Sample records for isotropic hyperfine coupling

  1. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  2. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.« less

  3. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less

  4. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  5. ESR imaging investigations of two-phase systems.

    PubMed

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  6. Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.

    PubMed

    Un, Sun

    2013-04-01

    A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).

  7. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    NASA Astrophysics Data System (ADS)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  8. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  9. Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key.

    PubMed

    Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele

    2013-11-14

    We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.

  10. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less

  11. 133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.

    2018-03-01

    We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.

  12. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  13. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  14. Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance

    NASA Technical Reports Server (NTRS)

    Kennedy, T. A.; Spencer, M. G.

    1986-01-01

    A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.

  15. π to σ Radical Tautomerization in One-Electron Oxidized 1-Methylcytosine and its Analogs

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T.; Wiegand, Tyler J.; Hindi, Ragda M.; Adhikary, Ananya; Sevilla, Michael D.

    2015-01-01

    In this work iminyl σ-radical formation in several one-electron oxidized cytosine analogs including 1-MeC, cidofovir, 2′-deoxycytidine (dCyd), and 2′-deoxycytidine 5′-monophosphate (5′-dCMP) were investigated in homogeneous aqueous (D2O or H2O) glassy solutions at low temperatures employing electron spin resonance (ESR) spectroscopy. Employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones thus confirming its assignment. ESR and DFT studies show that the cytosine-iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical (cytosine π-aminyl radical, C(N4-H)•). Employing 1-MeC samples at various pHs ranging ca. 8 to ca. 11, ESR studies show that the tautomeric equilibrium between C(N4-H)• and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that in the iminyl-σ radical, the unpaired spin is localized to the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG= −32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA-radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in dsDNA by a radiation-induced ionization–deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  16. Paramagnetic species on catalytic surfaces--DFT investigations into structure sensitivity of the hyperfine coupling constants.

    PubMed

    Sojka, Zbigniew; Pietrzyk, Piotr

    2004-05-01

    Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.

  17. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  18. Gd(III) complexes as paramagnetic tags: Evaluation of the spin delocalization over the nuclei of the ligand

    NASA Astrophysics Data System (ADS)

    Collauto, A.; Feintuch, A.; Qi, M.; Godt, A.; Meade, T.; Goldfarb, D.

    2016-02-01

    Complexes of the Gd(III) ion are currently being established as spin labels for distance determination in biomolecules by pulse dipolar spectroscopy. Because Gd(III) is an f ion, one expects electron spin density to be localized on the Gd(III) ion - an important feature for the mentioned application. Most of the complex ligands have nitrogens as Gd(III) coordinating atoms. Therefore, measurement of the 14N hyperfine coupling gives access to information on the localization of the electron spin on the Gd(III) ion. We carried out W-band, 1D and 2D 14N and 1H ENDOR measurements on the Gd(III) complexes Gd-DOTA, Gd-538, Gd-595, and Gd-PyMTA that serve as spin labels for Gd-Gd distance measurements. The obtained 14N spectra are particularly well resolved, revealing both the hyperfine and nuclear quadrupole splittings, which were assigned using 2D Mims ENDOR experiments. Additionally, the spectral contributions of the two different types of nitrogen atoms of Gd-PyMTA, the aliphatic N atom and the pyridine N atom, were distinguishable. The 14N hyperfine interaction was found to have a very small isotropic hyperfine component of -0.25 to -0.37 MHz. Furthermore, the anisotropic hyperfine interactions with the 14N nuclei and with the non-exchangeable protons of the ligands are well described by the point-dipole approximation using distances derived from the crystal structures. We therefore conclude that the spin density is fully localized on the Gd(III) ion and that the spin density distribution over the nuclei of the ligands is rightfully ignored when analyzing distance measurements.

  19. Approaches to Measuring Entanglement in Chemical Magnetometers

    PubMed Central

    2013-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py–DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py–DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py–DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach. PMID:24372396

  20. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    NASA Astrophysics Data System (ADS)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  1. Hyperfine Sublevel Correlation (HYSCORE) Spectra for Paramagnetic Centers with Nuclear Spin I = 1 Having Isotropic Hyperfine Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maryasov, Alexander G.; Bowman, Michael K.

    2004-07-08

    It is shown that HYSCORE spectra of paramagnetic centers having nuclei of spin I=1 with isotropic hfi and arbitrary NQI consist of ridges having zero width. A parametric presentation of these ridges is found which shows the range of possible frequencies in the HYSCORE spectrum and aids in spectral assignments and rapid estimation of spin Hamiltonian parameters. An alternative approach for the spectral density calculation is presented that is based on spectral decomposition of the Hamiltonian. Only the eigenvalues of the Hamiltonian are needed in this approach. An atlas of HYSCORE spectra is given in the Supporting Information. This approachmore » is applied to the estimation of the spin Hamiltonian parameters of the oxovanadium-EDTA complex.« less

  2. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  3. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  4. A portable version of the program of nettar and villafranca for the simulation of electron paramagnetic resonance spectra of powders

    NASA Astrophysics Data System (ADS)

    Soulié, Edgar; Gaugenot, Jacques

    1995-04-01

    Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).

  5. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  6. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  7. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-06

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.

  8. Identification of the substrate radical intermediate derived from ethanolamine during catalysis by ethanolamine ammonia-lyase.

    PubMed

    Bender, Güneş; Poyner, Russell R; Reed, George H

    2008-10-28

    Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.

  9. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  10. Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.

    PubMed

    Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro

    2018-06-07

    Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

  11. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    PubMed

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  12. Rotation Dynamics Do Not Determine the Unexpected Isotropy of Methyl Radical EPR Spectra.

    PubMed

    Benetis, Nikolas P; Dmitriev, Yurij; Mocci, Francesca; Laaksonen, Aatto

    2015-09-03

    A simple first-principles electronic structure computation, further qc (quantum chemistry) computation, of the methyl radical gives three equal hf (hyperfine) couplings for the three protons with the unpaired electron. The corresponding dipolar tensors were notably rhombic and had different orientations and regular magnitude components, as they should, but what the overall A-tensor was seen by the electron spin is a different story! The final g = (2.002993, 2.002993, 2.002231) tensor and the hf coupling results obtained in vacuum, at the B3LYP/EPRIII level of theory clearly indicate that in particular the above A = (-65.19, -65.19, 62.54) MHz tensor was axial to a first approximation without considering any rotational dynamics for the CH3. This approximation was not applicable, however, for the trifluoromethyl CF3 radical, a heavier and nonplanar rotor with very anisotropic hf coupling, used here for comparison. Finally, a derivation is presented explaining why there is actually no need for the CH3 radicals to consider additional rotational dynamics in order for the electron to obtain an axially symmetric hf (hyperfine) tensor by considering the simultaneous dipolar couplings of the three protons. An additional consequence is an almost isotropic A-tensor for the electron spin of the CH3 radical. To the best of our knowledge, this point has not been discussed in the literature before. The unexpected isotropy of the EPR parameters of CH3 was solely attributed to the rotational dynamics and was not clearly separated from the overall symmetry of the species. The present theoretical results allowed a first explanation of the "forbidden" satellite lines in the CH3 EPR spectrum. The satellites are a fingerprint of the radical rotation, helping thus in distinguishing the CH3 reorientation from quantum rotation at very low temperatures.

  13. An EPR investigation of the dynamic Jahn-Teller effect in SrCl2:y(2 plus) and SrCl2:Sc(2 plus)

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    EPR spectra have been observed for SrCl2:Y(2+) and SrCl2:Sc(2+) at liquid helium temperatures. At 1.2 K the spectra were dominated by anisotropic hyperfine patterns whose lineshapes and angular dependences were explained using second order solutions of the effective Hamiltonian for an isolated 2Eg state split by large random internal strains. Pronounced asymmetries in some of the strin produced lineshapes for Srcl2:Sc(2+) are shown to result from second order terms in the solution of the effective Hamiltonian. Coexisting with the anisotropic hyperfine patterns are weak nearly isotropic hyperfine patterns with typical lineshapes. Variations in the apparent intensity of lines in these weak hyperfine patterns as functions of the applied magnetic field direction and temperature imply that these lines result from averaging by vibronic relaxation of a portion of the anisotropic pattern. The effective Hamiltonian parameters for SrCl2:La(2+), SrCl2:y(2+), and SrCl2:SC(2+) are analyzed in terms of crystal field theory modified to include a dynamic Jahn-Teller effect.

  14. Electron paramagnetic resonance of a 10B-containing heterocyclic radical

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.

    2018-05-01

    Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.

  15. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  16. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  17. Synthesis, crystal structure and spectroscopic and electrochemical properties of bridged trisbenzoato copper-zinc heterobinuclear complex of 2,2‧-bipyridine

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey

    2015-03-01

    The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.

  18. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  19. Electron-Nuclear Quantum Information Processing

    DTIC Science & Technology

    2008-11-13

    quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic

  20. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  1. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  2. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  3. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut

    2015-03-01

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  4. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less

  5. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    PubMed

    Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2017-11-15

    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.

  6. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  7. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  8. Polaron spin echo envelope modulations in an organic semiconducting polymer

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less

  9. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazante, Alexandre P., E-mail: abazante@chem.ufl.edu; Bartlett, Rodney J.; Davidson, E. R.

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examinemore » the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.« less

  11. Electron paramagnetic resonance studies on conformation states and metal ion exchange properties of vanadium bromoperoxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, E.; Boon, K.; Wever, R.

    An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. Itmore » is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.« less

  12. International Conference on Quantum Chemical Calculations of NMR and EPR Parameters Held in Castle Smolenice, Slovak Republic on September 14-18 1998

    DTIC Science & Technology

    1998-10-21

    site. The electric-field- induced linear shift is also observed in the hyperfine splitting of nuclear quadrupole resonance ( NQR ) spectrum of a nucleus...located at a noncentrosymmetric site in a molecule or in crystal lattice. Thus, the linear electric field effect on the ESR and NQR hyperfine splitting...the electric field effects on ESR and NQR hyperfine couplings. Theoretical methods to calculate the electric field effects within Hartree-Fock

  13. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  14. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less

  15. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  16. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less

  17. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  18. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori, E-mail: tachi@yokohama-cu.ac.jp

    2016-08-14

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and “reduced” isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is −8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these twomore » methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.« less

  19. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

    PubMed

    Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Helm, Lothar; Platas-Iglesias, Carlos

    2012-11-12

    Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com; Rao, J. L.

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observedmore » g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.« less

  1. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  2. Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S(2) state of the oxygen-evolving complex of photosystem II.

    PubMed

    Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin

    2010-09-10

    Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.

  3. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  4. Frustration of square cupola in Sr(TiO)Cu4(PO4)4

    NASA Astrophysics Data System (ADS)

    Islam, S. S.; Ranjith, K. M.; Baenitz, M.; Skourski, Y.; Tsirlin, A. A.; Nath, R.

    2018-05-01

    The structural and magnetic properties of the square-cupola antiferromagnet Sr (TiO ) Cu4(PO4)4 are investigated via x-ray diffraction, magnetization, heat capacity, and 31P nuclear magnetic resonance experiments on polycrystalline samples, as well as density-functional band-structure calculations. The temperature-dependent unit-cell volume could be described well using the Debye approximation with a Debye temperature of θD≃ 550 K. Magnetic response reveals a pronounced two-dimensionality with a magnetic long-range order below TN≃6.2 K. High-field magnetization exhibits a kink at about 1 /3 of the saturation magnetization. Asymmetric 31P NMR spectra clearly suggest strong in-plane anisotropy in the magnetic susceptibility, as anticipated from the crystal structure. From the 31P NMR shift versus bulk susceptibility plot, the isotropic and axial parts of the hyperfine coupling between the 31P nuclei and the Cu2 + spins are calculated to be Ahfiso≃6539 and Ahfax≃952 Oe/μB, respectively. The low-temperature and low-field 31P NMR spectra indicate a commensurate antiferromagnetic ordering. The frustrated nature of the compound is inferred from the temperature-dependent 31P NMR spin-lattice relaxation rate and confirmed by our microscopic analysis, which reveals strong frustration of the square cupola by next-nearest-neighbor exchange couplings.

  5. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  6. One-electron oxidation of individual DNA bases and DNA base stacks.

    PubMed

    Close, David M

    2010-02-04

    In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.

  7. 133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12

    NASA Astrophysics Data System (ADS)

    Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.

    2018-03-01

    S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.

  8. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  9. High-level ab initio studies of NO(X2Π)-O2(X3Σg -) van der Waals complexes in quartet states

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2018-05-01

    Geometry optimisations were performed on nine different structures of NO(X2Π)-O2(X3Σg-) van der Waals complexes in their quartet states, using the explicitly correlated RCCSD(T)-F12b method with basis sets up to the cc-pVQZ-F12 level. For the most stable configurations, counterpoise-corrected optimisations as well as extrapolations to the complete basis set (CBS) were performed. The X structure in the 4A‧ state was found to be most stable, with a CBS binding energy of -157 cm-1. The slipped tilted structures with N closer to O2 (Slipt-N), as well as the slipped parallel structure with O of NO closer to O2 (Slipp-O) in 4A″ states have binding energies of about -130 cm-1. C2v and linear complexes are less stable. According to calculated harmonic frequencies, the X isomer is bound. Isotropic hyperfine coupling constants of the complex are compared with those of the monomers.

  10. On the formation of the ·CH 2CH 2CH=NH 2+ distonic radical cation upon ionization of cyclopropylamine and allylamine

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Tho; Creve, Steven; Ha, Tae-Kyu

    1998-08-01

    Ab initio molecular orbital and density functional theory calculations have been applied to determine the relative stability of the cyclopropylamine 1 and allylamine (CH 2=CHCH 2NH 2+·2) radical cations and their isomers. It is confirmed that, upon ionization, 1 undergoes barrier-free ring-opening giving the distonic species ·CH 2CH 2CH=NH 2+3. 2 also rearranges by a 1,2-H-shift to the more stable 3 (by 70 kJ/mol) which is, however, less stable than the 1-aminopropene ion (CH 3-CH=CH-NH 2+·4) by 60 kJ/mol. The transition structure TS 2/3 lies 40 kJ/mol higher in energy than TS 3/4. Although QCISD and B3LYP calculations of isotropic hyperfine coupling constants agree reasonably with observed values, supporting the presence of the distonic 3 in ESR matrix experiments, the exclusive observation of 3, but not 4, is intriguing. This emphasizes the role of the matrix in stabilizing 3.

  11. Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80.

    PubMed

    Roukala, Juho; Straka, Michal; Taubert, Stefan; Vaara, Juha; Lantto, Perttu

    2017-08-08

    Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc 3 C 2 @C 80 displays complex intramolecular dynamics. The motion of the 45 Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc 3 triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc 3 C 2 moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the I h symmetric C 80 host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum.

  12. Radiation effects in x-irradiated hydroxy compounds

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  13. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolicmore » acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = − 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.« less

  14. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  15. An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Pietrzak, J.; Konopka, R.

    1990-11-01

    Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.

  16. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    PubMed

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  17. Control of coherence among the spins of a single electron and the three nearest neighbor {sup 13}C nuclei of a nitrogen-vacancy center in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimo-Oka, T.; Miwa, S.; Suzuki, Y.

    2015-04-13

    Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and fourmore » qubits are generated and analyzed at room temperature.« less

  18. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  19. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.

    PubMed

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2018-03-26

    Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking the first quantification of a k=8 term in a spin cluster. The unique and exact mapping MSH→GSH should be of general importance for weakly-coupled systems; it represents a mandatory ultimate step for comparing theoretical predictions (e.g. from quantum-chemical calculations) to ZFS, hyperfine or g-tensors from spectral fittings. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  1. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses.

    PubMed

    SivaRamaiah, G; LakshmanaRao, J

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando

    2011-04-28

    The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).

  3. Molecular beam electric resonance study of KCN, K 13CN and KC 15N

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Leo Meerts, W.; Dymanus, A.

    1984-08-01

    The microwave spectra of the isotopic species K 13CN and KC 15N have been investigated by molecular beam electric resonance spectroscopy, using the seeded beam technique. For both isotopic species about 20 rotational transitions originating in the ground vibrational state were observed in the frequency range 9-38 GHz. The observed transitions were fitted to an asymmetric rotor model to determine the three rotational, as well as the five quartic and three sextic centrifugal distortion constants. The hyperfine spectrum of KCN has been unravelled with the help of microwave-microwave double-resonance techniques. One hundred and forty hyperfine transitions in 11 rotational transitions have been assigned. The hyperfine structures of K 13CN and KC 15N were also studied. For all three isotopic species the quadrupole coupling constants and some spin-rotation coupling constants could be deduced. The rotational constants of the 13C and 15N isotopically substituted species of potassium cyanide, combined with those of the normal isotopic species (determined more accurately in this work), allowed an accurate and unambiguous evaluation of the structure, which was confirmed to be T shaped. Both the effective structure of the ground vibrational state and the substitution structure were evaluated. The results for the effective structural parameters are r CN = 1.169(3) Å, r KC = 2.716(9) Å, and r KN = 2.549(9) Å. The values obtained for the principal hyperfine coupling constant eQqz(N), the angle between the CN axis and zN, and the bond length rCN indicate that in gaseous potassium cyanide the CN group can be considered as an almost unperturbed CN - ion.

  4. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  5. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  6. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  7. Evidence for changes in the nucleotide conformation in the active site of H(+)-ATPase as determined by pulsed EPR spectroscopy.

    PubMed

    Schneider, B; Sigalat, C; Amano, T; Zimmermann, J L

    2000-12-19

    The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.

  8. Hyperfine-resolved 3.4-{mu}m spectroscopy of CH{sub 3}I with a widely tunable difference frequency generation source and a cavity-enhanced cell: A case study of a local Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki

    Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure inmore » the vibrational excited states.« less

  9. Synthesis, X-ray structure, magnetic resonance, and DFT analysis of a soluble copper(II) phthalocyanine lacking C-H bonds.

    PubMed

    Moons, Hans; Łapok, Łukasz; Loas, Andrei; Van Doorslaer, Sabine; Gorun, Sergiu M

    2010-10-04

    The synthesis, crystal structure, and electronic properties of perfluoro-isopropyl-substituted perfluorophthalocyanine bearing a copper atom in the central cavity (F(64)PcCu) are reported. While most halogenated phthalocyanines do not exhibit long-term order sufficient to form large single crystals, this is not the case for F(64)PcCu. Its crystal structure was determined by X-ray analysis and linked to the electronic properties determined by electron paramagnetic resonance (EPR). The findings are corroborated by density functional theory (DFT) computations, which agree well with the experiment. X-band continuous-wave EPR spectra of undiluted F(64)PcCu powder, indicate the existence of isolated metal centers. The electron-withdrawing effect of the perfluoroalkyl (R(f)) groups significantly enhances the complexes solubility in organic solvents like alcohols, including via their axial coordination. This coordination is confirmed by X-band (1)H HYSCORE experiments and is also seen in the solid state via the X-ray structure. Detailed X-band CW-EPR, X-band Davies and Mims ENDOR, and W-band electron spin-echo-detected EPR studies of F(64)PcCu in ethanol allow the determination of the principal g values and the hyperfine couplings of the metal, nitrogen, and fluorine nuclei. Comparison of the g and metal hyperfine values of F(64)PcCu and other PcCu complexes in different matrices reveals a dominant effect of the matrix on these EPR parameters, while variations in the ring substituents have only a secondary effect. The relatively strong axial coordination occurs despite the diminished covalency of the C-N bonds and potentially weakening Jahn-Teller effects. Surprisingly, natural abundance (13)C HYSCORE signals could be observed for a frozen ethanol solution of F(64)PcCu. The (13)C nuclei contributing to the HYSCORE spectra could be identified as the pyrrole carbons by means of DFT. Finally, (19)F ENDOR and easily observable paramagnetic NMR were found to relate well to the DFT computations, revealing negligible isotropic hyperfine (Fermi contact) contributions. The single-site isolation in solution and solid state and the relatively strong coordination of axial ligands, both attributed to the introduction of R(f) groups, are features important for materials and catalyst design.

  10. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harack, B.; Leary, A.; Coish, W. A.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less

  11. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  12. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  13. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.

    2014-10-01

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  14. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    PubMed

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  15. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    NASA Astrophysics Data System (ADS)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  16. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    NASA Astrophysics Data System (ADS)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  17. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  18. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  19. Anti-oxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation

    NASA Astrophysics Data System (ADS)

    Mathew, Bijo; Adeniyi, Adebayo A.; Joy, Monu; Mathew, Githa Elizabeth; Singh-Pillay, Ashona; Sudarsanakumar, C.; Soliman, Mahmoud E. S.; Suresh, Jerad

    2017-10-01

    Compound (2E)-3-(methoxyphenyl)-1-(4-methylphenyl) prop-2-en-1-one (Ch) was synthesized by the Claisen-Schmidt condensation reaction between para-methylacetophenone and para-methoxybenzaldehyde under basic condition. The structure of the molecule was elucidated using X-ray diffraction. Compound (Ch) demonstrated higher antioxidant activities in the DPPH test and H2O2 assay (IC50 = 12.23 ± 0.53 and 15.62 ± 0.98) than with the standard ascorbic acid (IC50 = 17.32 ± 0.44 and 19.07 ± 0.35). An evaluation of the atomic and molecular properties of ascorbic acid and Ch were computed based on their antioxidant activities. The molecular properties give insight into possible reasons for the enhanced antioxidant properties of Ch compared to ascorbic acid. The atomic properties provide further insight into chemical changes of the atoms of the compounds. Such changes include electronic shifting of the compounds electrophilic and/or nucleophilic states which highlight chemical moieties which characterize the antioxidant activity but do not directly relate to a variation in their antioxidant activities. The results obtained reflect oxygen atoms having significant nucleophilic interactions of each of the compounds. This was characterized by higher Fukui indices, isotropic and anisotropic hyperfine and orbital coupling stability energy.

  20. Characterization of the product radical structure in the Co(II)-product radical pair state of coenzyme B12-dependent ethanolamine deaminase by using three-pulse 2H ESEEM spectroscopy.

    PubMed

    Warncke, Kurt

    2005-03-08

    Molecular structural features of the product radical in the Co(II)-product radical pair catalytic intermediate state in coenzyme B(12)- (adenosylcobalamin-) dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The Co(II)-product radical pair state was prepared by cryotrapping holoenzyme during steady-state turnover on excess 1,1,2,2-(2)H(4)-aminoethanol or natural abundance, (1)H(4)-aminoethanol. Simulation of the (2)H/(1)H quotient ESEEM (obtained at two microwave frequencies, 8.9 and 10.9 GHz) from the interaction of the unpaired electron localized at C2 of the product radical with nearby (2)H nuclei requires four types of coupled (2)H, which are assigned as follows: (a) a single strongly coupled (effective dipole distance, r(eff) = 2.3 A) (2)H in the C5' methyl group of 5'-deoxyadenosine, (b) two weakly coupled (r(eff) = 4.2 A) (2)H in the C5' methyl group, (c) one (2)H coupling from a beta-(2)H bonded to C1 of the product radical (isotropic hyperfine coupling, A(iso) = 4.7 MHz), and (d) a second type of C1 beta-(2)H coupling (A(iso) = 7.7 MHz). The two beta-(2)H couplings are proposed to arise from two C1-C2 rotamer states of the product radical that are present in approximately equal proportion. A model is presented, in which C5' is positioned at a distance of 3.3 A from C2, which is comparable with the C1-C5' distance in the Co(II)-substrate radical pair intermediate. Therefore, the C5'methyl group remains in close (van der Waals) contact with the substrate and product radical species during the radical rearrangement step of the catalytic cycle, and the C5' center is the sole mediator of radical pair recombination in ethanolamine deaminase.

  1. Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).

  2. High-resolution molecular-beam spectroscopy of NaCN and Na 13CN

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Meerts, W. Leo; Dymanus, A.

    The sodium cyanide molecule was studied by molecular-beam electric-resonance spectroscopy in the microwave region. We used the seeded-beam technique to produce a supersonic beam with strong translational, rotational and vibrational cooling. In the frequency range 9.5-40 GHz we observed and identified for NaCN 186 and for Na 13CN 107 hyperfine transitions in 20 and 16 rotational transitions, respectively, all in the ground vibrational state. The rotational, the five quartic and three sextic centrifugal distortion constants of NaCN are: A″ = 57921.954(7) MHz; B″ = 8369.312(2) MHz, C″ = 7272.712(2) MHz. All quadrupole and several spin-rotation coupling constants for the hyperfine interaction were evaluated. The quadrupole coupling constants (in MHz) for NaCN are: eQq12(Na) = -5.344(5), eQq12 = 2.397(7). eQq12(N) = 2.148(4), eQq12(N) = -4.142(5). From these constants and those of Na 13CN we have determined the principal components of the quadrupole coupling tensor for potassium and nitrogen. The structure of sodium cyanide evaluated from the rotational constants of NaCN and Na 13CN was found to be T shaped, similar to the structure of KCN but completely different from the linear isocyanide configuration of LiNC. The effective structural parameters for sodium cyanide in the ground vibrational state are: rCN = 1.170(4) Å, rNaC = 2.379(15) Å, rN12N = 2.233(15) Å, in gratifying agreement with ab initio calculations. Both the geometrical structure and the hyperfine coupling justify the conclusion that the CN group in gaseous sodium cyanide approximately can be considered as a free CN - ion.

  3. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  4. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  5. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic fieldmore » display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.« less

  6. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  7. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    PubMed

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  8. Cesium alignment produced by pumping with unpolarized light★

    NASA Astrophysics Data System (ADS)

    Shi, Yongqi; Weis, Antoine

    2018-04-01

    We demonstrate optical pumping on the four hyperfine components of the Cs D 1 transition by unpolarized (UPL) resonant laser light. The evidence is based on the reduction of the absorption coefficients κ 0 with increasing light power P in an uncoated Cs vapor cell with isotropic spin relaxation. For comparison we perform the same quantitative κ 0( P) measurements with linearly-polarized light (LPL) and circularly-polarized light (CPL). We find that our previously published algebraic expressions give an excellent description of all experimentally recorded induced transparency signals. Based on this we can make reliable absolute predictions for the power dependence of the spin orientation and alignment produced by pumping with LPL, CPL and UPL.

  9. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    PubMed

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  10. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  11. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    NASA Astrophysics Data System (ADS)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  12. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    NASA Astrophysics Data System (ADS)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2018-01-01

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is < r-3_q>≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.

  13. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  14. Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain

    NASA Astrophysics Data System (ADS)

    Mansir, J.; Conti, P.; Zeng, Z.; Pla, J. J.; Bertet, P.; Swift, M. W.; Van de Walle, C. G.; Thewalt, M. L. W.; Sklenard, B.; Niquet, Y. M.; Morton, J. J. L.

    2018-04-01

    We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ɛ |<10-5. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning—shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10-6—as well as opportunities for coupling to mechanical resonators.

  15. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  16. Spectral fitting inversion of low-frequency normal modes with self-coupling and cross-coupling of toroidal and spheroidal multiplets: numerical experiments to estimate the isotropic and anisotropic velocity structures

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2016-06-01

    The aspherical structure of the Earth is described in terms of lateral heterogeneity and anisotropy of the P- and S-wave velocities, density heterogeneity, ellipticity and rotation of the Earth and undulation of the discontinuity interfaces of the seismic wave velocities. Its structure significantly influences the normal mode spectra of the Earth's free oscillation in the form of cross-coupling between toroidal and spheroidal multiplets and self-coupling between the singlets forming them. Thus, the aspherical structure must be conversely estimated from the free oscillation spectra influenced by the cross-coupling and self-coupling. In the present study, we improve a spectral fitting inversion algorithm which was developed in a previous study to retrieve the global structures of the isotropic and anisotropic velocities of the P and S waves from the free oscillation spectra. The main improvement is that the geographical distribution of the intensity of the S-wave azimuthal anisotropy is represented by a nonlinear combination of structure coefficients for the anisotropic velocity structure, whereas in the previous study it was expanded into a generalized spherical harmonic series. Consequently, the improved inversion algorithm reduces the number of unknown parameters that must be determined compared to the previous inversion algorithm and employs a one-step inversion method by which the structure coefficients for the isotropic and anisotropic velocities are directly estimated from the fee oscillation spectra. The applicability of the improved inversion is examined by several numerical experiments using synthetic spectral data, which are produced by supposing a variety of isotropic and anisotropic velocity structures, earthquake source parameters and station-event pairs. Furthermore, the robustness of the inversion algorithm is investigated with respect to the back-ground noise contaminating the spectral data as well as truncating the series expansions by finite terms to represent the three-dimensional velocity structures. As a result, it is shown that the improved inversion can estimate not only the isotropic and anisotropic velocity structures but also the depth extent of the anisotropic regions in the Earth. In particular, the cross-coupling modes are essential to correctly estimate the isotropic and anisotropic velocity structures from the normal mode spectra. In addition, we argue that the effect of the seismic anisotropy is not negligible when estimating only the isotropic velocity structure from the spheroidal mode spectra.

  17. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  18. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Booth, D. W.; Saffman, M.

    2018-02-01

    The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).

  19. Pulsed EPR investigations of systems modeling molybdenum enzymes: hyperfine and quadrupole parameters of oxo-17O in [Mo 17O(SPh)4]-.

    PubMed

    Astashkin, Andrei V; Neese, Frank; Raitsimring, Arnold M; Cooney, J Jon A; Bultman, Eric; Enemark, John H

    2005-11-30

    Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes. The 17O nqi parameter (e2qQ/h = 1.45 MHz, eta approximately = 0) is the first to be obtained for an oxo group in a metal complex. The parameters of the oxo-17O ligand, as well as other magnetic resonance parameters of [Mo 17O(SPh)4]- predicted by quasi-relativistic DFT calculations, were in good agreement with those obtained in experiment. From the electronic structure of the complex revealed by DFT, it follows that the SOMO is almost entirely molybdenum d(xy) and sulfur p, while the spin density on the oxo-17O is negative, determined by spin polarization mechanisms. The results of this work will enable direct experimental identification of the oxo ligand in a variety of chemical and biological systems.

  20. Optical rogue waves associated with the negative coherent coupling in an isotropic medium.

    PubMed

    Sun, Wen-Rong; Tian, Bo; Jiang, Yan; Zhen, Hui-Ling

    2015-02-01

    Optical rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling, which describe the propagation of orthogonally polarized optical waves in an isotropic medium, are reported. We construct and discuss a family of the vector rogue-wave solutions, including the bright rogue waves, four-petaled rogue waves, and dark rogue waves. A bright rogue wave without a valley can split up, giving birth to two bright rogue waves, and an eye-shaped rogue wave can split up, giving birth to two dark rogue waves.

  1. Theoretical study of the hyperfine parameters of OH

    NASA Technical Reports Server (NTRS)

    Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1991-01-01

    In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.

  2. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.

  3. Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Wang, Yang-Yang; Qiu, Jing; Chu, Ying-Qi; Zhang, Mei; Cai, Jianming; Ai, Qing; Deng, Fu-Guo

    2018-04-01

    The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent quantum information storage and processing after appropriate initialization. However, current experimental schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize various nuclear spins with different hyperfine couplings and noise strengths.

  4. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  5. Large deformation analysis of axisymmetric inhomogeneities including coupled elastic and plastic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, R.M.

    1996-12-31

    A mathematical framework is developed for the study of materials containing axisymmetric inclusions or flaws such as ellipsoidal voids, penny-shaped cracks, or fibers of circular cross-section. The general case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the macroscopic material properties of this simpler microstructure naturally should be transversely isotropic. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is applied to deduce the explicit functional dependencemore » of the material properties of these aligned materials on the shared symmetry axis. The aligned and uniform microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are identified, a principle of superposition of strain rates ay be applied to define an expectation integral for the composite properties of a material containing arbitrary anisotropic distributions of axisymmetric inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties (such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large distortions of anisotropic materials.« less

  6. Atomic Spectra and the Vector Model

    NASA Astrophysics Data System (ADS)

    Candler, A. C.

    2015-05-01

    12. Displaced terms; 13. Combination of several electrons; 14. Short periods; 15. Long periods; 16. Rare earths; 17. Intensity relsations; 18. Sum rules and (jj) coupling; 19. Series limit; 20. Hyperfine structure; 21. Quadripole radiation; 22. Fluorescent crystals; Appendix 5. Key to references; Appendix 6. Bibliography; Subject index; Author index.

  7. Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu

    2007-08-01

    In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis shows that the results from these two methods are in a good agreement with each other.

  8. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  9. Where's water? The many binding sites of hydantoin.

    PubMed

    Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie

    2018-02-21

    Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.

  10. Fingerprints of single nuclear spin energy levels using STM - ENDOR

    NASA Astrophysics Data System (ADS)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.

  11. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    PubMed

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Ultrasonic input-output for transmitting and receiving longitudinal transducers coupled to same face of isotropic elastic plate

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1982-01-01

    The quantitative understanding of ultrasonic nondestructive evaluation parameters such as the stress wave factor were studied. Ultrasonic input/output characteristics for an isotropic elastic plate with transmitting and receiving longitudinal transducers coupled to the same face were analyzed. The asymptotic normal stress is calculated for an isotropic elastic half space subjected to a uniform harmonic normal stress applied to a circular region at the surface. The radiated stress waves are traced within the plate by considering wave reflections at the top and bottom faces. The output voltage amplitude of the receiving transducer is estimated by considering only longitudinal waves. Agreement is found between the output voltage wave packet amplitudes and times of arrival due to multiple reflections of the longitudinal waves.

  13. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01569g

  14. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72

    NASA Astrophysics Data System (ADS)

    Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru

    2013-07-01

    We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g

  15. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  16. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.

  17. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    NASA Astrophysics Data System (ADS)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  18. Dynamics of 4-oxo-TEMPO-d16-15N nitroxide-propylene glycol system studied by ESR and ESE in liquid and glassy state in temperature range 10-295 K

    NASA Astrophysics Data System (ADS)

    Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan

    2016-08-01

    ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.

  19. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  20. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard.

    PubMed

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than g free with g=2.002644=g free ·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A coupled analytical model for hydrostatic response of 1-3 piezocomposites.

    PubMed

    Rajapakse, Nimal; Chen, Yue

    2008-08-01

    This study presents a fully coupled analysis of a unit cell of a 1-3 piezocomposite under hydrostatic loading. The governing equations for coupled axisymmetric electroelastic field of a transversely isotropic piezoelectric medium and a transversely isotropic elastic medium are used. A reduced form of the analytical general solutions expressed in terms of series of modified Bessel functions of the first and second kind are used. The solution of the boundary-value problem corresponding to a unit cell is presented. The effective properties of a 1-3 piezocomposite are obtained for different fiber volume fractions, polymer and piezoceramic properties, and fiber aspect ratios. Comparisons with previously reported simplified and uncoupled models are made.

  2. Electron paramagnetic resonance study of alinement induced by magnetic fields in two smectic-A liquid crystals not exhibiting nematic phases

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.

    1972-01-01

    Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.

  3. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  4. Hyperfine rather than spin splittings dominate the fine structure of the B (4)Σ(-)-X (4)Σ(-) bands of AlC.

    PubMed

    Clouthier, Dennis J; Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).

  5. The tetrahydrobiopterin radical with high- and low-spin heme in neuronal nitric oxide synthase -- a new indicator of the extent of NOS coupling

    PubMed Central

    Krzyaniak, Matthew D.; Cruce, Alex A.; Vennam, Preethi; Lockart, Molly; Berka, Vladimir; Tsai, Ah-Lim; Bowman, Michael K.

    2016-01-01

    Reaction intermediates trapped during the single-turnover reaction of the neuronal ferrous nitric oxide synthase oxygenase domain (Fe(II)nNOSOX) show four EPR spectra of free radicals. Fully-coupled nNOSOX with cofactor (tetrahydrobiopterin, BH4) and substrate (l-arginine) forms the typical BH4 cation radical with an EPR spectrum ~4.0 mT wide and hyperfine tensors similar to reports for a biopterin cation radical in inducible NOSOX (iNOSOX). With excess thiol, nNOSox lacking BH4 and l-arg is known to produce superoxide. In contrast, we find that nNOSOX with BH4 but no l-arg forms two radicals with rather different, fast (~ 250 µs at 5 K) and slower (~ 500 µs at 20 K), electron spin relaxation rates and a combined ~7.0 mT wide EPR spectrum. Rapid freeze-quench CW- and pulsed-EPR measurements are used to identify these radicals and their origin. These two species are the same radical with identical nuclear hyperfine couplings, but with spin-spin couplings to high-spin (4.0 mT component) or low-spin (7.0 mT component) Fe(III) heme. Uncoupled reactions of nNOS leave the enzyme in states that can be chemically reduced to sustain unregulated production of NO and reactive oxygen species in ischemia-reperfusion injury. The broad EPR signal is a convenient indicator of uncoupled nNOS reactions producing low-spin Fe(III) heme. PMID:27989753

  6. Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation

    NASA Astrophysics Data System (ADS)

    Filik, T.; Tuncer, T. E.

    2009-10-01

    In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.

  7. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  8. Laser ablated hydantoin: A high resolution rotational study.

    PubMed

    Alonso, Elena R; Kolesniková, Lucie; Alonso, José L

    2017-09-28

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14 N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  9. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  10. Self-trapped holes in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  11. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  12. Modulated magnetic structure of F e3P O7 as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Sobolev, A. V.; Akulenko, A. A.; Glazkova, I. S.; Pankratov, D. A.; Presniakov, I. A.

    2018-03-01

    The paper reports results of the 57Fe Mössbauer measurements on an F e3P O4O3 powder sample recorded at various temperatures, including the point of magnetic phase transition TN≈163 K . The spectra measured above TN consist of a quadrupole doublet with high quadrupole splitting of Δ300 K≈1.10 mm /s , emphasizing that F e3 + ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach. In the temperature range T

  13. The structural response of unsymmetrically laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Butler, T. A.; Hyer, M. W.

    1989-01-01

    The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.

  14. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  15. Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.

    PubMed

    Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C

    2006-07-28

    We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

  16. DFT and ENDOR Study of Bixin Radical Cations and Neutral Radicals on Silica-Alumina.

    PubMed

    Tay-Agbozo, Sefadzi S; Krzyaniak, Matthew D; Bowman, Michael K; Street, Shane; Kispert, Lowell D

    2015-06-18

    Bixin, a carotenoid found in annatto (Bixa orellana), is unique among natural carotenoids by being water-soluble. We stabilized free radicals from bixin on the surface of silica-alumina (Si-Al) and characterized them by pulsed electron-nuclear double resonance (ENDOR). DFT calculations of unpaired electron spin distribution for various bixin radicals predict the EPR hyperfine couplings. Least-square fitting of experimental ENDOR spectra by spectra calculated from DFT hyperfine couplings characterized the radicals trapped on Si-Al. DFT predicts that the trans bixin radical cation is more stable than the cis bixin radical cation by 1.26 kcal/mol. This small energy difference is consistent with the 26% trans and 23% cis radical cations in the ENDOR spectrum. The remainder of the ENDOR spectrum is due to several neutral radicals formed by loss of a H(+) ion from the 9, 9', 13, or 13' methyl group, a common occurrence in all water-insoluble carotenoids previously studied. Although carboxyl groups of bixin strongly affect its solubility relative to other natural carotenoids, they do not alter properties of its free radicals based on DFT calculations and EPR measurements which remain similar to typical water-insoluble carotenoids.

  17. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg

    2017-04-01

    Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).

  18. The Hydrogenase Activity of the Molybdenum/Copper-containing Carbon Monoxide Dehydrogenase of Oligotropha carboxidovorans*

    PubMed Central

    Wilcoxen, Jarett; Hille, Russ

    2013-01-01

    The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123

  19. Monoanionic molybdenum and tungsten tris(dithiolene) complexes: a multifrequency EPR study.

    PubMed

    Sproules, Stephen; Banerjee, Priyabrata; Weyhermüller, Thomas; Yan, Yong; Donahue, James P; Wieghardt, Karl

    2011-08-01

    Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-•))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-•))](1-) ↔ [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-•))](1-) complexes highlights tungsten's preference for higher oxidation states. © 2011 American Chemical Society

  20. Spin label studies of micellar and pre-micellar aggregates.

    PubMed

    Ernades, J R; Schreier, S; Chaimovich, H

    1976-02-01

    Micelles of hexadecyl trimethyl ammonium bromide (CTABr) have been investigated with the use of a faty acid spin label and its methyl ester derivative. The esr * spectra provided information about the degree of motion of the probes in the micelles as evaluated from calculation of rotational correlation times. Evidence is presented for the formation of pre-micellar aggregates at concentrations below the cmc. The effect of addition of thiophenoxide on the structure of CTABr micelles was to decrease the rate of motion of the spin probes, probably due to a tighter packing of the hydrophobic core as a consequence of charge neutralization at the micelle surface by the substrate. Decreasing values of the isotropic hyperfine splitting of the spin probe with increasing concentration of thiophenoxide were taken as indicating that the latter causes a decrease of the degree of hydration of the polar head region of the detergent.

  1. EPR Studies of orthorhombic Jahn-Teller effect in single crystal of ferroelectric Cu(II):Cd2(NH4)2 (SO4)3

    NASA Astrophysics Data System (ADS)

    Benson, Yerima; de, Dilip

    In this paper we report the first EPR observation and theoretical explanation of orthorhombic Jahn-Teller effect in Cu(II) doped single crystal of ferroelectric cadmium ammonium sulphate: Cu(II):Cd2(NH4)2 (SO4)3 . The isotropic EPR spectra of the 2D ion (in regular octahedral symmetry) at higher temperature becomes anisotropic at low temperature with clear manifestation of orthorhombic g and hyperfine tensors at 15 K. The static Jahn-Teller(JT) effect can only be explained theoretically by assuming the three JT potential wells energetically inequivalent, unlike the potential wells in most of the Cu(II) doped crystalline materials where JT effect manifests. The measured splitting of the JT potential wells in this ferroelectric crystal fall in the sub millimeter wave region pointing to possible application of the material.

  2. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.

    PubMed

    Muhlestein, Michael B; Haberman, Michael R

    2016-08-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.

  3. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure

    PubMed Central

    Haberman, Michael R.

    2016-01-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed. PMID:27616932

  4. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure

    NASA Astrophysics Data System (ADS)

    Muhlestein, Michael B.; Haberman, Michael R.

    2016-08-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.

  5. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    NASA Astrophysics Data System (ADS)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  6. Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.

    2015-12-01

    We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.

  7. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  8. Analyses of quasi-isotropic composite plates under quasi-static point loads simulating low-velocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Kelkar, A. D.

    1984-01-01

    In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.

  9. On the exact solvability of the anisotropic central spin model: An operator approach

    NASA Astrophysics Data System (ADS)

    Wu, Ning

    2018-07-01

    Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.

  10. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  11. Coherent manipulation of an NV center and one carbon nuclear spin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharfenberger, Burkhard; Nemoto, Kae; Munro, William J.

    2014-12-04

    We study a three-qubit system formed by the NV center’s electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.

  12. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  13. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  14. Characterising molecules for fundamental physics: an accurate spectroscopic model of methyltrioxorhenium derived from new infrared and millimetre-wave measurements.

    PubMed

    Asselin, Pierre; Berger, Yann; Huet, Thérèse R; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard J; Tarbutt, Michael R; Tokunaga, Sean K; Darquié, Benoît

    2017-02-08

    Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CH 3 187 ReO 3 and CH 3 185 ReO 3 isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm -1 range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter D K of the 187 Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.

  15. Jets in a strongly coupled anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Fadafan, Kazem Bitaghsir; Morad, Razieh

    2018-01-01

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N=4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma.

  16. What the multiline signal (MLS) simulation data with average of weighted computations reveal about the Mn hyperfine interactions and oxidation states of the manganese cluster in OEC?

    NASA Astrophysics Data System (ADS)

    Baituti, Bernard

    2017-11-01

    Understanding the structure of oxygen evolving complex (OEC) fully still remains a challenge. Lately computational chemistry with the data from more detailed X-ray diffraction (XRD) OEC structure, has been used extensively in exploring the mechanisms of water oxidation in the OEC (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). Knowledge of the oxidation states is very crucial for understanding the core principles of catalysis by photosystem II (PSII) and catalytic mechanism of OEC. The present study involves simulation studies of the X-band continuous wave electron-magnetic resonance (CW-EPR) generated S 2 state signals, to investigate whether the data is in agreement with the four manganese ions in the OEC, being organised as a `3 + 1' (trimer plus one) model (Gatt et al., Angew. Chem. Int. Ed. 51, 12025-12028 2012; Petrie et al., Chem. A Eur. J. 21, 6780-6792 2015; Terrett et al., Chem. Commun. (Camb.) 50, 8-11 2014) or `dimer of dimers' model (Terrett et al. 2016). The question that still remains is how much does each Mn ion contribute to the " g2multiline" signal through its hyperfine interactions in OEC also to differentiate between the `high oxidation state (HOS)' and `low oxidation state (LOS)' paradigms? This is revealed in part by the structure of multiline (ML) signal studied in this project. Two possibilities have been proposed for the redox levels of the Mn ions within the catalytic cluster, the so called `HOS' and `LOS' paradigms (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). The method of data analysis involves numerical simulations of the experimental spectra on relevant models of the OEC cluster. The simulations of the X-band CW-EPR multiline spectra, revealed three manganese ions having hyperfine couplings with large anisotropy. These are most likely Mn III centres and these clearly support the `LOS' OEC paradigm model, with a mean oxidation of 3.25 in the S2 state. This is consistent with the earlier data by Jin et al. (Phys. Chem. Chem. Phys. (PCCP) 16(17), 7799-812 2014), but the present results clearly indicate that heterogeneity in hyperfine couplings exist in samples as typically prepared.

  17. Generalized squeezing rotating-wave approximation to the isotropic and anisotropic Rabi model in the ultrastrong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu

    2016-12-01

    Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schrödinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy are expressed analytically with additional squeezing terms, exhibiting a substantial improvement of the GSRWA. And the ground-state energy in the anisotropic Rabi model confirms the effectiveness of the GSRWA. Due to the squeezing effect, the GSRWA improves the previous methods only with the displacement transformation in a wide range of coupling strengths even for large atom frequency.

  18. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    PubMed

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  19. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  20. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  2. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  3. Molecules in high spin states: The millimeter and submillimeter spectrum of the MnS radical (X 6Sigma+)

    NASA Astrophysics Data System (ADS)

    Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.

    2002-06-01

    The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.

  4. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  5. Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.

    PubMed

    Michaud, Julie M; Jäger, Wolfgang

    2008-10-14

    Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].

  6. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr 2 IrO 4 : Raman scattering studies

    DOE PAGES

    Gim, Y.; Sethi, A.; Zhao, Q.; ...

    2016-01-11

    A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less

  7. Optical and Terahertz Measurements of Spintronic Materials

    NASA Astrophysics Data System (ADS)

    Bas, Derek A.

    Terahertz time-domain spectroscopy (THz-TDS) is a versatile method to determine lattice, electronic charge and spin dynamics. This dissertation employs THz-TDS to study the spin and charge dynamics in topological insulator and antiferromagnetic systems. Observing time-domain effects on the scale of picoseconds gives unprecedented control over optoelectronic properties. Methods and challenges of THz generation, detection, and transmission are outlined. The wealth of light-matter interactions present in all nonlinear optical experiments are discussed, including primarily optical rectification, shift currents, and injection currents. Each of these gives valuable insight into the carrier dynamics of a material type. Conventional electronics can be improved in their speed and efficiency by taking advantage of an additional degree of freedom- electron spin. Therefore, we consider material types which exhibit great potential to replace common electronic materials while simultaneously employing electron spin for information storage or transport. Antiferromagnets show a type of spin-order that has the ability to store bits without unwanted interactions between neighboring particles. In antiferromagnetic MnF2 which has a Neel temperature of TN = 67 K, THz-TDS is performed on one-magnon and two-magnon resonances in the 0.1-2.3 THz range while varying the temperature from 6 to 295 K. The behavior of the one-magnon resonance is modeled by modified molecular field theory with an additional coupling term j set as a free parameter to fit the data. The resulting best fit value j = 1.1 provides the first experimental evidence indicating that neighboring spins in MnF 2 are only weakly coupled, closely approximating mean-field theory. Time-of-flight analysis was performed on the transmitted THz pulses to measure the temperature-dependent THz refractive index, which was modeled by phonon energy in the T > TN regime and magnetic energy in the T < TN regime. In the range T < 10 K, measured data deviates from this theory, and can be modeled by internal energy from hyperfine interactions, providing the first direct observation of hyperfine interactions in THz spectroscopy. Topological insulators exhibit the ability to transport spin-polarized currents along their surfaces with high mobilities. Phase-related pulses at photon energies 0.8 and 1.6 eV are used to simultaneously inject shift and injection currents into thin-films of the prototypical topological insulator Bi2Se3, and the foundation is laid out for an extensive study of the novel carrier properties in topological surface states. A method of symmetry analysis based on the crystal lattice is developed for isolation and individual study of the surfaceonly shift currents, which are threefold symmetric with equal components parallel and perpendicular to the pump polarization, and bulk/surface injection currents, which are isotropic parallel to the pump polarization and vanishing perpendicular to it. Pump energies can be tuned through the Dirac point, a capability which holds promise for the search of smoking gun evidence for the novel topological insulator surface state behavior that has been theorized.

  8. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less

  9. Bichromatic laser cooling in a three-level system

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Xie, C.; Padua, S.; Batelaan, H.; Metcalf, H.

    1993-11-01

    We report a 1D study of optical forces on atoms in a two-frequency laser field. The light couples two ground state hyperfine structure levels to a common excited state of 85Rb, thus forming a Λ system. We observe a new type of sub-Doppler coupling with blue-tuned light that uses neither polarization gradients nor magnetic fields, efficient heating with red tuning, and the spatial phase dependence of these. We observed deflection from a rectified dipole force and determined its velocity dependence and capture range. We report velocity selective resonances associated with Raman transitions. A simplified semiclassical calculation agrees qualitatively with our measurements.

  10. Oxygen-17 and molybdenum-95 coupling in spectroscopic models of molybdoenzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kony, M.; Tiekink, E.R.

    1988-09-28

    Assignment of (Mo/sup V/OS) and cis-(Mo/sup V/O(SH)) centers in active xanthine oxidase (very rapid and rapid ESR signals) are supported by generation of these species in solution. The ESR parameters were measured using /sup 17/O and /sup 95/Mo and are reported herein. The data revealed variations in relative magnitudes of the hyperfine components, and the different patterns of angles reflect significant differences in electronic structure. The same electronic differences appear to be responsible for the variations in magnitude and anisotropy of the /sup 17/O coupling, assigned to bound product Mo-/sup 17/OR in both enzyme signals.

  11. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.

  12. Hyperfine interaction in K 2Ba[Fe(NO 2) 6

    NASA Astrophysics Data System (ADS)

    Padmakumar, K.; Manoharan, P. T.

    2000-04-01

    Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.

  13. Hyperfine Fields of 181Ta in UFe4Al8

    NASA Astrophysics Data System (ADS)

    Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.

    2001-11-01

    The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.

  14. Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm

    NASA Astrophysics Data System (ADS)

    Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.

    2017-11-01

    The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.

  15. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    PubMed

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  16. Ab initio study of the structural properties of ascorbic acid (vitamin C)

    NASA Astrophysics Data System (ADS)

    Allen, Reeshemah N.; Shukla, M. K.; Reed, Demarcio; Leszczynski, Jerzy

    Geometries of the neutral and ionic tautomeric species of ascorbic acid were optimized at the density functional theory (DFT) level using the B3LYP functional. The radical species were evaluated using the unrestricted B3LYP method. Single-point energy calculations were also performed using the Møller-Plesset (MP2) and unrestricted MP2 (UMP2) methods for the closed-shell and open-shell systems, respectively. The effects of aqueous solution were evaluated using the conducting polarized continuum model (CPCM) and polarized continuum model (PCM). The geometries of most stable radicals in the respective groups were also optimized in the water solution using the CPCM model at the UB3LYP level. All calculation were performed using the 6-311++G(d,p) basis set. The nature of stationary points on the gas phase potential energy surfaces (PESs) was evaluated using vibrational frequency calculations; all geometries characterize local minima. The species obtained by the deprotonation of the O3 site is the most stable monoanion of ascorbic acid. For the radical species, the structure obtained by the dehydrogenation of the O3 site is the most stable monoradical. Among the radical anions, the species obtained by the deprotonation of the O3 site and subsequent dehydrogenation of the O2 site is the most stable in the gas phase and in an aqueous medium. The computed isotropic hyperfine coupling constants of this species were found to be in good agreement with the experimental data. Our investigation also supports the earlier findings that the oxidized species of ascorbic acid in water solution by the OH? radical is radical anion of the AAO?3O-2 form. The spin densities and molecular electrostatic potentials are also discussed.

  17. Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.

    2018-04-01

    We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.

  18. Collaborative Research: Polymeric Multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shenqiang

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less

  19. The gamut of alkoxy radicals

    NASA Astrophysics Data System (ADS)

    Box, Harold C.; Budzinski, Edwin E.; Freund, Harold G.

    1984-12-01

    It is shown that various radicals exhibiting diverse ESR and ENDOR spectral characteristics are nonetheless a closely related family of alkoxy radicals. The relationship is established by correlating the g tensor with crystal structure and by relating dihedral angles inferred from proton hyperfine couplings to dihedral angles inferred from the g tensor and crystal structure. The analysis also serves to demonstrate that an ESR absorption observed in x-irradiated single crystals of uridine 5'-monophosphate is due to an alkoxy radical.

  20. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less

  1. Single crystal X- and Q-band EPR spectroscopy of a binuclear Mn(2)(III,IV) complex relevant to the oxygen-evolving complex of photosystem II.

    PubMed

    Yano, Junko; Sauer, Kenneth; Girerd, Jean-Jacques; Yachandra, Vittal K

    2004-06-23

    The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.

  2. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  3. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  4. Ultrafast Study of Dynamic Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng

    Spintronics is the area of research that aims at utilizing the quantum mechanical spin degree of freedom of electrons in solid-state materials for information processing and data storage application. Since the discovery of the giant magnetoresistance, the field of spintronics has attracted lots of attention for its numerous potential advantages over contemporary electronics, such as less power consumption, high integration density and non-volatility. The realization of a spin battery, defined by the ability to create spin current without associated charge current, has been a long-standing goal in the field of spintronics. The demonstration of pure spin current in ferromagnet/nonmagnetic material hybrid structures by ferromagnetic resonance spin pumping has defined a thrilling direction for this field. As such, this dissertation targets at exploring the spin and magnetization dynamics in ferromagnet/oxide/semiconductor heterostructures (Fe/MgO/GaAs) using time-resolved optical pump-probe spectroscopy with the long-range goal of understanding the fundamentals of FMR-driven spin pumping. Fe/GaAs heterostructures are complex systems that contain multiple spin species, including paramagnetic spins (GaAs electrons), nuclear spins (Ga and As nuclei) and ferromagnetic spins (Fe). Optical pump-probe studies on their interplay have revealed a number of novel phenomena that has not been explored before. As such they will be the major focus of this dissertation. First, I will discuss the effect of interfacial exchange coupling on the GaAs free-carrier spin relaxation. Temperature- and field-dependent spin-resolved pump-probe studies reveal a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. Second, we investigate the impact of tunnel barrier thickness on GaAs electron spin dynamics in Fe/MgO/GaAs heterostructures. Comparison of the Larmor frequency between samples with thick and thin MgO barriers reveals a four-fold variation in exchange coupling strength, and investigation of the spin lifetimes argues that inhomogeneity in the local hyperfine field dominates free-carrier spin relaxation across the entire range of barrier thickness. These results provide additional evidence to support the theory of hyperfine-dominated spin relaxation in GaAs. Third, we investigated the origin and dynamics of an emergent spin population by pump power and magnetic field dependent spin-resolved pump-probe studies. Power dependent study confirms its origin to be filling of electronic states in GaAs, and further field dependent studies reveal the impact of contact hyperfine coupling on the dynamics of electron spins occupying distinct electronic states. Beyond above works, we also pursue optical detection of dynamic spin pumping in Fe/MgO/GaAs heterostructures in parallel. I will discuss the development and progress that we have made toward this goal. This project can be simply divided into two phases. In the first phase, we focused on microwave excitation and optical detection of spin pumping. In the second phase, we focused on all-optical excitation and detection of spin pumping. A number of measurement strategies have been developed and executed in both stages to hunt for a spin pumping signal. I will discuss the preliminary data based upon them.

  5. Free H₂ rotation vs Jahn-Teller constraints in the nonclassical trigonal (TPB)Co-H₂ complex.

    PubMed

    Gunderson, William A; Suess, Daniel L M; Fong, Henry; Wang, Xiaoping; Hoffmann, Christina M; Cutsail, George E; Peters, Jonas C; Hoffman, Brian M

    2014-10-22

    Proton exchange within the M-H2 moiety of (TPB)Co(H2) (Co-H2; TPB = B(o-C6H4P(i)Pr2)3) by 2-fold rotation about the M-H2 axis is probed through EPR/ENDOR studies and a neutron diffraction crystal structure. This complex is compared with previously studied (SiP(iPr)3)Fe(H2) (Fe-H2) (SiP(iPr)3 = [Si(o-C6H4P(i)Pr2)3]). The g-values for Co-H2 and Fe-H2 show that both have the Jahn-Teller (JT)-active (2)E ground state (idealized C3 symmetry) with doubly degenerate frontier orbitals, (e)(3) = [|mL ± 2>](3) = [x(2) - y(2), xy](3), but with stronger linear vibronic coupling for Co-H2. The observation of (1)H ENDOR signals from the Co-HD complex, (2)H signals from the Co-D2/HD complexes, but no (1)H signals from the Co-H2 complex establishes that H2 undergoes proton exchange at 2 K through rotation around the Co-H2 axis, which introduces a quantum-statistical (Pauli-principle) requirement that the overall nuclear wave function be antisymmetric to exchange of identical protons (I = 1/2; Fermions), symmetric for identical deuterons (I = 1; Bosons). Analysis of the 1-D rotor problem indicates that Co-H2 exhibits rotor-like behavior in solution because the underlying C3 molecular symmetry combined with H2 exchange creates a dominant 6-fold barrier to H2 rotation. Fe-H2 instead shows H2 localization at 2 K because a dominant 2-fold barrier is introduced by strong Fe(3d)→ H2(σ*) π-backbonding that becomes dependent on the H2 orientation through quadratic JT distortion. ENDOR sensitively probes bonding along the L2-M-E axis (E = Si for Fe-H2; E = B for Co-H2). Notably, the isotropic (1)H/(2)H hyperfine coupling to the diatomic of Co-H2 is nearly 4-fold smaller than for Fe-H2.

  6. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We alsomore » study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.« less

  7. Isotropic transmission of magnon spin information without a magnetic field.

    PubMed

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  8. Blood Flow Characterization According to Linear Wall Models of the Carotid Bifurcation

    NASA Astrophysics Data System (ADS)

    Williamson, Shobha; Rayz, Vitaliy; Berger, Stanley; Saloner, David

    2004-11-01

    Previous studies of the arterial wall include linearly isotropic, isotropic with residual stresses, and anisotropic models. This poses the question of how the results of each method differ when coupled with flow. Hence, the purpose of this study was to compare flow for these material models and subsequently determine if variations exist. Results show that displacement at the bifurcation and internal carotid bulb was noticeably larger in the orthotropic versus the isotropic model with subtle differences toward the inlet and outlets, which are fixed in space. In general, the orthotropic wall is further distended than the isotropic wall for the entire cycle. This apparent distention of the orthotropic wall clearly affects the flow. In diastole, the combination of slower flow and larger wall distention due to lumen pressure creates a sinuous velocity profile, particularly in the orthotropic model where the recirculation zone created displaces the core flow to a smaller area thereby increasing the velocity magnitudes nearly 60

  9. Isotropic transmission of magnon spin information without a magnetic field

    PubMed Central

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-01-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033

  10. NMR studies of field induced magnetism in CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    Recent Nuclear Magnetic Resonance and elastic neutron scattering experiments have revealed conclusively the presence of static incommensurate magnetism in the field-induced B phase of CeCoIns, We analyze the NMR data assuming the hyperfine coupling to the 1n(2) nuclei is anisotropic and simulate the spectra for several different magnetic structures, The NMR data are consistent with ordered Ce moments along the [001] direction, but are relatively insensitive to the direction of the incommensurate wavevector.

  11. Electron spin resonance of (CO 2 H)CH 2 CH 2 CH(CO 2 H) in irradiated glutaric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsfield, A.; Morton, J. R.; Whiffen, D. H.

    It is concluded from electron spin resonance spectra that the radical (CO 2 H)CH 2 CH 2 CH(CO 2 H) remains trapped in a glutaric acid crystal after gamma -irradiation. This radical is found in two different conformations. Approximate hyperfine coupling constants are given for each, although exact interpretation is hindered by the overlapping of spectra. Reasons for the formation of the two forms of the radical are discussed.

  12. Activities report in nuclear physics and particle acceleration

    NASA Astrophysics Data System (ADS)

    Jansen, J. F. W.; Demeijer, R. J.

    1984-04-01

    Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.

  13. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    PubMed

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  14. Observation of EIA in closed and open caesium atomic system

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Ming; Zhao, Yan-Ting; Huang, Tao; Xiao, Lian-Tuan; Jia, Suo-Tang

    2005-04-01

    We present an experimental study on electromagnetically induced absorption (EIA) in the closed transition of a degenerate two-level Cs atomic system. The coupling and probe lasers coupled with the transition 6S1/2F=4 → 6P3/2F'=5 of caesium atom. The signal of EIA was obtained and the frequency detuning and intensity effect of the pumping laser were experimentally investigated. The EIA signal in 6S1/2 F=4 → 6P3/2 F'=4 and 6S1/2 F=4 → 6P3/2 F'=3 open transitions was also obtained. As the repumping laser couples with the transition of 6S1/2 F=3 → 6P3/2 F'=4, the EIA signal is increased due to the hyperfine optical pumping.

  15. Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A

    2013-08-13

    The latest crystal structure of photosystem II at 1.9 Å resolution, which resolves the topology of the Mn4CaO5 oxygen evolving complex (OEC) at atomistic detail, enables a better correlation between structural features and spectroscopic properties than ever before. Building on the refined crystallographic model of the OEC and the protein, we present combined quantum mechanical/molecular mechanical (QM/MM) studies of the spectroscopic properties of the natural catalyst embedded in the protein matrix. Focusing on the S2 state of the catalytic cycle, we examine the convergence of not only structural parameters but also of the intracluster magnetic interactions in terms of exchange coupling constants and of experimentally relevant (55)Mn, (17)O, and (14)N hyperfine coupling constants with respect to QM/MM partitioning using five QM regions of increasing size. This enables us to assess the performance of the method and to probe second sphere effects by identifying amino acid residues that principally affect the spectroscopic properties of the OEC. Comparison between QM-only and QM/MM treatments reveals that whereas QM/MM models converge quickly to stable values, the QM cluster models need to incorporate significantly larger parts of the second coordination sphere and surrounding water molecules to achieve convergence for certain properties. This is mainly due to the sensitivity of the QM-only models to fluctuations in the hydrogen bonding network and ligand acidity. Additionally, a hydrogen bond that is typically omitted in QM-only treatments is shown to determine the hyperfine coupling tensor of the unique Mn(III) ion by regulating the rotation plane of the ligated D1-His332 imidazole ring, the only N-donor ligand of the OEC.

  16. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  17. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  18. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium

    NASA Astrophysics Data System (ADS)

    Bayones, F. S.; Abd-Alla, A. M.

    2018-03-01

    In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced.

  19. Prediction of high-frequency vibration transmission across coupled, periodic ribbed plates by incorporating tunneling mechanisms.

    PubMed

    Yin, Jianfei; Hopkins, Carl

    2013-04-01

    Prediction of structure-borne sound transmission on built-up structures at audio frequencies is well-suited to Statistical Energy Analysis (SEA) although the inclusion of periodic ribbed plates presents challenges. This paper considers an approach using Advanced SEA (ASEA) that can incorporate tunneling mechanisms within a statistical approach. The coupled plates used for the investigation form an L-junction comprising a periodic ribbed plate with symmetric ribs and an isotropic homogeneous plate. Experimental SEA (ESEA) is carried out with input data from Finite Element Methods (FEM). This indicates that indirect coupling is significant at high frequencies where bays on the periodic ribbed plate can be treated as individual subsystems. SEA using coupling loss factors from wave theory leads to significant underestimates in the energy of the bays when the isotropic homogeneous plate is excited. This is due to the absence of tunneling mechanisms in the SEA model. In contrast, ASEA shows close agreement with FEM and laboratory measurements. The errors incurred with SEA rapidly increase as the bays become more distant from the source subsystem. ASEA provides significantly more accurate predictions by accounting for the spatial filtering that leads to non-diffuse vibration fields on these more distant bays.

  20. Infrared laser induced population transfer and parity selection in 14NH3: A proof of principle experiment towards detecting parity violation in chiral molecules

    NASA Astrophysics Data System (ADS)

    Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.

    2015-12-01

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for further theoretical analysis.

  1. Infrared laser induced population transfer and parity selection in (14)NH3: A proof of principle experiment towards detecting parity violation in chiral molecules.

    PubMed

    Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for further theoretical analysis.

  2. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  3. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  4. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  5. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  6. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    NASA Astrophysics Data System (ADS)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  7. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  8. Two dimensional symmetric correlation functions of the S-circumflex operator and two dimensional Fourier transforms: Considering the line coupling for P and R lines of linear molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonalmore » elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.« less

  9. Effect of Jahn-Teller ion in zinc sodium sulphate hexahydrate: a case of low hyperfine coupling constant for Cu(II) ion

    NASA Astrophysics Data System (ADS)

    Naidu, K. C.; Shiyamala, C.; Mithira, S.; Natarajan, B.; Venkatesan, R.; Rao, P. S.

    2005-06-01

    Single crystal electron paramagnetic resonance (EPR) studies of Cu(II) doped zinc sodium sulphate hexahydrate are carried out from room temperature (RT) to 123 K. The RT spectra show unresolved hyperfine lines and hence angular variation studies are also carried out at 123 K to obtain spin Hamiltonian parameters. The spin Hamiltonian parameters calculated from the 123 K spectra are: g(11)=2.039, g(22)=2.232, g(33)=2.394, A(11)=5.64 mT, A(22)=4.20 mT, and A(33)=7.94 mT. The g-matrix values at RT and 123 K have matched fairly well with each other. The low hyperfine value (A(33)), obtained at 123 K, has been explained by considering considerable admixture of d(x 2-y 2) ground state with d(z 2) excited state and the delocalization of the unpaired spin density onto the ligands. The admixture coefficients of ground state wave function are: a=0.346, b=0.935, c=0.055, d=0.040, e=-0.040, where a and b correspond to admixture coefficients for d(z 2) and d(x 2-y 2), respectively. Angular variation of Cu(II) resonances in the three orthogonal axes shows that the impurity has entered a substitutional site in the host lattice in place of Zn(II). Bonding parameters, kappa=0.295, P=245.4x10(-4), alpha(2)=0.709, alpha=0.8421 and alpha'=0.6034, have also been calculated to fully characterize the EPR.

  10. A High Resolution Spectroscopic Study of the Nu2 Band of Hydrogen Sulfide and the 1-0 Band of Hydrogen Iodide. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1981-01-01

    A tunable diode laser spectrometer was constructed and used to study: (1) the effects of centrifugal distortion on the transition frequencies and strengths of the nu sub 2 band of H2S, and (2) nuclear quadrupole hyperfine structure in the 1-0 band of HI. A total of 126 line frequencies and 94 line strengths in the nu sub 2 band of H2S were measured. The average accuracy of the line frequency measurements was + or - 0.0016 cm. The line strengths were measured to an average accuracy of about 3 percent. The effect of the finite spectral width of the diode laser on the measurement of line strengths is discussed. The observed H2S line frequencies were fit to Watson's AS and NS reduced Hamiltonian in both the Ir and IIIr coordinate representations in order to determine the best set of rotation distortion constants for the upper state of the nu sub 2 band. Comparisons of the observed line strengths in this band to rigid rotor line strengths are also presented. Nuclear quadrupole hyperfine structure in the low J lines of the 1-0 band of HI was observed. The upper vibrational state nuclear quadrupole coupling constant, determined from the observed splittings, was -1850 MHz + or - 12 MHz or 1.2 percent + or - 0.7 percent larger than the ground state coupling constant.

  11. HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M.; Hutton, R.; Zou, Y.

    2015-01-01

    The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less

  12. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When interactions fluctuate at rates comparable to the time scale of a hyperfine method, there is a loss in signal coherence, and spectra are damped. The degree of damping can be used to determine fluctuation rates, provided that theoretical expressions for spectra can be derived for relevant physical models of the fluctuations. SHIML provides routines to help researchers quickly develop code to incorporate stochastic models of fluctuating hyperfine interactions in calculations of hyperfine spectra. Solution method: Calculations are based on the method for modeling stochastic hyperfine interactions for PAC by Winkler and Gerdau [5]. The method is extended to include other hyperfine methods following the work of Dattagupta [6]. The code provides routines for reading model information from text files, allowing researchers to develop new models quickly without the need to modify computer code for each new model to be considered. Restrictions: In the present version of the code, only methods that measure the hyperfine interaction on one probe spin state, such as PAC, μSR, and NMR, are supported. Running time: Varies

  13. Angular-momentum couplings in ultra-long-range giant dipole molecules

    NASA Astrophysics Data System (ADS)

    Stielow, Thomas; Scheel, Stefan; Kurz, Markus

    2018-02-01

    In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.

  14. The effect of electromagnetically induced transparency in a potassium nanocell

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.

    2017-07-01

    The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.

  15. Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal

    NASA Astrophysics Data System (ADS)

    Cañeda-Guzmán, E.; Moreno-Razo, J. A.; Díaz-Herrera, E.; Sambriski, E. J.

    2014-04-01

    Phase diagrams for Gay-Berne (GB) fluids were obtained from molecular dynamics simulations for GB(2, 5, 1, 2) (i.e. short mesogens) and GB(3, 5, 1, 2) (i.e. long mesogens), which yield isotropic, nematic, and smectic-B phases. The long-mesogen fluid also yields the smectic-A phase. Ordered phases of the long-mesogen fluid form at higher temperatures and lower densities when compared to those of the short-mesogen fluid. The effect of confinement under weak and strong substrate couplings in slab geometry was investigated. Compared to the bulk, the isotropic-nematic transition does not shift in temprature significantly for the weakly coupled substrate in either mesogen fluid. However, the strongly coupled substrate shifts the transition to lower temperature. Confinement induces marked stratification in the short-mesogen fluid. This effect diminishes with distance from the substrate, yielding bulk-like behaviour in the slab central region. Fluid stratification is very weak for the long-mesogen fluid, but the strongly coupled substrate induces 'smectisation', an ordering effect that decays with distance. Orientation of the fluid on the substrate depends on the mesogen. There is no preferred orientation in a plane parallel to the substrate for the weakly coupled case. In the strongly coupled case, the mesogen orientation mimics that of adjacent fluid layers. Planar anchoring is observed with a broad distribution of orientations in the weakly coupled case. In the strongly coupled case, the distribution leans toward planar orientations for the short-mesogen fluid, while a marginal preference for tilting persists in the long-mesogen fluid.

  16. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Daisuke; Center for Optical Research and Education; Juman, Guzhaliayi

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum andmore » a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.« less

  17. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  18. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  19. Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized 133Cs cold atom clock

    NASA Astrophysics Data System (ADS)

    Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q. G.; Bize, S.; Khan, E.; Wolf, P.

    2017-04-01

    We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions |F =3 ,mF ⟩↔|F =4 ,mF ⟩ to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron. The new model uses Lorentz transformations developed to second order in boost and additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients including the isotropic coefficient c˜T T. Using this new model in a second analysis of the data delivered by the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13 orders of magnitude the present maximum sensitivities for laboratory tests [2] on the c˜Q, c˜T J, and c˜T T coefficients for the neutron and on the c˜Q coefficient for the proton, reaching respectively 10-20, 10-17, 10-13, and 10-15 GeV .

  20. Lorentz-Symmetry Test at Planck-Scale Suppression With a Spin-Polarized 133Cs Cold Atom Clock.

    PubMed

    Pihan-Le Bars, H; Guerlin, C; Lasseri, R-D; Ebran, J-P; Bailey, Q G; Bize, S; Khan, E; Wolf, P

    2018-06-01

    We present the results of a local Lorentz invariance (LLI) test performed with the 133 Cs cold atom clock FO2, hosted at SYRTE. Such a test, relating the frequency shift between 133 Cs hyperfine Zeeman substates with the Lorentz violating coefficients of the standard model extension (SME), has already been realized by Wolf et al. and led to state-of-the-art constraints on several SME proton coefficients. In this second analysis, we used an improved model, based on a second-order Lorentz transformation and a self-consistent relativistic mean field nuclear model, which enables us to extend the scope of the analysis from purely proton to both proton and neutron coefficients. We have also become sensitive to the isotropic coefficient , another SME coefficient that was not constrained by Wolf et al. The resulting limits on SME coefficients improve by up to 13 orders of magnitude the present maximal sensitivities for laboratory tests and reach the generally expected suppression scales at which signatures of Lorentz violation could appear.

  1. 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2

    NASA Astrophysics Data System (ADS)

    Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.

    2017-07-01

    We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β *  ≈  0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1  ≈  14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1  <  T  <  T  *  ≈  41 K) demonstrate a relaxation behavior due to critical spin fluctuations which indicates the occurrence of short-range correlations. At the intermediate temperature range, T N2  <  T  <  T N1, the 57Fe Mössbauer spectra are described in terms of collinear spin-density-waves (SDW) with the inclusion of many high-order harmonics, indicating that the real magnetic structure of the ferrite appears to be more complicated than a pure sinusoidally modulated SDW. Below T  <  T N2  ≈  9 K, the hyperfine field H hf reveals a large spatial anisotropy (ΔH anis  ≈  30 kOe) which is related with a local intra-cluster (FeO6) spin-dipole term that implies a conventional contribution of the polarized oxygen ions. We proposed a simple two-parametric formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.

  2. The hyperfine excitation of OH radicals by He

    NASA Astrophysics Data System (ADS)

    Marinakis, Sarantos; Kalugina, Yulia; Lique, François

    2016-04-01

    Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  3. Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Aşik, Biray

    2008-06-01

    The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.

  4. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  5. Enolization of acetone in superheated water detected via radical formation.

    PubMed

    Ghandi, Khashayar; Addison-Jones, Brenda; Brodovitch, Jean-Claude; McCollum, Brett M; McKenzie, Iain; Percival, Paul W

    2003-08-13

    Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.

  6. Imaging of isotropic and anisotropic conductivities from power densities in three dimensions

    NASA Astrophysics Data System (ADS)

    Monard, François; Rim, Donsub

    2018-07-01

    We present numerical reconstructions of anisotropic conductivity tensors in three dimensions, from knowledge of a finite family of power density functionals. Such a problem arises in the coupled-physics imaging modality ultrasound modulated electrical impedance tomography for instance. We improve on the algorithms previously derived in Bal et al (2013 Inverse Problems Imaging 7 353–75) Monard and Bal (2013 Commun. PDE 38 1183–207) for both isotropic and anisotropic cases, and we address the well-known issue of vanishing determinants in particular. The algorithm is implemented and we provide numerical results that illustrate the improvements.

  7. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  8. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    NASA Astrophysics Data System (ADS)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  9. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  10. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  11. GET-SERF, a new gradient encoded SERF experiment for the trivial edition of 1H-19F couplings

    NASA Astrophysics Data System (ADS)

    Di Pietro, Maria Enrica; Aroulanda, Christie; Merlet, Denis

    2013-09-01

    A new spatially encoded heteronuclear 1H-19F selective refocusing NMR experiment (GET-SERF) is proposed. This sequence allows editing in one single 2D experiment all couplings between a selected fluorine site and all the proton nuclei of the molecule. Its efficiency is illustrated in the case of diflunisal, a difluorinated anti-inflammatory drug, in isotropic and anisotropic media.

  12. Heat transfer in damaged material

    NASA Astrophysics Data System (ADS)

    Kruis, J.

    2013-10-01

    Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.

  13. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. L., E-mail: shuch@ist.hokudai.ac.jp; Takayama, J.; Murayama, A.

    Time-resolved optical spin orientation spectroscopy was employed to investigate the temperature-dependent electron spin injection in In{sub 0.1}Ga{sub 0.9}As quantum well (QW) and In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) tunnel-coupled nanostructures with 4, 6, and 8 nm-thick GaAs barriers. The fast picosecond-ranged spin injection from QW to QD excited states (ES) was observed to speed up with temperature, as induced by pronounced longitudinal-optical (LO)-phonon-involved multiple scattering process, which contributes to a thermally stable and almost fully spin-conserving injection within 5–180 K. The LO-phonon coupling was also found to cause accelerated electron spin relaxation of QD ES at elevated temperature, mainly via hyperfine interactionmore » with random nuclear field.« less

  15. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.

  16. Fine and hyperfine collisional excitation of C6H by He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  17. The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited

    NASA Astrophysics Data System (ADS)

    Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.

    2003-11-01

    The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.

  18. Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculations.

    PubMed

    Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas

    2017-12-14

    The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.

  19. Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2015-05-07

    By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins.

  20. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  1. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  2. High-precision optical measurement of the 2S hyperfine interval in atomic hydrogen.

    PubMed

    Kolachevsky, N; Fischer, M; Karshenboim, S G; Hänsch, T W

    2004-01-23

    We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.

  3. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  4. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less

  5. Fluctuating hyperfine interactions: an updated computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2015-04-01

    The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.

  6. Innovation and reliability of atomic standards for PTTI applications

    NASA Technical Reports Server (NTRS)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  7. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  8. Revised energy levels of singly ionized lanthanum

    NASA Astrophysics Data System (ADS)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  9. Effect of WO3 on EPR, structure and electrical conductivity of vanadyl doped WO3·M2O·B2O3 (M=Li, Na) glasses

    NASA Astrophysics Data System (ADS)

    Sheoran, A.; Agarwal, A.; Sanghi, S.; Seth, V. P.; Gupta, S. K.; Arora, M.

    2011-12-01

    Glasses with composition xWO3·(30-x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm-1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.

  10. The HERMES Polarized Atomic Beam Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHzmore » has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.« less

  11. Chirp echo Fourier transform EPR-detected NMR

    NASA Astrophysics Data System (ADS)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  12. Hydrogen bonding and spin density distribution in the QB semiquinone of bacterial reaction centers and comparison with the QA site

    PubMed Central

    Martin, Erik; Samoilova, Rimma I.; Narasimhulu, Kupala V.; Lin, Tzu-Jen; O’Malley, Patrick J.; Wraight, Colin A.; Dikanov, Sergei A.

    2011-01-01

    In the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (QA) and secondary (QB) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the QA and QB sites, using samples of 15N-labeled reaction centers, with the native high spin Fe2+ exchanged for diamagnetic Zn2+, prepared in 1H2O and 2H2O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the QA SQ by Flores et al. (Biophys. J. 2007, 92, 671–682), with good agreement for two exchangeable protons with anisotropic hyperfine tensor components, T, both in the range 4.6–5.4 MHz. HYSCORE was then applied to the QB SQ where we found proton lines corresponding to T~5.2, 3.7 MHz and T~1.9 MHz. Density functional-based quantum mechanics/molecular mechanics (QM/MM) calculations, employing a model of the QB site, were used to assign the observed couplings to specific hydrogen bonding interactions with the QB SQ. These calculations allow us to assign the T=5.2 MHz proton to the His-L190 NδH…O4 (carbonyl) hydrogen bonding interaction. The T =3.7 MHz spectral feature most likely results from hydrogen bonding interactions of O1 (carbonyl) with both Gly-L225 peptide NH and Ser-L223 hydroxyl OH, which possess calculated couplings very close to this value. The smaller 1.9 MHz coupling is assigned to a weakly bound peptide NH proton of Ile-L224. The calculations performed with this structural model of the QB site show less asymmetric distribution of unpaired spin density over the SQ than seen for the QA site, consistent with available experimental data for 13C and 17O carbonyl hyperfine couplings. The implications of these interactions for QB function and comparisons with the QA site are discussed. PMID:21417328

  13. Notizen: Non-coincidence of Isotropic and Anisotropic Raman Spectra of the v3 Mode of the CH3F/CD3F System

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1990-12-01

    It has been proved with the aid of CH3F/CD3F mixtures that the remarkably large non-coincidence effect in the Raman scattering spectrum of the v3 mode of liquid methyl fluoride is due to intermolecular vibrational coupling mediated mainly by transition dipole interaction. The amount of the effect and its temperature and mole fraction dependence are - at least qualitatively - in agreement with Logan's theoretical concept. The rather different behaviour of the isotopic species and the asymmetry and narrow width of the isotropic band, however, raise new questions which require further investigations.

  14. Geometry of Theory Space and RG Flows

    NASA Astrophysics Data System (ADS)

    Kar, Sayan

    The space of couplings of a given theory is the arena of interest in this article. Equipped with a metric ansatz akin to the Fisher information matrix in the space of parameters in statistics (similar metrics in physics are the Zamolodchikov metric or the O'Connor-Stephens metric) we investigate the geometry of theory space through a study of specific examples. We then look into renormalisation group flows in theory space and make an attempt to characterise such flows via its isotropic expansion, rotation and shear. Consequences arising from the evolution equation for the isotropic expansion are discussed. We conclude by pointing out generalisations and pose some open questions.

  15. Chiral magnetism of magnetic adatoms generated by Rashba electrons

    NASA Astrophysics Data System (ADS)

    Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir

    2017-02-01

    We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin-orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction, which relates the latter to the first-order change of the former with respect to spin-orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii-Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin-orbit interaction.

  16. Esr Spectra of Alkali-Metal Atoms on Helium Nanodroplets: a Theoretical Model for the Prediction of Helium Induced Hyperfine Structure Shifts

    NASA Astrophysics Data System (ADS)

    Hauser, Reas W.; Filatov, Michael; Ernst, Wolfgang E.

    2013-06-01

    We predict He-droplet-induced changes of the isotropic HFS constant a_{HFS} of the alkali-metal atoms M = Li, Na, K and Rb on the basis of a model description. Optically detected electron spin resonance spectroscopy has allowed high resolution measurements that show the influence of the helium droplet and its size on the unpaired electron spin density at the alkali nucleus. Our theoretical approach to describe this dependence is based on a combination of two well established techniques: Results of relativistic coupled-cluster calculations on the alkali-He dimers (energy and HFS constant as functions of the binding length) are mapped onto the doped-droplet-situation with the help of helium-density functional theory. We simulate doped droplets He_{N} with N ranging from 50 to 10000, using the diatomic alkali-He-potential energy curves as input. From the obtained density profiles we evaluate average distances between the dopant atom and its direct helium neighborhood. The distances are then set in relation to the variation of the HFS constant with binding length in the simplified alkali-He-dimer model picture. This method yields reliable relative shifts but involves a systematic absolute error. Hence, the absolute values of the shifts are tied to one experimentally determined HFS constant for ^{85}Rb-He_{N = 2000}. With this parameter choice we obtain results in good agreement with the available experimental data for Rb and K^{a,b} confirming the predicted 1/N trend of the functional dependence^{c}. M. Koch, G. Auböck, C. Callegari, and W. E. Ernst, Phys. Rev. Lett. 103, 035302-1-4 (2009) M. Koch, C. Callegari, and W. E. Ernst, Mol. Phys. 108 (7), 1005-1011 (2010) A. W. Hauser, T. Gruber, M. Filatov, and W. E. Ernst, ChemPhysChem (2013) online DOI: 10.1002/cphc.201200697

  17. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    PubMed

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-02

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge.

  18. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology.

    PubMed

    Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S

    2012-05-04

    Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5  μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.

  19. Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2018-03-01

    We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.

  20. Studies of molecular physics in sodium-potassium: An analysis of the 4(3)Sigma+ state and interactions between the 2(A)(1)Sigma+ and 1(b)(3)Pi states

    NASA Astrophysics Data System (ADS)

    Burns, Patrick

    2004-12-01

    In this dissertation we report the results of three experiments designed to provide new information on the structure and interactions of the NaK molecule. Specifically these experiments investigate 2(A)1Sigma +(upsilonA, J) + M → 1(b)3 pi0(upsilonb, J) + M collisional excitation transfers (where M is a collision partner), hyperfine structure of the NaK 1(b)3pi and 1(b)3pi0 ˜ 2(A)1Sigma+ spin-orbit interactions, and the structure and spectra of the NaK 43Sigma+ state, respectively. In this first experiment, populations of collisionally populated levels were recorded near the NaK 1(b)3pi0(upsilon =18, J = 44) ˜ 2(A)1Sigma+ (upsilon = 20, J = 44) center of spin-orbit perturbation. Our data indicate that population is transferred from the pumped level, 2(A) 1Sigma+(upsilon = 20, J = 49), directly to the surrounding "daughter" levels [1(b)3Sigma 0(upsilon =18, J = 45--48) and 2(A)1Sigma +(upsilon = 20, J = 45--48)]. The relative populations of the daughter levels appear anomalous, as their populations do not monotonically decrease for levels further away in energy from the pumped level. We have measured the hyperfine structure of mutually perturbing ro-vibrational levels of the 1(b)3pi0 and 2(A)1Sigma + states of the NaK molecule, using the PFOODR method with co-propagating lasers. Unperturbed 1(b)3pi0 levels are split into four hyperfine components by the Fermi contact interaction b FI·S. Mixing between the 1(b)3pi0 and 2(A)1Sigma + levels imparts hyperfine structure to the nominally singlet component, and reduces the hyperfine splitting of the nominally triplet component, of the perturbed levels. We determined a value for the Fermi constant, bF= (0.00989 +/- 0.00027) cm-1, and the magnitude of the electronic part of the 1(b)3pi 0 ˜ 2(A)1Sigma+ spin-orbit coupling, |Hel| = (15.65 +/- 0.14) cm-1 , from an analysis of the measured hyperfine splittings of the mixed singlet-triplet levels. High-resolution spectra have been observed for numerous vibrational-rotational levels (upsilon, N) of the 43Sigma + state of NaK. A potential curve was obtained from the data using the inverse perturbation approximation method. Measured bound-free emission, 43Sigma+ → 1(a)3Sigma +, was used to determine both the absolute vibrational numbering and the transition dipole moment function M(R). Each (upsilon, N) level is typically split into three sets of sublevels by the Fermi contact interaction bFI·S. Further splitting (of order 0.004 cm-1) has been attributed to the spin-rotation interaction gammaN·S. The values of bF that fit the data best are ˜(0.99 +/- 0.04) x 10-2 cm-1, with weak dependence on upsilon. The best fit values of gamma are in the range 1--6 x 10-4 cm-1 and depend strongly on upsilon.

  1. Infrared laser induced population transfer and parity selection in {sup 14}NH{sub 3}: A proof of principle experiment towards detecting parity violation in chiral molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietiker, P.; Miloglyadov, E.; Quack, M., E-mail: Martin@Quack.ch

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for eachmore » step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all fundamentals and some overtones of {sup 14}NH{sub 3} are known and can be used for further theoretical analysis.« less

  2. Glass transition of charged particles in two-dimensional confinement.

    PubMed

    Yazdi, Anoosheh; Heinen, Marco; Ivlev, Alexei; Löwen, Hartmut; Sperl, Matthias

    2015-05-01

    The glass transition of mesoscopic charged particles in two-dimensional confinement is studied by mode-coupling theory. We consider two types of effective interactions between the particles, corresponding to two different models for the distribution of surrounding ions that are integrated out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-Hückel (Yukawa)-type effective interaction. The second, experimentally more relevant system is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma current toward the electrode gives rise to an anisotropic effective interaction potential between the particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that covers the typical range of experimentally accessible plasma conditions, we calculate and compare the mode-coupling predictions for the glass transition in both kinds of systems.

  3. Radiation-Induced Damage to Nucleic Acid Constituents

    NASA Astrophysics Data System (ADS)

    Kim, Heasook

    The objective of this research was to identify the primary free radical species produced by ionizing radiation in DNA. The ultimate goal would be to use these data obtained from model compounds to analyze radiation-induced damage in DNA itself. The different single crystals were studied in detail. The first was the sodium salt of guanosine-3 ^':5^' -cyclic monophosphate (cyclic GMP). The results of studies on crystals irradiated at 4.2^ circK distinguished two species. One of these species exhibited a non-exchangeable proton coupling that was characterized by ENDOR spectroscopy and shown to be sigma proton. The spin density on C8 was deduced from the ENDOR hyperfine coupling tensor and found to be 0.15. The second species also exhibited a non-exchangeable sigma proton coupling and a beta proton coupling. The spin densities on C8 and N9 were deduced from ENDOR measurements to be 0.09 and 0.36. The former is attributed to the oxidation product and the latter to the primary reduction product. These products are respectively the guanine cation and anion. The second single crystal studied was a sodium salt of 2^'-deoxyguanosine -5^'-monophosphate tetrahydrate. The ESR and ENDOR spectra obtained from this crystal after x-irradiation at 4.2^circK were complex and the paramagnetic species were tentatively identified as ionic species. The third DNA model compound studied was thymidine. Single crystal of thymidine were irradiated at 1.6^ circK and at 4.2^circ K. The lower temperature preserved a more primitive stage of the radiation damage process. ENDOR measurements distinguished three paramagnetic species. The most interesting component of the paramagnetic absorption in crystals irradiated at 1.6^circK is attributed to trapped electron. These electrons are stabilized by the electrostatic fields generated by hydroxy dipoles. The hyperfine couplings between the trapped electron and the proton of these polar groups were deduced from ENDOR measurements. The ESR and ENDOR measurements described in this report were carried out DNA model compounds x-irradiated and measured at lower temperatures than reported previously. The experiments have demonstrated that an earlier stage of radiation damage can sometimes be stabilized and characterized in single crystals by maintaining the sample at 1.4 ^circK. (Abstract shortened with permission of author.).

  4. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  5. The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Burda, K.; Strzałka, K.; Stanek, J.

    1993-12-01

    Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.

  6. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  7. Hyperfine structure of excited states and quadrupole moment of Ne-21 using laser-induced line-narrowing techniques.

    NASA Technical Reports Server (NTRS)

    Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.

    1972-01-01

    Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.

  8. Two-photon exchange correction to the hyperfine splitting in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr

    2017-12-01

    We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.

  9. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  10. Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Helm, J. L.; Billam, T. P.; Rakonjac, A.; Cornish, S. L.; Gardiner, S. A.

    2018-02-01

    We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect and magnetic fields on the sub-μ G scale. We split a ring-trapped condensate, initially in the mf=0 hyperfine state, into superpositions of internal mf=±1 states and condensate superflow, which are spin-orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population transfer to the mf=±1 states. The counterflow generation protocol is adiabatically deterministic and does not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation time and so is limited only by the lifetime of the condensate.

  11. The microwave spectrum of a triplet carbene: HCCN in the X 3Sigma - state

    NASA Astrophysics Data System (ADS)

    Saito, Shuji; Endo, Yasuki; Hirota, Eizi

    1984-02-01

    A simple carbene, the HCCN radical, has been identified in the gas phase using a microwave spectroscopic method. The HCCN molecule was generated in a free space absorption cell by the reaction of CH3CN with the microwave discharge products of CF4. Five rotational transitions, each split into three fine structure components, were observed in the region of 110 to 198 GHz. No hyperfine structure was resolved, although some of the observed lines showed broadening. The rotational constant, the centrifugal distortion constant, the spin-spin coupling constant, and the spin-rotation coupling constant were determined with good precision. The observed spectrum is completely consistent with that expected for a linear molecule in a 3Σ state, in agreement with an earlier matrix EPR study of Bernheim et al. [J. Chem. Phys. 43, 196 (1965)].

  12. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    PubMed

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  13. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  14. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  15. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, p{sup N}, and d{sup N} configurations and the SL-jj transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.J.

    1997-09-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.

  16. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method.

  17. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    NASA Astrophysics Data System (ADS)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-03-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  18. A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.

    2015-09-01

    In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.

  19. Low-temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol

    NASA Astrophysics Data System (ADS)

    Kveder, Marina; Merunka, Dalibor; Jokić, Milan; Rakvin, Boris

    2008-03-01

    X -band electron paramagnetic resonance spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5-11.5K . The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time Tm for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of Tm and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

  20. Comment on "Electron spin resonance studies in β-FeSi2 crystals" [J. Appl. Phys. 80, 1678 (1996)

    NASA Astrophysics Data System (ADS)

    Irmscher, K.; Gehlhoff, W.; Lange, H.

    1997-06-01

    In a recent article [J. Appl. Phys. 80, 1678 (1996)] Aksenov et al. reported on electron paramagnetic resonance (EPR) studies in β-FeSi2 crystals grown by chemical vapor transport. They did not perform a rigorous measurement of the angular variation of the EPR line positions. Consequently, there has been a drastic loss of information and most of their conclusions turn out to be erroneous. It is shown that the anisotropic signals (Ai,Bi) do not arise from spin triplet states but from centers with S=1/2 and their origins are not Ni2+ ions but Ni+ (Ai) and Cr- (Bi) ions substituting for Fe on one of its two inequivalent lattice sites. The analysis of the line structure of the isotropic signal (C) is incorrect and hence, the structure cannot be attributed to a ligand hyperfine interaction with four iron atoms. Finally, the determination of an acceptor activation energy from the temperature dependence of the C signal is not justified since no correction for the EPR intensity dependence due to the thermal population difference of the Zeeman levels was included.

  1. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  2. Molecular beam study of the a 3Σ+ state of NaK up to the dissociation limit

    NASA Astrophysics Data System (ADS)

    Temelkov, I.; Knöckel, H.; Pashov, A.; Tiemann, E.

    2015-03-01

    We provide spectroscopic data for the a 3Σ+ state of the 23Na39K molecule. The experiment is done in an ultrasonic beam apparatus, starting from the ground state X 1Σ+and driving the population to the a 3Σ+ state, using a Λ scheme with fixed pump and scanning dump laser. The signals are observed as dips of the total fluorescence. The intermediate level is chosen to be strongly perturbed by the B 1Π/c 3Σ+ states mixing to overcome the singlet-triplet transfer prohibition. We observed highly resolved hyperfine spectra of various rovibrational levels of the a 3Σ+state from va=2 up to the highest vibrational levels for rotational quantum numbers Na=4 ,6 ,8 . By the typical experimental linewidth of 17 MHz, the vibrational dependence of the hyperfine splitting is clearly revealed for NaK. The absolute frequency measurements of the vibrational levels are used for improvement of the a 3Σ+ potential curve and of the derived scattering length of all natural isotope combinations. Applying the Λ scheme in the reverse direction can provide a pathway for efficient transfer of ultracold 23Na39K molecules from the Na(3 s )+K(4 s ) asymptote to the lowest levels of the ground state. We show spectra that couple the absolute ground state vX=0 ,J =0 with an appropriate intermediate state for direct realization of the reverse path. The refined theoretical model of the coupled excited states of the Na(3 s )+K(4 p ) asymptote allows predictions of efficient paths for 23Na40K ; one example is calculated.

  3. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    NASA Astrophysics Data System (ADS)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  4. Dark energy cosmology with tachyon field in teleparallel gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motavalli, H., E-mail: Motavalli@Tabrizu.ac.ir; Akbarieh, A. Rezaei; Nasiry, M.

    2016-07-15

    We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.

  5. {sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmening, Thomas; Eckert, Hellmut, E-mail: eckerth@uni-muenster.de; Fehse, Constanze M.

    The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients andmore » the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.« less

  6. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.

    1996-01-01

    The main accomplishment was the merging of all the atomic line data into one wavelength-sorted list that is simple to use. We have combined all the atomic files from a CDROM into 534,910 line files GFALL.DAT and GFELEN.DAT. These are the data we use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEK.REF. There are no references after 1988, and for light elements there are no references after 1979. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have supplied a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the splittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than 50V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLHYP.DAT has 754,946 lines including hyperfine Sc I, V I, Mn I, and Co I.

  7. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  8. Chirp echo Fourier transform EPR-detected NMR.

    PubMed

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shiftmore » relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.« less

  10. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    NASA Astrophysics Data System (ADS)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less

  13. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    NASA Astrophysics Data System (ADS)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  14. Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.

    2017-12-01

    Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.

  15. High-resolution internal state control of ultracold 23Na87Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun

    2018-02-01

    We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.

  16. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  17. Creating Spin-One Fermions in the Presence of Artificial Spin-Orbit Fields: Emergent Spinor Physics and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá

    2018-05-01

    We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.

  18. Theoretical explanation of spin-Hamiltonian parameters and local structure for the orthorhombic MnO2 -4 clusters in K2CrO4 : Mn6 + crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Xie, Linhua

    2017-12-01

    In this paper, the spin-Hamiltonian parameters (g factors gx, gy, gz and hyperfine structure constants A Ax, Ay, Az) and the absorption spectrum of K2CrO4 : Mn6 + crystal are theoretically explained by using the high-order perturbation theory, the double-spin-orbit-coupling model theory and the double-mechanism theory (the crystal field mechanism and the charge-transfer (CT) mechanism). The calculation results show that the contribution of the CT mechanism cannot be neglected for Mn6 + ions in orthorhombic clusters with the ground state ?.

  19. Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+

    NASA Astrophysics Data System (ADS)

    Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.

    2018-03-01

    Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.

  20. Theoretical hyperfine structures of 19F i and 17O i

    NASA Astrophysics Data System (ADS)

    Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per

    2018-03-01

    Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.

  1. Investigation of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential

    NASA Astrophysics Data System (ADS)

    Yu, Chien-fan; Whaley, K. Birgitta; Hogg, C. S.; Sibener, S. J.

    1985-10-01

    A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of ˜32 meV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.

  2. Investigation of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(3) physisorption potential

    NASA Astrophysics Data System (ADS)

    Yu, C. F.; Whaley, K. B.; Hogg, C. S.; Sibener, S. J.

    1985-08-01

    A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of approximately 32 MeV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.

  3. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  4. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  5. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-07-01

    Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.

  6. Sandia fracture challenge 2: Sandia California's modeling approach

    DOE PAGES

    Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; ...

    2016-03-09

    The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less

  7. Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}.

    PubMed

    Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi

    2016-02-19

    In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.

  8. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  9. Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hougaard, Christiaan R.; Mulkerin, Brendan C.; Liu, Xia-Ji

    2018-04-01

    A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary (pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from shape resonances or closed-channel dominated resonances, the cross section can be well described within the Born approximation to within corrections due to the s -wave scattering. We compare our findings with numerical calculations and find excellent agreement.

  10. Theoretical study of spin Hall effect in conjugated Organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mahani, M. R.; Delin, A.

    The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.

  11. Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.

    2016-12-01

    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge-carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species. This additional contribution arises since triplet lifetimes are increased at lower temperatures. We tentatively conclude that spectral broadening induced by hyperfine coupling is slightly weaker in the more ordered β-phase than in the glassy phase since protons are more evenly spaced, whereas broadening effects due to spin-orbit coupling, which impacts the distribution of g -factors, appear to be somewhat more significant in the β-phase.

  12. Nanocomposite capsules with directional, pulsed nanoparticle release.

    PubMed

    Udoh, Christiana E; Cabral, João T; Garbin, Valeria

    2017-12-01

    The precise spatiotemporal delivery of nanoparticles from polymeric capsules is required for applications ranging from medicine to materials science. These capsules derive key performance aspects from their overall shape and dimensions, porosity, and internal microstructure. To this effect, microfluidics provide an exceptional platform for emulsification and subsequent capsule formation. However, facile and robust approaches for nanocomposite capsule fabrication, exhibiting triggered nanoparticle release, remain elusive because of the complex coupling of polymer-nanoparticle phase behavior, diffusion, phase inversion, and directional solidification. We investigate a model system of polyelectrolyte sodium poly(styrene sulfonate) and 22-nm colloidal silica and demonstrate a robust capsule morphology diagram, achieving a range of internal morphologies, including nucleated and bicontinuous microstructures, as well as isotropic and non-isotropic external shapes. Upon dissolution in water, we find that capsules formed with either neat polymers or neat nanoparticles dissolve rapidly and isotropically, whereas bicontinuous, hierarchical, composite capsules dissolve via directional pulses of nanoparticle clusters without disrupting the scaffold, with time scales tunable from seconds to hours. The versatility, facile assembly, and response of these nanocomposite capsules thus show great promise in precision delivery.

  13. On the interpretation of continuous wave electron spin resonance spectra of tempo-palmitate in 5-cyanobiphenyl.

    PubMed

    Zerbetto, Mirco; Polimeno, Antonino; Cimino, Paola; Barone, Vincenzo

    2008-01-14

    Electron spin resonance (ESR) measurements are highly informative on the dynamic behavior of molecules, which is of fundamental importance to understand their stability, biological functions and activities, and catalytic action. The wealth of dynamic information which can be extracted from a continuous wave electron spin resonance (cw-ESR) spectrum can be inferred by a basic theoretical approach defined within the stochastic Liouville equation formalism, i.e., the direct inclusion of motional dynamics in the form of stochastic (Fokker-Planck/diffusive) operators in the super Hamiltonian H governing the time evolution of the system. Modeling requires the characterization of magnetic parameters (e.g., hyperfine and Zeeman tensors) and the calculation of ESR observables in terms of spectral densities. The magnetic observables can be pursued by the employment of density functional theory which is apt, provided that hybrid functionals are employed, for the accurate computation of structural properties of molecular systems. Recently, an ab initio integrated computational approach to the in silico interpretation of cw-ESR spectra of multilabeled systems in isotropic fluids has been discussed. In this work we present the extension to the case of nematic liquid crystalline environments by performing simulations of the ESR spectra of the prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy in isotropic and nematic phases of 5-cyanobiphenyl. We first discuss the basic ingredients of the integrated approach, i.e., (1) determination of geometric and local magnetic parameters by quantum-mechanical calculations, taking into account the solvent and, when needed, the vibrational averaging contributions; (2) numerical solution of a stochastic Liouville equation in the presence of diffusive rotational dynamics, based on (3) parameterization of diffusion rotational tensor provided by a hydrodynamic model. Next we present simulated spectra with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing three-dimensional structural and dynamic information on molecular systems in anisotropic environments.

  14. Source Characterization of the 2015 Collapse in Gypsum Mine in Shandong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Chu, R.; Sheng, M.

    2016-12-01

    Source parameters of mining earthquakes are essential to investigating pressure redistribution and accumulation due to underground excavation. On 25 December 2015, a local magnitude 4.0 earthquake occurred at 07:56:12 BJT in Pingyi County, China (latitude: 35.5°N, longitude: 117.7°E) with a depth of 0 km. This earthquake is caused by underground cave collapse. In this paper, we used sliding-window cross-correlation method to detect aftershocks of this event. The result indicates there are at least six aftershocks within ten minutes after the earthquake. Then we inverted focal mechanisms and depths of the mainshock and the largest aftershock with three-component broadband seismic waveform data recorded by the National Seismic Network. We use the generalized Cut-and-Paste (gCAP) method to obtain their moment tensors, which allows for a characterization of the relative amounts of deviatoric and isotropic source components. This gCAP method divides three component waveforms into Pnl and surface wave segments, and allows adjustable time shifts between observed and synthetic data, so that it reduces the influence of uncertainties in the 1-D velocity model. The results show that both events have similar focal mechanisms, which contains obvious non-double-couple component with a large proportion of isotropic source component. The mechanisms are dominated by 80% implosive isotropic energy and 20% thrusting double couple energy. Such mechanisms might be explained by an asymmetric collapse of the mine cavity due to unevenly distributed in situ stresses, sympathetic shear on a roof fault, or between the roof and floor of the mine.

  15. A Catalog of Moment Tensors and Source-type Characterization for Small Events at Uturuncu Volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    Alvizuri, C. R.; Tape, C.

    2015-12-01

    We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we also used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we characterize the variation of moment tensor source type by plotting the misfit function in eigenvalue space, represented by a lune. We plot the optimal solutions for the 63 events on the lune in order to identify three subsets of the catalog: (1) a set of isotropic events, (2) a set of tensional crack events, and (3) a swarm of events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model; instead they require a multiple-process source model. Our study emphasizes the importance of characterizing uncertainties for full moment tensors, and it provides strong support for isotropic events at Uturuncu volcano.

  16. Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm

    NASA Astrophysics Data System (ADS)

    Felder, Raymond; Touahri, D.; Acef, Ouali; Hilico, L.; Zondy, Jean-Jacques; Clairon, Andre; de Beauvoir, Beatrice; Biraben, Francois; Julien, Lucile; Nez, Francois; Millerioux, Yves P.

    1995-04-01

    The absolute frequency measurement of each hyperfine component of the 5S3/2 and 5S5/2 levels in rubidium was done at ENS more than one year ago using Ti-Sa lasers. We built two devices based on diode lasers to study some metrological properties. We measure the frequency differences between hyperfine components of the 5S5/2 level and we calculate the corresponding hyperfine constants. We also measure the frequency interval between the 5S3/2 and 5S5/2 levels using a Schottky diode. The measured stability in terms of Allan variance is 3*10-13t-1/2 up to 2000 s. The light shift is investigated and the difference between our two systems is 1.7 kHz. The repeatability of one system is better than 10-12 and will allow the absolute frequency measurement at this level via the LPTF frequency synthesis chain.

  17. Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium

    NASA Astrophysics Data System (ADS)

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.

  18. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  19. Coherent and radiative couplings through two-dimensional structured environments

    NASA Astrophysics Data System (ADS)

    Galve, F.; Zambrini, R.

    2018-03-01

    We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.

  20. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity

    NASA Astrophysics Data System (ADS)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system. pectroscopy, yields a mean absolute deviation of about 5cm-1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm-1 of the experimental value of 12953±8cm-1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.

  1. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  2. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  3. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  4. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less

  5. Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji

    2017-10-01

    We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.

  6. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.

    PubMed

    Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H

    2017-08-01

    We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bounce universe and black holes from critical Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong

    2017-11-01

    We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.

  8. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    PubMed

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  9. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samskog, P.; Kispert, L.D.; Lund, A.

    Three different radicals were identified by EPR in x-ray irradiated single crystals of trehalose at 3 K. The species are the trapped electron, a hydroxy alkyl radical, and an alkoxy radical. The electron is trapped in an intermolecular site formed by two hydroxyl groups, one on the carbohydrate and the other on a water molecule as evidenced by the anisotropic proton hyperfine couplings. A geometric model for the trapping site is presented. The trapped electron decays by cleavage of an OH bond and the liberated hydrogen atom abstracts another hydrogen atom from an adjacent carbon atom forming a hydroxy alkylmore » radical. The site of the alkoxy radical has been identified. The primary reaction mechanism is discussed.« less

  11. Magnetic anisotropy on the single crystal UNi4B probed by 11B NMR

    NASA Astrophysics Data System (ADS)

    Kishimoto, Yasuki; Matsuno, Haruki; Kotegawa, Hisashi; Tou, Hideki; Saito, Hiraku; Amitsuka, Hiroshi; Homma, Yoshiya; Nakamura, Ai; Li, Dexin; Honda, Fuminori; Aoki, Dai

    2018-05-01

    We have performed a susceptibility M / H and 11B NMR measurements to investigate the static magnetic anisotropy of a single crystal UNi4B. The Knight shift 11K and the hyperfine coupling constant Ahf evaluated by 11K- M / H plot show anisotropic behavior between H ∥ [ 11 2 bar 0 ] and H ∥ [ 0001 ] , reflecting the bulk susceptibility. The evaluated transferred term Atr of Ahf for H ∥ [ 11 2 bar 0 ] is much larger than the one for H ∥ [ 0001 ] . The strong hybridization in the [0001]-plane due to a itinerant 5f-electron is strongly associated with the unique magnetic structure in this compound.

  12. Diode laser spectroscopy of the MnD radical ( 7Σ) and the determination of mass-independent parameters

    NASA Astrophysics Data System (ADS)

    Urban, Rolf-Dieter; Jones, Harold

    1991-03-01

    The infrared spectrum of the manganese deuteride radical has been observed in its ground electronic state ( 7Σ) using a diode-laser spectrometer. The hyperfine structure of a number of infrared transitions in the bands ν=1←0, ν=2←1 and ν=3←2 were measured with a nominal accuracy of ±0.001 cm -1. In all cases, the complete structure was easily resolved. Dunham parameters, spin—rotation and spin—spin coupling parameters were determined from the MnD data. A simultaneous fit of these data with those determined previously for MnH was carried out to determine mass-independent parameters and mass-scaling coefficients.

  13. Using Hyperfine Structure to Quantify the Effects of Substitution on the Electron Distribution Within a Pyridine Ring: a Study of 2-, 3-, and 4-PICOLYLAMINE

    NASA Astrophysics Data System (ADS)

    McDivitt, Lindsey M.; Himes, Korrina M.; Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.

    2017-06-01

    The ground state rotational spectra of the three methylamine substituted pyridines, 2-, 3-, and 4-picolylamine, were collected and analyzed over the frequency range of 7-17.5 GHz using chirped-pulsed Fourier transform microwave spectroscopy. All three molecules show a distinctive quadrupole splitting, which is representative of the local electronic environment around the two different ^{14}N nuclei, with the pyridine nitrogen being particularly sensitive to the pi-electron distribution within the ring. The role that the position of the methylamine group plays on the quadrupole coupling constants on both nitrogens will be discussed and compared to other substituted pyridines.

  14. 47,49Ti NMR: hyperfine interactions in oxides and metals.

    PubMed

    Bastow, T J; Gibson, M A; Forwood, C T

    1998-10-01

    A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.

  15. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  16. Influence of Fe-substitution on structural, magnetic and magnetocaloric properties of Nd2Fe17-xCox solid solutions

    NASA Astrophysics Data System (ADS)

    Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben

    2018-02-01

    Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).

  17. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  18. Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510[NV]H252 cluster

    NASA Astrophysics Data System (ADS)

    Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.

    2018-02-01

    Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.

  19. The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare

    2014-06-01

    In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.

  20. Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of 63Ni

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.

    2017-01-01

    Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.

  1. The HCO+-H2 van der Waals interaction: Potential energy and scattering

    NASA Astrophysics Data System (ADS)

    Massó, H.; Wiesenfeld, L.

    2014-11-01

    We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.

  2. The HCO⁺-H₂ van der Waals interaction: potential energy and scattering.

    PubMed

    Massó, H; Wiesenfeld, L

    2014-11-14

    We compute the rigid-body, four-dimensional interaction potential between HCO(+) and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO(+) and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.

  3. Quantum phase transition in dimerised spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  4. One-Shot Determination of Residual Dipolar Couplings: Application to the Structural Discrimination of Small Molecules Containing Multiple Stereocenters.

    PubMed

    Castañar, Laura; Garcia, Manuela; Hellemann, Erich; Nolis, Pau; Gil, Roberto R; Parella, Teodor

    2016-11-18

    A novel approach for the fast and efficient structural discrimination of molecules containing multiple stereochemical centers is described. A robust J-resolved HSQC experiment affording highly resolved 1 J CH / 1 T CH splittings along the indirect dimension and homodecoupled 1 H signals in the detected dimension is proposed. The experiment enables in situ distinction of both isotropic and anisotropic components of molecules dissolved in compressed PMMA gels, allowing a rapid and direct one-shot determination of accurate residual dipolar coupling constants from a single NMR spectrum.

  5. Whither HFI/NQI?

    NASA Astrophysics Data System (ADS)

    Bharuth-Ram, K.

    2013-05-01

    A brief review is given of the Hyperfine Interactions Conference series and, in particular, of the Joint meetings of the Hyperfine Interactions and Nuclear Quadrupole Interaction (HFI/NQI) Conferences, with respect to number of participants, contributed papers and participant countries. Trends are traced and recommendations are offered to attract a wider participation at future HFI/NQI conferences.

  6. Hyperfine excitation of OH+ by H

    NASA Astrophysics Data System (ADS)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  7. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  8. ``Dressing'' lines and vertices in calculations of matrix elements with the coupled-cluster method and determination of Cs atomic properties

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Porsev, Sergey G.

    2005-03-01

    We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally involve infinite number of terms and we devise a method of partial summation (dressing) of the resulting series. Our formalism is built upon an expansion of the product C†C of cluster amplitudes C into a sum of n -body insertions. We consider two types of insertions: particle (hole) line insertion and two-particle (two-hole) random-phase-approximation-like insertion. We demonstrate how to “dress” these insertions and formulate iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We illustrate our formalism with relativistic calculations of the hyperfine constant A(6s) and the 6s1/2-6p1/2 electric-dipole transition amplitude for the Cs atom. Finally, we augment the truncated coupled-cluster calculations with otherwise omitted fourth order diagrams. The resulting analysis for Cs is complete through the fourth order of many-body perturbation theory and reveals an important role of triple and disconnected quadruple excitations.

  9. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.; Bell, Barbara

    1996-01-01

    This line list is a replacement for the Kurucz-Peytremann line list. We have combined all the atomic files from CDROM 18 into 534910 line files GFALL.DAT and GFELEM.DAT. These are the data we actually use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEN.REF. There are no references after 1988. For light elements there are no references after 1979. We have the literature into the 1990's but have not had manpower or funding to update everything. Our current plan is to make a new semiempirical calculation for each species and at that time to include all the data from the literature. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have not yet included data for isotopic splitting. We supply a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the oplittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than S0V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLKYP.DAT has 754946 lines including hyperfine Sc(I), V(I), Mn(I), and Co(I). A bibliography for last year (1994-1995) is also attached.

  10. Hyperfine quenching of the 2s2 2p5 3 s3P2 state of Ne-like ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Stafford, A.; Safronova, A. S.

    2017-04-01

    The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the 2s2 2p5 3 s 3P2 state in Ne-like ions. In particular, the 3P2 excited state decays to the 1S0 ground state by M2 emission, while both 1P1 and 3P1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P1 and 1P1 states into the 3P2 state, resulting in an increase of the 3P2 transition rate and a corresponding reduction of the 3P2 lifetime. We consider 22 Ne like ions with Z = 14 - 94 and nuclear moment I =1/2. We found that the largess hyperfine quenching contribution by a factor of 2 are for Ne-like 31P and 203Tl. The smallest (less than 1%) induced contribution are the following Ne-like ions: 57Fe, 107Ag, 109Ag, 183W, and 187Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered. This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.

  11. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Bachert, Peter

    2003-10-01

    Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength ( Sk) and the difference in resonance frequencies of the coupled spins (Δ ω) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Δ ω. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.

  12. A single dopant atom in silicon sees the light

    NASA Astrophysics Data System (ADS)

    Rogge, Sven

    2014-03-01

    Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.

  13. Coherent coupling between a quantum dot and a donor in silicon

    DOE PAGES

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  14. Optimized pulse shaping for trapped ion quantum computing

    NASA Astrophysics Data System (ADS)

    Manning, T.; Debnath, Shantanu; Choi, Taeyoung; Figgatt, Caroline; Monroe, Chris

    2013-05-01

    We perform entangling phase gates between pairs of qubits in a chain of trapped atomic ytterbium ions. Beat notes between frequency comb lines of a pulsed laser coherently drive Raman transitions that couple the hyperfine qubits to multiple collective transverse modes of motion. By optimizing the phase and amplitude of segmented laser pulses, we demonstrate a five-segment scheme to entangle two qubits with high fidelity over a range of detunings. We compare this special case of full control of spin-motion entanglement to a traditional single-segment gate. We extend this scheme to selectively entangle pairs of qubits in larger chains using individual optical addressing, where we couple to all the motional modes. We show how these robust gates can achieve high fidelities for practical gate times in an approach that scales realistically to much larger numbers of qubits. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  15. Microfabricated Microwave-Integrated Surface Ion Trap

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  16. Theoretical study of hyperfine coupling constants and electron spin g factors for X2Σ diatomics from Groups 1 and 2

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    The ESR parameters of the cations Be 2 + , Mg 2 + , Ca 2 + , BeMg + , BeCa + , MgCa + and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2 Σu + (1 σg 2 1 σu )/X 2 Sigma + (1 σ2 2 σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6-311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6-311+ G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg|| and Δg Υ̂values are negative, but Δg|| lies close to zero. For Δg Υ̂, the coupling with 1 2 Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the | Δg Υ̂| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ*( s - s ) SOMO has the same nodal properties as a p σorbital. Of the radicals considered here, an ESR spectrum is available only for Mg2+. Our theoretical A iso of-287 MHz reproduces well the matrix result (-291 MHz). Calculated values of-10 ppm for Deltag|| and of-1280 ppm for Deltag Υ̂give an average < Δg> =-860 ppm that lies within the experimental range of-600( ±300) ppm in Ne, and of-1300( ±500) ppm in Ar matrices.

  17. Inter-diffusion analysis of joint interface of tungsten-rhenium couple

    NASA Astrophysics Data System (ADS)

    Hua, Y. F.; Li, Z. X.; Zhang, X.; Du, J. H.; Huang, C. L.; Du, M. H.

    2011-09-01

    The tungsten-rhenium couple was prepared by using glow plasma physical vapor deposition (PVD) on the isotropic fine grained graphite (IG) substrates. Diffusion anneals of the tungsten-rhenium couple were conducted at the temperature from 1100 °C to 1400 °C to investigate the inter-diffusion behaviors. The results showed that the thickness of the inter-diffusion zone increased with increasing annealing temperature. The relationship between the inter-diffusion coefficient and the annealing temperature accorded with the Arrhenius manner. The value of inter-diffusion activation energies was 189 kJ/mole (1.96 eV). The service time of tungsten-rhenium multilayer diffusion barrier was limited by the inter-diffusion for rhenium and tungsten rather than the diffusion of carbon in rhenium.

  18. The isotropic local Wigner-Seitz model: An accurate theoretical model for the quasi-free electron energy in fluids

    NASA Astrophysics Data System (ADS)

    Evans, Cherice; Findley, Gary L.

    The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.

  19. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    NASA Astrophysics Data System (ADS)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  20. Thermoviscoplastic model with application to copper

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1988-01-01

    A viscoplastic model is developed which is applicable to anisothermal, cyclic, and multiaxial loading conditions. Three internal state variables are used in the model; one to account for kinematic effects, and the other two to account for isotropic effects. One of the isotropic variables is a measure of yield strength, while the other is a measure of limit strength. Each internal state variable evolves through a process of competition between strain hardening and recovery. There is no explicit coupling between dynamic and thermal recovery in any evolutionary equation, which is a useful simplification in the development of the model. The thermodynamic condition of intrinsic dissipation constrains the thermal recovery function of the model. Application of the model is made to copper, and cyclic experiments under isothermal, thermomechanical, and nonproportional loading conditions are considered. Correlations and predictions of the model are representative of observed material behavior.

  1. Materials for optical memory: Resolved hyperfine structure in KY3F10:Ho3+

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2013-08-01

    Basic principles of creating a quantum optical memory (QOM) and requirements for relevant materials, in particular, for crystals doped with rare-earth ions, are briefly reviewed. A combined approach to studying the hyperfine structure, which is essential for QOM applications, is presented on the example of KY3F10:Ho3+.

  2. Local magnetic moment formation at 119Sn Mössbauer impurity in RCo2 (R=Gd,Tb,Dy,Ho,Er) Laves phase compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2008-04-01

    In this work, we theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a Mösbauer Sn119 impurity diluted at the R site (R=Gd,Tb,Dy,Ho,Er) of the cubic Laves phase intermetallic compounds RCo2. One considers that the magnetic hyperfine fields have two contributions, (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24, 1601 (1963)] model, and (ii) the contribution from the induced magnetic moments arising from the Co neighboring sites. Our calculated self-consistent total magnetic hyperfine fields are in a good agreement with recent experimental data.

  3. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  4. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    NASA Astrophysics Data System (ADS)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  5. Matrix effects on copper(II)phthalocyanine complexes. A combined continuous wave and pulse EPR and DFT study.

    PubMed

    Finazzo, Cinzia; Calle, Carlos; Stoll, Stefan; Van Doorslaer, Sabine; Schweiger, Arthur

    2006-04-28

    The effect of the electron withdrawing or donating character of groups located at the periphery of the phthalocyanine ligand, as well as the influence of polar and nonpolar solvents are of importance for the redox chemistry of metal phthalocyanines. Continuous wave and pulse electron paramagnetic resonance and pulse electron nuclear double resonance spectroscopy at X- and Q-band are applied to investigate the electronic structure of the complexes Cu(II)phthalocyanine (CuPc), copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc(t)), and copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine (CuPc(F)) in various matrices. Isotope substitutions are used to determine the g values, the copper hyperfine couplings and the hyperfine interactions with the 14N, 1H and 19F nuclei of the macrocycle and the surrounding matrix molecules. Simulations and interpretations of the spectra are shown and discussed, and a qualitative analysis of the data using previous theoretical models is given. Density functional computations facilitate the interpretation of the EPR parameters. The experimental g, copper and nitrogen hyperfine and nuclear quadrupole values are found to be sensitive to changes of the solvent and the structure of the macrocycle. To elucidate the electronic, structural and bonding properties the changes in the g principal values are related to data from UV/Vis spectroscopy and to density functional theory (DFT) computations. The analysis of the EPR data indicates that the in-plane metal-ligand sigma bonding is more covalent for CuPc(t) in toluene than in sulfuric acid. Furthermore, the out-of-plane pi bonding is found to be less covalent in the case of a polar sulfuric acid environment than with nonpolar toluene or H2Pc environment, whereby the covalency of this bonding is increased upon addition of tert-butyl groups. No contribution from in-plane pi bonding is found.

  6. Persistent Optical Nuclear Spin Narrowing in a Singly Charged InAs Quantum Dot

    DTIC Science & Technology

    2012-02-01

    explained in terms of an anisotropic hyperfine coupling between the hole spin and the nuclear spins. © 2012 Optical Society of America OCIS codes: 300.6250...February 2012 / J. Opt. Soc. Am. B A121 where γs (γt) is the spin (trion) dephasing rate, χ is half the pump Rabi frequency ΩR (ΩR # μEℏ , where μ is...probe ab- sorption at the dark state dip (αdip) and the Rabi sideband (αpeak): αdip # α0 χ2γs & γt$γ2s% χ4 & 2χ2γtγs & γ2t γ2s ; (11) αpeak # α0 χ2γs

  7. Observation of Pure Rotational Spectra of SiCCN by Fourier-Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Umeki, Hiroya; Nakajima, Masakazu; Endo, Yasuki

    2014-06-01

    Pure rotational spectra of SiCCN ( ˜{X} 2Π3/2) have been observed using Fourier-transform microwave (FTMW) spectroscopy in the frequency region 13 to 35 GHz. The SiCCN radical was produced in a supersonic jet by discharging a mixture gas, 0.2% SiCl4 and 0.2% CH3CN diluted in Ar. The effective rotational constant Beff,3/2, the centrifugal distortion constant D, and the hyperfine coupling constants, a + (b + c)/2 and eQq0, were determined with a standard deviation of the fit to be 6 kHz. Determined B and eQq0 are consistent with those derived from ab initio calculations. Λ-type doublings were not resolved for the observed spectra.

  8. Collisional excitation of interstellar PO(X2Π) by He: new ab initio potential energy surfaces and scattering calculations

    NASA Astrophysics Data System (ADS)

    Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos

    2018-01-01

    We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.

  9. Spin and charge transport through 1D Moire Crystals

    NASA Astrophysics Data System (ADS)

    Barraud, Clement; Bonnet, Romeo; Martin, Pascal; Della Rocca, Maria Luisa; Lafarge, Philippe; Laboratoire Matériaux Et Phénomènes Quantiques Team; Laboratoire Itodys Team

    Multiwall carbon nanotubes are good candidates for propagating spin information over large distances due to the large mobility of the carriers and to the weak spin-orbit coupling and hyperfine interactions. In this talk, I will present an experimental study concerning charge and spin transport through large diameter multiwall carbon nanotubes presenting intershell interactions leading to superlattice effects (1D Moire). After a description of 1D Moire crystals and to the implication of such superlattices in quantum transport, I will show that spin transport seems to be very efficient close to the new van Hove singularities. Clear magnetoresistance signals of the order of 40 % are reported at low temperatures. We acknowledge financial supports from the Labex SEAM and DIM NANO-K.

  10. The Submillimeter Spectrum of MnH and MnD (X7Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2008-01-01

    The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.

  11. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  12. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  13. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  14. Hyperfine field and electronic structure of magnetite below the Verwey transition

    NASA Astrophysics Data System (ADS)

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, P.

    2015-03-01

    Magnetite represents a prototype compound with a mixed valence of iron cations. Its structure and electron ordering below the Verwey transition have been studied for decades. A recently published precise crystallographic structure [Senn et al., Nature (London) 481, 173 (2012), 10.1038/nature10704] accompanied by a suggestion of a "trimeron" model has given a new impulse to magnetite research. Here we investigate hyperfine field anisotropy in the C c phase of magnetite by quantitative reanalysis of published measurements of the dependences of the 57Fe nuclear magnetic resonance frequencies on the external magnetic field direction. Further, ab initio density-functional-theory-based calculations of hyperfine field depending on the magnetization direction using the recently reported crystal structure are carried out, and analogous hyperfine anisotropy data linked to particular crystallographic sites are determined. These two sets of data are compared, and mutually matching groups of the iron B sites in the 8:5:3 ratio are found. Moreover, information on electronic structure is obtained from the ab initio calculations. Our results are compared with the trimeron model and with an alternative analysis [Patterson, Phys. Rev. B 90, 075134 (2014), 10.1103/PhysRevB.90.075134] as well.

  15. Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers

    NASA Astrophysics Data System (ADS)

    Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.

    1998-05-01

    Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.

  16. Nonsingular, big-bounce cosmology from spinor-torsion coupling

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem

    2012-05-01

    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.

  17. Simulations of non-relativistic quantum chromodynamics at strong and weak coupling

    NASA Astrophysics Data System (ADS)

    Shakespeare, Norman Harold

    In this thesis heavy quarks are investigated using lattice nonrelativistic quantum chromodynamics (NRQCD). Two major research works are presented. In the first major work, simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed at both leading and next-to-leading order in the relativistic expansion, using a large number of lattice spacings. A detailed comparison between mean-link and average plaquette tadpole renormalization schemes is undertaken with a number of features favouring the use of mean-links. These include much better scaling behavior of the hyperfine splittings and smaller relativistic corrections to the spin splittings. Signs of a breakdown in the NRQCD expansion are seen when the bare quark mass, in lattice units, falls below about one. In the second work, coefficients for the perturbative expansion of the static quark self energy are extracted from Monte Carlo simulations in the perturbative region of lattice quantum chromodynamics (QCD). A very large systematic study resulted in a major extension of existing methods. Twisted boundary conditions are used to eliminate the effects of zero modes and to suppress tunneling between the degenerate Z3 vacua. The Monte Carlo results are in excellent agreement with analytic perturbation theory, which is known through second order. New results for the third order coefficient are reported. Preliminary work is reported on quark propagators which will be used to measure second order mass renormalizations for NRQCD fermions.

  18. Effect of Charge Localization on the Effective Hyperfine Interaction in Organic Semiconducting Polymers

    NASA Astrophysics Data System (ADS)

    Geng, Rugang; Subedi, Ram C.; Luong, Hoang M.; Pham, Minh T.; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A.; Nguyen, Tho D.

    2018-02-01

    Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1 /N0.5 has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1 /N0.52 in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

  19. Effect of Charge Localization on the Effective Hyperfine Interaction in Organic Semiconducting Polymers.

    PubMed

    Geng, Rugang; Subedi, Ram C; Luong, Hoang M; Pham, Minh T; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A; Nguyen, Tho D

    2018-02-23

    Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

  20. Plate Wave Resonance with Air-Coupled Ultrasonics

    NASA Astrophysics Data System (ADS)

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-01

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (θmax) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (θmax) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at θmax.

  1. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants.

  2. Nonlinear spin susceptibility in topological insulators

    NASA Astrophysics Data System (ADS)

    Shiranzaei, Mahroo; Fransson, Jonas; Cheraghchi, Hosein; Parhizgar, Fariborz

    2018-05-01

    We revise the theory of the indirect exchange interaction between magnetic impurities beyond the linear response theory to establish the effect of impurity resonances in the surface states of a three-dimensional topological insulator. The interaction is composed of isotropic Heisenberg, anisotropic Ising, and Dzyaloshinskii-Moriya types of couplings. We find that all three contributions are finite at the Dirac point, which is in stark contrast to the linear response theory which predicts a vanishing Dzyaloshinskii-Moriya-type contribution. We show that the spin-independent component of the impurity scattering can generate large values of the Dzyaloshinskii-Moriya-type coupling in comparison with the Heisenberg and Ising types of couplings, while these latter contributions drastically reduce in magnitude and undergo sign changes. As a result, both collinear and noncollinear configurations are allowed magnetic configurations of the impurities.

  3. Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, W.; Wilt, Thomas E.

    1997-01-01

    The scope of the work in this presentation focuses on the development of algorithms for the integration of rate dependent constitutive equations. In view of their robustness; i.e., their superior stability and convergence properties for isotropic and anisotropic coupled viscoplastic-damage models, implicit integration schemes have been selected. This is the simplest in its class and is one of the most widely used implicit integrators at present.

  4. High spin systems with orbital degeneracy.

    PubMed

    Shen, Shun-Qing; Xie, X C; Zhang, F C

    2002-01-14

    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.

  5. Non-Abelian S-term dark energy and inflation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2018-03-01

    We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version Sμν of the gauge field strength tensor Fμν, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter ω ≃ - 1 and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the S term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve Sμν, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.

  6. Full moment tensors for small events (Mw < 3) at Uturuncu volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso; Tape, Carl

    2016-09-01

    We present a catalogue of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broad-band stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the 6-D space of moment tensors. For each event, we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalogue: (1) six isotropic events, (2) five tensional crack events, and (3) a swarm of 14 events southeast of the volcanic centre that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes.

  7. Continuum mechanical model for cross-linked actin networks with contractile bundles

    NASA Astrophysics Data System (ADS)

    Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.

    2018-01-01

    In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.

  8. Geometric phase for a two-level system in photonic band gab crystal

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2018-05-01

    In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the same condition. Finally, we explore the relationship between the variation of the GP and population in terms of the physical parameters.

  9. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  10. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    PubMed

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  11. Illuminating heterogeneous anisotropic upper mantle: testing a new anisotropic teleseismic body-wave tomography code - part II: Inversion mode

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi

    2015-04-01

    Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.

  12. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity

    PubMed Central

    2017-01-01

    The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herojit Singh, L.; Govindaraj, R., E-mail: govind@igcar.gov.in; Rajagopalan, S.

    Mössbauer spectroscopic studies have been carried out at different temperatures across ferromagnetic to paramagnetic transition in Ni{sub 50}Fe{sub 35}Co{sub 15} and the evolution of hyperfine parameters such as centre shift and magnetic hyperfine fields with temperature has been studied. Mössbauer spectrum obtained at 300 K in Ni{sub 50}Fe{sub 35}Co{sub 15} exhibiting fcc crystal structure is a six line pattern with the mean value of the hyperfine field close to 33 Tesla. Ferromagnetic to paramagnetic transition has been observed to occur in this system around 895 K matching with that of magnetization results. Debye temperature of this nickel rich alloy ismore » deduced to be around 470 K matching with that of Ni. Effect of prolonged annealing at 750 K on the magnetic property is also investigated with respect to the thermal stability of the alloy.« less

  14. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  15. Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce H.; Dalton, Larry R.

    1980-01-01

    The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However, consideration of spectral shapes suggests that the C'/C parameter definition is not meaningfully extended from 9.5 to 35 GHz. Alternative definitions of the L″/L and C'/C parameters are proposed for those microwave frequencies for which the electron Zeeman anisotropy is comparable to or greater than the electron-nitrogen nuclear hyperfine anisotropy.

  16. EPR hyperfine structure of the Mo-related defect in CdWO4

    NASA Astrophysics Data System (ADS)

    Elsts, E.; Rogulis, U.

    2005-01-01

    The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.

  17. Leading logarithmic corrections to the muonium hyperfine splitting and to the hydrogen Lamb shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karshenboim, S.G.

    1994-12-31

    Main leading corrections with recoil logarithm log(M/m) and low-energy logarithm log(Za) to the Muonium hyperfine splitting axe discussed. Logarithmic corrections have magnitudes of 0.1 {divided_by} 0.3 kHz. Non-leading higher order corrections axe expected to be not larger than 0.1 kHz. Leading logarithmic correction to the Hydrogen Lamb shift is also obtained.

  18. Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.

    2004-12-01

    Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.

  19. Spectroscopy of the 1/2 2S → 3/2 2P transition in Yb ii: Isotope shifts, hyperfine splitting, and branching ratios

    NASA Astrophysics Data System (ADS)

    Feldker, T.; Fürst, H.; Ewald, N. V.; Joger, J.; Gerritsma, R.

    2018-03-01

    We report on spectroscopic results on the 1/2 2S → 3/2 2P transition in single trapped Yb+ ions. We measure the isotope shifts for all stable Yb+ isotopes except +173Yb, as well as the hyperfine splitting of the 3/2 2P state in +171Yb. Our results are in agreement with previous measurements but are a factor of 5-9 more precise. For the hyperfine constant A (3/2 2P)=875.4 (10 )MHz our results also agree with previous measurements but deviate significantly from theoretical predictions. We present experimental results on the branching ratios for the decay of the 3/2 2P state. We find branching fractions for the decay to the 3/2 2D state and 5/2 2D state of 0.17(1)% and 1.08(5)%, respectively, in rough agreement with theoretical predictions. Furthermore, we measured the isotope shifts of the 7/2 2F →1D[5/2 ] 5 /2 transition and determine the hyperfine structure constant for the 1D[5/2 ] 5 /2 state in +171Yb to be A (1D[5/2 ] 5 /2)=-107 (6 ) MHz .

  20. Experimental and Modelling Investigations of the Coupled Elastoplastic Damage of a Quasi-brittle Rock

    NASA Astrophysics Data System (ADS)

    Zhang, Jiu-Chang

    2018-02-01

    Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.

  1. Lattice Boltzmann approach for complex nonequilibrium flows.

    PubMed

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  2. Transient coherence of media under strong phase modulation exploiting electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Shwa, David; Katz, Nadav

    2014-08-01

    When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.

  3. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    PubMed Central

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  4. Collisional excitation of HC3N by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Lique, François; Wiesenfeld, Laurent

    2016-08-01

    New calculations for rotational excitation of cyanoacetylene by collisions with hydrogen molecules are performed to include the lowest 38 rotational levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the interaction potential of Wernli et al. whose accuracy is checked against spectroscopic measurements of the HC3N-H2 complex. The quantum coupled-channel approach is employed and complemented by quasi-classical trajectory calculations. Rate coefficients for ortho-H2 are provided for the first time. Hyperfine resolved rate coefficients are also deduced. Collisional propensity rules are discussed and comparisons between quantum and classical rate coefficients are presented. This collisional data should prove useful in interpreting HC3N observations in the cold and warm ISM, as well as in protoplanetary discs.

  5. Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling.

    PubMed

    Mitrikas, George; Efthimiadou, Eleni K; Kordas, George

    2014-02-14

    We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the (1)H and (29)Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 μs is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two other sources of decoherence: first, a classical magnetic field noise imposed by the (1)H nuclear spins of the cage organic substituents, which can be described by a virtual fluctuating magnetic field with the proton Larmor frequency, and second, decoherence due to anisotropic hyperfine coupling between the electron and the inner (29)Si spins of the cage.

  6. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-02-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, R. S.; Ávila, H. C.; Cremona, M., E-mail: cremona@fis.puc-rio.br

    The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMARmore » effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.« less

  8. CNOT sequences for heterogeneous spin qubit architectures in a noisy environment

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco

    Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.

  9. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  10. Scalar field dark energy with a minimal coupling in a spherically symmetric background

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jiro

    Dark energy models and modified gravity theories have been actively studied and the behaviors in the solar system have been also carefully investigated in a part of the models. However, the isotropic solutions of the field equations in the simple models of dark energy, e.g. quintessence model without matter coupling, have not been well investigated. One of the reason would be the nonlinearity of the field equations. In this paper, a method to evaluate the solution of the field equations is constructed, and it is shown that there is a model that can easily pass the solar system tests, whereas, there is also a model that is constrained from the solar system tests.

  11. HYM-flation: Yang-Mills cosmology with Horndeski coupling

    NASA Astrophysics Data System (ADS)

    Davydov, E.; Gal'tsov, D.

    2016-02-01

    We propose new mechanism for inflation using classical SU (2) Yang-Mills (YM) homogeneous and isotropic field non-minimally coupled to gravity via Horndeski prescription. This is the unique generally and gauge covariant ghost-free YM theory with the curvature-dependent action leading to second-order gravity and Yang-Mills field equations. We show that its solution space contains de Sitter boundary to which the trajectories are attracted for some finite time, ensuring the robust inflation with a graceful exit. The theory can be generalized to include the Higgs field leading to two-steps inflationary scenario, in which the Planck-scale YM-generated inflation naturally prepares the desired initial conditions for the GUT-scale Higgs inflation.

  12. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  13. Phase Diagrams and the Non-Linear Dielectric Constant in the Landau-Type Potential Including the Linear-Quadratic Coupling between Order Parameters

    NASA Astrophysics Data System (ADS)

    Iwata, Makoto; Orihara, Hiroshi; Ishibashi, Yoshihiro

    1997-04-01

    The phase diagrams in the Landau-type thermodynamic potential including the linear-quadratic coupling between order parameters p and q, i.e., qp2, which is applicable to the phase transition in the benzil, phospholipid bilayers, and the isotropic-nematic phase transition in liquid crystals, are studied. It was found that the phase diagram in the extreme case has one tricritical point c1, one critical end point e1, and two triple points t1 and t2. The linear and nonlinear dielectric constants in the potential are discussed in the case that the order parameter p is the polarization.

  14. Metallization and superconductivity in Ca-intercalated bilayer MoS2

    NASA Astrophysics Data System (ADS)

    Szczȱśniak, R.; Durajski, A. P.; Jarosik, M. W.

    2017-12-01

    A two-dimensional molybdenum disulfide (MoS2) has attracted significant interest recently due to its outstanding physical, chemical and optoelectronic properties. In this paper, using the first-principles calculations, the dynamical stability, electronic structure and superconducting properties of Ca-intercalated bilayer MoS2 are investigated. The calculated electron-phonon coupling constant implies that the stable form of investigated system is a strong-coupling superconductor (λ = 1.05) with a low value of critical temperature (TC = 13.3 K). Moreover, results obtained within the framework of the isotropic Migdal-Eliashberg formalism proved that Ca-intercalated bilayer MoS2 exhibits behavior that goes beyond the scope of the conventional BCS theory.

  15. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  16. Lithium formate for EPR dosimetry: radiation-induced radical trapping at low temperatures.

    PubMed

    Krivokapić, André; Aalbergsjø, Siv G; De Cooman, Hendrik; Hole, Eli Olaug; Nelson, William H; Sagstuen, Einar

    2014-05-01

    Radiation-induced primary radicals in lithium formate. A material used in EPR dosimetry have been studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-Induced EPR (EIE) techniques. In this study, single crystals were X irradiated at 6-8 K and radical formation at these and higher temperatures were investigated. Periodic density functional theory calculations were used to assist in assigning the radical structures. Mainly two radicals are present at 6 K, the well-known CO2(•-) radical and a protonated electron-gain product. Hyperfine coupling tensors for proton and lithium interactions were obtained for these two radicals and show that the latter radical exists in four conformations with various degrees of bending at the radical center. Pairs of CO2(•-) radicals were also observed and the tensor for the electron-electron dipolar coupling was determined for the strongest coupled pair, which exhibited the largest spectral intensity. Upon warming, both the radical pairs and the reduction product decay, the latter apparently by a transient species. Above 200 K the EPR spectrum was mainly due to the CO2(•-) (mono) radicals, which were previously characterized as the dominant species present at room temperature and which account for the dosimetric EPR signal.

  17. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    NASA Astrophysics Data System (ADS)

    Pal'Chikov, V. G.

    2000-08-01

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  18. Subpicosecond X rotations of atomic clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2018-05-01

    We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.

  19. Collisional relaxation of MnH (X7Σ+) in a magnetic field: effect of the nuclear spin of Mn.

    PubMed

    Stoecklin, T; Halvick, Ph

    2011-11-14

    In the present study we investigate the role played by the hyperfine structure of manganese in the cooling and magnetic trapping of MnH((7)Σ(+)). The effect of the hyperfine structure of Mn on the relaxation of the magnetically trappable maximally stretched low-field seeking state of MnH((7)Σ(+)) in collisions with (3)He is deduced from comparison between the results of the present approach and our previous nuclear spin free calculations. We show that our previous results are unchanged at the temperature of the buffer gas cooling experiment but find a new resonance at very low collision energy. The role played by the different contributions to the hyperfine diatomic Hamiltonian considered in this work as well as the effect of an applied magnetic field on this resonance are also analyzed.

  20. Mean link versus average plaquette tadpoles in lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Shakespeare, Norman H.; Trottier, Howard D.

    1999-03-01

    We compare mean-link and average plaquette tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Simulations are done for the three quarkonium systems c overlinec, b overlinec, and b overlineb. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at a large number of lattice spacings. A number of features emerge, all of which favor tadpole renormalization using mean links. This includes much better scaling of the hyperfine splittings in the three quarkonium systems. We also find that relativistic corrections to the spin splittings are smaller with mean-link tadpoles, particularly for the c overlinec and b overlinec systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units (with the bare quark masses turning out to be much larger with mean-link tadpoles).

  1. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    NASA Astrophysics Data System (ADS)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  2. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  3. Prestack reverse time migration for tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Jang, Seonghyung; Hien, Doan Huy

    2013-04-01

    According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple geological model including syncline and anticline, the prestack depth migration using TTI-RTM in weak anisotropic media shows the subsurface image is similar to the true geological model used to generate the shot gathers.

  4. Magnetic Field Line Random Walk in Arbitrarily Stretched Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Ruffolo, D.; Matthaeus, W. H.; Rowlands, G.

    2006-12-01

    Many types of space and laboratory plasmas involve turbulent fluctuations with an approximately uniform mean magnetic field B_0, and the field line random walk plays an important role in guiding particle motions. Much of the relevant literature concerns isotropic turbulence, and has mostly been perturbative, i.e., for small fluctuations, or based on numerical simulations for specific conditions. On the other hand, solar wind turbulence is apparently anisotropic, and has been modeled as a sum of idealized two-dimensional and one dimensional (slab) components, but with the deficiency of containing no oblique wave vectors. In the present work, we address the above issues with non-perturbative analytic calculations of diffusive field line random walks for unpolarized, arbitrarily stretched isotropic turbulence, including the limits of nearly one-dimensional (highly stretched) and nearly two-dimensional (highly squashed) turbulence. We develop implicit analytic formulae for the diffusion coefficients D_x and D_z, two coupled integral equations in which D_x and D_z appear inside 3-dimensional integrals over all k-space, are solved numerically with the aid of Mathematica routines for specific cases. We can vary the parameters B0 and β, the stretching along z for constant turbulent energy. Furthermore, we obtain analytic closed-form solutions in all extreme cases. We obtain 0.54 < D_z/D_x < 2, indicating an approximately isotropic random walk even for very anisotropic (unpolarized) turbulence, a surprising result. For a given β, the diffusion coefficient vs. B0 can be described by a Padé approximant. We find quasilinear behavior at high B0 and percolative behavior at low B_0. Partially supported by a Sritrangthong Scholarship from the Faculty of Science, Mahidol University; the Thailand Research Fund; NASA Grant NNG05GG83G; and Thailand's Commission for Higher Education.

  5. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing.

    PubMed

    Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.

  6. Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy

    NASA Astrophysics Data System (ADS)

    Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang

    2016-07-01

    The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO: V Zn under compression, the coupling between V_{{Zn}}0 is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between V_{{Zn}}0 but weaken that of V_{{Ga}}^{ - } . The neutral V Ga are always AFM coupling under strains from -6 to +6% and could be stabilized by compressions. The interactions between V_{{Ga}}^{ - } are always FM with ignorable variations under strains; however, the FM couplings between V_{{Ga}}^{2 - } could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.

  7. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  8. Moessbauer Study of Reduced Putidaredoxin in Zero and Intermediate Applied Fields.

    NASA Astrophysics Data System (ADS)

    Valentine, Mark

    An ('57)Fe Mossbauer investigation of the reduced (S = 1/2) active center of the redox and effector protein, putidaredoxin, is reported. Putidaredoxin is a prototype of a 2Fe-2S protein; it functions as an electron shuttle in a bacterial enzyme system. Several 2Fe-2S proteins, including putidaredoxin, have already been subjected to numerous Mossbauer and magnetic resonance studies, but current understanding of the active center is still very incomplete, and the mechanism of electron transfer is not known. Previous Mossbauer experiments on reduced putidaredoxin, as on most Kramers systems, were restricted to the applied field range .01 - 4T. The intermediate field region 0 - .01T is included here, and a primary goal of this work is to demonstrate the feasibility of those experiments. The analysis of zero field spectra differs from that in applied fields in the following respects: (i) The spectra consist of 64 discrete lines. (ii) The average over all molecular orientations is done explicitly, not numerically. (iii) No generality is lost by taking the magnetic hyperfine terms for both sites to be symmetric and in their principal axis systems. (iv) The spectra are sensitive to weak coupling of S with nearby nuclear moments that become negligible as the applied field is increased. Skew-symmetric contributions to the magnetic hyperfine and electronic Zeeman interactions are often ignored in the literature without justification. Either g or A can be symmetrized by an S transformation, but both g and A can be simultaneously symmetrized if and only if the invariants. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). are equal.

  9. Hyperfine coupling constants on inner-sphere water molecules of a triazacyclononane-based Mn(II) complex and related systems relevant as MRI contrast agents.

    PubMed

    Patinec, Véronique; Rolla, Gabriele A; Botta, Mauro; Tripier, Raphaël; Esteban-Gómez, David; Platas-Iglesias, Carlos

    2013-10-07

    We report the synthesis of the ligand H2MeNO2A (1,4-bis(carboxymethyl)-7-methyl-1,4,7-triazacyclononane) and a detailed experimental and computational study of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Mn(MeNO2A)] and related Mn(2+) complexes relevant as potential contrast agents in magnetic resonance imaging (MRI). Nuclear magnetic relaxation dispersion (NMRD) profiles, (17)O NMR chemical shifts, and transverse relaxation rates of aqueous solutions of [Mn(MeNO2A)] were recorded to determine the parameters governing the relaxivity in this complex and the (17)O and (1)H HFCCs. DFT calculations (TPSSh model) performed in aqueous solution (PCM model) on the [Mn(MeNO2A)(H2O)]·xH2O and [Mn(EDTA)(H2O)](2-)·xH2O (x = 0-4) systems were used to determine theoretically the (17)O and (1)H HFCCs responsible for the (17)O NMR chemical shifts and the scalar contributions to (17)O and (1)H NMR relaxation rates. The use of a mixed cluster/continuum approach with the explicit inclusion of a few second-sphere water molecules is critical for an accurate calculation of HFCCs of coordinated water molecules. The impact of complex dynamics on the calculated HFCCs was evaluated with the use of molecular dynamics simulations within the atom-centered density matrix propagation (ADMP) approach. The (17)O and (1)H HFCCs calculated for these complexes and related systems show an excellent agreement with the experimental data. Both the (1)H and (17)O HFCCs (A(iso) values) are dominated by the spin delocalization mechanism. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Mn(2+) ion, as well as by the orientation of the water molecule plane with respect to the Mn-O vector.

  10. Modeling Spin Testing Using Location Specific Material Properties

    DTIC Science & Technology

    2012-04-01

    taken to be b. is the antiphase boundary energy (=0.20 J/m2). M is the Taylor factor of fcc (=3). 4. shearing/bowing of tertiary strong pair coupling...crystal orientation can be represented by an isotropic strength knockdown factor of 2/3 based on the reciprocal product of the polycrystal Taylor factor...Tensile and Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials" (NASA/TM-2006-204110; Gabb, T; Gayda, J 5 Tresa

  11. Cubic nonlinearity in shear wave beams with different polarizations

    PubMed Central

    Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2008-01-01

    A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167

  12. Comparison of magmatic and amagmatic rift zone kinematics using full moment tensor inversions of regional earthquakes

    NASA Astrophysics Data System (ADS)

    Jaye Oliva, Sarah; Ebinger, Cynthia; Shillington, Donna; Albaric, Julie; Deschamps, Anne; Keir, Derek; Drooff, Connor

    2017-04-01

    Temporary seismic networks deployed in the magmatic Eastern rift and the mostly amagmatic Western rift in East Africa present the opportunity to compare the depth distribution of strain, and fault kinematics in light of rift age and the presence or absence of surface magmatism. The largest events in local earthquake catalogs (ML > 3.5) are modeled using the Dreger and Ford full moment tensor algorithm (Dreger, 2003; Minson & Dreger, 2008) to better constrain source depth and to investigate non-double-couple components. A bandpass filter of 0.02 to 0.10 Hz is applied to the waveforms prior to inversion. Synthetics are based on 1D velocity models derived during seismic analysis and constrained by reflection and tomographic data where available. Results show significant compensated linear vector dipole (CLVD) and isotropic components for earthquakes in magmatic rift zones, whereas double-couple mechanisms predominate in weakly magmatic rift sectors. We interpret the isotropic components as evidence for fluid-involved faulting in the Eastern rift where volatile emissions are large, and dike intrusions well documented. Lower crustal earthquakes are found in both amagmatic and magmatic sectors. These results are discussed in the context of the growing database of complementary geophysical, geochemical, and geological studies in these regions as we seek to understand the role of magmatism and faulting in accommodating strain during early continental rifting.

  13. Muon contact hyperfine field in metals: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  14. Magnetism of the 35 K superconductor CsEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.

  15. Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.

  16. PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar, H. N.; Dayal, V.; Barnard, D.

    2010-02-22

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fibermore » composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.« less

  17. Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides

    NASA Astrophysics Data System (ADS)

    Patz, Aaron; Li, Tianqi; Ran, Sheng; Fernandes, Rafael M.; Schmalian, Joerg; Bud'Ko, Sergey L.; Canfield, Paul C.; Perakis, Ilias E.; Wang, Jigang

    2014-02-01

    Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behaviour these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe1-xCox)2As2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.

  18. Interface roughness induced asymmetric magnetic property in sputter-deposited Co/CoO/Co exchange coupled trilayers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.

    2012-04-01

    The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(tAF)/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.

  19. Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa

    2011-09-01

    According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

  20. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  1. The Bidirectional Reflectance Distribution Function (BRDF) of the Ocean: Effects of Wave Representation

    NASA Astrophysics Data System (ADS)

    Eide, H.; Stamnes, K.; Ottaviani, M.

    2004-12-01

    The specular reflection of the Sun off the ocean, or sun glint, is of major concern for ocean remote sensing. Typically, data from in and around the sunglint region are discarded because of the unknown contribution to the measured radiances or because of sensor saturation. On the other hand, accurate knowledge of the sunglint properties enables retrievals of atmospheric parameters. The challenge of the ocean retrieval problem is to get the ``water leaving radiance'', Lw, by subtracting the Rayleigh scattering, aerosol scattering, water vapor, ozone, and sun glint from the measured radiances at the top of the atmosphere (TOA). Thus, the task is to correct for both the atmospheric contribution and for surface effects. Two simplifying assumptions that are frequently employed in ocean remote sensing are that the ocean BRDF is isotropic and that one can de-couple the radiative properties of the atmosphere from those of the surface. Our previous studies have shown that neglecting the inherit coupling between the atmosphere and surface can lead to large errors in the retrievals. In order to do retrievals over bright, as well as darker surfaces, it is necessary to account for this coupling between the surface and the atmosphere. In the present study we use models for the reflection of light off the ocean surface to calculate the ocean BRDF. The differences between the various models are investigated as is the effect of using different types of wave statistics (e.g. Cox Munk). We present results from calculations where we vary the wind speed and direction as well as other parameters affecting the ocean surface. The error introduced in ocean retrievals by assuming an isotropic BRDF is assessed, and methods for improved treatment of sunglint are suggested.

  2. Magnetic anisotropy in the frustrated spin-chain compound β - TeVO 4

    DOE PAGES

    Weickert, F.; Harrison, Neil; Scott, Brian Lindley; ...

    2016-08-01

    In this paper, isotropic and anisotropic magnetic behavior of the frustrated spin-chain compound β-TeVO 4 is reported. Three magnetic transitions observed in zero magnetic field are tracked in fields applied along different crystallographic directions using magnetization, heat capacity, and magnetostriction measurements. Qualitatively different temperature-field diagrams are obtained below 10 T for the field applied along a or b and along c, respectively. In contrast, a nearly isotropic high-field phase emerges above 18 T and persists up to the saturation that occurs around 22.5 T. Upon cooling in low fields, the transitions at T N1 and T N2 toward the spin-density-wavemore » and stripe phases are of the second order, whereas the transition at T N3 toward the helical state is of the first order and entails a lattice component. Our microscopic analysis identifies frustrated J 1-J 2 spin chains with a sizable antiferromagnetic interchain coupling in the bc plane and ferromagnetic couplings along the a direction. The competition between these ferromagnetic interchain couplings and the helical order within the chain underlies the incommensurate order along the a direction, as observed experimentally. While a helical state is triggered by the competition between J 1 and J 2 within the chain, the plane of the helix is not uniquely defined because of competing magnetic anisotropies. Finally, using high-resolution synchrotron diffraction and 125Te nuclear magnetic resonance, we also demonstrate that the crystal structure of β-TeVO 4 does not change down to 10 K, and the orbital state of V 4+ is preserved.« less

  3. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-01

    The 19F isotropic chemical shifts (δiso) of two isomorphic compounds, NbF5 and TaF5, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19F MAS NMR spectra. In parallel, the corresponding 19F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M4F20] units of NbF5 and TaF5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19F NMR lines of NbF5 and TaF5 is obtained, ensured by the linearity between experimental 19F δiso values and calculated 19F isotropic chemical shielding σiso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF5. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M-F bonds have been established. Additionally, for three of the 19F NMR lines of NbF5, distorted multiplets, arising from 1J-coupling and residual dipolar coupling between the 19F and 93Nb nuclei, were simulated yielding to values of 93Nb-19F 1J-coupling for the corresponding fluorine sites.

  4. Critical phenomena at the complex tensor ordering phase transition

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.

  5. Strong-coupling induced damping of spin-echo modulations in magic-angle-spinning NMR: Implications for J coupling measurements in disordered solids

    NASA Astrophysics Data System (ADS)

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.

    2017-10-01

    In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.

  6. Radiation characteristics of water droplets in a fire-inspired environment: A Monte Carlo ray tracing study

    NASA Astrophysics Data System (ADS)

    Wu, Bifen; Zhao, Xinyu

    2018-06-01

    The effects of radiation of water mists in a fire-inspired environment are numerically investigated for different complexities of radiative media in a three-dimensional cubic enclosure. A Monte Carlo ray tracing (MCRT) method is employed to solve the radiative transfer equation (RTE). The anisotropic scattering behaviors of water mists are modeled by a combination of the Mie theory and the Henyey-Greestein relation. A tabulation method considering the size and wavelength dependencies is established for water droplets, to reduce the computational cost associated with the evaluation of the nongray spectral properties of water mists. Validation and verification of the coupled MCRT solver are performed using a one-dimensional slab with gray gas in comparison with the analytical solutions. Parametric studies are then performed using a three-dimensional cubic box to examine radiation of two monodispersed and one polydispersed water mist systems. The tabulation method can reduce the computational cost by a factor of one hundred. Results obtained without any scattering model better conform with results obtained from the anisotropic model than the isotropic scattering model, when a highly directional emissive source is applied. For isotropic emissive sources, isotropic and anisotropic scattering models predict comparable results. The addition of different volume fractions of soot shows that soot may have a negative impact on the effectiveness of water mists in absorbing radiation when its volume fraction exceeds certain threshold.

  7. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  8. Magnetic moment of {sup 104}Ag{sup m} and the hyperfine magnetic field of Ag in Fe using nuclear magnetic resonance on oriented nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovko, V. V.; Kraev, I. S.; Phalet, T.

    2010-05-15

    Nuclear magnetic resonance (NMR/ON) measurements with beta- and gamma-ray detection have been performed on oriented {sup 104}Ag{sup g,m} nuclei with the NICOLE {sup 3}He-{sup 4}He dilution refrigerator setup at ISOLDE/CERN. For {sup 104}Ag{sup g} (I{sup p}i=5{sup +}) the gamma-NMR/ON resonance signal was found at nu=266.70(5) MHz. Combining this result with the known magnetic moment for this isotope, the magnetic hyperfine field of Ag impurities in an Fe host at low temperature (<1 K) is found to be |B{sub hf}(AgFe)|=44.709(35) T. A detailed analysis of other relevant data available in the literature yields three more values for this hyperfine field. Averagingmore » all four values yields a new and precise value for the hyperfine field of Ag in Fe; that is, |B{sub hf}(AgFe)|=44.692(30) T. For {sup 104}Ag{sup m} (I{sup p}i=2{sup +}), the anisotropy of the beta particles provided the NMR/ON resonance signal at nu=627.7(4) MHz. Using the new value for the hyperfine field of Ag in Fe, this frequency corresponds to the magnetic moment mu({sup 104m}Ag)=+3.691(3) mu{sub N}, which is significantly more precise than previous results. The magnetic moments of the even-A {sup 102-110}Ag isotopes are discussed in view of the competition between the (pig{sub 9/2}){sub 7/2}{sup +-3}(nud{sub 5/2}nug{sub 7/2}){sub 5/2}{sup +} and the (pig{sub 9/2}){sub 9/2}{sup +-3}(nud{sub 5/2}nug{sub 7/2}){sub 5/2}{sup +} configurations. The magnetic moments of the ground and isomeric states of {sup 104}Ag can be explained by an almost complete mixing of these two configurations.« less

  9. Voltage‐Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals

    PubMed Central

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A.; George, Jino; Ebbesen, Thomas W.

    2017-01-01

    Abstract We experimentally demonstrate a fine control over the coupling strength of vibrational light–matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C−Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT‐IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. PMID:29155469

  10. A coupled deformation-diffusion theory for fluid-saturated porous solids

    NASA Astrophysics Data System (ADS)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  11. The influence of spin orbit coupling and a current dependent potential on the residual resistivity of disordered magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ebert, H.; Vernes, A.; Banhart, J.

    1999-11-01

    It has been shown recently, for a number of various magnetic disordered alloy systems, that the spin-orbit coupling (SOC) may have an important influence on the isotropic residual resistivity and that it is the primary source of the galvano-magnetic properties spontaneous magnetoresistance anisotropy (SMA) and anomalous Hall resistivity (AHR). Here it is demonstrated that—in contrast to many other spin-orbit induced phenomena—all these findings stem from the part of the spin-orbit coupling that gives rise to a mixing of the two spin sub-systems. In line with this result it is shown that inclusion of a current dependent potential within a calculation of the underlying electronic structure hardly affects the transport properties if the corresponding magnetic vector potential does not lead to a mixing of the spin sub-systems.

  12. Ultrafast optical modification of exchange interactions in iron oxides

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.

    2015-09-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.

  13. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.

    PubMed

    Tao, Chao; Liu, Xiaojun

    2011-02-01

    The vocal-fold tissue is treated as a transversally isotropic fluid-saturated porous material. Effects of poroelastic coefficients on eigenfrequencies and eigenmodes of the vocal-fold vibration are investigated using the Ritz method. The study demonstrates that the often-used elastic model is only a particular case of the poroelastic model with an infinite fluid-solid mass coupling parameter. The elastic model may be considered appropriate for the vocal-fold tissue when the absolute value of the fluid-solid mass coupling parameter is larger than 10(5) kg/m(3). Otherwise, the poroelastic model may be more accurate. The degree of compressibility of the vocal tissue can also been described by the poroelastic coefficients. Finally, it is revealed that the liquid and solid components in a poroelastic model could have different modal shapes when the coupling between them is weak. The mode decoupling could cause desynchronization and irregular vibration of the folds.

  14. Line Coupling Effects in the Isotropic Raman Spectra of N2: A Quantum Calculation at Room Temperature

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Boulet, Christian; Ma, Qiancheng

    2014-01-01

    We present quantum calculations of the relaxation matrix for the Q branch of N2 at room temperature using a recently proposed N2-N2 rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.

  15. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  16. Size estimates for fat inclusions in an isotropic Reissner-Mindlin plate

    NASA Astrophysics Data System (ADS)

    Morassi, Antonino; Rosset, Edi; Vessella, Sergio

    2018-02-01

    In this paper we consider the inverse problem of determining, within an elastic isotropic thick plate modelled by the Reissner-Mindlin theory, the possible presence of an inclusion made of a different elastic material. Under some a priori assumptions on the inclusion, we deduce constructive upper and lower estimates of the area of the inclusion in terms of a scalar quantity related to the work developed in deforming the plate by applying simultaneously a couple field and a transverse force field at the boundary of the plate. The approach allows us to consider plates with a boundary of Lipschitz class. The first author is supported by PRIN 2015TTJN95 ‘Identification and monitoring of complex structural systems’. The second author is supported by FRA 2016 ‘Problemi Inversi, dalla stabilità alla ricostruzione’, Università degli Studi di Trieste. The second and the third authors are supported by Progetto GNAMPA 2017 ‘Analisi di problemi inversi: stabilità e ricostruzione’, Istituto Nazionale di Alta Matematica (INdAM).

  17. The 2017 North Korea M6 seismic sequence: moment tensor, source time function, and aftershocks

    NASA Astrophysics Data System (ADS)

    Ni, S.; Zhan, Z.; Chu, R.; He, X.

    2017-12-01

    On September 3rd, 2017, an M6 seismic event occurred in North Korea, with location near previous nuclear test sites. The event features strong P waves and short period Rayleigh waves are observed in contrast to weak S waves, suggesting mostly explosion mechanism. We performed joint inversion for moment tensor and depth with both local and teleseismic waveforms, and find that the event is shallow with mostly isotropic yet substantial non-isotropic components. Deconvolution of seismic waveforms of this event with respect to previous nuclear test events shows clues of complexity in source time function. The event is followed by smaller earthquakes, as early as 8.5 minutes and lasted at least to October. The later events occurred in a compact region, and show clear S waves, suggesting double couple focal mechanism. Via analyzing Rayleigh wave spectrum, these smaller events are found to be shallow. Relative locations, difference in waveforms of the events are used to infer their possible links and generation mechanism.

  18. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.

    PubMed

    Chumakov, Sergei G

    2008-09-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  19. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.

    PubMed

    Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E

    2015-08-12

    Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.

  20. The Hyperfine Structure of the Ground State in the Muonic Helium Atoms

    NASA Astrophysics Data System (ADS)

    Aznabayev, D. T.; Bekbaev, A. K.; Korobov, V. I.

    2018-05-01

    Non-relativistic ionization energies 3He2+μ-e- and 4He2+μ-e- of helium-muonic atoms are calculated for ground states. The calculations are based on the variational method of the exponential expansion. Convergence of the variational energies is studied by an increasing of a number of the basis functions N. This allows to claim that the obtained energy values have 26 significant digits for ground states. With the obtained results we calculate hyperfine splitting of the muonic helium atoms.

  1. 238U Mössbauer study on the magnetic properties of uranium-based heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Nakada, Masami; Nasu, Saburo; Haga, Yoshinori; Honma, Tetsuo; Yamamoto, Etsuji; Ohkuni, Hitoshi; Ōnuki, Yoshichika

    2000-07-01

    We have performed 238U Mössbauer spectroscopy of uranium-based heavy fermion superconductors, UPd2Al3 and URu2Si2, in order to investigate their physical properties, mainly their magnetic properties. The slow relaxation of magnetic hyperfine interaction in a paramagnetic state and the static hyperfine field has been observed in an antiferromagnetic ordered state for each compound. The line-widths have maximum at their characteristic temperatures where their magnetic susceptibilities have maximum values.

  2. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.

  3. Superconductivity and Magnetism in LaO1-xFxFeAs

    NASA Astrophysics Data System (ADS)

    Buechner, Bernd

    2009-03-01

    Measuring ^75As, ^139La, and ^57Fe Nuclear Magnetic Resonance (NMR) as well as μSR, transport and thermodynamic properties we have determined the phase diagram of LaO1-xFxAsFe superconductors [1-6]. In my talk, I will show experimental studies of the magnetic ordering [2, 5], properties of the superconducting state [1, 3, 5] and the normal state properties [1, 4, 6] in the superconducting regions of the phase diagram. While the temperature dependence of the London penetration as determined from μSR points to an isotropic s wave state [3], our early NMR data suggest singlet pairing and nodes of the order parameter [1]. Extending the NMR work to lower temperatures we find evidence for a deviation of the T^3 behaviour of the spin lattice relaxation, which would agree with the extended s-wave symmetry suggested in recent theoretical work. In the paramagnetic normal state, NMR on all three nuclei shows that the local electronic susceptibility rises with increasing temperature. This had led to suggest the presence of a pseudogap, which I will discuss in detail. The scaling of all NMR shifts with respect to the macroscopic susceptibility indicates that there is no apparent multiband effect through preferential hyperfine couplings. Relaxation measurements indicate a similar temperature-dependence for (T1T)-1, and suggest that the dynamical susceptibility changes uniformly in q space with varying temperature. The transport properties show some striking similarities to the findings in cuprates [6] and, finally, susceptibility [4] as well as NMR studies point to the antiferromagnetic fluctuations, whose relevance is also discussed in many theoretical models of the superconducting pairing mechanism. In collaboration with Hans-Joachim Grafe, Christian Hess, R"udiger Klingeler, G"unter Behr, Agnieszka Kondrat, Norman Leps, and Guillaume Lang, IFW Dresden; Hans-Henning Klauss, TU Dresden; and Hubertus Luetkens, PSI Villigen. [4pt] References: [0pt] [1] H.-J. Grafe et al., Phys. Rev. Lett. 101, 047003 (2008) [0pt] [2] H.-H. Klauss et al., Phys. Rev. Lett. 101, 077005 (2008) [0pt] [3] H. Luetkens et al., Phys- Rev. Lett. 101, 097009 (2008) [0pt] [4] R. Klingeler et al., arXiv: 0808.0708 (2008) [0pt] [5] H. Luetkens et al., arXiv: 0806.3533 (2008) [0pt] [6] C. Hess et al., arXiv: 0811.1601 (2008)

  4. Finite Deformation of Magnetoelastic Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure andmore » an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.« less

  5. Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators

    NASA Astrophysics Data System (ADS)

    Grover, D.; Seth, R. K.

    2018-05-01

    Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.

  6. Rotational relaxation of AlO+(1Σ+) in collision with He

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, O.; Trabelsi, T.; Hochlaf, M.; Stoecklin, T.

    2018-03-01

    The rate coefficients for the rotational de-excitation of AlO+ by collisions with He are determined. The possible production mechanisms of the AlO+ ion in both diffuse and dense molecular clouds are first discussed. A set of ab initio interaction energies is computed at the CCSD(T)-F12 level of theory, and a three-dimensional analytical model of the potential energy surface is obtained using a linear combination of reproducing kernel Hilbert space polynomials together with an analytical long range potential. The nuclear spin free close-coupling equations are solved and the de-excitation rotational rate coefficients for the lower 15 rotational states of AlO+ are reported. A propensity rule to favour Δj = -1 transitions is obtained while the hyperfine resolved state-to-state rate coefficients are also discussed.

  7. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    NASA Astrophysics Data System (ADS)

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    2016-12-01

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method of enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission.

  8. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    PubMed

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  9. Studies of the spin Hamiltonian parameters and local structure for ZnO:Cu2+.

    PubMed

    Wu, Shao-Yi; Wei, Li-Hua; Zhang, Zhi-Hong; Wang, Xue-Feng; Hu, Yue-Xia

    2008-12-15

    The spin Hamiltonian parameters (the g factors and the hyperfine structure constants) and local structure for ZnO:Cu2+ are theoretically studied from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are taken into account from the cluster approach due to the significant covalency of the [CuO4](6-) cluster. According to the investigations, the impurity Cu2+ is suggested not to locate on the ideal Zn2+ site in ZnO but to undergo a slight outward displacement (approximately 0.01 angstroms) away from the ligand triangle along C3 axis. The calculated spin Hamiltonian parameters are in good agreement with the observed values. The validity of the above impurity displacement is also discussed.

  10. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less

  11. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  12. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    DOE PAGES

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    2016-12-12

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less

  13. Magnetoconductivity and magnetoluminescence studies in bipolar and almost hole-only sandwich devices made from films of a π-conjugated molecule

    PubMed Central

    Duc Nguyen, Tho; Sheng, Yugang; Rybicki, James E; Wohlgenannt, Markus

    2008-01-01

    We present magnetoconductivity and magnetoluminescence measurements in sandwich devices made from films of a π-conjugated molecule and demonstrate effects of more than 30 and 50% magnitude, respectively, in fields of 100 mT at room-temperature. It has previously been recognized that the effect is caused by hyperfine coupling, and that it is phenomenologically similar to other magnetic field effects that act on electron–hole pairs, which are well-known in spin-chemistry. However, we show that the very large magnitude of the effect contradicts present knowledge of the electron–hole pair recombination processes in electroluminescent π-conjugated molecules, and that the effect persists even in almost hole-only devices. Therefore, this effect is likely caused by the interaction of radical pairs of equal charge. PMID:27877957

  14. Observation of photoassociation of ultracold sodium and cesium at the asymptote Na (3S1/2) + Cs (6P1/2)

    NASA Astrophysics Data System (ADS)

    Wu, Jizhou; Liu, Wenliang; Wang, Xiaofeng; Ma, Jie; Li, Dan; Sovkov, Vladimir B.; Xiao, Liantuan; Jia, Suotang

    2018-05-01

    We report on the production of ultracold heteronuclear NaCs* molecules in a dual-species magneto-optical trap through photoassociation. The electronically excited molecules are formed below the Na (3S1/2) + Cs (6P1/2) dissociation limit. 12 resonance lines are detected using trap-loss spectroscopy based on a highly sensitive modulation technique. The highest observed rovibrational level exhibits clear hyperfine structure, which is detected for the first time. This structure is simulated within a simplified model consisting of 4 coupled levels belonging to the initially unperturbed Hund's case "a" electronic states, which have been explored in our previous work that dealt with the Na (3S1/2) + Cs (6P3/2) asymptote [W. Liu et al., Phys. Rev. A 94, 032518 (2016)].

  15. ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitkalov, Sergey A.; Bowers, C. Russell; Simmons, Jerry A.

    2000-02-15

    This paper presents a study of the enhancement of the Zeeman energy of two-dimensional (2D) conduction electrons near the {nu}=1 filling factor of the quantum Hall effect by optical dynamic nuclear polarization. The change in the Zeeman energy is determined from the Overhauser shift of the transport detected electron spin resonance in GaAs/Al{sub x}Ga{sub 1-x}As multiquantum wells. In a separate experiment the NMR signal enhancement factor is obtained by radio frequency detected nuclear magnetic resonance under similar conditions in the same sample. These measurements afford an estimation of the hyperfine coupling constant between the nuclei and 2D conduction electrons. (c)more » 2000 The American Physical Society.« less

  16. Low-lying 1/2- hidden strange pentaquark states in the constituent quark model

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wu, Zong-Xiu; An, Chun-Sheng; Chen, Hong

    2017-12-01

    We investigate the spectrum of the low-lying 1/2- hidden strange pentaquark states, employing the constituent quark model, and looking at two ways within that model of mediating the hyperfine interaction between quarks - Goldstone boson exchange and one gluon exchange. Numerical results show that the lowest 1/2- hidden strange pentaquark state in the Goldstone boson exchange model lies at ˜1570 MeV, so this pentaquark configuration may form a notable component in S 11(1535) if the Goldstone boson exchange model is applied. This is consistent with the prediction that S 11(1535) couples very strongly to strangeness channels. Supported by National Natural Science Foundation of China (11675131, 11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  17. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    NASA Astrophysics Data System (ADS)

    Tokunaga, S. K.; Hendricks, R. J.; Tarbutt, M. R.; Darquié, B.

    2017-05-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers is measurable. The molecules are produced with a rotational temperature of approximately 6 K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2 μm antisymmetric Re=O stretching mode of MTO with a resolution of 8 MHz and a frequency accuracy of 30 MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state. Our ability to produce dense samples of complex molecules of this type at low temperatures represents a key step towards a precision measurement of parity violation in a chiral species.

  18. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    PubMed

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants. Published by Elsevier Inc.

  19. Energy levels and exchange interactions of spin clusters

    NASA Astrophysics Data System (ADS)

    Belorizky, E.

    1993-02-01

    We first describe a simple method for diagonalizing the isotropic exchange Hamiltonian of a cluster of N spins in the most general case where all the exchange constants are different. The technique, based on the rotation invariance of the system, leads to a considerable reduction of the total matrix. Simple expressions of the magnetization and susceptibility are provided and an example of the determination of the exchange constants of a complex with five Cu^{2+} ions is given. It is also shown that for a large variety of spin configurations occuring in metal complexes, it is possible to diagonalize the dominant isotropic exchange spin hamiltonian in a straightforward way by using recoupling techniques. This allows to solve problems up to a nine spin cluster with spins having different g values. This survey is pursued by the theoretical approach of the magnetic properties of interacting spins on a finite ring with a detailed study of an oligonuclear metal nitroxide complex formed by six Mn^{2+}(S = 5/2) and six free radicals (s = 1/2). The temperature behaviour of the susceptibility is interpreted with a semi-classical model of a cyclic alternate finite chain. Finally we give a procedure for determining the three exchange constants of three spin 1/2 coupled by isotropic exchange constants in the unsolved case where these constants are all dilferent. Nous décrivons d'abord une méthode simple pour diagonaliser l'Hamiltonien d'échange isotrope d'un cluster de N spins dans le cas le plus général où toutes les constantes d'échange sont différentes. La technique, basée sur l'invariance rotationnelle du système, conduit à une réduction considérable de la matrice totale. On donne des expressions simples de l'aimantation et de la susceptibilité et la méthode est appliquée à la détermination des interactions d'échange d'un complexe comprenant cinq ions Cu^{2+}. On montre également que pour une assez grande variété de configurations de spins présentes dans les complexes métalliques, on peut résoudre l'Hamiltonien de spin d'échange isotrope dominant de manière directe par des techniques de recouplage. Ceci permet de traiter des clusters jusqu'à neuf spins, ces derniers pouvant avoir des facteurs g différents. Nous poursuivons cette revue par une étude théorique des propriétés magnétiques de spins en interaction sur un anneau avec une étude détaillée d'un complexe oligonucléaire métal-nitroxyde formé de six ions Mn^{2+}(S = 5/2) et de six radicaux libres (s = 1/2). Le comportement en fonction de la température de la susceptibilité est interprété à l'aide d'un modèle semi-classique de chaine alternée cyclique. Enfin, nous donnons un procédé pour déterminer les trois constantes d'échange d'un système de trois spins 1/2 couplés par échange isotrope dans le cas non résolu où ces trois constantes sont toutes différentes.

  20. Constraining spacetime nonmetricity with neutron spin rotation in liquid 4 He

    DOE PAGES

    Lehnert, Ralf; Snow, W. M.; Xiao, Zhi; ...

    2017-09-10

    General spacetime nonmetricity coupled to neutrons is studied. In this context, it is shown that certain nonmetricity components can generate a rotation of the neutron's spin. Available data on this effect obtained from slow-neutron propagation in liquid helium are then used to constrain isotropic nonmetricity components at the level of 10 -22GeV. These results represent the first limit on the nonmetricity ζ( 6) 2S 000 parameter as well as the first measurement of nonmetricity inside matter.

Top