation was solved by a modified use of the Cauchy-Schwarz inequality. A selected cross-variogram model consisted of two nested structures: a Gaussian structure with a range of 61 000 ft and a spherical structure with a range of 190 000 ft. Cross validation was used for model selection and for comparing the geostatistical model with six alternate estimation methods. Multivariate geostatistics provided the best cross-validation results.
Tribst, João Paulo Mendes; Dal Piva, Amanda Maria de Oliveira; Shibli, Jamil Awad; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie
2017-12-07
This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland) was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA). The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm), C2 (2 mm), C3 (3 mm), C4 (4 mm), C5 (5 mm) and C6 (6 mm). The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6). The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA) and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N) was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads' presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant's thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.
Detached-Eddy Simulation Based on the v2-f Model
NASA Technical Reports Server (NTRS)
Jee, Sol Keun; Shariff, Karim
2012-01-01
Detached eddy simulation (DES) based on the v2-f RANS model is proposed. This RANS model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. In LES mode, the proposed DES formulation reduces to a transport equation for the subgrid-scale kinetic energy. The constant, CDES, required by this model was calibrated by simulating isotropic turbulence. In the final paper, DES simulations of canonical separated flows will be presented.
Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André
2013-09-27
It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Tsuyoshi; Imai, Hiroshi; ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology Agency, 5-28-3 Hongo, Bunkyo-ku, Tokyo, 113-0033
2006-04-15
We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I{sub 3322} Bell inequality for 3x3more » isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination.« less