Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052
Large isotropic negative thermal expansion above a structural quantum phase transition
Handunkanda, Sahan Uddika; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzman-Verri, Gian G.; Brierley, Richard; Littlewood, Peter B.; Hancock, Jason N.
2015-10-01
Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes these systems interesting. Here we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3 and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic X-ray scattering as well as X-ray diffraction reveal that soft mode, central peak and thermal expansion phenomena are all strongly influenced by the transition.
Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial
Guney, Durdu; Koschny, Thomas; Soukoulis, Costas
2010-05-26
Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.
NASA Astrophysics Data System (ADS)
Zhao, Qian; Kang, Lei; Du, B.; Zhao, H.; Xie, Q.; Huang, X.; Li, B.; Zhou, J.; Li, L.
2008-07-01
Isotropic negative permeability resulting from Mie resonance is demonstrated in a three-dimensional (3D) dielectric composite consisting of an array of dielectric cubes. A strong subwavelength magnetic resonance, corresponding to the first Mie resonance, was excited in dielectric cubes by electromagnetic wave. Negative permeability is verified in the magnetic resonance area via microwave measurement and the dispersion properties. The resonance relies on the size and permittivity of the cubes. It is promising for construction of novel isotropic 3D left-handed materials with a simple structure.
Optical rogue waves associated with the negative coherent coupling in an isotropic medium.
Sun, Wen-Rong; Tian, Bo; Jiang, Yan; Zhen, Hui-Ling
2015-02-01
Optical rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling, which describe the propagation of orthogonally polarized optical waves in an isotropic medium, are reported. We construct and discuss a family of the vector rogue-wave solutions, including the bright rogue waves, four-petaled rogue waves, and dark rogue waves. A bright rogue wave without a valley can split up, giving birth to two bright rogue waves, and an eye-shaped rogue wave can split up, giving birth to two dark rogue waves.
Negative thermal expansion and its relation to high pressures
NASA Astrophysics Data System (ADS)
Sikka, S. K.
2004-04-01
Most materials expand when heated. However, many exceptions are now known. Recently, interest in this has been revived with the discovery of isotropic negative thermal expansion (NTE) in ZrW2O8. From equation of state considerations, one can relate NTE to negative Grüneisen parameters (thermal or electronic). Under pressure, these lead to equation of state anomalies with the pressure derivative of the bulk modules being small or negative. Many of these materials undergo pressure-induced amorphization. This in some of them can be understood on the steric constraint model. It is also argued that NTE in most materials may be understood from the fact that these materials have two degenerate or nearly degenerate energy states. On increase of temperature, the material then samples the lower volume state, leading to NTE.
Improvement of thermal shock resistance of isotropic graphite by Ti-doping
NASA Astrophysics Data System (ADS)
López-Galilea, I.; Ordás, N.; García-Rosales, C.; Lindig, S.
2009-04-01
Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.
Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.
2010-06-01
Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.
Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves
Dodson, Jacob C.; Inman, Daniel J.
2014-01-01
Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂vP/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂vP/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures. PMID:25373955
NASA Technical Reports Server (NTRS)
Tauchert, T. R.
1976-01-01
Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct approximate solutions for the response of a thick-walled sphere to uniform pressure loads and an arbitrary radial temperature distribution. The thermoelastic properties of the sphere are assumed to be transversely isotropic and nonhomogeneous; variations in the elastic stiffness and thermal expansion coefficients are taken to be an arbitrary function of the radial coordinate and temperature. Numerical examples are presented which illustrate the effect of the temperature-dependence upon the thermal stress field. A comparison of the approximate solutions with a finite element analysis indicates that Ritz methods offer a simple, efficient, and relatively accurate approach to the problem.
Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.
2013-01-01
Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968
Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion
NASA Astrophysics Data System (ADS)
Dudek, Krzysztof K.; Attard, Daphne; Caruana-Gauci, Roberto; Wojciechowski, Krzysztof W.; Grima, Joseph N.
2016-02-01
Unimode metamaterials made from rotating rigid triangles are analysed mathematically for their mechanical and thermal expansion properties. It is shown that these unimode systems exhibit positive Poisson’s ratios irrespective of size, shape and angle of aperture, with the Poisson’s ratio exhibiting giant values for certain conformations. When the Poisson’s ratio in one loading direction is larger than +1, the systems were found to exhibit the anomalous property of negative linear compressibility along this direction, that is, the systems expand in this direction when hydrostatically compressed. Also discussed are the thermal expansion properties of these systems under the assumption that the units exhibit increased rotational agitation once subjected to an increase in temperature. The effect of the geometric parameters on the aforementioned thermo-mechanical properties of the system, are discussed, with the aim of identifying negative behaviour.
NASA Astrophysics Data System (ADS)
Merzlyakov, Mikhail; Meng, Yan; Simon, Sindee L.; McKenna, Gregory B.
2004-10-01
A novel technique is described for measuring thermal pressure in fluids and for measuring isotropic stress development and reaction kinetics in thermosetting resins during cure and thermal cycling. The method uses a 12.7-mm-diam sealed stainless steel spherical pressure vessel to impose three-dimensional isotropic constraints. The vessel is instrumented with strain gauges and thermocouples. Both isotropic stresses and reaction kinetics during cure at cure temperatures as high as 300 °C can be measured. In addition, measurement of the isotropic stress as a function of temperature yields the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. Experimental results are presented for sucrose benzoate, a pressure-transmitting oil di-2-ethylhexylsebacate and an epoxy resin. The method provides reproducible estimates for the thermal pressure coefficient and the stresses are highly isotropic. A suggestion for improved versions of the device is: thicker walled vessels can be used to increase the upper stress limit (currently at 30 MPa). Also if a lower temperature range is to be studied, then aluminum can be used as a vessel material. Since epoxy resins have better adhesion to aluminum than to stainless steel, there may be an advantage to this.
Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials
NASA Astrophysics Data System (ADS)
Li, Ting-Hua; Zhu, Dong-Lai; Mao, Fu-Chun; Huang, Ming; Yang, Jing-Jing; Li, Shou-Bo
2016-10-01
Transformation thermodynamics as a major extension of transformation optics has recently received considerable attention. In this paper, we present two-dimensional (2D) and three-dimensional (3D) diamond-shaped transient thermal cloaks with non-singular homogeneous material parameters. The absence of singularity in the parameters results from the fact that the linear coordinate transformation is performed by expanding a line segment rather than a point into a region, while the mechanism behind the homogeneity is the homogeneous stretching and compression along orthogonal directions during the transformation. Although the derived parameters remain anisotropic, we further show that this can be circumvented by considering a layered structure composed of only four types of isotropic materials based on the effective medium theory. Numerical simulation results confirm the good performance of the proposed cloaks.
Landau Theory of Trifluoride Negative Thermal Expansion Materials
NASA Astrophysics Data System (ADS)
Guzman-Verri, Gian; Brierley, Richard; Littlewood, Peter
Negative thermal expansion (NTE) is a desirable property in designing materials that are dimensionally stable and resistant to thermal shocks. Transition metal trifluorides (MF3, M=Al, Cr, Fe, Ga, In, Ti, V) are a class of materials with ReO3 structure that exhibit large, isotropic, and tunable NTE over a wide temperature range, which makes them attractive material candidates. They exhibit large coefficients of thermal expansion near their cubic-to-rhombohedral structural phase change, which can be thermally or pressure induced. Though they have recently been the subject of intense experimental research, little work has been done on the theory side and it has almost exclusively focused on zero temperature properties. In this talk, we construct a simple Landau theory of trifluorides and use it to calculate the temperature dependence of the elastic constants, soft phonon frequencies, and volume expansion near their structural transition. We compare our results to existing experimental data on trifluorides. Work at the U of Costa Rica is supported by the Vicerrectoria de Investigacion under Project No. B5220. Work at Argonne Natl Lab is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Merzlyakov, Mikhail; Simon, Sindee L.; McKenna, Gregory B.
2005-06-01
We have developed a method for measuring the thermal pressure coefficient and cure-induced and thermally induced stresses based on an instrumented thick-walled tube vessel. The device has been demonstrated at pressures up to 330 MPa and temperatures to 300 °C. The method uses a sealed stainless steel thick-walled tube to impose three-dimensional isotropic constraints. The tube is instrumented with strain gauges in hoop and in axial directions and can be used in open or closed configurations. By making measurements of the isotropic stresses as a function of temperature, the method allows determination of the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. The method also can be used to measure isotropic stress development in thermosetting resins during cure and subsequent thermal cycling. Experimental results are presented for sucrose benzoate, di-2-ethylhexylsebacate, and an epoxy resin. The current report shows that the method provides reliable estimates for the thermal pressure coefficient. The thermal pressure coefficient is determined with resolution on the order of 10kPa/K. Among advantages of the method is that the tubes are reusable, even when measurements are made for cure response of thermosetting resins.
NASA Astrophysics Data System (ADS)
Paniagua-Domínguez, R.; López-Tejeira, F.; Marqués, R.; Sánchez-Gil, J. A.
2011-12-01
Materials showing electromagnetic properties that are not attainable in naturally occurring media, so-called metamaterials, have been lately, and still are, among the most active topics in optical and materials physics and engineering. Among these properties, one of the most attractive ones is the sub-diffraction resolving capability predicted for media having an index of refraction of -1. Here, we propose a fully three-dimensional, isotropic metamaterial with strong electric and magnetic responses in the optical regime, based on spherical metallo-dielectric core-shell nanospheres. The magnetic response stems from the lowest, magnetic-dipole resonance of the dielectric shell with a high refractive index, and can be tuned to coincide with the plasmon resonance of the metal core, responsible for the electric response. Since the response does not originate from coupling between structures, no particular periodic arrangement needs to be imposed. Moreover, due to the geometry of the constituents, the metamaterial is intrinsically isotropic and polarization independent. It could be realized with current fabrication techniques with materials such as silver (core) and silicon or germanium (shell). For these particular realistic designs, the metamaterials present a negative index in the range of 1.2-1.55 μm.
Negative thermal expansion in CuCl: An extended x-ray absorption fine structure study
Vaccari, M.; Grisenti, R.; Fornasini, P.; Rocca, F.; Sanson, A.
2007-05-01
Extended x-ray absorption fine structure (EXAFS) has been measured from liquid helium to ambient temperature at the Cu K edge of copper chloride (CuCl) to investigate the local origin of negative thermal expansion. A quantitative analysis of the first coordination shell, performed by the cumulant method, reveals that the nearest-neighbor Cu-Cl interatomic distance undergoes a strong positive expansion, contrasting with the much weaker negative expansion of the crystallographic distance between average atomic positions below 100 K. The anisotropy of relative thermal vibrations, monitored by the ratio {gamma} between perpendicular and parallel mean square relative displacements, is considerably high, while the diffraction thermal factors are isotropic. The relative perpendicular vibrations measured by EXAFS are related to the tension mechanism and to the transverse acoustic modes, which are considered responsible for negative thermal expansion in zinc-blende structures.
Elucidating Negative Thermal Expansion in MOF-5
Lock, Nina; Wu, Yue; Christensen, Mogens; Cameron, Lisa J.; Peterson, Vanessa K.; Bridgeman, Adam J.; Kepert, Cameron J.; Iversen, Bo B.
2010-12-07
Multi-temperature X-ray diffraction studies show that twisting, rotation, and libration cause negative thermal expansion (NTE) of the nanoporous metal-organic framework MOF-5, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}. The near-linear lattice contraction is quantified in the temperature range 80-500 K using synchrotron powder X-ray diffraction. Vibrational motions causing the abnormal expansion behavior are evidenced by shortening of certain interatomic distances with increasing temperature according to single-crystal X-ray diffraction on a guest-free crystal over a broad temperature range. Detailed analysis of the atomic positional and displacement parameters suggests two contributions to cause the effect: (1) local twisting and vibrational motion of the carboxylate groups and (2) concerted transverse vibration of the linear linkers. The vibrational mechanism is confirmed by calculations of the dynamics in a molecular fragment of the framework.
Kwon, Do-Hoon; Werner, Douglas H; Kildishev, Alexander V; Shalaev, Vladimir M
2008-08-01
A chiral optical negative-index metamaterial design of doubly periodic construction for the near-infrared spectrum is presented. The chirality is realized by incorporating sub-wavelength planar silver-aluminasilver resonators and arranging them in a left-handed helical (i.e., stair-step) configuration as a wave propagates through the metamaterial. An effective material parameter retrieval procedure is developed for general bi-isotropic metamaterials. A numerical design example is presented and the retrieved effective material parameters exhibiting a negative index of refraction are provided. PMID:18679454
Power semiconductor device with negative thermal feedback
NASA Technical Reports Server (NTRS)
Borky, J. M.; Thornton, R. D.
1970-01-01
Composite power semiconductor avoids second breakdown and provides stable operation. It consists of an array of parallel-connected integrated circuits fabricated in a single chip. The output power device and associated low-level amplifier are closely coupled thermally, so that they have a predetermined temperature relationship.
Micro-architected Composite Lattices with Tunable Negative Thermal Expansions
NASA Astrophysics Data System (ADS)
Wang, Qiming
Solid materials with minimum or negative thermal expansion (NTE) have broad applications, from dental fillings to thermal-sensitive precision instruments. Previous studies on NTE structures were mostly focused on theoretically design and 2D experimental demonstrations. Here, aided with multimaterial projection micro-stereolithography, we experimentally fabricate multi-material composite lattices that exhibit significant negative thermal expansion in three directions and over a large range of temperature variations. The negative thermal expansion is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE performance can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangement. Our experimental results match qualitatively with a simple scaling law and quantitatively consistently with computational models.
Classical model of negative thermal expansion in solids with expanding bonds
NASA Astrophysics Data System (ADS)
Schick, Joseph T.; Rappe, Andrew M.
2016-06-01
We study negative thermal expansion (NTE) in model lattices with multiple atoms per cell and first- and second-nearest neighbor interactions using the (anharmonic) Morse potential. By exploring the phase space of neighbor distances and thermal expansion rates of the bonds, we determine the conditions under which NTE emerges. By permitting all bond lengths to expand at different rates, we find that NTE is possible without appealing to fully rigid units. Nearly constant, large-amplitude, isotropic NTE is observed up to the melting temperature in a classical molecular dynamics model of a ReO3-like structure when the rigidity of octahedral units is almost completely eliminated. Only weak NTE, changing over to positive expansion, is observed when the corner-linked octahedra are rigid, with flexible second-neighbor bonds between neighboring octahedra permitting easy rotation. We observe similar changes to thermal expansion behavior for the diamond lattice: NTE when second-neighbor interactions are weak to positive thermal expansion when second-neighbor interactions are strong. From these observations, we suggest that the only essential local conditions for NTE are atoms with low coordination numbers along with very low energies for changing bond angles relative to bond-stretching energies.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Jiang, Yan
2016-10-01
High-order rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling, which describe the propagation of orthogonally polarized optical waves in an isotropic medium, are reported in this paper. Key point lies in the introduction of a limit process in the Darboux transformation, with which we obtain a family of the first- and second-order rational solutions for the purpose of modelling the rogue waves. We observe that the double-hump rogue wave in the course of evolution turns into the one-hump rogue wave, and that the dark rogue wave with four valleys in the course of evolution turns into the bright rogue wave. It is found that the second-order rogue wave can split up, giving birth to the multiple rogue waves.
Using Thermal Radiation in Detection of Negative Obstacles
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2009-01-01
A method of automated detection of negative obstacles (potholes, ditches, and the like) ahead of ground vehicles at night involves processing of imagery from thermal-infrared cameras aimed at the terrain ahead of the vehicles. The method is being developed as part of an overall obstacle-avoidance scheme for autonomous and semi-autonomous offroad robotic vehicles. The method could also be applied to help human drivers of cars and trucks avoid negative obstacles -- a development that may entail only modest additional cost inasmuch as some commercially available passenger cars are already equipped with infrared cameras as aids for nighttime operation.
Negative thermal ion mass spectrometry of osmium, rhenium, and iridium
NASA Technical Reports Server (NTRS)
Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.
1991-01-01
This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011)]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
NASA Astrophysics Data System (ADS)
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
Unusual compressibility in the negative-thermal-expansion material ZrW2O8
NASA Astrophysics Data System (ADS)
Migliori, Albert; Pantea, C.; Ledbetter, H.; Zhao, Y.; Kimura, T.; Littlewood, Peter B.; van Duijn, J.; Kowach, G. R.
2006-03-01
The negative thermal expansion (NTE) compound ZrW2O8 has been well-studied because it remains cubic with a nearly constant, isotropic NTE coefficient over a broad temperature range. However, its elastic constants seem just as strange as its volume because NTE makes temperature acts as positive pressure, decreasing volume on warming and, unlike most materials, the thermally-compressed solidsoftens. Does ZrW2O8 also soften when pressure alone is applied? Using pulse-echo ultrasound in a hydrostatic SiC anvil cell, we determine the elastic tensor of monocrystalline ZrW2O8 near 300 K as a function of pressure. We indeed find an unusual decrease in bulk modulus with pressure. Our results are inconsistent with conventional lattice dynamics, but do show that the thermodynamically-complete constrained-lattice model can relate NTE to elastic softening as increases in either temperature or pressure reduce volume, establishing the predictive power of the model, and making it an important concept in condensed-matter physics.
Phonon anharmonicity and negative thermal expansion in SnSe
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-09
In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less
Phonon anharmonicity and negative thermal expansion in SnSe
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-01
The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.
NASA Astrophysics Data System (ADS)
Zhou, Xingfei; Zhang, Zhi
2016-05-01
We study the heat transport in a graphene-based normal-superconducting junction by solving the Bogoliubov-de Gennes (BdG) equation. There are two effects, the competitive and cooperative effects, which come from the interaction between the temperature-dependent energy-gap function in the superconducting region and the occupation difference of quasiparticles. It is found that the competitive effect can not only bring the negative differential thermal conductance effect but also the thermal rectification effect. By contrast, the cooperative effect just causes the thermal rectification effect. Furthermore, the thermal rectification ratio and the magnitude of heat current should be seen as two inseparable signs for characterizing the thermal rectification effect. These discoveries can add more application for the graphene-based superconducting junction, such as heat diode and heat transistor, at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Akoshima, M.; Hay, B.; Zhang, J.; Chapman, L.; Baba, T.
2013-05-01
The first international pilot study of thermal-diffusivity measurements using the laser flash (LF) method was organized by the working group 9 (WG9) of the Consultative Committee for Thermometry (CCT) of the Bureau International des Poids et Mesures (BIPM). Four National Metrology Institutes (NMIs) participated in this comparison. Thermal-diffusivity measurements on the Armco iron and the isotropic graphite IG-110 were carried out from room temperature to about 1200 K. The sample sets consist of five disk-shaped specimens of 10 mm in diameter and (1.0, 1.4, 2.0, 2.8, and 4.0) mm in thickness, each cut from the same block of material. These sample sets were specifically prepared for the comparison and sent to the participants. In the pilot comparison, the thermal diffusivity of each sample was estimated using the LF method with a specific extrapolating procedure. This procedure has the advantage of determining the inherent thermal diffusivity of the material. The extrapolated value in a plot of measured apparent thermal-diffusivity values versus the amplitude of the output signal corresponding to the temperature rise during each measurement is defined as the inherent thermal diffusivity. The overall results showed good agreement between independent laboratories, measurement equipment, and specimen thicknesses. The thermal diffusivities of the materials were determined using our measured results. A quantitative evaluation of the variability of the data obtained by the participants has been done, by evaluating the deviations from the reference value, the Z-value, and the En-number. Some data showed a large deviation from the reference value. It was concluded that these are caused by an insufficient time response of the measurement equipment and some difficulties with changing the pulsed heating energy. The effect of the thermal expansion on the thermal diffusivity was checked. It was found that the thermal-expansion effect was very small and negligible in this case.
Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry
NASA Astrophysics Data System (ADS)
Völkening, Joachim; Köppe, Manfred; Heumann, Klaus G.
1991-07-01
A precise determination of the isotopic abundances of tungsten with natural isotopic composition is presented. WO-3 ions are generated by negative thermal ionization (NTI) in a double-filament ion source. La2O3 is used as a chemical substance to reduce the electron work function of the rhenium filament material. An ionization efficiency of 1% is obtained for sample loadings of 100 ng. The isotopic abundances are measured with relative standard deviations of 0.2% for the least abundant 180W isotope and 0.02-0.004% for the other tungsten isotopes. These improved isotopic data are used to recalculate the atomic weight of tungsten as 183.8417 ± 0.0001. The new NTI technique is an ideal tool for the application of isotope dilution mass spectrometry to analyse tungsten traces and for the measurement of isotopic shifts of this element in meteorites produced by the decay of 182Hf.
Negative thermal ion mass spectrometry of oxygen in phosphates
NASA Astrophysics Data System (ADS)
Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.
1997-06-01
A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.
Negative thermal expansion materials related to cubic zirconium tungstate
NASA Astrophysics Data System (ADS)
Lind, Cora
2001-12-01
A non-hydrolytic sol-gel method for the preparation of ZrW2O 8 was developed. A new trigonal polymorph was discovered, which is structurally related to trigonal ZrMO2O8 and MnRe2O 8 as evidenced by powder x-ray diffraction and EXAFS studies. Seeding of the starting mixtures with cubic ZrW2O8 promoted crystallization of the cubic phase instead of trigonal material. Dehydration of ZrW2O7(OH)2·2H 2O gave cubic ZrW2O8 at 650°C, and a modification of this route led to the discovery of the new NTE materials cubic ZrMo 2O8 and HfMo2O8. These compounds crystallize in the same temperature range as the more stable trigonal AMo2O 8 polymorphs. To facilitate preparation of phase pure cubic molybdates, the influence of precursor chemistry on the crystallization behavior was investigated. The synthesis was extended to the solid solution system ZrxHf 1-xMoyW2-yO8 (0 ≤ x ≤ 1, 0 ≤ y ≤ 2). All compounds showed negative thermal expansion between 77 and 573 K. High-pressure in situ diffraction experiments were conducted on several AM2O8 polymorphs. With the exception of monoclinic ZrMo2O8, all materials underwent at least one pressure induced phase transition. Quasi-hydrostatic experiments on cubic AMo 2O8 led to a reversible transition to a new high-pressure structure, while low-pressure amorphization was observed under non-hydrostatic conditions. Isothermal kinetic studies of the cubic to trigonal transformation for ZrMo2O8 were carried out on four samples. Apparent activation energies of 170--290 kJ/mol were obtained using an Avrami model in combination with an Arrhenius analysis. This corresponds to 5% conversion levels after one year at temperatures between 220 and 315°C. Ex situ studies showed that the conversion at lower temperatures was considerably slower than what would be expected from extrapolation of the kinetic data. Drop solution calorimetry was carried out on several polymorphs of ZrMo 2O8, HfMo2O8 and ZrW2O 8. Only monoclinic ZrMo2O8 was enthalpically
The isotropic radio background revisited
Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.
2014-04-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Ramaswamy, V. G.; Vanstone, R. H.; Dame, L. T.; Laflen, J. H.
1984-01-01
The unified constitutive theories for application to typical isotropic cast nickel base supperalloys used for air-cooled turbine blades were evaluated. The specific modeling aspects evaluated were: uniaxial, monotonic, cyclic, creep, relaxation, multiaxial, notch, and thermomechanical behavior. Further development of the constitutive theories to model thermal history effects, refinement of the material test procedures, evaluation of coating effects, and verification of the models in an alternate material will be accomplished in a follow-on for this base program.
NASA Astrophysics Data System (ADS)
Ren, Jie; Zhu, Jian-Xin
2013-06-01
Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.
NASA Astrophysics Data System (ADS)
Takenaka, K.; Hamada, T.; Kasugai, D.; Sugimoto, N.
2012-10-01
We controlled thermal expansion of metal matrix composites (MMCs) that had been blended using antiperovskite manganese nitrides with giant negative thermal expansion (NTE). The NTE of the manganese nitrides, which is isotopic, is greater than -30 ppm K-1 in α (coefficient of linear thermal expansion), which is several or ten times as large as that of conventional NTE materials. These advantages of nitrides are desirable for practical application as a thermal-expansion compensator, which can suppress thermal expansion of various materials including metals and even plastics. Powder metallurgy using pulsed electric current sintering enables us to reduce temperatures and times for fabrication of MMCs. Consequently, chemical reactions between matrix (Al, Ti, Cu) and filler can be controlled and even high-melting-point metals can be used as a matrix. Thermal expansion of these MMCs is tunable across widely various α values, even negative ones, with high reproducibility. These composites retain a certain amount of voids. Formation of rich and stable interfacial bonding, overcoming large mismatch in thermal expansion, remains as a problem that is expected to hinder better composite performance.
Negative stiffness in ZrW2O8 inclusions as a result of thermal stress
NASA Astrophysics Data System (ADS)
Romao, Carl P.; White, Mary Anne
2016-07-01
Materials with negative stiffness, although inherently unstable in isolation, can be stabilized by external constraints, for example, by inclusion within a material with positive stiffness. We have identified ZrW2O8, a material with negative thermal expansion, as a candidate negative-stiffness material arising from its negative bulk modulus during a ferroelastic cubic-orthorhombic pressure-induced phase transition (PIPT). A hyperelastic constituent equation for this transition was developed and implemented in a finite-element model of ZrW2O8 inclusions in positive stiffness, positive thermal expansion matrices. In these matrices, thermal stress during cooling, originating from thermal expansion mismatch, would be sufficient to initiate the PIPT after small temperature drops. The subsequent progress of the PIPT depends strongly on the thermoelastic properties of the matrix, with stiff, low thermal expansion matrices stabilizing the transition state over broad temperature ranges, indicating that ZrW2O8 or materials with similar properties could be used as versatile negative-stiffness inclusion materials. The models were used to understand previous experiments on composites that include ZrW2O8.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Yang, Wenge; Zhao, Yusheng
2016-01-01
The structure stability under high pressure and thermal expansion behavior of Na3OBr and Na4OI2, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na3OBr and Na4OI2, respectively. The cubic Na3OBr structure and tetragonal Na4OI2 with intergrowth K2NiF4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na4OI2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20-80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.
NASA Astrophysics Data System (ADS)
Jiang, Xingxing; Molokeev, Maxim S.; Li, Wei; Wu, Shaofan; Lin, Zheshuai; Wu, Yicheng; Chen, Chuangtian
2016-02-01
A very recent study demonstrated that the KBe2BO3F2 (KBBF) family of crystals, including KBBF, RbBe2BO3F2, and CsBe2BO3F2, are the only known borates exhibiting a rarely occurring isotropic area negative thermal expansion (NTE) behavior, over a very large temperature range. In the present work, the NTE mechanism in these crystals is comprehensively investigated using the first-principles calculations. It is revealed that the area NTE behavior mainly originates from the concerted distortion of [BeO3F] tetrahedra in the two-dimensional [Be2BO3F2]∞ framework with respect to temperature, while the [BO3] triangles remain almost rigid. Moreover, the different magnitude of NTE effect in the three crystals is attributed to the interaction difference between the alkali metal atoms (K, Rb, or Cs) and the [Be2BO3F2]∞ layer.
Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration
He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing
2016-01-01
We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090
Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration
NASA Astrophysics Data System (ADS)
He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing
2016-03-01
We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity.
NASA Astrophysics Data System (ADS)
Jianqiang, Zhang; Linru, Nie; Chongyang, Chen; Xinyu, Zhang
2016-07-01
Thermal conduction of the Frenkel-Kontorova (FK) lattices with interfacial coupling is investigated numerically. The results indicate that: (i) For appropriate lattice periods, as the system is symmetric, a bidirectional negative differential thermal resistance (NDTR) phenomenon will appear. If the system is asymmetric, the bidirectional NDTR is gradually converted into an unidirectional NDTR. (ii) The bidirectional NDTR phenomenon effect also depends on the period of the FK lattice as the other parameters remains unchanged. With the increment of the lattice period, the bidirectional NDTR will gradually disappear. (iii) From a stochastic dynamics point of view, thermal transport properties of the system are determined by the competition between the two types of thermal conduction: one comes from the collusion between atoms, the other is due to the elastic coupling between atoms. For the smaller lattice periods, the former type of thermal conduction occupies the dominating position and the NDTR effect will appear.
First-principles study of negative thermal expansion in zinc oxide
NASA Astrophysics Data System (ADS)
Wang, Zhanyu; Wang, Fei; Wang, Lei; Jia, Yu; Sun, Qiang
2013-08-01
We present the first-principles calculations of vibrational and thermal properties for wurtzite and zinc-blende zinc oxide (ZnO) within DFT and quasi-harmonic approximation, especially for their negative thermal expansion (NTE) behavior. For the wurtzite and zinc-blende phases, negative thermal expansions are obtained at T < 95 K and T < 84 K, respectively. For the wurtzite structure, calculated phonon frequencies and mode Grüneisen parameters of low-energy modes are in good agreement with that determined experimentally. And the thermal expansion coefficient is found to be in good agreement with the experimental results. Like many other NTE semiconductors, detailed study of both phases shows that maximum contribution to NTE comes from low-frequency transverse acoustic modes, while for the wurtzite structure the contribution of longitudinal acoustic and lowest-energy optical modes is not ignorable. From the specific analysis of the vibration modes, we found that the negative thermal expansion in ZnO is dominated by the tension effect.
NASA Astrophysics Data System (ADS)
Kats, Mikhail A.; Blanchard, Romain; Zhang, Shuyan; Genevet, Patrice; Ko, Changhyun; Ramanathan, Shriram; Capasso, Federico
2013-10-01
We experimentally demonstrate that a thin (approximately 150-nm) film of vanadium dioxide (VO2) deposited on sapphire has an anomalous thermal emittance profile when heated, which arises because of the optical interaction between the film and the substrate when the VO2 is at an intermediate state of its insulator-metal transition (IMT). Within the IMT region, the VO2 film comprises nanoscale islands of the metal and dielectric phases and can thus be viewed as a natural, disordered metamaterial. This structure displays “perfect” blackbodylike thermal emissivity over a narrow wavelength range (approximately 40cm-1), surpassing the emissivity of our black-soot reference. We observe large broadband negative differential thermal emittance over a >10°C range: Upon heating, the VO2-sapphire structure emits less thermal radiation and appears colder on an infrared camera. Our experimental approach allows for a direct measurement and extraction of wavelength- and temperature-dependent thermal emittance. We anticipate that emissivity engineering with thin-film geometries comprising VO2 and other thermochromic materials will find applications in infrared camouflage, thermal regulation, and infrared tagging and labeling.
Negative differential thermal conductance and heat amplification in superconducting hybrid devices
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Timossi, Giuliano; Bosisio, Riccardo; Solinas, Paolo; Giazotto, Francesco
2016-04-01
We investigate the thermal transport properties of a temperature-biased Josephson tunnel junction composed of two different superconductors. We show that this simple system can provide a large negative differential thermal conductance (NDTC) with a peak-to-valley ratio of ˜3 in the transmitted electronic heat current. The NDTC is then exploited to outline the caloritronic analog of the tunnel diode, which can exhibit a modulation of the output temperature as large as 80 mK at a bath temperature of 50 mK. Moreover, this device may work in a regime of thermal hysteresis that can be used to store information as a thermal memory. On the other hand, the NDTC effect offers the opportunity to conceive two different designs of a thermal transistor, which might operate as a thermal switch or as an amplifier/modulator. The latter shows a heat amplification factor >1 in a 500-mK-wide working region of the gate temperature. After the successful realization of heat interferometers and thermal diodes, this kind of structures would complete the conversion of the most important electronic devices in their thermal counterparts, breaking ground for coherent caloritronics nanocircuits where heat currents can be manipulated at will.
Shang, Ran; Xu, Guan-Cheng; Wang, Zhe-Ming; Gao, Song
2014-01-20
We present three Mg-formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] (1), [CH3CH2NH3][Mg(HCOO)3] (2) and [NH3(CH2)4NH3][Mg2(HCOO)6] (3). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature-dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure-property relationships are established. Compound 1 is a chiral Mg-formate framework with the NH4(+) cations located in the channels. Above 255 K, the NH4(+) cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non-compensated antipolarization. These lead to significant negative thermal expansion and a relaxor-like dielectric response. In perovskite 2, the orthorhombic phase below 374 K possesses ordered CH3CH2NH3(+) cations in the cubic cavities of the Mg-formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two-fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order-disorder transition of CH3CH2NH3(+). For niccolite 3, the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3](2+) in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations
Effect of negative emotions evoked by light, noise and taste on trigeminal thermal sensitivity
2014-01-01
Background Patients with migraine often have impaired somatosensory function and experience headache attacks triggered by exogenous stimulus, such as light, sound or taste. This study aimed to assess the influence of three controlled conditioning stimuli (visual, auditory and gustatory stimuli and combined stimuli) on affective state and thermal sensitivity in healthy human participants. Methods All participants attended four experimental sessions with visual, auditory and gustatory conditioning stimuli and combination of all stimuli, in a randomized sequence. In each session, the somatosensory sensitivity was tested in the perioral region with use of thermal stimuli with and without the conditioning stimuli. Positive and Negative Affect States (PANAS) were assessed before and after the tests. Subject based ratings of the conditioning and test stimuli in addition to skin temperature and heart rate as indicators of arousal responses were collected in real time during the tests. Results The three conditioning stimuli all induced significant increases in negative PANAS scores (paired t-test, P ≤0.016). Compared with baseline, the increases were in a near dose-dependent manner during visual and auditory conditioning stimulation. No significant effects of any single conditioning stimuli were observed on trigeminal thermal sensitivity (P ≥0.051) or arousal parameters (P ≥0.057). The effects of combined conditioning stimuli on subjective ratings (P ≤0.038) and negative affect (P = 0.011) were stronger than those of single stimuli. Conclusions All three conditioning stimuli provided a simple way to evoke a negative affective state without physical arousal or influence on trigeminal thermal sensitivity. Multisensory conditioning had stronger effects but also failed to modulate thermal sensitivity, suggesting that so-called exogenous trigger stimuli e.g. bright light, noise, unpleasant taste in patients with migraine may require a predisposed or sensitized nervous
Pronounced negative thermal expansion from a simple structure : Cubic ScF{sub 3}.
Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P.; X-Ray Science Division; Georgia Inst. of Tech.
2010-10-19
Scandium trifluoride maintains a cubic ReO{sub 3} type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at {approx}300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, {alpha}{sub l} {approx} -14 ppm K{sup -1}). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW{sub 2}O{sub 8} and positive thermal expansion above {approx}1100 K. While the cubic ReO{sub 3} structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF{sub 3} is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.
Sound velocity of high-strength polymer with negative thermal expansion coefficient
NASA Astrophysics Data System (ADS)
Nomura, R.; Ueno, M.; Okuda, Y.; Burmistrov, S.; Yamanaka, A.
2003-05-01
Sound velocities of fiber reinforced plastics (FRPs) were measured along the fiber axis at temperatures between 360 and 77 K. We used two kinds of the high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which have negative thermal expansion coefficients. They also have high thermal conductivities and high resistances for flash over voltage, and are expected as new materials for coil bobbins or spacers at cryogenic temperatures. They have very large sound velocities of about 9000 (m/s) at 77 K, which are 4.5 times larger than that of the ordinary polyethylene fiber.
Mechanism of negative thermal expansion in LaC2 from first-principles prediction
NASA Astrophysics Data System (ADS)
Liu, Yaming; Jia, Yu; Sun, Qiang; Liang, Erjun
2015-01-01
Based on density functional theory and quasiharmonic approximation, the coefficients of thermal expansion (CTE) and negative thermal expansion (NTE) mechanism of tetragonal LaC2 are studied. Numerical results show that there is an obvious NTE parallel to c-axis, and the CTE is approximately αc = - 1.67 ×10-6K-1, which coincides with the experimental data - 1.0 ×10-6K-1. In particular, a tiny NTE phenomenon along a-axis below 10 K has been predicted. The vibrational modes Eu and Eg at Γ (0 , 0 , 0), and other three modes at M (0.5 , 0.5 , 0) and Z (0 , 0 , 0.5), give rise to negative Grüneisen parameters and therefore contribute to the NTE along a- and c-axis. Additionally, the bulk CTE was calculated to be positive, our CTE values and temperature intervals agree well with the presented experiments.
Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.
2015-07-20
Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the summore » of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less
Wu, Dan-Dan; Fu, Hua-Hua; Gu, Lei; Ni, Yun; Zu, Feng-Xia; Yao, Kai-Lun
2014-09-01
Spin caloritronics with a combination of spintronics and thermoelectrics has potential applications in future information science and opens a new direction in the development of multi-functional materials. Based on density functional theory and the nonequilibrium Green's function method, we calculate thermal spin-dependent transport through a zigzag silicon carbide nanoribbon (ZSiCNR), which is a heterojunction consisting of a left electrode (ZSiC-2H1H) and right electrode terminated (ZSiC-1H1H) by hydrogen. Our results show that when the temperature in the left contact increases over a critical value, the thermal spin-down current increases remarkably from zero, while the thermal spin-up current remains zero in the total-temperature region, indicating that a perfect thermal spin filter together with a perfect spin switcher is obtained. Furthermore, the thermal spin current shows a negative differential resistance effect and quantum oscillation behaviors. These results suggest that the zigzag SiC nanoribbon proposed by us can be designed as a highly-efficient spin caloritronics device with multiple functionalities.
NASA Astrophysics Data System (ADS)
Greve, Benjamin K.
This thesis explores the thermal expansion and high pressure behavior of some materials with the ReO3 structure type. This structure is simple and has, in principle, all of the features necessary for negative thermal expansion (NTE) arising from the transverse thermal motion of the bridging anions and the coupled rotation of rigid units; however, ReO 3 itself only exhibits mild NTE across a narrow temperature range at low temperatures. ReO3 is metallic because of a delocalized d-electron, and this may contribute to the lack of NTE in this material. The materials examined in this thesis are all based on d 0 metal ions so that the observed thermal expansion behavior should arise from vibrational, rather than electronic, effects. In Chapter 2, the thermal expansion of scandium fluoride, ScF3 , is examined using a combination of in situ synchrotron X-ray and neutron variable temperature diffraction. ScF3 retains the cubic ReO3 structure across the entire temperature range examined (10 - 1600 K) and exhibits pronounced negative thermal expansion at low temperatures. The magnitude of NTE in this material is comparable to that of cubic ZrW2O8, which is perhaps the most widely studied NTE material, at room temperature and below. This is the first report of NTE in an ReO3 type structure across a wide temperature range. Chapter 3 presents a comparison between titanium oxyfluoride, TiOF 2, and a vacancy-containing titanium hydroxyoxyfluoride, Ti x(O/OH/F)3. TiOF2 was originally reported to adopt the cubic ReO3 structure type under ambient conditions, therefore the initial goal for this study was to examine the thermal expansion of this material and determine if it displayed interesting behavior such as NTE. During the course of the study, it was discovered that the original synthetic method resulted in Tix(O/OH/F)3, which does adopt the cubic ReO3 structure type. The chemical composition of the hydroxyoxyfluoride is highly dependent upon synthesis conditions and subsequent
Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach
Grima, J. N.; Bajada, M.; Scerri, S.; Attard, D.; Dudek, K. K.; Gatt, R.
2015-01-01
Existent rigid unit mode (RUM) models based on rotating squares, which may explain the phenomenon of negative thermal expansion (NTE), are generalized so as to assess the NTE potential for novel systems made from rectangular or rhombic rigid units. Analytical models for the area coefficients of thermal expansion (CTE) of these innovative networks are derived in an attempt to determine the optimal geometrical parameters and connectivity for maximum NTE. It was found that all systems exhibit NTE, the extent of which is determined by the shape and connectivity of the elemental rigid units (side lengths ratio or internal angle). It was also found that some of the networks proposed here should exhibit significantly superior NTE properties when compared with the well-known network of squares, and that for optimal NTE characteristics, pencil-like rigid units should be used rather than square-shaped ones, as these permit larger pore sizes that are more conducive to NTE. All this compliments earlier work on the negative Poisson's ratio (auxetic) potential of such systems and may provide a route for the design of new materials exhibiting superior thermo-mechanical characteristics including specifically tailored CTEs or giant NTE characteristics. PMID:26345087
Tunable Negative Thermal Expansion in Layered Perovskites from Quasi-Two-Dimensional Vibrations
NASA Astrophysics Data System (ADS)
Huang, Liang-Feng; Lu, Xue-Zeng; Rondinelli, James M.
2016-09-01
We identify a quasi-two-dimensional (quasi-2D) phonon mode in the layered-perovskite Ca3Ti2O7, which exhibits an acoustic branch with quadratic dispersion. Using first-principles methods, we show this mode exhibits atomic displacements perpendicular to the layered [CaTiO3]2 blocks comprising the structure and a negative Grüneisen parameter. Owing to these quasi-2D structural and dynamical features, we find that the mode can be utilized to realize unusual membrane effects, including a tunable negative thermal expansion (NTE) and a rare pressure-independent thermal softening of the bulk modulus. Detailed microscopic analysis shows that the NTE relies on strong intralayer Ti—O covalent bonding and weaker interlayer interactions, which is in contrast to conventional NTE mechanisms for perovskites, such as rigid-unit modes, structural transitions, and electronic or magnetic ordering. The general application of the quasi-2D lattice dynamics opens exciting avenues for the control of lattice dynamical and thermodynamic responses of other complex layered compounds through rational chemical substitution, as we show in A3Zr2O7 (A =Ca , Sr), and by heterostructuring.
Tunable Negative Thermal Expansion in Layered Perovskites from Quasi-Two-Dimensional Vibrations.
Huang, Liang-Feng; Lu, Xue-Zeng; Rondinelli, James M
2016-09-01
We identify a quasi-two-dimensional (quasi-2D) phonon mode in the layered-perovskite Ca_{3}Ti_{2}O_{7}, which exhibits an acoustic branch with quadratic dispersion. Using first-principles methods, we show this mode exhibits atomic displacements perpendicular to the layered [CaTiO_{3}]_{2} blocks comprising the structure and a negative Grüneisen parameter. Owing to these quasi-2D structural and dynamical features, we find that the mode can be utilized to realize unusual membrane effects, including a tunable negative thermal expansion (NTE) and a rare pressure-independent thermal softening of the bulk modulus. Detailed microscopic analysis shows that the NTE relies on strong intralayer Ti-O covalent bonding and weaker interlayer interactions, which is in contrast to conventional NTE mechanisms for perovskites, such as rigid-unit modes, structural transitions, and electronic or magnetic ordering. The general application of the quasi-2D lattice dynamics opens exciting avenues for the control of lattice dynamical and thermodynamic responses of other complex layered compounds through rational chemical substitution, as we show in A_{3}Zr_{2}O_{7} (A=Ca, Sr), and by heterostructuring. PMID:27661701
Electro-Thermal Tuning in a Negative Dielectric Cholesteric Liquid Crystal Material
Natarajan,L.; Wofford, J.; Tondiglia, V.; Sutherland, R.; Koerner, H.; Vaia, R.; Bunning, T.
2008-01-01
The thermal and electrical tunability of a cholesteric liquid crystal containing a negative dielectric anisotropy liquid crystal in a planar alignment was studied. The physical, optical, and electro-optical characteristics of mixtures containing different ratios of chiral dopant S811 and the negative dielectric anisotropy liquid crystal ZLI-2806 were examined. A smectic A phase was seen at room temperature for S811 loadings >20 wt%. Below 20%, a room temperature cholesteric phase was observed. Upon heating mixtures with composition S811 >20%, the selective reflection notch of the cholesteric phase appeared and blueshifted with temperature. Thermal tuning from 2300?to?500?nm was observed over the temperature range of 23-55? C. Polarized optical microscopy, differential scanning calorimetry, and x-ray studies were utilized to confirm the temperature-dependent phase behavior. Tuning of ? 50?nm by the application of a direct current electric field was also observed with no onset of electrohydrodynamic instabilities for voltages up to {approx} 300 V. Bandwidth broadening but not tuning was obtained with the application of alternating current fields. Electrical tuning is likely due to pitch contraction brought about through the annealing of defects.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.
1988-01-01
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.
Wu, Hongchao; Rogalski, Mark; Kessler, Michael R
2013-10-01
The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.
Activation energy of negative fixed charges in thermal ALD Al2O3
NASA Astrophysics Data System (ADS)
Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.
2016-08-01
A study of the thermally activated negative fixed charges Qtot and the interface trap densities Dit at the interface between Si and thermal atomic-layer-deposited amorphous Al2O3 layers is presented. The thermal activation of Qtot and Dit was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Qtot and Dit were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of EA = (2.2 ± 0.2) eV and EA = (2.3 ± 0.7) eV for Qtot and Dit, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Qtot and Dit were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Qtot based on an electron hopping process between the silicon and Al2O3 through defects is proposed.
Novel negative resists using thermally stable crosslinkers based on phenolic compounds
NASA Astrophysics Data System (ADS)
Kajita, Toru; Kobayashi, Eiichi; Ota, Toshiyuki; Miura, Takao
1993-09-01
This is a preliminary report on a family of crosslinkers based on phenolic compounds for negative-working photoresists which are suitable for KrF excimer laser exposure using poly(hydroxystyrene) (PHS) as a base resin. The crosslinkers are benzylic derivatives having etherificated or esterificated phenolic hydroxyl group. Several effects upon the resist performances of chemically amplified (CA) resist systems comprising onium salt, PHS, and the crosslinkers are mainly discussed: i.e., sort of substituent, sort of mother molecular structure, sort of crosslinkable group, baking conditions, PHS's molecular weight, additives, and so on. The CA resist gives quarter-micron line and space pairs without swelling using a KrF excimer laser exposure. Moreover, in this report another effective method for inhibiting the swelling is proposed. Finally, a unique negative resist, which is not a CA resist, is also presented. It gives negative-tone images by thermal crosslinking reaction following photo- induced dissociation of the protective group of crosslinker.
Senn, M S; Bombardi, A; Murray, C A; Vecchini, C; Scherillo, A; Luo, X; Cheong, S W
2015-01-23
We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3 Mn2O7 and Ca3Ti2O7. To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6×10^(-6) K^{-1}) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho
2016-06-01
In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ~1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K-1 for 16-nm-thick samples at 300 K.
Negative-thermal-expansion ZrW2O8. Elasticity and pressure
NASA Astrophysics Data System (ADS)
Pantea, Cristian; Migliori, Albert; Littlewood, Peter; Zhao, Yusheng; Ledbetter, Hassel; Lashley, Jason; Kimura, Tsuyoshi; van Duijn, Joost; Kowach, Glen
2007-03-01
The elasticity of the negative thermal expansion (NTE) compound ZrW2O8 is rather strange: the solid softens as its volume decreases on warming. Does ZrW2O8 also soften when pressure alone is applied? Using pulse-echo ultrasound in a large-volume moissanite anvil cell, we find an unusual decrease in bulk modulus with pressure at 300K. Our results are inconsistent with conventional lattice dynamics, but a framework-solid-based non-linear model with many degrees of freedom predicts elastic softening as increases in either temperature or pressure reduce volume. The pressure-induced phase transition from α-ZrW2O8 (cubic) to γ-ZrW2O8 (orthorhombic) is found to take place at 0.5 GPa, result confirmed by Raman spectroscopy.
Senn, M S; Bombardi, A; Murray, C A; Vecchini, C; Scherillo, A; Luo, X; Cheong, S W
2015-01-23
We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3 Mn2O7 and Ca3Ti2O7. To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6×10^(-6) K^{-1}) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients. PMID:25659007
Antiferromagnetic spin structure and negative thermal expansion of Li2Ni (WO4)2
NASA Astrophysics Data System (ADS)
Karna, Sunil K.; Wang, C. W.; Sankar, R.; Avdeev, M.; Singh, A.; Panneer Muthuselvam, I.; Singh, V. N.; Guo, G. Y.; Chou, F. C.
2015-07-01
We report the results of a study on the crystal and magnetic structure of Li2Ni (WO4)2 with a neutron diffraction technique. The Ni2 + spins of S = 1 for NiO6 octahedra are coupled via corner-sharing, nonmagnetic double tungstate groups in a super-superexchange route. Two magnetic anomalies at TN 1˜ 18 K and TN 2˜ 13 K are revealed from the measured magnetic susceptibility χ (T), and TN 2 is confirmed to be the onset of a commensurate long-range antiferromagnetic (AF) ordering through neutron diffraction. A negative thermal expansion phenomenon is observed below TN 2, which has been interpreted as a result of competing normal thermal contraction and long-range AF spin ordering through counterbalanced WO4 and NiO6 polyhedral local distortion. The AF spin structure has been modeled and used to show that Ni spins with a saturated magnetic moment of ˜1.90 (27 )μB that lies in the a -c plane approximately 46∘(±10∘) off the a axis. The experimental results are compared and found to be consistent with theoretical calculations using density-functional theory with a generalized gradient approximation plus on-site Coulomb interaction.
Interfacial thermal conduction and negative temperature jump in one-dimensional lattices
NASA Astrophysics Data System (ADS)
Cao, Xiaodong; He, Dahai
2015-09-01
We study the thermal boundary conduction in one-dimensional harmonic and ϕ4 lattices, both of which consist of two segments coupled by a harmonic interaction. For the ballistic interfacial heat transport through the harmonic lattice, we use both theoretical calculation and molecular dynamics simulation to study the heat flux and temperature jump at the interface as to gain insights into the Kapitza resistance at the atomic scale. In the weak coupling regime, the heat current is proportional to the square of the coupling strength for the harmonic model as well as anharmonic models. Interestingly, there exists a negative temperature jump between the interfacial particles in particular parameter regimes. A nonlinear response of the boundary temperature jump to the externally applied temperature difference in the ϕ4 lattice is observed. To understand the anomalous result, we then extend our studies to a model in which the interface is represented by a relatively small segment with gradually changing spring constants and find that the negative temperature jump still exists. Finally, we show that the local velocity distribution at the interface is so close to the Gaussian distribution that the existence or absence of a local equilibrium state is unable to be determined by numerics in this way.
Large amplitude dust-acoustic double layers in non-thermal plasmas with positive and negative dust
Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.; Pillay, S. R.
2011-11-29
The existence of large amplitude double layers in a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons is investigated using the Sagdeev pseudopotential technique. Both positive potential and negative potential double layers are found to be supported by the model. The variation of the maximum amplitudes of the double layers and corresponding Mach numbers are examined as a function of various plasma parameters. In particular, we investigate to what extent ion non-thermal effects are required for positive potential double layers to occur.
Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho
2016-01-01
In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K(-1) for 16-nm-thick samples at 300 K. PMID:27323662
Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho
2016-01-01
In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K−1 for 16-nm-thick samples at 300 K. PMID:27323662
Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho
2016-06-21
In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K(-1) for 16-nm-thick samples at 300 K.
Size effects on negative thermal expansion in cubic ScF3
NASA Astrophysics Data System (ADS)
Yang, C.; Tong, P.; Lin, J. C.; Guo, X. G.; Zhang, K.; Wang, M.; Wu, Y.; Lin, S.; Huang, P. C.; Xu, W.; Song, W. H.; Sun, Y. P.
2016-07-01
Scandium trifluoride (ScF3), adopting a cubic ReO3-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K-1100 K). Here, we report the size effects on the NTE properties of ScF3. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead, the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO3-type and other open-framework materials can be effectively adjusted by controlling the crystal size.
Isotropic Contraction Of Mercury Due To Despinning
NASA Astrophysics Data System (ADS)
Matsuyama, Isamu; Bills, B. G.
2009-09-01
Mercury's slow rotation period of 59 days is presumably the result of solar tides driving its initial rotational state to the present 3:2 spin-orbit resonance. The observed large gravity coefficients can be explained as due to a remnant rotational bulge recording an initial rotation period of a few days (Matsuyama and Nimmo 2009). Despinning changes the shape of the rotational bulge, generating both compressional and extensional stresses (Melosh 1977). However, Mercury's surface is dominated by compressional tectonic features (Watters et al. 1998), and the inferred global contraction has been explained as due to thermal cooling (Solomon 1976). In addition to non-isotropic changes associated with the rotational flattening, despinning causes isotropic contraction of the entire planet. We consider the effect of the compressional stresses generated by this isotropic contraction on the predicted tectonic pattern. References Matsuyama and Nimmo. Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res. (2009) vol. 114 pp. E01010 Melosh. Global tectonics of a despun planet. Icarus (1977) vol. 31 pp. 221-243 Solomon. Some aspects of core formation in Mercury. Icarus (1976) vol. 28 pp. 509-521 Watters et al. Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology (1998) vol. 26 pp. 991-994
Isotropic Monte Carlo Grain Growth
2013-04-25
IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.
Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.; Pillay, S. R.
2011-11-29
Using the traditional Sagdeev pseudopotential approach, the existence of large amplitude solitons is investigated for a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons. The lower and upper soliton Mach number limitations are determined as a function of various parameters and physical reasons are provided as to why these Mach number limits occur. Some regions in parameter space have been identified where only negative or positive solitons occur, whereas, other regions support the coexistence of both positive and negative potential solitons.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
NASA Astrophysics Data System (ADS)
Nabetani, K.; Muramatsu, Y.; Oka, K.; Nakano, K.; Hojo, H.; Mizumaki, M.; Agui, A.; Higo, Y.; Hayashi, N.; Takano, M.; Azuma, M.
2015-02-01
Negative thermal expansion (NTE) of BiNi1-xFexO3 is investigated. All x = 0.05, 0.075, 0.10, and 0.15 samples shows large NTE with the coefficient of linear thermal expansion (CTE) αL exceeding -150 ppm K-1 induced by charge transfer between Bi5+ and Ni2+ in the controlled temperature range near room temperature. Compared with Bi1-xLnxNiO3 (Ln: rare-earth elements), the thermal hysteresis that causes a problem for practical application is suppressed because random distribution of Fe in the Ni site changes the first order transition to second order-like transition. The CTE of BiNi0.85Fe0.15O3 reaches -187 ppm K-1 and it is demonstrated that 18 vol. % addition of the present compound compensates for the thermal expansion of epoxy resin.
NASA Astrophysics Data System (ADS)
Walczyk, Thomas; Heumann, Klaus G.
1993-02-01
A technique of negative thermal ionization mass spectrometry (NTI-MS) for the precise iridium isotope ratio determination is presented. IrO-2 and IrO-3 ions are formed in a double-filament (Pt) ion source using (NH4)2IrCl6 as a sample compound. The IrO-2 ion current always exceeds the IrO-3 current by a factor of about 50-300 depending on the filament temperature and the oxygen gas introduced into the ion source. IrO-3 ion currents of more than 10-11 A can be obtained at the detector side from 100 ng iridium samples. The relative standard deviation of the 191Ir/193 ratio determination is 0.06%, which is much better than the data quoted in past literature. From such data the atomic weight of iridium could be calculated to be 192.21661 ± 0.00029. This value is a great improvement when compared with the iridium atomic weight of 192.22 ± 0.03 recommended by IUPAC. Additionally, an NTI-MS technique has been developed which allows the simultaneous measurement of iridium and osmium isotope ratio from osmiridium samples without any chemical separation. The iridium isotope ratios of three osmiridium samples agree well with the ratios determined from the hexachloroiridate compound. The direct 187Os/186OS determination from osmiridium samples opens the possibility of studying the evolution of osmium in the Earth's mantle due to the radioactive decay of 187Re into 187Os.
NASA Astrophysics Data System (ADS)
Dove, Martin T.; Fang, Hong
2016-06-01
Negative thermal expansion (NTE) is the phenomenon in which materials shrink rather than expand on heating. Although NTE had been previously observed in a few simple materials at low temperature, it was the realisation in 1996 that some materials have NTE over very wide ranges of temperature that kick-started current interest in this phenomenon. Now, nearly two decades later, a number of families of ceramic NTE materials have been identified. Increasingly quantitative studies focus on the mechanism of NTE, through techniques such as high-pressure diffraction, local structure probes, inelastic neutron scattering and atomistic simulation. In this paper we review our understanding of vibrational mechanisms of NTE for a range of materials. We identify a number of different cases, some of which involve a small number of phonons that can be described as involving rotations of rigid polyhedral groups of atoms, others where there are large bands of phonons involved, and some where the transverse acoustic modes provide the main contribution to NTE. In a few cases the elasticity of NTE materials has been studied under pressure, identifying an elastic softening under pressure. We propose that this property, called pressure-induced softening, is closely linked to NTE, which we can demonstrate using a simple model to describe NTE materials. There has also been recent interest in the role of intrinsic anharmonic interactions on NTE, particularly guided by calculations of the potential energy wells for relevant phonons. We review these effects, and show how anhamonicity affects the response of the properties of NTE materials to pressure.
Transversely isotropic poroelasticity arising from thin isotropic layers
Berryman, J.G.
1996-11-01
Percolation phenomena play central roles in the field of poroelasticity, where two distinct sets of percolating continua intertwine. A connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. The present paper discusses isotropic and anisotropic poroelastic media and establishes general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement.
Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro
2015-08-28
Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.
Transversely isotropic elasticity and poroelasticity arising from thin isotropic layers
Berryman, J.G.
1997-07-01
Since the classic work of Postma [1955] and Backus [1962], much has been learned about elastic constants in vertical transversely isotropic (VTI) media when the anisotropy is due to fine layering of isotropic elastic materials. However, new results are still being discovered. For example, the P-wave anisotropy parameter c{sub 11}/c{sub 33} lies in the range 1/4 {<=} c{sub 11}/c{sub 33} {<=} <{lambda}+2{mu}><1/({lambda}+2{mu})>, when the layers are themselves composed of isotropic elastic materials with Lame constants {lambda} and {mu} and the vertical average of the layers is symbolized by <{center_dot}>. The lower bound corrects a result of Postma. For porous layers, a connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. For isotropic and anisotropic poroelastic media, we establish general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann [1951] formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement. Such results are important for applications to oil exploration using AVO (amplitude versus offset) since the presence or absence of a fluid component, as well as the nature of the fluid, is the critical issue and the ways in which the fluid influences seismic reflection data still need to be better understood.
Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei
2015-01-01
Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology. PMID:26000658
NASA Astrophysics Data System (ADS)
Eremenko, V. V.; Sirenko, A. F.; Sirenko, V. A.; Dolbin, A. V.; Gospodarev, I. A.; Syrkin, E. S.; Feodosyev, S. B.; Bondar, I. S.; Minakova, K. A.
2016-05-01
Calculations on a microscopic level are used to explain the experimentally observed negative linear thermal expansion along some directions in a number of crystalline compounds with complicated lattices and anisotropic interactions between atoms. Anomalies in the temperature dependence of the coefficient of linear thermal expansion are analyzed in layered crystals made up of monatomic layers (graphite and graphene nanofilms) and multilayer "sandwiches" (transition metal dichalcogenides), in multilayered crystal structures such as high-temperature superconductors where the anisotropy of the interatomic interactions is not conserved in the long-range order, and in graphene nanotubes. The theoretical calculations are compared with data from x-ray, neutron diffraction, and dilatometric measurements.
Malik, Hitendra K.; Kawata, Shigeo
2007-10-15
The effects of gyratory and thermal motions of ions on soliton propagation in an inhomogeneous plasma that contains positive ions, negative ions, and electrons are studied at a critical density of negative ions. Since at this critical negative ion density the nonlinear term of the relevant Korteweg-deVries (KdV) equation vanishes, a higher order of nonlinearity is considered by retaining higher-order perturbation terms in the expansion of dependent quantities together with the appropriate set of stretched coordinates. Under this situation, time-dependent perturbation leads to the evolution of modified KdV solitons, which are governed by a modified form of the KdV equation that has an additional term due to the density gradient present in the plasma. On the basis of the solution of this equation and obliquely applied magnetic field, the effects of gyratory and thermal motions of ions are analyzed on the soliton propagation for three cases, n{sub n0}
NASA Astrophysics Data System (ADS)
Malik, Hitendra K.; Kawata, Shigeo
2007-10-01
The effects of gyratory and thermal motions of ions on soliton propagation in an inhomogeneous plasma that contains positive ions, negative ions, and electrons are studied at a critical density of negative ions. Since at this critical negative ion density the nonlinear term of the relevant Korteweg-deVries (KdV) equation vanishes, a higher order of nonlinearity is considered by retaining higher-order perturbation terms in the expansion of dependent quantities together with the appropriate set of stretched coordinates. Under this situation, time-dependent perturbation leads to the evolution of modified KdV solitons, which are governed by a modified form of the KdV equation that has an additional term due to the density gradient present in the plasma. On the basis of the solution of this equation and obliquely applied magnetic field, the effects of gyratory and thermal motions of ions are analyzed on the soliton propagation for three cases, nn0
Three-dimensional isotropic metamaterial consisting of domain-structure
NASA Astrophysics Data System (ADS)
Gong, Boyi; Zhao, Xiaopeng
2012-03-01
Whether an artificially designed negative-index structure could be regarded as a homogeneous medium or not rests with the ratio of its structural unit (man-made atom) over the operation wavelength. However, this definition is ambiguous, and usually the ratio is too large to rigorously meet the effective medium theory. In this paper a three-dimensional (3D) isotropic structure is presented which is obtained from a two-dimensional (2D) isotropic structure rotating on its axis for a circle, and the material is silver. Numerical studies confirm that both the 2D and 3D structures can realize a negative refractive index at microwave wavelengths. Observing the monitored surface current distributions and analogizing the molecular current and the magnetic domain, we suggest a new concept of domain-structure to explain the interior structure of this metamaterial, and finally conclude that the 3D structure is a kind of domain-structured and isotropic metamaterial.
NASA Astrophysics Data System (ADS)
Song, Shu-Chun; Sun, Ming-Jie; Wu, Ling-An
2016-05-01
Ghost imaging with thermal light is a topic in optical imaging that has aroused great interest in recent years. However, the imaging quality must be greatly improved before the technology can be transferred from the lab to engineering applications. By means of correspondence ghost imaging (CGI) with a pseudo-thermal light source and appropriate sorting of the intensity fluctuations of the signal and reference beams, we obtain the positive and negative Hanbury Brown and Twiss intensity correlation characteristics of the optical field. Then, for ghost imaging of a transmissive binary object, we find that by subtracting the negative from the positive fluctuation frames of the presorted reference detector signals, the signal-to-noise ratio can be effectively increased, with almost all the background noise eliminated. Our results show that, compared with the generic CGI technique, the signal-to-noise ratio can be increased by nearly 60%.
Negative thermal expansion and anomalies of heat capacity of LuB_{50} at low temperatures
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.
2015-07-20
Heat capacity and thermal expansion of LuB_{50} boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB_{50} crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB_{50} heat capacity in the whole temperature range was approximated by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB_{50} were compared to the corresponding values for LuB_{66}, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB_{50}. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB_{50} suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB_{50} thermal characteristics at low temperatures was confirmed.
NASA Astrophysics Data System (ADS)
Balch, Dorian K.; Dunand, David C.
2004-03-01
A fully-dense Cu-75 vol pct ZrW2O8 metal matrix composite was fabricated by hot isostatic pressing of Cu-coated ZrW2O8 particles. A small amount of the high-pressure γ-ZrW2O8 phase was created during the cooldown and depressurization following densification; near complete transformation to γ-ZrW2O8 was achieved by subsequent cold isostatic pressing. The thermal expansion behavior of the composite between 25°C and 325°C was altered by the cold isostatic pressing treatment, and also depended on the length of time that had passed between thermal cycles. The measured thermal expansion coefficients within specific temperature ranges varied from -6·10-6 K-1 to far above the thermal expansion coefficient of the copper matrix. The complex temperature-dependent expansion/contraction behavior could be justified by considering the evolution of phase transformations taking place in the ZrW2O8 phase, which were observed by in-situ synchrotron X-ray diffraction measurements.
Measurement-induced disturbance and thermal negativity in 1D optical lattice chain
Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu
2013-03-15
We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.
Thermal-to-electrical energy conversion by diodes under negative illumination
NASA Astrophysics Data System (ADS)
Santhanam, Parthiban; Fan, Shanhui
2016-04-01
We consider an infrared photodiode under negative illumination, wherein the photodiode is maintained at a temperature T and radiatively exposed to an emissive body colder than itself. We experimentally demonstrate that a diode under such conditions can generate electrical power. We show theoretically that the efficiency of energy conversion can approach the Carnot limit. This work is applicable to waste heat recovery as well as emerging efforts to utilize the cold dark universe as a thermodynamic resource for renewable energy.
Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit
2014-01-01
There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221
Negative thermal expansion and local dynamics in Cu{sub 2}O and Ag{sub 2}O
Sanson, A.; Rocca, F.; Dalba, G.; Fornasini, P.; Grisenti, R.; Dapiaggi, M.; Artioli, G.
2006-06-01
High-resolution x-ray powder diffraction and extended x-ray-absorption fine-structure (EXAFS) measurements have been performed on the iso-structural framework crystals Cu{sub 2}O and Ag{sub 2}O as a function of temperature. According to diffraction, both compounds exhibit a negative thermal expansion (NTE) of the lattice parameter over extended temperature intervals (from 9 to 240 K for Cu{sub 2}O, up to 470 K for Ag{sub 2}O) and anisotropic thermal displacements of M atoms (M=Cu,Ag). EXAFS measures a positive expansion of the nearest-neighbors M-O pair distance and a perpendicular to parallel anisotropy of relative motion, much stronger than the anisotropy of the absolute M motion. The M-O bond is much stiffer against stretching than against bending. According to EXAFS, out of the 12 M-M next-nearest-neighbor pairs, the 6 connected via a bridging oxygen undergo negative expansion, while the 6 lacking the bridging oxygen undergo positive expansion. These results show a rather complex local behavior, which, while confirming the connection of NTE to strong perpendicular vibrations, is inconsistent with rigid unit modes models and suggests a more flexible model based on rigid M-O rods.
NASA Astrophysics Data System (ADS)
Wachsmann, M.; Heumann, K. G.
1992-05-01
A systematic investigation of the formation of negative ions for the 6th main group elements using negative thermal ionization mass spectrometry (NTI-MS) is presented. A double-filament ion source with BaO on the ionization filament has been applied to reduce the work function of the rhenium filament material. S[radical sign]-, Se[radical sign]- and Te[radical sign]- were produced as most abundant ions. Low intensities of SeO[radical sign]-, SeO[radical sign]-2, TeO[radical sign]- and TeO[radical sign]-2 have also been detected. Although the electron affinity of SO2 is low, high ion currents of SO[radical sign]-2 have been observed from BaSo4 samples. This may be due to an electron capture process of this molecule rather than to a thermal ionization process. A silica gel suspension mixed with the sample enhanced the Se[radical sign]- ion current by a factor of about 40 and the Te[radical sign]- intensity by a factor of about 10. However, the silica gel showed no enhancing effect on the S[radical sign]- ion current. An improvement in the precision of the selenium and tellurium isotope ratio measurements by a factor of up to 10 was obtained when using the silica gel technique as compared with previous NTI investigations. The data of the selenium isotope abundance measurements were accepted as "best measurements" by the IUPAC.
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
Panda, Manas K; Runčevski, Tomče; Sahoo, Subash Chandra; Belik, Alexei A; Nath, Naba K; Dinnebier, Robert E; Naumov, Panče
2014-01-01
The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α-ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10(-6) K(-1)) with volumetric expansion coefficients (≈250 × 10(-6) K(-1)) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10(4) times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. PMID:25185949
Spherical cloaking with homogeneous isotropic multilayered structures
NASA Astrophysics Data System (ADS)
Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun
2009-04-01
We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers.
Spherical cloaking with homogeneous isotropic multilayered structures.
Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun
2009-04-01
We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers. PMID:19518392
NASA Astrophysics Data System (ADS)
Walczyk, Thomas; Hebeda, Erhard H.; Heumann, Klaus G.
1994-02-01
Thenium isotope ratio determinations are, in principle, possible by negative thermal ionization mass spectrometry (NTI-MS). Relatively high rhenium blanks from the commonly-used filament materials prevent accurate isotope ratio determinations, especially for small rhenium sample amounts which are of importance, for example, in geochronology in connection with the Re/Os dating method. Platinum and nickel filaments were tested by different preparation techniques to reduce the rhenium blank contribution from the filament material. The lowest rhenium blank of less than 1 pg was achieved by coating nickel filaments with V2O5 prior to degassing under high vacuum conditions at 850°C. Obviously, the vanadium--nickel oxide layer formed on the surface of the filament during this process prevents further emission of rhenium ions from the filament material. Using Ba(OH)2 for the enhancement of negative thermal ions, 1 ng of rhenium resulted in ion currents at the detector side of about 10-11 A with an ionization efficiency of up to 20%. The 185Re/187Re isotope ratio of a sample of natural isotopic composition could be determined to be 0.59818 ± 0.00026 with a relative precision of 0.04%. The isotope ratio determination for an 187Re spike was comparable in precision but the relative standard deviation of an 185Re spike was significantly higher, which could be explained by mass fractionations of oxygen in the measured ReO-4 ion. The ReO-4 ion is about 200 to 2500 times more abundant than the only other detectable rhenium ion in NTI-MSReO-3. The ReO-4/ReO-4 ratio decreases with increasing temperature. By the low blank NTI-MS technique described in this work, more precise and accurate determinations of the rhenium isotope ratio and the rhenium concentration by isotope dilution analysis from nanogramme samples are possible.
Chapman, K. W.; Chupas, P. J.; X-Ray Science Division
2007-01-01
The pressure-dependent structure and functionality of the coordination framework material zinc cyanide, Zn(CN){sub 2}, has been explored using in situ neutron powder diffraction. A third-order Birch-Murnaghan equation of state fit to variable pressure (0?0.6 GPa) data collected at ambient temperature (K{sub 0} = 34.19(21) GPa, K{prime}{sub 0} = -6.0(7)) shows that, contrary to behavior observed for typical materials, the Zn(CN){sub 2} framework becomes more compressible at higher pressures. Variable temperature (50?300 K) data collected at 0.2 and 0.4 GPa indicate that the negative thermal expansion effect in Zn(CN){sub 2} becomes more pronounced at pressure with the coefficient of thermal expansion ({alpha} = dT/{ell}d{ell}) varying by ca. -1 x 10{sup -6} K{sup -1} per 0.2 GPa applied pressure up to an average (50-300 K) value of ?19.42(23) x 10{sup -6} K{sup -1} at 0.4 GPa. Both these unusual phenomena have been linked to increased framework flexibility at high pressure.
Systematic effects induced by a flat isotropic dielectric slab.
Macculi, Claudio; Zannoni, Mario; Peverini, Oscar Antonio; Carretti, Ettore; Tascone, Riccardo; Cortiglioni, Stefano
2006-07-20
The instrumental polarization induced by a flat isotropic dielectric slab in microwave frequencies is discussed. We find that, in spite of its isotropic nature, such a dielectric can produce spurious polarization either by transmitting incoming anisotropic diffuse radiation or emitting when it is thermally inhomogeneous. We present evaluations of instrumental polarization generated by materials usually adopted in radio astronomy, by using the Mueller matrix formalism. As an application, results for different slabs in front of a 32 GHz receiver are discussed. Such results are based on measurements of their complex dielectric constants. We evaluate that a 0.33 cm thick Teflon slab introduces negligible spurious polarization (<2.6 x 10(-5) in transmission and <6 x 10(-7) in emission), even minimizing the leakage (<10(-8) from Q to U Stokes parameters, and vice versa) and the depolarization (approximately 1.3 x 10(-3)).
How Isotropic is the Universe?
NASA Astrophysics Data System (ADS)
Saadeh, Daniela; Feeney, Stephen M.; Pontzen, Andrew; Peiris, Hiranya V.; McEwen, Jason D.
2016-09-01
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σV/H )0 <4.7 ×10-11 (95% C.L.), which is an order of magnitude tighter than previous Planck results that used cosmic microwave background temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σT ,reg/H )0 <1.0 ×10-6 (95% C.L.). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavored, with odds of 121 000:1 against.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.
1986-01-01
The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined
Varga, Tamas
2011-09-01
Despite the fact that all chemical bonds expand on heating, a small class of materials shrinks when heated. These, so called negative thermal expansion (NTE) materials, are a unique class of materials with some exotic properties. The present chapter offers insight into the structural aspects of pressure- (or temperature-) induced phase transformations, and the energetics of those changes in these fascinating materials, in particular NTE compound cubic ZrW2O8, orthorhombic Sc2W3O12 and Sc2Mo3O12, as well as other members of the 'scandium tungstate family'. In subsequent sections, (i) combined in situ high-pressure synchrotron XRD and XAS studies of NTE material ZrW2O8; (ii) an in situ high-pressure synchrotron XRD study of Sc2W3O12, Sc2Mo3O12, and Al2W3O12; and (iii) thermochemical studies of the above materials are presented and discussed. In all of these studies, chemical bonds change, sometimes break and new ones form. Correlations between structure, chemistry, and energetics are revealed. It is also shown that (iv) NTE materials are good candidates as precursors to make novel solid state materials, such as the conducting Sc0.67WO4, using high-pressure, high-temperature synthesis, through modification of bonding and electronic structure, and thus provide vast opportunities for scientific exploration.
Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12
NASA Astrophysics Data System (ADS)
Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun
2016-04-01
In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.
Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.
Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun
2016-01-01
In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924
NASA Astrophysics Data System (ADS)
Salke, Nilesh P.; Gupta, M. K.; Rao, Rekha; Mittal, R.; Deng, Jinxia; Xing, Xianran
2015-06-01
TaVO5 is a framework structured compound that exhibits negative thermal expansion (NTE) above room temperature, upto 1073 K. We report Raman spectroscopic investigation of TaVO5 as a function of temperature in the range 77-873 K, which confirms the reported reversible low temperature transition to monoclinic phase at 259 K. Structural stability of TaVO5 at high pressures investigated using in-situ Raman spectroscopy shows a reversible structural transition at around 0.2 GPa to a phase, which is probably the same monoclinic phase as the low temperature phase, indicating that this structural phase transition may be volume driven. From the pressure and temperature dependence of the Raman modes, some of the zone centre phonon modes, particularly, the librational modes, responsible for the NTE are identified and anharmonicity of the Raman modes is also estimated. We have found that explicit anharmonicity dominates over implicit anharmonicity and the low frequency modes have significant quartic anharmonicity. The vibrational properties in the ambient phase of TaVO5 are also investigated using ab initio calculations of phonon frequencies to understand the NTE behavior as well as to complement the Raman spectroscopic measurements. Further, the eigenvectors of specific phonon modes associated with phase transition and NTE behavior of the compound have been identified from these calculations.
Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12
Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun
2016-01-01
In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924
NASA Astrophysics Data System (ADS)
Suzuki, Katsuhiko; Miyata, Yoshiki; Kanazawa, Nobuyuki
2004-06-01
High precision rhenium isotope ratios, 187Re/185Re, have been determined by negative thermal ionization mass spectrometry (NTI-MS) using a total evaporation technique. The salient features of this method are evaporation of the entire sample and simultaneous integration of the signal from each isotope, which effectively eliminates isotope fractionation effects during the evaporation process. The 187Re/185Re ratio is obtained with a high reproducibility (1.6755+/-0.0014 (2[sigma]), R.S.D.=0.083%, n=28) for 50 pg-1 ng of a Re natural standard using the total evaporation with NTI-MS. This value is within analytical uncertainty of the previously reported accurate 187Re/185Re ratio (1.6740+/-0.0011) adopted by IUPAC as the Re isotopic composition, and is significantly more precise than the ratio obtained from conventional NTI-MS isotopic measurements in our laboratory (1.6772+/-0.0037 (2[sigma]), R.S.D.=0.22%, n=34). Based on these results, the total evaporation technique allows us to precisely determine Re isotope ratios, even for small sample amounts. In addition, this method is effective for highly precise Re abundance determinations using isotope dilution.
NASA Astrophysics Data System (ADS)
Wei, Zhi; Jin, Guangyong; Tan, Yong; Zhao, Hongyu
2015-10-01
Laser induced morphological damage have been observed in silicon-based positive-intrinsic-negative photodiode. This paper adopted the methods of the theoretical calculation and finite element numerical simulation to model, then solved the temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser, and researched the features and laws of the temperature field and thermal stress field. As for the thermal-mechanical problem of multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, based on Fourier heat conduction and thermoelasticity theories, we established a two-dimensional axisymmetric mathematical model .Then adopted finite element method to simulate the transient temperature field and thermal stress field. The temperature dependences of the material parameters and the absorption coefficient were taken into account in the calculation. The results indicated that there was the heat accumulation effect when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode. The morphological damage threshold were obtained numerically. The evolution of temperature at the central point of the top surface, the temperature distribution along the radial direction in the end of laser irradiation and the temperature distribution along the axial direction in the end of laser irradiation were considered. Meanwhile, the radial stress, hoop stress, axial stress on the top surface and the R=500μm axis were also considered. The results showed that the morphological damage threshold decreased with the increased of the pulse number. The results of this study have reference significance of researching the thermal and thermal stress effect evolution's features when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, then revealing the mechanism of interactions between millisecond laser and
NASA Astrophysics Data System (ADS)
Drymiotis, F. R.; Ledbetter, H.; Betts, J. B.; Kimura, T.; Lashley, J. C.; Migliori, A.; Ramirez, A. P.; Kowach, G. R.; van Duijn, J.
2004-07-01
We measured zirconium tungstate's elastic constants Cij. This compound shows relatively soft, nearly isotropic elastic constants with normal Poisson ratios and no approach to Born instability. ZrW2O8 shows normal ambient-temperature elastic constants Cij, but remarkable dCij/dT that show dominant low-frequency acoustic-vibration modes. From the bulk modulus, we estimated the total ambient-temperature thermodynamic Grüneisen parameter as γ=-1.2. The dB/dT slope gives a Grüneisen parameter γ=-7. The 300 0K bulk-modulus increase (40%) seems unprecedented and breaks Birch's law of corresponding states.
Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-01-01
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured. PMID:26667989
Ba1-xSrxZn2Si2O7 - A new family of materials with negative and very high thermal expansion
NASA Astrophysics Data System (ADS)
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-12-01
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba2+ is successively replaced by Sr2+, a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10-6 K-1 were measured.
Ba1−xSrxZn2Si2O7 - A new family of materials with negative and very high thermal expansion
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-01-01
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba2+ is successively replaced by Sr2+, a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than −10·10−6 K−1 were measured. PMID:26667989
The Isotropic Radio Background and Annihilating Dark Matter
Hooper, Dan; Belikov, Alexander V.; Jeltema, Tesla E.; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R.
2012-11-01
Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.
Hu, Ting; Han, Yang; Dong, Jinming
2014-11-14
The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.
Low-thermal expansion infrared glass ceramics
NASA Astrophysics Data System (ADS)
Lam, Philip
2009-05-01
L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (<0.5 ppm/°C) and high thermal-shock resistance to be used as windows and domes for high speed flight. The material is an inorganic, non-porous glass ceramic, characterized by crystalline phases of evenly distributed nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.
Ekoto, Dr Isaac; Peterson, Dr. Brian; Szybist, James P; Northrop, Dr. William
2015-01-01
A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen
Phenomenological Theory of Isotropic-Genesis Nematic Elastomers
NASA Astrophysics Data System (ADS)
Lu, Bing-Sui; Ye, Fangfu; Xing, Xiangjun; Goldbart, Paul M.
2012-06-01
We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of network compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of random field that reflects the memory of the nematic order present at network formation and also encodes local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.
Isotropic behavior of an anisotropic material: single crystal silicon
NASA Astrophysics Data System (ADS)
McCarter, Douglas R.; Paquin, Roger A.
2013-09-01
Zero defect single crystal silicon (Single-Crystal Si), with its diamond cubic crystal structure, is completely isotropic in most properties important for advanced aerospace systems. This paper will identify behavior of the three most dominant planes of the Single-Crystal Si cube (110), (100) and (111). For example, thermal and optical properties are completely isotropic for any given plane. The elastic and mechanical properties however are direction dependent. But we show through finite element analysis that in spite of this, near-isotropic behavior can be achieved with component designs that utilize the optimum elastic modulus in directions with the highest loads. Using glass frit bonding to assemble these planes is the only bonding agent that doesn't degrade the performance of Single-Crystal Si. The most significant anisotropic property of Single-Crystal Si is the Young's modulus of elasticity. Literature values vary substantially around a value of 145 GPa. The truth is that while the maximum modulus is 185 GPa, the most useful <110< crystallographic direction has a high 169 GPa, still higher than that of many materials such as aluminum and invar. And since Poisson's ratio in this direction is an extremely low 0.064, distortion in the plane normal to the load is insignificant. While the minimum modulus is 130 GPa, a calculated average value is close to the optimum at approximately 160 GPa. The minimum modulus is therefore almost irrelevant. The (111) plane, referred to as the natural cleave plane survives impact that would overload the (110) and/or (100) plane due to its superior density. While mechanical properties vary from plane to plane each plane is uniform and response is predictable. Understanding the Single-Crystal Si diamond cube provides a design and manufacture path for building lightweight Single-Crystal Si systems with near-isotropic response to loads. It is clear then that near-isotropic elastic behavior is achievable in Single-Crystal Si
“True” negative thermal expansion in Mn-doped LaCu{sub 3}Fe{sub 4}O{sub 12} perovskite oxides
Yamada, Ikuya; Marukawa, Shohei; Murakami, Makoto; Mori, Shigeo
2014-12-08
Negative and zero thermal expansion near room temperature have been achieved in a cubic A-site ordered perovskite oxide LaCu{sub 3}Fe{sub 4−x}Mn{sub x}O{sub 12}. A discontinuous volume change in the parent material LaCu{sub 3}Fe{sub 4}O{sub 12}, owing to a first-order intermetallic charge transfer transition (3Cu{sup 2+ }+ 4Fe{sup 3.75+} ⇄ 3Cu{sup 3+ }+ 4Fe{sup 3+}), is efficiently relaxed to a second-order-type negative thermal expansion with a linear thermal expansion coefficient (α{sub L}) of −2.2(1) × 10{sup −5 }K{sup −1} between 300 and 340 K at x = 0.75, followed by an almost zero thermal expansion [α{sub L} of −1.1(2) × 10{sup −6 }K{sup −1}] at x = 1 in a wide temperature range (240–360 K) including room temperature. Magnetic susceptibility measurements display substantial broadenings of the antiferromagnetic transition when x increases, supporting the relaxation of first-order electronic phase transition of the parent material. These findings indicate that the significant adjustability of thermal expansion properties can be achieved in first-order intermetallic charge-transfer transition.
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect. PMID:27403842
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.
Static spherically symmetric wormholes with isotropic pressure
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo
2016-06-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Efficient modeling in transversely isotropic inhomogeneous media
Alkhalifah, T.
1993-11-01
An efficient modeling technique for transversely isotropic, inhomogeneous media, is developed using a mix of analytical equations and numerical calculations. The analytic equation for the raypath in a factorized transversely isotropic (FTI) media with linear velocity variation, derived by Shearer and Chapman, is used to trace between two points. In addition, I derive an analytical equation for geometrical spreading in FTI media that aids in preserving program efficiency; however, the traveltime is calculated numerically. I then generalize the method to treat general transversely isotropic (TI) media that are not factorized anisotropic inhomogeneous by perturbing the FTI traveltimes, following the perturbation ideas of Cerveny and Filho. A Kirchhoff-summation-based program relying on Trorey`s (1970) diffraction method is used to generate synthetic seismograms for such a medium. For the type of velocity models treated, the program is much more efficient than finite-difference and general ray-trace modeling techniques.
Chiral Isotropic Liquids from Achiral Molecules
L Hough; M Spannuth; M Nakata; D Coleman; C Jones; G Dantlgraber; C Tschierske; J Watanabe; N Clark; et al.
2011-12-31
A variety of simple bent-core molecules exhibit smectic liquid crystal phases of planar fluid layers that are spontaneously both polar and chiral in the absence of crystalline order. We found that because of intralayer structural mismatch, such layers are also only marginally stable against spontaneous saddle splay deformation, which is incompatible with long-range order. This results in macroscopically isotropic fluids that possess only short-range orientational and positional order, in which the only macroscopically broken symmetry is chirality - even though the phases are formed from achiral molecules. Their conglomerate domains exhibit optical rotatory powers comparable to the highest ever found for isotropic fluids of chiral molecules.
Wu, Yue; Peterson, Vanessa K.; Luks, Emily; Darwish, Tamim A.; Kepert, Cameron J.
2014-07-11
Metal–organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single-crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu_{3}(btb)_{2} (MOF-14) and find that it exhibits an anomalously large NTE effect. Temperature-dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF-14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low-energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE.
Biomimetic Isotropic Nanostructures for Structural Coloration
Forster, Jason D.; Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Schreck, Carl F.; Yang, Lin; Park, Jin-Gyu; Prum, Richard O.; Mochrie, Simon G.J.; O'Hern, Corey S.; Cao, Hui; Dufresne, Eric R.
2010-08-09
The self-assembly of films that mimic color-producing nanostructures in bird feathers is described. These structures are isotropic and have a characteristic length-scale comparable to the wavelength of visible light. Structural colors are produced when wavelength-independent scattering is suppressed by limiting the optical path length through geometry or absorption.
Transversely isotropic elasticity imaging of cancellous bone.
Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F
2011-06-01
To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally
Interactively variable isotropic resolution in computed tomography
NASA Astrophysics Data System (ADS)
Lapp, Robert M.; Kyriakou, Yiannis; Kachelrieß, Marc; Wilharm, Sylvia; Kalender, Willi A.
2008-05-01
An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame
Christov, C. I.
2010-12-22
A transversely isotropic elastic continuum is considered in four dimensions, three of which are isotropic, and the properties of the material change only related to the fourth dimension. The model employs two dilational and three shear Lame coefficients. The isotropic dilational coefficient is assumed to be much larger than the second dilational coefficient, and the three shear coefficients. This amounts to a material that is virtually incompressible in the three isotropic dimensions. The first and third shear coefficients are positive, while the second shear coefficient is assumed to be negative. As a result, in the equations of elastic equilibrium, the second derivatives of the displacement with respect to the fourth coordinate enter with negative sign. This makes the equations hyperbolic, with a fourth dimension opposing to the other three. The hyperbolic nature of the fourth dimension allows to be interpreted as time.
Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid
Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun
2015-01-01
In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic–isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation. PMID:26242251
NASA Astrophysics Data System (ADS)
Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice
2011-01-01
Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, {k_BT_{conf}={< |nabla _r U({r}^N)|2>}/{< nabla _r{^2} U({r}^N) >}}, where nabla _r is the nabla operator of position vector r. As far as we know, T_{conf} was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T_{conf} is much more widespread with more common potentials (Lennard Jones, electrostatic, …). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Mushtaq, A.; Shah, Attaullah; Shah
2013-10-01
The coupled drift-ion acoustic (DIA) waves in an inhomogeneous magnetoplasma having negative and positive ions can be driven by the parallel sheared flows in the presence of Cairns distributed non-thermal electrons. The coupled DIA waves can become unstable due to shear flows. The conditions of modes instability are discussed with effects of non-thermal electrons. These are the excited modes and start interactions among themselves. The interaction is governed by the Hasegawa-Mima equations with analytical solutions in the form of a vortex chain and dipolar vortex. On the other hand, for scalar nonlinearity the Kortweg deVries-type equation is obtained with solitary wave solution. Possible application of the work to the space and laboratory plasmas are highlighted.
The Isotropization Process in the Quadratic Gravity
NASA Astrophysics Data System (ADS)
Müller, Daniel; Alves, Márcio E. S.; de Araujo, José C. N.
2014-12-01
It is believed that soon after the Planck era, spacetime should have a semi-classical nature. Therefore, it is unavoidable to modify the theory of general relativity or look for alternative theories of gravitation. An interesting possibility found in the literature considers two geometric counter-terms to regularize the divergences of the effective action. These counter-terms are responsible for a higher-order derivative metric theory of gravitation. In the present paper, we investigate how isotropization occurs. For this reason a single solution is chosen throughout this paper. We obtain perturbatively, by two different methods, that the tensor and scalar components emerge naturally during the isotropization process. In this sense our result provides a numerical example to Stelle's well-known result on classical gravity with higher derivates. Our entire analysis is restricted to the particular Bianchi type I case.
Taming electromagnetic metamaterials for isotropic perfect absorbers
NASA Astrophysics Data System (ADS)
Anh, Doan Tung; Viet, Do Thanh; Trang, Pham Thi; Thang, Nguyen Manh; Quy, Ho Quang; Hieu, Nguyen Van; Lam, Vu Dinh; Tung, Nguyen Thanh
2015-07-01
Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.
Adhikary, N. C.; Deka, M. K.; Dev, A. N.; Sarmah, J.
2014-08-15
In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagation is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.
NASA Astrophysics Data System (ADS)
Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai
2016-04-01
The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.
Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai
2016-04-01
The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.
Ding, Lei; Wang, Cong Sun, Ying; Colin, Claire V.; Chu, Lihua
2015-06-07
The Cu-doping effect on the lattice and magnetic properties in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N (x = 0, 0.3, 0.5, 0.7, 1.0) was extensively investigated. We observed that the Cu-doping at the Ni site complicated the magnetic ground states, which induced the competition of antiferromagnetic and ferromagnetic interactions. Spin-glass-like behavior, arising from possible site-randomness and competing interactions of magnetism, was observed in compounds with x = 0.3, 0.5, and 0.7, and typically discussed by means of the measurement of ac magnetic susceptibility for x = 0.7. The negative thermal expansion (NTE) behavior, due to the magnetic ordering transition, was observed in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds using variable temperature x-ray diffraction. It reveals that the introduction of Cu effectively broadens the temperature range displaying negative thermal expansion. The relationship between the local lattice distortion and the competing magnetic ground states might play an important role in broadening the NTE temperature range in this antiperovskite compound.
Liu, Qinqin; Yang, Juan; Rong, Xiaoqing; Sun, Xiujuan; Cheng, Xiaonong; Tang, Hua; Li, Haohua
2014-10-15
Novel ZrV{sub 2}O{sub 7} microfibers with diameters about 1–3 μm were synthesized using a sol–gel technique. For comparison, ZrV{sub 2}O{sub 7} powders were prepared by the same method. The resultant structures were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The results indicated that both the pure ZrV{sub 2}O{sub 7} microfibers and powders could be synthesized by the sol–gel technique. The thermal expansion property of the as-prepared ZrV{sub 2}O{sub 7} microfibers and powders was characterized by a thermal mechanical analyzer, both the fibers with cylindrical morphology and irregular powders with average size between 100 and 200 nm showed negative thermal expansion between 150 °C and 600 °C. The photocatalytic activity of the microfibers was compared to that of powders under UV radiations. The band gap of ZrV{sub 2}O{sub 7} microfibers decreased and its absorption edge exhibited red shift. The microfibers also had a higher surface area compared with the powders, resulting in considerably higher photocatalytic characteristics. The large surface area and the enhanced photocatalytic activity of the ZrV{sub 2}O{sub 7} microfibers also offer potential applications in sensors and inorganic ion exchangers. - Graphical abstract: (a and c) SEM photos of ZrV{sub 2}O{sub 7} powders and fibers. (b and d) TEM images of ZrV{sub 2}O{sub 7} powders and fibers. (e) Thermal expansion curves of ZrV{sub 2}O{sub 7} powders and fibers. (f) Degradation curves of ZrV{sub 2}O{sub 7} powders and ZrV{sub 2}O{sub 7} fibers. - Highlights: • Novel ZrV{sub 2}O{sub 7} fibers could be synthesized using sol–gel technique. • ZrV{sub 2}O{sub 7} powders with irregular shape are also prepared for comparison. • Both ZrV{sub 2}O{sub 7} microfibers and powders exhibit negative thermal expansion property. • ZrV{sub 2}O{sub 7} microfibers show outstanding photocatalytic activity under UV irradiation. • This synthesis
Hu, Lei; Chen, Jun; Sanson, Andrea; Wu, Hui; Guglieri Rodriguez, Clara; Olivi, Luca; Ren, Yang; Fan, Longlong; Deng, Jinxia; Xing, Xianran
2016-07-13
The understanding of the negative thermal expansion (NTE) mechanism remains challenging but critical for the development of NTE materials. This study sheds light on NTE of ScF3, one of the most outstanding materials with NTE. The local dynamics of ScF3 has been investigated by a combined analysis of synchrotron-based X-ray total scattering, extended X-ray absorption fine structure, and neutron powder diffraction. Very interestingly, we observe that (i) the Sc-F nearest-neighbor distance strongly expands with increasing temperature, while the Sc-Sc next-nearest-neighbor distance contracts, (ii) the thermal ellipsoids of relative vibrations between Sc-F nearest-neighbors are highly elongated in the direction perpendicular to the Sc-F bond, indicating that the Sc-F bond is much softer to bend than to stretch, and (iii) there is mainly dynamically transverse motion of fluorine atoms, rather than static shifts. These results are direct experimental evidence for the NTE mechanism, in which the rigid unit is not necessary for the occurrence of NTE, and the key role is played by the transverse thermal vibrations of fluorine atoms through the "guitar-string" effect. PMID:27336200
Hu, Lei; Chen, Jun; Sanson, Andrea; Wu, Hui; Guglieri Rodriguez, Clara; Olivi, Luca; Ren, Yang; Fan, Longlong; Deng, Jinxia; Xing, Xianran
2016-07-13
The understanding of the negative thermal expansion (NTE) mechanism remains challenging but critical for the development of NTE materials. This study sheds light on NTE of ScF3, one of the most outstanding materials with NTE. The local dynamics of ScF3 has been investigated by a combined analysis of synchrotron-based X-ray total scattering, extended X-ray absorption fine structure, and neutron powder diffraction. Very interestingly, we observe that (i) the Sc-F nearest-neighbor distance strongly expands with increasing temperature, while the Sc-Sc next-nearest-neighbor distance contracts, (ii) the thermal ellipsoids of relative vibrations between Sc-F nearest-neighbors are highly elongated in the direction perpendicular to the Sc-F bond, indicating that the Sc-F bond is much softer to bend than to stretch, and (iii) there is mainly dynamically transverse motion of fluorine atoms, rather than static shifts. These results are direct experimental evidence for the NTE mechanism, in which the rigid unit is not necessary for the occurrence of NTE, and the key role is played by the transverse thermal vibrations of fluorine atoms through the "guitar-string" effect.
NASA Astrophysics Data System (ADS)
Qi, Tongfei
Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357K, followed by a well-separated antiferromagnetic order at T N = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI and induces exotic magnetic behavior below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1-- xMxO4 (M = Cr, Mn, Fe or Cu); the lattice volume expands on cooling with a total volume expansion ratio, DeltaV/V, reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval. These findings underscores new physics driven by a complex interplay between orbital, spin and lattice degrees of freedom. These materials constitute a new class of Negative Thermal Expansion (NTE) materials with novel electronic and magnetic functions. KEYWORDS: Transition Metal Oxide, Ruthenate, Negative Thermal Expansion, Single crystal XRD, Invar Effect, Orbital Ordering, Magnetic Ordering, Jahn-Teller Effect.
Isotropic homogeneous universe with viscous fluid
Santos, N.O.; Dias, R.S.; Banerjee, A.
1985-04-01
Exact solutions are obtained for the isotropic homogeneous cosmological model with viscous fluid. The fluid has only bulk viscosity and the viscosity coefficient is taken to be a power function of the mass density. The equation of state assumed obeys a linear relation between mass density and pressure. The models satisfying Hawking's energy conditions are discussed. Murphy's model is only a special case of this general set of solutions and it is shown that Murphy's conclusion that the introduciton of bulk viscosity can avoid the occurrence of space-time singularity at finite past is not, in general, valid.
Antao, Sytle M
2016-04-01
The temperature variation, T, of the crystal structure of quartz, SiO2, from 298 to 1235 K was obtained with synchrotron powder X-ray diffraction data and Rietveld structure refinements. The polymorphic transformation from P3221 (low-T, α quartz) to P6222 (high-T, β quartz) occurs at a transition temperature, Ttr = 847 K. The T variations of spontaneous strains and several structural parameters are fitted to an order parameter, Q, using Landau theory. The change in Si atom coordinate, Six, gives Ttr - Tc = 0.49 K, which indicates an α ↔ β transition that is weakly first order and nearly tricritical in character (Q(4) ∝ T). Strains give higher Ttr - Tc values (≃ 7 K). Other fitted parameters are the oxygen Oz coordinate, Si-Si distance, Si-O-Si and ϕ angles, and intensity of the (111) reflection, I111. In α quartz, the Si-Si distance increases with T because of cation repulsion, so the Si-O-Si angle increases (and ϕ decreases) and causes the thermal expansion of the framework structure that consists of corner-sharing distorted rigid SiO4 tetrahedra. The Si-Si distances contract with T and cause negative thermal expansion (NTE) in β quartz because of increasing thermal librations of the O atom in the Si-O-Si linkage that occur nearly perpendicular to the Si-Si contraction. In calcite, CaCO3, the short Ca-Ca distance expands with T, but the next-nearest Ca-Ca distance, which is of equal length to the a axis, contracts with T and causes NTE along the a axis. The thermal librations of the atoms in the rigid CO3 group increase with T along the c axis.
Giant negative thermal expansion covering room temperature in nanocrystalline GaN{sub x}Mn{sub 3}
Lin, J. C.; Tong, P. Chen, L.; Guo, X. G.; Yang, C.; Song, B.; Wu, Y.; Lin, S.; Song, W. H.; Zhou, X. J.; Lin, H.; Ding, Y. W.; Bai, Y. X.; Sun, Y. P.
2015-09-28
Nanocrystalline antiperovskite GaN{sub x}Mn{sub 3} powders were prepared by mechanically milling. The micrograin GaN{sub x}Mn{sub 3} exhibits an abrupt volume contraction at the antiferromagnetic (AFM) to paramagnetic (PM) (AFM-PM) transition. The temperature window of volume contraction (ΔT) is broadened to 50 K as the average grain size (〈D〉) is reduced to ∼30 nm. The corresponding coefficient of linear thermal expansion (α) reaches ∼ −70 ppm/K, which are comparable to those of giant NTE materials. Further reducing 〈D〉 to ∼10 nm, ΔT exceeds 100 K and α remains as large as −30 ppm/K (−21 ppm/K) for x = 1.0 (x = 0.9). Excess atomic displacements together with the reduced structural coherence, revealed by high-energy X-ray pair distribution functions, are suggested to delay the AFM-PM transition. By controlling 〈D〉, giant NTE may also be achievable in other materials with large lattice contraction due to electronic or magnetic phase transitions.
Bubbles in an isotropic homogeneous turbulent flow
NASA Astrophysics Data System (ADS)
Mancilla, F. E.; Martinez, M.; Soto, E.; Ascanio, G.; Zenit, R.
2011-11-01
Bubbly turbulent flow plays an important role in many engineering applications and natural phenomena. In this kind of flows the bubbles are dispersed in a turbulent flow and they interact with the turbulent structures. The present study focuses on the motion and hydrodynamic interaction of a single bubble in a turbulent environment. In most previous studies, the effect of bubbles on the carrier fluid was analyzed, under the assumption that the bubble size was significantly smaller that the smallest turbulence length scale. An experimental study of the effect of an isotropic and homogeneous turbulent flow on the bubble shape and motion was conducted. Experiments were performed in an isotropic turbulent chamber with nearly zero mean flow, in which a single bubble was injected. The fluid velocity was measured using the Particle Image Velocimetry (PIV) technique. The bubble deformation was determined by video processing of high-speed movies. The fluid disturbances on the bubble shape were studied for bubbles with different sizes. We will present experimental data obtained and discuss the differences among these results to try to understand the bubble - turbulence interaction mechanisms.
Jamming is not just isotropic anymore
NASA Astrophysics Data System (ADS)
Wandersman, E.; Chushkin, Y.; Robert, A.; Dubois, E.; Dupuis, V.; Perzynski, R.
2009-03-01
Slow dynamics observed in many disordered systems (colloidal glasses, jammed granular matter) are poorly understood. An approach could consist to discriminate the dynamical properties of such systems by the nature of the interaction potential (attractive/repulsive, isotropic/anisotropic). While the anisotropy of the potential is relevant for the rotational dynamics, its effect on the translational dynamics in glasses is quite absent of current understanding. We investigate here the effect of the interaction potential on the translational dynamics, in a magnetic colloidal glass (charge--stabilized magnetic nanoparticles). By applying a magnetic field H, the potential is tuned, from quasi-isotropic to anisotropic, but remains repulsive on average. The translational dynamics of the nanoparticles is probed (with/without field) using dynamical X-ray scattering [1]. Under field, anisotropic translational dynamics and aging are observed. Moreover, a strong anisotropic cooperativity is reported, almost hundred times larger in the parallel direction. The results are discussed using a phenomenological picture. [1] E. Wandersman et. al., J. Phys. Cond. Mat. 20 (2007) 155104
Nakotte, Heinz; Daemen, Luke; Adak, Sourav
2009-01-01
The cubic Prussian Blue (PB) analog, Zn{sub 3} [Fe(CN){sub 6}]{sub 2}, has been studied by X-ray powder diffraction and inelastic neutron scattering (INS). X-ray data collected at 300 and 84 K revealed negative thermal expansion (NTE) behavior for this material. The NTE coefficient was found to be -31.1 x 10{sup -6} K{sup -1}. The neutron vibrational spectrum for Zn{sub 3}[Fe(CN){sub 6}]{sub 2}.xH{sub 2}O, was studied in detail. The INS spectrum showed well-defined, well-separated bands corresponding to the stretching of and deformation modes of the Fe and Zn octahedra, all below 800 cm{sup -1}.
NASA Astrophysics Data System (ADS)
Purans, Juris; Piskunov, Sergei; Bocharov, Dmitry; Kalinko, Aleksandr; Kuzmin, Alexei; Ali, Shehab E.; Rocca, Francesco
2016-05-01
We propose an approach beyond the quasiharmonic approximation for interpretation of EXAFS and XRD data and for ab initio calculations of electronic and vibration properties of materials with negative thermal expansion. Ab initio electronic structure and lattice dynamics calculations for cubic and distorted ScF3 were performed using the linear combination of atomic orbitals (LCAO) method. The band gap obtained in calculations for ScF3 is equal to 10.54 eV and agree well with the expected value. The calculated infrared spectra of F displaced (FD) cubic ScF3 allow us to predict that its mean Sc-F-Sc angle within NTE deviates from 180 degree.
Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Li, Wen; Wang, Wei; Huang, Chuanjun; Gong, Pifu; Lin, Zheshuai; Li, Laifeng
2015-08-17
Cubic La(Fe,Si)13-based compounds have been recently developed as promising negative thermal expansion(NTE) materials, but the narrow NTE operation-temperature window(∼110 K) restricts their actual applications. In this work, we demonstrate that the NTE operation-temperature window of LaFe(13-x)Si(x) can be significantly broadened by adjusting Fe-Fe magnetic exchange coupling as x ranges from 2.8 to 3.1. In particular, the NTE operation-temperature window of LaFe10.1Si2.9 is extended to 220 K. More attractively, the coefficients of thermal expansion of LaFe10.0Si3.0 and LaFe9.9Si3.1 are homogeneous in the NTE operation-temperature range of about 200 K, which is much valuable for the stability of fabricating devices. The further experimental characterizations combined with first-principles studies reveal that the tetragonal phase is gradually introduced into the cubic phase as the Si content increases, hence modifies the Fe-Fe interatomic distance. The reduction of the overall Fe-Fe magnetic exchange interactions contributes to the broadness of NTE operation-temperature window for LaFe(13-x)Si(x). PMID:26196377
Flewitt, A. J.; Powell, M. J.
2014-04-07
It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage
Isotropic MD simulations of dynamic brittle fracture
Espanol, P.; Rubio, M.A.; Zuniga, I.
1996-12-01
The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.
Isotropic and anisotropic surface wave cloaking techniques
NASA Astrophysics Data System (ADS)
McManus, T. M.; La Spada, L.; Hao, Y.
2016-04-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.
Velocity analysis for transversely isotropic media
Alkhalifah, T.; Tsvankin, I.
1994-08-01
The main difficulty in extending seismic processing to anisotropic media is the recovery of anisotropic velocity fields from surface reflection data. Velocity analysis for transversely isotropic (TI) media can be done by inverting the dependence of P-wave moveout velocities on the ray parameter. P-wave NMO velocity in homogeneous TI media with a vertical symmetry axis depends just on the zero-dip value V{sub nmo} and a new effective parameter {eta} that reduces to the difference between Thomsen parameters {epsilon} and {delta} in the limit of weak anisotropy. It is possible to obtain {eta} and reconstruct the NMO velocity as a function of ray parameter using moveout velocities for two different dips. Moreover, V{sub nmo}(0) and {eta} determine not only the NMO velocity, but also also long-spread (nonhyperbollic) P-wave moveout for horizontal reflectors and time-migration impulse response. Inversion of dip-moveout information allows performance of all time-processing steps in TI media using only surface P-wave data. Isotropic time-processing methods remain entirely valid for elliptical anisotropy ({epsilon} = {delta}). Accurate time-to-depth conversion, however, requires the vertical velocity V{sub P0} be resolved independently. If I-P0 is known, then allisotropies {epsilon} and {delta} can be found by inverting two P-wave NMO velocities corresponding to a horizontal and a dipping reflector. If no information is available, all three parameters (V {sub P0}, {epsilon}, and {delta}) can be obtained by combining inversion results with shear-wave information. such as the P-SV or SV-SV wave NMO velocities for a horizontal reflector. Generalization of Tsvankin`s single-layer NMO equation for layered anisotropic media with a dipping reflector provides a basis for extending anisotropic velocity analysis to vertically inhomogeneous media. The influence of a stratified overburden on moveout velocity can be stripped through a Dix-type differentiation procedure.
NASA Astrophysics Data System (ADS)
López-Galilea, I.; García-Rosales, C.; Pintsuk, G.; Linke, J.
2007-03-01
Finely dispersed Ti- and Zr-doped isotropic graphites have been manufactured using three different starting raw materials. The aim is to obtain doped fine grain isotropic graphites with reduced chemical erosion, high thermal shock resistance and low cost, which aim to be competitive with present carbon-based candidate materials for next step fusion devices. First ITER relevant thermal shock loads were applied on test specimens of these materials. The brittle destruction behaviour of graphite is greatly improved by doping with Ti or Zr, most probably due to a significant increase of thermal conductivity related to the catalytic effect of TiC and ZrC on the graphitization. Doped graphites manufactured with the synthetic mesophase pitch 'AR' as raw material showed the best performance from the three investigated raw materials due to its higher graphitability. The eroded surfaces of doped graphites exhibit a thin solidified carbide layer, probably caused by the segregation of liquid carbide during the thermal shot.
Investigating source processes of isotropic events
NASA Astrophysics Data System (ADS)
Chiang, Andrea
explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve
Rotational surfaces in isotropic spaces satisfying weingarten conditions
NASA Astrophysics Data System (ADS)
Öğrenmiş, Alper Osman
2016-07-01
In this paper, we study the rotational surfaces in the isotropic 3-space 𝕀3 satisfying Weingarten conditions in terms of the relative curvature K (analogue of the Gaussian curvature) and the isotropic mean curvature H. In particular, we classify such surfaces of linear Weingarten type in 𝕀3.
A reformulated flexoelectric theory for isotropic dielectrics
NASA Astrophysics Data System (ADS)
Li, Anqing; Zhou, Shenjie; Qi, Lu; Chen, Xi
2015-11-01
In flexoelectricity, a strain gradient can induce polarization and a polarization gradient can induce mechanical stress. In this paper, in order to identify the contributions of each strain gradient component, the flexoelectric theory is reformulated by splitting the strain gradient tensor into mutually independent parts. Two sets of orthogonal higher-order deformation metrics are inherited and perfected to reformulate the internal energy density for isotropic materials. The deviatoric stretch gradient and the symmetric part of the rotation gradient are proved to disappear in the coupling of strain gradient to polarization and, moreover, the independent higher-order constants associated with the coupling of strain gradient to strain gradient reduce from five to three. The constitutive relations are then reformulated in terms of the new deformation and electric field metrics, and the governing equations and boundary conditions are derived according to the variational principle of electric enthalpy. On the basis of the present simplified flexoelectric theory, a flexoelectric Bernoulli-Euler beam theory is specified. Solutions for a cantilever subjected to a force at the free end and a voltage cross the thickness are constructed and the size-dependent direct and inverse flexoelectric effects are captured.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
Isotropic microscale mechanical properties of coral skeletons
Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe
2015-01-01
Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
NASA Astrophysics Data System (ADS)
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers
Fluctuations of thermodynamic variables in compressible isotropic turbulence
NASA Astrophysics Data System (ADS)
Donzis, Diego; Jagannathan, Shriram
2014-11-01
A distinguishing feature of compressible turbulence is the appearance of fluctuations of thermodynamic variables. While their importance is well-known in understanding these flows, some of their basic characteristics such as the Reynolds and Mach number dependence are not well understood. We use a large database of Direct Numerical Simulation of stationary compressible isotropic turbulence on up to 20483 grids at Taylor Reynolds numbers up to 450 and a range of Mach numbers (Mt ~ 0 . 1 - 0 . 6) to examine statistical properties of thermodynamic variables. Our focus is on the PDFs and moments of pressure, density and temperature. While results at low Mt are consistent with incompressible results, qualitative changes are observed at higher Mt with a transition around Mt ~ 0 . 3 . For example, the PDF of pressure changes from negatively to positively skewed as Mt increases. Similar changes are observed for temperature and density. We suggest that large fluctuations of thermodynamic variables will be log-normal at high Mt. We also find that, relative to incompressible turbulence, the correlation between enstrophy and low-pressure regions is weakened at high Mt which can be explained by the dominance of the so-called dilatational pressure.
NASA Astrophysics Data System (ADS)
Pomiro, Fernando; Sánchez, Rodolfo D.; Cuello, Gabriel; Maignan, Antoine; Martin, Christine; Carbonio, Raúl E.
2016-10-01
Three members of the perovskite family R F e0.5C r0.5O3 (R =Lu ,Yb , and Tm) have been synthesized and characterized. A systematic study of the crystal and magnetic structures was performed by neutron powder diffraction combined with magnetization measurements. All these compounds crystallize in a Pbnm orthorhombic unit cell and they are already antiferromagnetic at room temperature. The study of the magnetic structure vs temperature showed the occurrence of a progressive spin reorientation from Γ4TM to Γ2TM for the transition metal sublattice, and in the Tm-based sample, a long-range magnetic order of the T m3 + sublattice was found (Γ8R) . These results are in excellent agreement with the magnetic susceptibility measurements. No spin reorientation is observed in the Lu-based sample for which a magnetization reversal at a compensation temperature Tcomp= 225 K was detected. A clear magnetostrictive effect was observed in the samples with R =Yb and Tm associated with a negative thermal expansion and was assigned to a magnetoelastic effect produced by repulsion between the magnetic moments of neighboring transition metal ions.
NASA Astrophysics Data System (ADS)
Li, B.; Luo, X. H.; Wang, H.; Ren, W. J.; Yano, S.; Wang, C.-W.; Gardner, J. S.; Liss, K.-D.; Miao, P.; Lee, S.-H.; Kamiyama, T.; Wu, R. Q.; Kawakita, Y.; Zhang, Z. D.
2016-06-01
Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf0.86Ta0.14Fe2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound orders into the 120° frustrated antiferromagnetic state with a well-reduced magnetic moment, and an in-plane lattice contraction simultaneously sets in. With further cooling down, however, the accumulated distortion in turn destabilizes this susceptible frustrated structure. The frustration is completely relieved at 255 K when the first-order transition to the ferromagnetic state takes place, where a colossal negative volumetric thermal expansion, -123 ×10-6 /K, is obtained. Meanwhile, the antiferromagnetic state can be suppressed by few-tesla magnetic fields, which results in a colossal positive magnetostriction. Such delicate competition is attributed to the giant magnetic fluctuation inherent in the frustrated antiferromagnetic state. Therefore, the magnetoelastic instability is approached even under a small perturbation.
Wang, Lei; Wang, Fei; Yuan, Peng-Fei; Sun, Qiang; Liang, Er-Jun; Jia, Yu; Guo, Zheng-Xiao
2013-07-15
Graphical abstract: Our work confirms the negative thermal expansion (NTE) behavior of the orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} in this range 0–1000 K. The orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} has an open framework structure where MoO{sub 4} tetrahedra and YO{sub 6} octahedra are connected by oxygen atoms. The previous mechanisms for the NTE behavior of orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} are that the translational mode (see (b)) of the O bridge atoms in Y-O-Mo linkages will cause the linkages to be bent, reducing the space between polyhedra and making the volumetric shrinkage. Furthermore, the internal polyhedral distortions have been reported experimentally. It is necessary to reveal the relationship between NTE and polyhedral movements, distortions. From the vibrational properties, we get that the different vibrational eigenvectors of oxygen atoms relative to Y or Mo atoms can lead internal polyhedra to distort unevenly (see (c)). Herein, an extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} based on the Y-O-Mo linkage is proposed (see (a)). It presents a simultaneous dynamic process, i.e. the YO{sub 6} octahedra and MoO{sub 4} tetrahedra distort unevenly, along with both polyhedra being closer which makes the volumetric contraction. This model is helpful to improve the mechanisms of NTE and may be applied in the whole A{sub 2}M{sub 3}O{sub 12} family. - Highlights: • The NTE properties of Y{sub 2}Mo{sub 3}O{sub 12} are confirmed using a first-principles calculation. • The optical branch with the lowest frequency is most responsible for the NTE. • The relationship between NTE and polyhedral movements, distortions is elucidated. • An extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} is proposed. - Abstract: The internal polyhedral distortions have been reported experimentally in orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} as a negative thermal expansion (NTE) material. To reveal the relationship between NTE and polyhedral
NASA Astrophysics Data System (ADS)
Gu, Chuanchuan; Yang, Zhaorong; Chen, Xuliang; Pi, LI; Zhang, Yuheng
2016-05-01
The bond-frustrated ZnCr2Se4 displays strong spin-lattice coupling characterized by large magnetostriction and negative thermal expansion. Here, we report on systematic investigations on the magnetization, heat capacity, thermal expansion and magnetostriction of single crystalline ZnCr2(Se1-x S x )4 (0 ⩽ x ⩽ 0.1) to study the evolution of its spin-lattice coupling with sulfur substitution. We show that with increasing sulfur content, the antiferromagnetic ordering is gradually replaced by a spin-glass state, the temperature region of the negative thermal expansion expands, and the magnetostriction is gradually suppressed. These phenomena are explained qualitatively by taking into account the enhancement of the antiferromagnetic interactions and bond disorder introduced by sulfur substitution.
Gu, Chuanchuan; Yang, Zhaorong; Chen, Xuliang; Pi, L I; Zhang, Yuheng
2016-05-11
The bond-frustrated ZnCr2Se4 displays strong spin-lattice coupling characterized by large magnetostriction and negative thermal expansion. Here, we report on systematic investigations on the magnetization, heat capacity, thermal expansion and magnetostriction of single crystalline ZnCr2(Se1-x S x )4 (0 ⩽ x ⩽ 0.1) to study the evolution of its spin-lattice coupling with sulfur substitution. We show that with increasing sulfur content, the antiferromagnetic ordering is gradually replaced by a spin-glass state, the temperature region of the negative thermal expansion expands, and the magnetostriction is gradually suppressed. These phenomena are explained qualitatively by taking into account the enhancement of the antiferromagnetic interactions and bond disorder introduced by sulfur substitution. PMID:27049604
NASA Astrophysics Data System (ADS)
Aryasova, Natalie; Reznikov, Yuri
2016-09-01
We study the effect of an isotropic-nematic (I -N ) phase transition on the liquid crystal alignment at untreated polymer surfaces. We demonstrate that the pattern at the untreated substrate in the planar cell where the other substrate is uniformly rubbed strongly depends on the temperature gradient across the cell during the I -N phase transition, being macroscopically isotropic if the untreated substrate is cooled faster, but becoming almost homogeneous along the rubbing direction in the opposite temperature gradient. We interpret the observed effect using complementary models of heat transfer and nematic elasticity. Based on the heat transfer model we show that the asymmetric temperature conditions in our experiments provide unidirectional propagation of the I -N interface during the phase transition and determine the initial director orientation pattern at the test's untreated surface. Using the Frank-Oseen model of nematic elasticity, we represent the three-dimensional director field in the nematic cell as a two-dimensional (2D) pattern at the untreated surface and perform 2D numeric simulations. The simulations explain the experimental results: Different initial director orientations at the untreated surface evolve into different stationary patterns.
Díaz, J; Cid, R; Hierro, A; M Álvarez-Prado, L; Quirós, C; Alameda, J M
2013-10-23
We have measured a negative thermal expansion (NTE) of the Co subnetwork in amorphous Nd1-xCox (0.78 < x < 0.84) thin films of the order of 1% in volume using linearly polarized EXAFS spectroscopy at RT and 10 K. The expansion, which is anisotropic, is uncorrelated with the perpendicular magnetic anisotropy (PMA) observed in all the films, but correlated with the method used to deposit them. The atomic environments of the Nd atoms resulted in such a strong disorder that Nd-Nd and Nd-Co environments were invisible to EXAFS, and only Co-Co atomic environments were detected. The information on the Nd subnetwork was obtained through its magnetic moment measured by XMCD. These measurements demonstrate an increasing interaction of neodymium atoms with their particular local crystal field as the temperature decreased, suggesting possible structural modifications at their sites. Since the magnetic moment of the cobalt subnetwork remains essentially constant with the temperature, it is proposed that its detected NTE may be caused by the mechanical response of the amorphous network to structural transformations at the Nd sites. These results support that the PMA in RE-TM alloys is localized at the RE sites. The complete absence of EXAFS oscillations in the Nd L3 EXAFS spectra is remarkable: it means that the coherence length of the photoemitted electrons in disordered matter can be strongly reduced from that expected by atomic calculations to the point of being less than first neighbor distances, which is contrary to the common belief that first neighbors are always visible by EXAFS.
Slowing and cooling atoms in isotropic laser light
NASA Astrophysics Data System (ADS)
Ketterle, Wolfgang; Martin, Alex; Joffe, Michael A.; Pritchard, David E.
1992-10-01
We demonstrate cooling and slowing of atoms in isotropic laser light. As the atoms slow, they compensate for their changing Doppler shift by preferentially absorbing photons at a varying angle to their direction of motion, resulting in a continuous beam of slow atoms unperturbed by an intense slowing laser beam. We point out several novel features of slowing and cooling in isotropic light, and show that it can be superior to cooling with directed laser beams.
THERMAL: A routine designed to calculate neutron thermal scattering
Cullen, D.E.
1995-02-24
THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy.
Cosmological simulations of isotropic conduction in galaxy clusters
Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.
2013-12-01
Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.
Stress reduction in an isotropic plate with a hole by applied induced strains
NASA Technical Reports Server (NTRS)
Sensharma, Pradeep K.; Palantera, Markku J.; Haftka, Raphael T.
1992-01-01
Recently there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Shape memory alloys and piezoelectric materials can be used as induced strain actuators to reduce stresses in the regions of stress concentration. The objective of the work was to find the maximum possible reduction in the stress concentration factor in an isotropic plate with a hole by applying induced strains in a small area near the hole. Induced strains were simulated by thermal expansion.
Relativistic drag and emission radiation pressures in an isotropic photonic gas
NASA Astrophysics Data System (ADS)
Lee, Jeffrey S.; Cleaver, Gerald B.
2016-06-01
By invoking the relativistic spectral radiance, as derived by Lee and Cleaver,1 the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and backward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.
Tensile behavior of a quasi-isotropic carbon-carbon composite
Namiki, Fumiharu; Chou, T.W.
1998-01-01
This paper reports an analytical and experimental investigation of the tensile behavior of a two-dimensional woven carbon-carbon composite with a quasi-isotropic stacking sequence. Specimens in their as-received condition were already saturated with transverse cracks due to thermal stress induced during fabrication. Further cracking under load was not detected. The completely unloaded specimen showed that the slight residual strain tended to increase with applied tensile strain. Damage progression as seen on specimen edges and elastic moduli degradation were recorded. The predicted Young`s moduli were in good agreement with the measured data.
Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models
Pun, C. S. J.; Mak, M. K.; Harko, T.; Gergely, L. A.; Kovacs, Z.; Szabo, G. M.
2008-03-15
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a nonrelativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter, and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an accelerating universe, with the effective negative pressure induced by the Chaplygin gas and the bulk viscous pressure driving the acceleration. The theoretical predictions of the luminosity distance of our model are compared with the observations of the type Ia supernovae. The model fits well the recent supernova data. From the fitting we determine both the equation of state of the Chaplygin gas, and the parameters characterizing the bulk viscosity. The evolution of the scalar field associated to the viscous Chaplygin fluid is also considered, and the corresponding potential is obtained. Hence the viscous Chaplygin gas model offers an effective dynamical possibility for replacing the cosmological constant, and for explaining the recent acceleration of the universe.
Felten, T.; Schlickeiser, R.; Yoon, P. H.; Lazar, M.
2013-05-15
General expressions for the electromagnetic fluctuation spectra in unmagnetized plasmas are derived using fully relativistic dispersion functions and form factors for the important class of isotropic plasma particle distribution functions including in particular relativistic Maxwellian distributions. In order to obtain fluctuation spectra valid in the entire complex frequency plane, the proper analytical continuations of the unmagnetized form factors and dispersion functions are presented. The results are illustrated for the important special case of isotropic Maxwellian particle distribution functions providing in particular the thermal fluctuations of aperiodic modes. No restriction to the plasma temperature value is made, and the electromagnetic fluctuation spectra of ultrarelativistic thermal plasmas are calculated. The fully relativistic calculations also provide more general results in the limit of nonrelativistic plasma temperatures being valid in the entire complex frequency plane. They complement our earlier results in paper I and III of this series for negative values of the imaginary part of the frequency. A new collective, transverse, damped aperiodic mode with the damping rate γ∝−k{sup −5/3} is discovered in an isotropic thermal electron-proton plasma with nonrelativistic temperatures.
Construction of a polarization insensitive lens from a quasi-isotropic metamaterial slab
NASA Astrophysics Data System (ADS)
Luo, Hailu; Ren, Zhongzhou; Shu, Weixing; Li, Fei
2007-02-01
We propose to employ the quasi-isotropic metamaterial (QIMM) slab to construct a polarization insensitive lens, in which both E - and H -polarized waves exhibit the same refocusing effect. For shallow incident angles, the QIMM slab will provide some degree of refocusing in the same manner as an isotropic negative index material. The refocusing effect allows us to introduce the ideas of paraxial beam focusing and phase compensation by the QIMM slab. On the basis of angular spectrum representation, a formalism describing paraxial beams propagating through a QIMM slab is presented. Because of the negative phase velocity in the QIMM slab, the inverse Gouy phase shift and the negative Rayleigh length of paraxial Gaussian beam are proposed. We find that the phase difference caused by the Gouy phase shift in vacuum can be compensated by that caused by the inverse Gouy phase shift in the QIMM slab. If certain matching conditions are satisfied, the intensity and phase distributions at object plane can be completely reconstructed at image plane. Our simulation results show that the superlensing effect with subwavelength image resolution could be achieved in the form of a QIMM slab.
Loconto, Paul R
2009-09-01
Stir-bar sorptive extraction and automated thermal desorption/cryotrapping interfaced to capillary gas chromatography and electron capture negative ion mass spectrometry is shown to effectively isolate and recover polybrominated diphenyl ethers and polybrominated biphenyls from sheep and human serum. This paper describes the development of the method and demonstrates the feasibility of using Twister with spiked serum. Conditions for conducting stir-bar sorptive extraction and for automated thermal desorption that led to acceptable analyte recoveries were optimized. The approach to sample preparation introduced here significantly reduces tedious labor and solvent consumption associated with conventional liquid-liquid extraction. PMID:19772742
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states
NASA Astrophysics Data System (ADS)
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva
2016-08-01
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been
Plasma emission from isotropic Langmuir turbulence - Are radio microbursts structureless?
NASA Technical Reports Server (NTRS)
Gopalswamy, N.
1993-01-01
The brightness temperature of radio emission through the fundamental and second harmonic plasma processes is determined for isotropic Langmuir waves of low-energy density in order to account for the microbursts at meter-dekameter wavelengths. The probable cause for low levels of Langmuir turbulence is the presence of isotropic density fluctuations in the corona which isotropize the beam-generated Langmuir waves. We determined the energy density of Langmuir waves attainable from the beam-plasma instability in the presence of isotropic density fluctuations. Since the electron density fluctuations isotropize the beam-generated plasma waves, the head-on collision of plasma waves becomes efficient to produce the second harmonic plasma emission. For reasonable beam parameters, the brightness temmperature of the fundamental never exceeds 10 exp 6 K, while the second harmonic covers the observed range of microburst brightness temperatures. Thus, the microbursts are predominantly at second harmonic. This leads to an important conclusion that the microbursts are structureless, similar to a population of normal type III bursts of low polarization with no fundamental-harmonic structure.
Fluctuation-induced dielectric permittivity in the isotropic phase of cholesteric liquid crystals
NASA Astrophysics Data System (ADS)
Mukherjee, Prabir K.; Das, Asok K.
2016-03-01
The temperature and pressure dependence of the static dielectric permittivity in the isotropic phase of the isotropic to cholesteric phase transition is calculated using Landau-de Gennes’s fluctuation theory, allowing spatial variation of the orientational order parameter. A comparison is made with experimental data available in the isotropic phase of the isotropic to cholesteric phase transition.
NASA Astrophysics Data System (ADS)
Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.
1995-08-01
Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.
Stress waves in transversely isotropic media: The homogeneous problem
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.
Isotropic and anisotropic bouncing cosmologies in Palatini gravity
Barragan, Carlos; Olmo, Gonzalo J.
2010-10-15
We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R,R{sub {mu}{nu}R}{sup {mu}{nu}}) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R+aR{sup 2}/R{sub P}+R{sub {mu}{nu}R}{sup {mu}{nu}/}R{sub P} exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.
Shear-induced displacement of isotropic-nematic spinodals
NASA Astrophysics Data System (ADS)
Lenstra, T. A. J.; Dogic, Z.; Dhont, J. K. G.
2001-06-01
The shear dependent location of the isotropic-nematic spinodals in suspensions of bacteriophage fd is studied by means of time resolved birefringence experiments. The hysteresis in the birefringence on increasing and subsequently decreasing the shear-rate allows the determination of the location of points in the shear-rate vs concentration phase diagram between the isotropic-to-nematic and the nematic-to-isotropic spinodals. Experimental hysteresis curves are interpreted on the basis of an equation of motion for the orientational order parameter tensor, as derived from the N-particle Smoluchowski equation. The spinodals are found to shift to lower concentrations on increasing the shear-rate. Above a critical shear-rate, where shear forces dominate over thermodynamic forces, no spinodal instability could be detected.
Visualization and computer graphics on isotropically emissive volumetric displays.
Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S
2009-01-01
The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.
Equilibrium Shapes for Isotropic Elastic Tubes in the Planar Case
NASA Astrophysics Data System (ADS)
Xu, Qing-Hua; Zhou, Xiao-Hua; Liu, Yuan-Sheng; Wu, Ke-Jian; Wen, Jun
2013-05-01
When making an isotropic elastic shell into a curving tube, the crimp energy and bending energy determine the equilibrium shapes of the tube. In this study, we established a model to explore the elastic behavior of a tube made of an elastic shell. Two typical shapes: torus shape and periodic shape are discussed by studying the equilibrium shape equations in the planar case. Our study reveals that the crimp energy for an isotropic elastic tube is innegligible and will induce abundant shapes. It also reveals that varicose vein is more likely to occur when the blood vessels become thicker, which is in accordance with the clinic experiments.
A note on antenna models in a warm isotropic plasma
NASA Technical Reports Server (NTRS)
Singh, N.
1980-01-01
The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.
Local flow structures defined by kinematic events in isotropic turbulence
NASA Technical Reports Server (NTRS)
Adrian, R. J.; Ditter, J. L.
1988-01-01
The spatial structure of turbulent motion in incompressible isotropic turbulence is investigated using a conditional average in which the conditional event specifies the local deformation tensor in addition to the local velocity vector. This average gives the best estimate of the flow field around a fixed point x given the kinematic state at x. Estimates are calculated for various kinematic states in isotropic turbulence, including pure translation, pure shear, plane strain, axisymmetric strain, and pure rotation. It is demonstrated that the large-scale motion is dominated by a vortex ring structure associated with the translational component, except at critical points of the velocity vector field.
Concurrence-based entanglement measures for isotropic states
Rungta, Pranaw; Caves, Carlton M.
2003-01-01
We discuss properties of entanglement measures called I-concurrence and tangle. For a bipartite pure state, I-concurrence and tangle are simply related to the purity of the marginal density operators. The I-concurrence (tangle) of a bipartite mixed state is the minimum average I-concurrence (tangle) of ensemble decompositions of pure states of the joint density operator. Terhal and Vollbrecht [Phys. Rev. Lett. 85, 2625 (2000)] have given an explicit formula for the entanglement of formation of isotropic states in arbitrary dimensions. We use their formalism to derive comparable expressions for the I-concurrence and tangle of isotropic states.
Singular Isotropic Cosmologies and Bel-Robinson Energy
NASA Astrophysics Data System (ADS)
Cotsakis, Spiros; Klaoudatou, Ifigeneia
2006-11-01
We consider the problem of the nature and possible types of spacetime singularities that can form during the evolution of FRW universes in general relativity. We show that by using, in addition to the Hubble expansion rate and the scale factor, the Bel-Robinson energy of these universes we can consistently distinguish between the possible different types of singularities and arrive at a complete classification of the singularities that can occur in the isotropic case. We also use the Bel-Robinson energy to prove that known behaviours of exact flat isotropic universes with given singularities are generic in the sense that they hold true in every type of spatial geometry.
Instabilities across the isotropic conductivity point in a nematic phenyl benzoate under AC driving.
Kumar, Pramoda; Patil, Shivaram N; Hiremath, Uma S; Krishnamurthy, K S
2007-08-01
We characterize the sequence of bifurcations generated by ac fields in a nematic layer held between unidirectionally rubbed ITO electrodes. The material, which possesses a negative dielectric anisotropy epsilona and an inversion temperature for electrical conductivity anisotropy sigmaa, exhibits a monostable tilted alignment near TIN, the isotropic-nematic point. On cooling, an anchoring transition to the homeotropic configuration occurs close to the underlying smectic phase. The field experiments are performed for (i) negative sigmaa and homeotropic alignment, and (ii) weakly positive sigmaa and nearly homeotropic alignment. Under ac driving, the Freedericksz transition is followed by bifurcation into various patterned states. Among them are the striped states that seem to belong to the dielectric regime and localized hybrid instabilities. Very significantly, the patterned instabilities are not excited by dc fields, indicating their possible gradient flexoelectric origin. The Carr-Helfrich mechanism-based theories that take account of flexoelectric terms can explain the observed electroconvective effects only in part. PMID:17616118
Thieme, Christian; Waurischk, Tina; Heitmann, Stephan; Rüssel, Christian
2016-05-01
Recently, a silicate with the composition SrxBa1-xZn2Si2O7 was reported, which exhibits a negative coefficient of thermal expansion. The compound BaZn2Si2O7 shows a highly positive coefficient of thermal expansion up to a temperature of 280 °C and then transfers to a high temperature phase, which exhibits a coefficient of thermal expansion near zero or negative over a limited temperature range up to around 500 °C. This high temperature modification can be stabilized to room temperature if Ba(2+) is replaced by Sr(2+). In the solid solution SrxBa1-xZn2Si2O7, also Zn(2+) can be replaced in a wide concentration range by other cations with the respective valency. In the present study, Zn was partially or completely replaced by Mg, Co, Mn, Ni, or Cu. If the high temperature phase is stable at room temperature, the thermal expansion is negative, and if the partial substitution exceeds a certain concentration threshold, the low temperature phase with the crystal structure of BaZn2Si2O7 and highly positive thermal expansion is formed. The lowest mean coefficients of thermal expansion were measured for the composition Ba0.5Sr0.5Zn1.4Co0.6Si2O7 with a value of -2.9 × 10(-6) K(-1). In general, a lower Zn-concentration leads to a higher anisotropy and a lower mean coefficient of thermal expansion. PMID:27062972
Thieme, Christian; Waurischk, Tina; Heitmann, Stephan; Rüssel, Christian
2016-05-01
Recently, a silicate with the composition SrxBa1-xZn2Si2O7 was reported, which exhibits a negative coefficient of thermal expansion. The compound BaZn2Si2O7 shows a highly positive coefficient of thermal expansion up to a temperature of 280 °C and then transfers to a high temperature phase, which exhibits a coefficient of thermal expansion near zero or negative over a limited temperature range up to around 500 °C. This high temperature modification can be stabilized to room temperature if Ba(2+) is replaced by Sr(2+). In the solid solution SrxBa1-xZn2Si2O7, also Zn(2+) can be replaced in a wide concentration range by other cations with the respective valency. In the present study, Zn was partially or completely replaced by Mg, Co, Mn, Ni, or Cu. If the high temperature phase is stable at room temperature, the thermal expansion is negative, and if the partial substitution exceeds a certain concentration threshold, the low temperature phase with the crystal structure of BaZn2Si2O7 and highly positive thermal expansion is formed. The lowest mean coefficients of thermal expansion were measured for the composition Ba0.5Sr0.5Zn1.4Co0.6Si2O7 with a value of -2.9 × 10(-6) K(-1). In general, a lower Zn-concentration leads to a higher anisotropy and a lower mean coefficient of thermal expansion.
On the accuracy and fitting of transversely isotropic material models.
Feng, Yuan; Okamoto, Ruth J; Genin, Guy M; Bayly, Philip V
2016-08-01
Fiber reinforced structures are central to the form and function of biological tissues. Hyperelastic, transversely isotropic material models are used widely in the modeling and simulation of such tissues. Many of the most widely used models involve strain energy functions that include one or both pseudo-invariants (I4 or I5) to incorporate energy stored in the fibers. In a previous study we showed that both of these invariants must be included in the strain energy function if the material model is to reduce correctly to the well-known framework of transversely isotropic linear elasticity in the limit of small deformations. Even with such a model, fitting of parameters is a challenge. Here, by evaluating the relative roles of I4 and I5 in the responses to simple loadings, we identify loading scenarios in which previous models accounting for only one of these invariants can be expected to provide accurate estimation of material response, and identify mechanical tests that have special utility for fitting of transversely isotropic constitutive models. Results provide guidance for fitting of transversely isotropic constitutive models and for interpretation of the predictions of these models.
Effects of prestresses on mechanical properties of isotropic graphite materials
NASA Astrophysics Data System (ADS)
Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.
1998-10-01
Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.
A Simple Mechanical Model for the Isotropic Harmonic Oscillator
ERIC Educational Resources Information Center
Nita, Gelu M.
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)
Semiclassical States Associated with Isotropic Submanifolds of Phase Space
NASA Astrophysics Data System (ADS)
Guillemin, V.; Uribe, A.; Wang, Z.
2016-05-01
We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva
2016-08-21
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.
Commutative law for products of infinitely large isotropic random matrices
NASA Astrophysics Data System (ADS)
Burda, Zdzislaw; Livan, Giacomo; Swiech, Artur
2013-08-01
Ensembles of isotropic random matrices are defined by the invariance of the probability measure under the left (and right) multiplication by an arbitrary unitary matrix. We show that the multiplication of large isotropic random matrices is spectrally commutative and self-averaging in the limit of infinite matrix size N→∞. The notion of spectral commutativity means that the eigenvalue density of a product ABC... of such matrices is independent of the order of matrix multiplication, for example, the matrix ABCD has the same eigenvalue density as ADCB. In turn, the notion of self-averaging means that the product of n independent but identically distributed random matrices, which we symbolically denote by AAA..., has the same eigenvalue density as the corresponding power An of a single matrix drawn from the underlying matrix ensemble. For example, the eigenvalue density of ABCCABC is the same as that of A2B2C3. We also discuss the singular behavior of the eigenvalue and singular value densities of isotropic matrices and their products for small eigenvalues λ→0. We show that the singularities at the origin of the eigenvalue density and of the singular value density are in one-to-one correspondence in the limit N→∞: The eigenvalue density of an isotropic random matrix has a power-law singularity at the origin ˜|λ|-s with a power s∈(0,2) when and only when the density of its singular values has a power-law singularity ˜λ-σ with a power σ=s/(4-s). These results are obtained analytically in the limit N→∞. We supplement these results with numerical simulations for large but finite N and discuss finite-size effects for the most common ensembles of isotropic random matrices.
Spontaneous radiation of a chiral molecule located near a half-space of a bi-isotropic material
Guzatov, D. V.; Klimov, V. V.; Poprukailo, N. S.
2013-04-15
Analytical expressions for the rate of spontaneous emission from a chiral (optically active) molecule located near a half-space occupied by a chiral (bi-isotropic) material have been obtained and analyzed in detail. It is established that the rates of spontaneous emission from the 'right' and 'left' enantiomers of molecules occurring near the chiral medium may significantly differ in cases of chiral materials with (i) both negative dielectric permittivity and magnetic permeability (DNG metamaterial) and (ii) negative permeability and positive permittivity (MNG metamaterial). Based on this phenomenon, DMG and MNG metamaterials can be used to create devices capable of separating right and left enantiomers in racemic mixtures.
NASA Astrophysics Data System (ADS)
Bijarnia, R.; Singh, B.
2016-05-01
The paper is concerned with the propagation of plane waves in a transversely isotropic two temperature generalized thermoelastic solid half-space with voids and rotation. The governing equations are modified in the context of Lord and Shulman theory of generalized thermoelasticity and solved to show the existence of four plane waves in the x - z plane. Reflection of these plane waves from thermally insulated stress free surface is also studied to obtain a system of four non-homogeneous equations. For numerical computations of speed and reflection coefficients, a particular material is modelled as transversely isotropic generalized thermoelastic solid half-space. The speeds of plane waves are computed against the angle of propagation to observe the effects of two temperature and rotation. Reflection coefficients of various reflected waves are also computed against the angle of incidence to observe the effects of various parameters.
NASA Astrophysics Data System (ADS)
Lin, J. C.; Tong, P.; Tong, W.; Lin, S.; Wang, B. S.; Song, W. H.; Zou, Y. M.; Sun, Y. P.
2015-02-01
The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag1-xNMn3+x were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ˜ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T*) below which both AFM and FM orderings are involved. Further, electron spin resonance measurement suggests that the broadened volume change near T* is closely related with the evolution of Γ5g AFM ordering.
Li, Wen; Huang, Rongjin; Wang, Wei; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Shen, Jun; Li, Laifeng
2014-06-01
Experiments have been performed to enhance negative thermal expansion (NTE) in the La(Fe,Co,Si)13-based compounds by optimizing the chemical composition, i.e., proper substitution of La by magnetic element Pr. It is found that increasing the absolute value of the average coefficient of thermal expansion (CTE) in the NTE temperature region (200-300 K) attributes to enhancement of the spontaneous magnetization and its growth rate with increasing Pr content. Typically, the average CTE of La(1-x)Pr(x)Fe10.7Co0.8Si1.5 with x = 0.5 reaches as large as -38.5 × 10(-6) K(-1) between 200 and 300 K (ΔT = 100 K), which is 18.5% larger than that of x = 0. The present results highlight the potential applications of La(Fe,Co,Si)13-based compounds with a larger NTE coefficient.
Lin, J. C.; Tong, P. Lin, S.; Wang, B. S.; Song, W. H.; Tong, W.; Zou, Y. M.; Sun, Y. P.
2015-02-23
The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings are involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.
Li, Wen; Huang, Rongjin; Wang, Wei; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Shen, Jun; Li, Laifeng
2014-06-01
Experiments have been performed to enhance negative thermal expansion (NTE) in the La(Fe,Co,Si)13-based compounds by optimizing the chemical composition, i.e., proper substitution of La by magnetic element Pr. It is found that increasing the absolute value of the average coefficient of thermal expansion (CTE) in the NTE temperature region (200-300 K) attributes to enhancement of the spontaneous magnetization and its growth rate with increasing Pr content. Typically, the average CTE of La(1-x)Pr(x)Fe10.7Co0.8Si1.5 with x = 0.5 reaches as large as -38.5 × 10(-6) K(-1) between 200 and 300 K (ΔT = 100 K), which is 18.5% larger than that of x = 0. The present results highlight the potential applications of La(Fe,Co,Si)13-based compounds with a larger NTE coefficient. PMID:24848739
The inherent dynamics of isotropic- and nematic-phase liquid crystals.
Frechette, Layne; Stratt, Richard M
2016-06-21
The geodesic (shortest) pathways through the potential energy landscape of a liquid can be thought of as defining what its dynamics would be if thermal noise were removed, revealing what we have called the "inherent dynamics" of the liquid. We show how these inherent paths can be located for a model liquid crystal former, showing, in the process, how the molecular mechanisms of translation and reorientation compare in the isotropic and nematic phases of these systems. These mechanisms turn out to favor the preservation of local orientational order even under macroscopically isotropic conditions (a finding consistent with the experimental observation of pseudonematic domains in these cases), but disfavor the maintenance of macroscopic orientational order, even in the nematic phase. While the most efficient nematic pathways that maintain nematic order are indeed shorter than those that do not, it is apparently difficult for the system to locate these paths, suggesting that molecular motion in liquid-crystal formers is dynamically frustrated, and reinforcing the sense that there are strong analogies between liquid crystals and supercooled liquids.
Evolution of the isotropic-to-nematic phase transition in octyloxycyanobiphenyl+aerosil dispersions
NASA Astrophysics Data System (ADS)
Roshi, A.; Iannacchione, G. S.; Clegg, P. S.; Birgeneau, R. J.
2004-03-01
High-resolution ac calorimetry has been carried out on dispersions of aerosils in the liquid crystal octyloxycyanobiphenyl (8OCB) as a function of aerosil concentration and temperature spanning the crystal to isotropic phases. The liquid crystal 8OCB is elastically stiffer than the previously well studied octylcyanobiphenyl (8CB)+aerosil system and so general quenched random-disorder effects and liquid crystal specific effects can be distinguished. A double heat capacity feature is observed at the isotropic to nematic phase transition with an aerosil independent overlap of the heat capacity wings far from the transition and having a nonmonotonic variation of the transition temperature. A crossover between low and high aerosil density behavior is observed for 8OCB+aerosil. These features are generally consistent with those on the 8CB+aerosil system. Differences between these two systems in the magnitude of the transition temperature shifts, heat capacity suppression, and crossover aerosil density between the two regimes of behavior indicate a liquid crystal specific effect. The low aerosil density regime is apparently more orientationally disordered than the high aerosil density regime, which is more translationally disordered. An interpretation of these results based on a temperature dependent disorder strength is discussed. Finally, a detailed thermal hysteresis study has found that crystallization of a well homogenized sample perturbs and increases the disorder for low aerosil density samples but does not influence high-density samples.
The inherent dynamics of isotropic- and nematic-phase liquid crystals
NASA Astrophysics Data System (ADS)
Frechette, Layne; Stratt, Richard M.
2016-06-01
The geodesic (shortest) pathways through the potential energy landscape of a liquid can be thought of as defining what its dynamics would be if thermal noise were removed, revealing what we have called the "inherent dynamics" of the liquid. We show how these inherent paths can be located for a model liquid crystal former, showing, in the process, how the molecular mechanisms of translation and reorientation compare in the isotropic and nematic phases of these systems. These mechanisms turn out to favor the preservation of local orientational order even under macroscopically isotropic conditions (a finding consistent with the experimental observation of pseudonematic domains in these cases), but disfavor the maintenance of macroscopic orientational order, even in the nematic phase. While the most efficient nematic pathways that maintain nematic order are indeed shorter than those that do not, it is apparently difficult for the system to locate these paths, suggesting that molecular motion in liquid-crystal formers is dynamically frustrated, and reinforcing the sense that there are strong analogies between liquid crystals and supercooled liquids.
NASA Astrophysics Data System (ADS)
Harfash, Akil J.; Alshara, Ahmed K.
2015-05-01
The linear and nonlinear stability analysis of the motionless state (conduction solution) and of a vertical throughflow in an anisotropic porous medium are tested. In particular, the effect of a nonhomogeneous porosity and a constant anisotropic thermal diffusivity have been taken into account. Then, the accuracy of the linear instability thresholds are tested using a three dimensional simulation. It is shown that the strong stabilising effect of gravity field. Moreover, the results support the assertion that the linear theory, in general, is accurate in predicting the onset of convective motion, and thus, regions of stability.
Anomalous postcritical refraction behavior for certain transversely isotropic media
Fa, L.; Brown, R.L.; Castagna, J.P.
2006-01-01
Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.
Self-confinement of finite dust clusters in isotropic plasmas.
Miloshevsky, G V; Hassanein, A
2012-05-01
Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.
Decay of Isotropic Turbulence at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Wray, A. A.
1994-01-01
Decay of isotropic turbulence is computed using direct numerical simulations. Comparisons with experimental spectra at moderate and low Reynolds numbers (R(sub lambda) less than 70) show good agreement. At moderate to high Reynolds numbers (R(sub lambda) greater 50), the spectra are found to collapse with Kolmogorov scaling at high wave numbers. However, at low Reynolds numbers (R(sub lambda) less than 50) the shape of the spectra at the Kolmogorov length scales is Reynolds number dependent. Direct simulation data from flowfields of decaying isotropic turbulence are used to compute the terms in the equation for the dissipation rate of the turbulent kinetic energy. The development of the skewness and the net destruction of the turbulence dissipation rate in the limit of low Reynolds numbers are presented. The nonlinear terms are found to remain active at surprisingly low Reynolds numbers.
An endochronic theory for transversely isotropic fibrous composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1981-01-01
A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.
Bounding isotropic Lorentz violation using synchrotron losses at LEP
Altschul, Brett
2009-11-01
Some deviations from special relativity - especially isotropic effects - are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |{kappa}-tilde{sub tr}-(4/3)c{sub 00}| must be smaller than 5x10{sup -15}.
Femtosecond laser pulse induced birefringence in optically isotropic glass.
Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert
2003-07-01
We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.
Emergence of Chirality from Isotropic Interactions of Three Length Scales
NASA Astrophysics Data System (ADS)
Mkhonta, S. K.; Elder, K. R.; Huang, Zhi-Feng
2016-05-01
Chirality is known to play a pivotal role in determining material properties and functionalities. However, it remains a great challenge to understand and control the emergence of chirality and the related enantioselective process particularly when the building components of the system are achiral. Here we explore the generic mechanisms driving the formation of two-dimensional chiral structures in systems characterized by isotropic interactions and three competing length scales. We demonstrate that starting from isotropic and rotationally invariant interactions, a variety of chiral ordered patterns and superlattices with anisotropic but achiral units can self-assemble. The mechanisms for selecting specific states are related to the length-scale coupling and the selection of resonant density wave vectors. Sample phase diagrams and chiral elastic properties are identified. These findings provide a viable route for predicting chiral phases and selecting the desired handedness.
Bounding isotropic Lorentz violation using synchrotron losses at LEP
NASA Astrophysics Data System (ADS)
Altschul, Brett
2009-11-01
Some deviations from special relativity—especially isotropic effects—are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |κ˜tr-(4)/(3)c00| must be smaller than 5×10-15.
Electromagnetic nondiffracting pulses in lossless isotropic plasmalike media.
Ciattoni, Alessandro; Di Porto, Paolo
2004-09-01
We introduce a scheme for describing electromagnetic nondiffracting pulses propagating in isotropic and lossless media characterized by a plasma-like refractive index. A family of nondiffracting waves in a dispersive medium is analytically derived in the form of a generalization of X waves propagating in vacuum. It is also shown how the ratio between pulse width and plasma length has a crucial effect on the pulse dynamics.
On bounding the effective conductivity of isotropic composite materials
NASA Astrophysics Data System (ADS)
Le Chau, Khanh; Chinh, Pham Duc
1991-07-01
In this paper inequalities for the effective conductivity of isotropic composite materials are derived. These inequalities depend on several coefficients characterizing the microstructure of composites. The obtained coefficients can be exactly calculated for models of a two-component aggregate of multisized, coated ellipsoidal inclusions, packed to fill all space. As a result, new bounds for effective conductivity, considerably narrower than those of Hashin-Shtrikman, are established for such models of composite materials.
Induced radioactivity of commercial isotropic graphites for high heat flux tiles
NASA Astrophysics Data System (ADS)
Shikama, T.; Kayano, H.; Fujitsuka, M.; Tanabe, T.
1991-03-01
It used as the plasma-facing material in the next-generation fusion devices, graphite will induce radioactivity in impurities in the graphite. This study was carried out to evaluate the amount of radiologically significant impurities in commercial isotropic graphite tiles. Special attention is given to the benefits of purification by halogen treatment. Graphite tiles from seven Japanese companies were irradiated in JMTR to neutron fluences up to 7.7 × 10 24 n/m 2 fast ( E > 0.1 MeV) and 1 × 10 25 n/m 2 thermal ( E < 0.683 eV) at about 450 K. Subsequent γ-ray spectroscopy revealed that major impurities contributing to the induced radioactivity are the IIId, IVa, Va elements and rare earth elements. The origins of these impurities are suggested and the effects of halogen treatment on the reduction of these impurities are analyzed.
NASA Astrophysics Data System (ADS)
Soyarslan, C.; Bargmann, S.
2016-06-01
In this paper, we present a thermomechanical framework which makes use of the internal variable theory of thermodynamics for damage-coupled finite viscoplasticity with nonlinear isotropic hardening. Damage evolution, being an irreversible process, generates heat. In addition to its direct effect on material's strength and stiffness, it causes deterioration of the heat conduction. The formulation, following the footsteps of Simó and Miehe (1992), introduces inelastic entropy as an additional state variable. Given a temperature dependent damage dissipation potential, we show that the evolution of inelastic entropy assumes a split form relating to plastic and damage parts, respectively. The solution of the thermomechanical problem is based on the so-called isothermal split. This allows the use of the model in 2D and 3D example problems involving geometrical imperfection triggered necking in an axisymmetric bar and thermally triggered necking of a 3D rectangular bar.
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.
1998-01-01
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.
Depth migration in transversely isotropic media with explicit operators
Uzcategui, O.
1994-12-01
The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.
Spontaneous Ferromagnetic Ordering of Nanoplatelets in Isotropic Solvent
NASA Astrophysics Data System (ADS)
Shuai, Min; Klittnick, Arthur; Tuchband, Michael; Glaser, Matthew; Maclennan, Joseph; Clark, Noel; Petschek, Rolfe; Mertelj, Alenka; Lisjak, Darja; Copic, Martin
2015-03-01
Room-temperature ferromagnetic fluids were first experimentally demonstrated by Mertelj, et al (Nature, 504: 237-241, 2013), by suspending surfactant wrapped coated barium hexaferrite (BHXF) nanoplates in the liquid crystal 5CB. We have studied the liquid crystal phase behavior of BHXF magnetic platelets suspended in isotropic solvent (1-butanol) at high volume fraction, where simulations predict an N-I transition for monodisperse hard plates. In these suspensions, the anisotropic particles can be aligned by magnetic fields as weak as 2 gauss, leading to a state with substantial birefringence and dichroism. When the volume fraction of the magnetic platelets is higher than 28%, we observe a phase co-existence, with an isotropic state at the top of a capillary and a birefringence phase at the bottom. In the lower phase, domains are found to have different magneto-optical response from each other and the response is dependent on the sign of the magnetic field, showing broken time-reversal symmetry and ferromagnetism. Spike structures are observed at the interface between the isotropic and ferromagnetic states. This work is supported by NSF MRSEC Grant DMR-0820579 and ICAM Postdoctoral Fellowship Award OCG5711B.
Overall evaluation study for isotropic graphite as fusion first wall material in japan
NASA Astrophysics Data System (ADS)
Yamashina, Toshiro; Hino, Tomoaki
1989-04-01
Isotropie graphite has been widely used as first wall material in present large fusion devices. For isotropic graphites with different properties, however, overall evaluations with respect to vacuum engineering properties, thermal-mechanical properties and interations with plasmas have not been performed systematically. In 1986, under the support of the Ministry of Education, Science and Culture, the "Graphite Project Team" was organized. Fifteen institutions participated in this project and eighteen isotropic graphites supplied from seven graphite manufactures of Japan were studied as "common samples". From each company, both high- and low-density graphites were supplied since it was presumed that the vacuum engineering and thermal-mechanical properties depended on the density. During an approximately two years research period, we have obtained several interesting results on surface roughness, gas desorption, hydrogen permeation, failure due to heat load and fracture toughness. It was found that the vacuum engineering properties such as the surface area, the gas desorption and the hydrogen permeation depended significanly on the pore structure of the graphite. The surface area increased with the bulk density and the hydrogen permeation rate decreased with the bulk density. The gas desorption was very small for the graphite baked in vacuum. Treated in the same way, the amount of gas released from low-density graphite was smaller. The ash content of the graphite could be reduced to ppm levels by halogen gas treatment. The heat load experiments showed that most of the graphites failed at roughly the same heat load. The measured value of the fracture toughness was approximately the same. The change of the surface morphology by hydrogen ion irradiation and the desorption of trapped ions are also discussed.
NASA Astrophysics Data System (ADS)
Kim, Young Suk; Kim, Sung Soo
2016-09-01
We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.
NASA Astrophysics Data System (ADS)
Tang, Zhixiang; Zhao, Lei; Sui, Zhan; Zou, Yanhong; Wen, Shuangchun; Danner, Aaron; Qiu, Chengwei
2015-06-01
Generally, optical diffraction is only weakly dependent on the refractive index of a medium in which light propagates. In this paper, diffraction in a nearly isotropic Kerr photonic crystal (PhC) made of silicon pillars embedded in nonlinear carbon disulfide ambient was reversed and enhanced by its linear refractive index, which is negative and much less than unity. The effective nonlinear refractive index coefficient n2 of the PhC was found by fitting spectral broadening induced by self-phase modulation. The enhanced inverse diffraction, attributed to positive n2, allows self-defocusing in one single PhC. More interestingly, the same PhC can selectively exhibit dual functionalities, i.e., self-defocusing and self-focusing, based on the wavefront property of a given input beam. Our results may pave the way for protecting nanostructured photonic devices from laser damage and provide a method for controlling wavefronts.
NASA Astrophysics Data System (ADS)
Jordan, T. M.; Partridge, J. C.; Roberts, N. W.
2013-07-01
We investigate the polarization dependence of localization length in alternating isotropic-birefringent stacks with uncorrelated thickness disorder. The birefringent layers can be positive uniaxial, negative uniaxial, or a mixture of both. Stacks which contain a mixture are shown to suppress the Brewster delocalization anomalies and, over all incident angles, exhibit p-polarization localization length maxima that are of similar magnitude to normal incidence. Furthermore, we propose a parameter set that enables the p-polarization localization length to monotonically decrease with angle of incidence. This investigation was inspired by weakly polarizing mirrors on the sides of silvery fish and provides a generic means to produce polarization-insensitive, broadband reflections from a random, all-dielectric layered medium.
NASA Astrophysics Data System (ADS)
Schilirò, Emanuela; Lo Nigro, Raffaella; Fiorenza, Patrick; Roccaforte, Fabrizio
2016-07-01
This letter reports on the negative charge trapping in Al2O3 thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al2O3 film (1 × 1012 cm-2) occurs upon high positive bias stress (>10V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1eV. The results provide indications on the possible nature of the trapping defects and, hence, on the strategies to improve this technology for 4H-SiC devices.
NASA Astrophysics Data System (ADS)
Zeng, Chunmei; Yu, Xia; Guo, Peiji
2014-08-01
A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.
Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria; Kilic, Can E-mail: apr@umd.edu E-mail: kilic@physics.rutgers.edu
2010-11-01
We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded.
Electrodynamics of moving media inducing positive and negative refraction
Grzegorczyk, Tomasz M.; Kong, Jin Au
2006-07-15
Negative refraction is a phenomenon that has been recently reported with left-handed media (either isotropic or not), photonic crystals, and rotated uniaxial media. In this Brief Report, we identify another origin of negative refraction, due to the motion of the transmitted medium parallel to the interface at which refraction occurs. Previous works in this domain have concentrated on media velocities that are above the Cerenkov limit, while we show here that negative refraction is in fact achievable at any velocities of the transmitted medium. A possible experimental implementation is proposed to verify this effect. Next, we consider an isotropic frequency-dispersive medium for which the index of refraction can take negative values, and we study the wave refraction phenomenon as a function of frequency and medium velocity. It is found that the motion of the medium induces a rotation of refraction, which can either enhance or attenuate the natural negative refraction of the medium.
Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity
ERIC Educational Resources Information Center
Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-01-01
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…
Frequency dependent thermal expansion in binary viscoelasticcomposites
Berryman, James G.
2007-12-01
The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.
NASA Astrophysics Data System (ADS)
OrdA~¡s, N.; GarcA~-Rosales, C.; Lindig, S.; Balden, M.; Wang, H.
The influence of several graphitization parameters (temperature, dwell time, HIPing subsequent to graphitization) on the final properties of doped isotropic graphite has been investigated. The aim of this work is to obtain doped isotropic graphite with reduced chemical erosion by hydrogen bombardment, high thermal conductivity and large thermal shock resistance. As starting material, a self-sintering mesophase carbon powder and different metallic carbides (TiC, VC, ZrC and WC) as dopants has been used. Longer dwell time results in a remarkable increase of thermal conductivity, depending on the dopant and on the graphitization temperature. However, it leads also to carbide coarsening and local carbide agglomeration and thus to degradation of the mechanical properties. HIPing subsequent to graphitization leads to a significant reduction of porosity for the materials doped with VC and WC and thus to an improvement of their mechanical properties. A solidâ€“liquidâ€“solid model for metal catalysts can be applied to our experimental observations of graphitization in the presence of metallic carbides.
Ragot, R
1993-01-01
We studied necrotaxis in several strains of protists and compared the reaction of living cells in the vicinity of cells killed by a ruby laser. Negative necrotaxis was observed for the unicellular green alga Euglena gracilis, whereas Chlamydomonas was shown to exhibit positive necrotaxis. The cellular colony Pandorina morum exhibited no reaction to the killing of nearby colonies. Both the colorless cryptomonad Chilomonas paramecium and the ciliate Tetrahymena pyriformis exhibited negative necrotaxis following the lysis of vitally stained specimens of their own species. They also exhibited negative necrotaxis following the lysis of Euglena cells. It was also demonstrated that the cellular content of Euglena cells lysed by heat or by a mechanical procedure acts as a repellent to intact Euglena cells. These results suggest that the negative necrotaxis provoked in Euglena by the laser irradiation is probably due to the chemotactic effect produced by the release of cell content in the extracellular medium. This cell content could, according to its chemical composition, act either as a repellent, an attractant, or be inactive. The sensitivity of cells (specific or nonspecific ion channels or chemoreceptors) are also of prime importance in the process.
Subdiffusive dynamics of a liquid crystal in the isotropic phase
NASA Astrophysics Data System (ADS)
De Gaetani, Luca; Prampolini, Giacomo; Tani, Alessandro
2008-05-01
The isotropic phase dynamics of a system of 4-n-hexyl-4'-cyano-biphenyl (6CB) molecules has been studied by molecular dynamics computer simulations. We have explored the range of 275-330K keeping the system isotropic, although supercooled under its nematic transition temperature. The weak rototranslational coupling allowed us to separately evaluate translational (TDOF) and orientational degrees of freedom (ODOF). Evidences of subdiffusive dynamics, more apparent at the lowest temperatures, are found in translational and orientational dynamics. Mean square displacement as well as self-intermediate center of mass and rotational scattering functions show a plateau, also visible in the orientational correlation function. According to the mode coupling theory (MCT), this plateau is the signature of the β-relaxation regime. Three-time intermediate scattering functions reveal that the plateau is related to a homogeneous dynamics, more extended in time for the orientational degrees of freedom (up to 1ns). The time-temperature superposition principle and the factorization property predicted by the idealized version of MCT hold, again for both kinds of dynamics. The temperature dependence of diffusion coefficient and orientational relaxation time is well described by a power law. Critical temperatures Tc are 244±6 and 258±6K, respectively, the latter is some 10K below the corresponding experimental values. The different values of Tc we obtained indicate that ODOF freezes earlier than TDOF. This appears due to the strongly anisotropic environment that surrounds a 6CB molecule, even in the isotropic phase. The lifetime of these "cages," estimated by time dependent conditional probability functions, is strongly temperature dependent, ranging from some hundreds of picoseconds at 320K to a few nanoseconds at 275K.
Identifying Isotropic Events Using a Regional Moment Tensor Inversion
Ford, S R; Dreger, D S; Walter, W R
2008-11-04
We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.
Yang, Yu; Yao, Hongwei; Hong, Mei
2015-04-16
Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR line shapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic (31)P or (2)H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static (31)P chemical shift line shapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that (31)P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit 2 orders of magnitude shorter T2 relaxation times. These differences are explained by the different time scales of lipid lateral diffusion on the cubic-phase surface versus the time scales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static (31)P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena
Observation of transverse patterns in an isotropic microchip laser
Chen, Y.F.; Lan, Y.P.
2003-04-01
An isotropic microchip laser is used to study the characteristics of high-order wave functions in a two-dimensional (2D) quantum harmonic oscillator based on the identical functional forms. With a doughnut pump profile, the spontaneous transverse modes are found to, generally, be elliptic and hyperbolic transverse modes. Theoretical analyses reveal that the elliptic transverse modes are analogous to the coherent states of a 2D harmonic oscillator; the formation of hyperbolic transverse modes is a spontaneous mode locking between two identical Hermite-Gaussian modes.
Image guide couplers with isotropic and anisotropic coupling elements
NASA Astrophysics Data System (ADS)
Kother, Dietmar; Wolff, Ingo
1988-04-01
An image guide coupler consisting of a dielectric slab between two conducting plates is proposed, with application to integrated mm-wave circuits. The use of absorber materials is shown to reduce the influence of radiation at the waveguide bends without significant loss of power, and a dielectric coupling element is shown to nearly eliminate the frequency dependence of the dielectric image guide couplers. Switching couplers with quasi-isotropic behavior can be made by adding a premagnetized ferrite slab to the dielectric coupling element.
Genericness of a big bounce in isotropic loop quantum cosmology.
Date, Ghanashyam; Hossain, Golam Mortuza
2005-01-14
The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the Universe exhibiting a big bounce. We show that with a scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and the details of scalar field dynamics. The volume of the Universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cutoff for computations of density perturbations thereby influencing their amplitudes. PMID:15698060
Computation of large-scale statistics in decaying isotropic turbulence
NASA Technical Reports Server (NTRS)
Chasnov, Jeffrey R.
1993-01-01
We have performed large-eddy simulations of decaying isotropic turbulence to test the prediction of self-similar decay of the energy spectrum and to compute the decay exponents of the kinetic energy. In general, good agreement between the simulation results and the assumption of self-similarity were obtained. However, the statistics of the simulations were insufficient to compute the value of gamma which corrects the decay exponent when the spectrum follows a k(exp 4) wave number behavior near k = 0. To obtain good statistics, it was found necessary to average over a large ensemble of turbulent flows.
Elastic constants of Transversely Isotropically Porous (TIP) materials
Tuchinskii, L.I.; Kalimova, N.L.
1994-11-01
The authors derive formulas describing the dependence of the elastic characteristics of multicapillary materials on the capillary porosity. The investigated materials are classified as transversely isotropic, and the anisotropy in their properties is the result of the directionality of the capillary pores. Analysis of the dependences obtained has shown that the elasticity moduli of these materials may be calculated using formulas suggested for reinforced materials, in which the elastic constants of the fibers are assumed to be equal to zero. The authors derive a relation between the Poisson`s ratios and the capillary porosity.
Computation of dimensional changes in isotropic cesium-graphite reservoirs
NASA Astrophysics Data System (ADS)
Smith, Joe N.; Heffernan, Timothy
1992-01-01
Cs-graphite reservoirs have been utilized in many operating thermionic converters and TFEs, in both in-core and out-of-core tests. The vapor pressure of cesium over Cs-intercalated graphite is well documented for unirradiated reservoirs. The vapor pressure after irradiation is the subject of on-going study. Dimensional changes due to both intercalation and to neutron irradiation have been quantified only for highly oriented graphite. This paper describes extrapolation of the data for intercalated oriented graphite, to provide a qualitative description of the response of isotropic graphite to exposure to both cesium and neutrons.
The comparative study for the isotropic and orthotropic circular plates
NASA Astrophysics Data System (ADS)
Popa, C.; Tomescu, G.
2016-08-01
The aim of study is static bending analysis of an isotropic circular plate using analytical method i.e. Classical Plate Theory, Finite Element software ANSYS and experimental methods. The diameter of circular plate, material properties, like modulus of elasticity (E), poissons ratio (µ) and intensity of loading is assumed at the initial stage of research work. In comparison with this plane plate we analyze a plate of same dimensions and charge, but having ribs, to see the advantage of the rigidify. The two plates are fixed supported subjected to uniformly distributed load.
Decay of isotropic turbulence generated by a mechanically agitated grid.
NASA Technical Reports Server (NTRS)
Ling, S. C.; Wan, C. A.
1972-01-01
Experimental study of weak isotropic turbulence, created by a mechanically agitated grid, has indicated that in the absence of large linear-momentum wakes the energy of turbulence relaxes very quickly into a stable self-preserving structure, which, depending on the initial Reynolds number of turbulence, decays at different constant inverse powers of time. Both the longitudinal correlation coefficients and the corresponding spectral distributions, except for the difference in the parametric constants, are of the same functional type as those found previously for a passive grid.
Homogenous isotropic invisible cloak based on geometrical optics.
Sun, Jingbo; Zhou, Ji; Kang, Lei
2008-10-27
Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range. PMID:18958058
Reflection of electromagnetic waves at a biaxial-isotropic interface
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1983-01-01
The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.
Anomalous glassy relaxation near the isotropic-nematic phase transition
NASA Astrophysics Data System (ADS)
Jose, Prasanth P.; Chakrabarti, Dwaipayan; Bagchi, Biman
2005-03-01
Dynamical heterogeneity in a system of Gay-Berne ellipsoids near its isotropic-nematic (I-N) transition, and also in an equimolar mixture of Lennard-Jones spheres and Gay-Berne ellipsoids in deeply supercooled regime, is probed by the time evolution of non-Gaussian parameters (NGP). The appearance of a dominant second peak in the rotational NGP near the I-N transition signals the growth of pseudonematic domains. Surprisingly, such a second peak is instead observed in the translational NGP for the glassy binary mixture. Localization of orientational motion near the I-N transition is found to be responsible for the observed anomalous orientational relaxation.
Comment on "Canonical magnetic insulators with isotropic magnetoelectric coupling"
NASA Astrophysics Data System (ADS)
Perez-Mato, J. M.; Gallego, Samuel V.; Tasci, E. S.; Elcoro, L.; Aroyo, M. I.
2014-10-01
Coh et al. presented in [Phys. Rev. B 88, 121106(R) (2013), 10.1103/PhysRevB.88.121106] a systematic search of the simplest so-called "canonical" structures allowing isotropic magnetoelectric response, and reported a total of 30 such magnetic configurations. Using magnetic symmetry we show in this Comment that this listing is severely incomplete, and 14 additional distinct cases satisfying the same conditions should be added. The complete list of these elementary magnetic arrangements is then presented in a short and efficient form as distinct Wyckoff positions of some cubic magnetic space groups.
Identifying Isotropic Events Using a Regional Moment Tensor Inversion
Dreger, D S; Ford, S R; Walter, W R
2009-08-03
In our previous work the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 4 collapses in the surrounding region of the western US, were calculated using a regional time-domain full waveform inversion for the complete moment tensor (Dreger et al., 2008; Ford et al., 2008; Ford et al., 2009a). The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We developed a new Network Sensitivity Solution (NSS) in which the fit of sources distributed over a source-type plot (Hudson et al., 1989) show the resolution of the source parameters. The NSS takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The NSS compares both a hypothetical pure source (for example an explosion or an earthquake) and the actual data with several thousand sets of synthetic data from a uniform distribution of all possible sources. The comparison with a hypothetical pure source provides the theoretically best-constrained source-type region for a given set of stations, and with it one can determine whether further analysis with the data is warranted. We apply the NSS to a NTS nuclear explosion, and earthquake, as well as the 2006 North Korean explosion, and a nearby earthquake. The results show that explosions and earthquakes are distinguishable, however the solution space depends strongly on the station coverage. Finally, on May 25, 2009 a second North Korean test took place. Our preliminary results show that the explosive nature of the event may be determined using the regional distance moment tensor method. Results indicate that
Rotation of slender swimmers in isotropic-drag media.
Koens, Lyndon; Lauga, Eric
2016-04-01
The drag anisotropy of slender filaments is a critical physical property allowing swimming in low-Reynolds number flows, and without it linear translation is impossible. Here we show that, in contrast, net rotation can occur under isotropic drag. We first demonstrate this result formally by considering the consequences of the force- and torque-free conditions on swimming bodies and we then illustrate it with two examples (a simple swimmers made of three rods and a model bacterium with two helical flagellar filaments). Our results highlight the different role of hydrodynamic forces in generating translational versus rotational propulsion.
On Transport Properties of Isotropic Quasiperiodic XY Spin Chains
NASA Astrophysics Data System (ADS)
Kachkovskiy, Ilya
2016-07-01
We consider isotropic XY spin chains whose magnetic potentials are quasiperiodic and the effective one-particle Hamiltonians have absolutely continuous spectra. For a wide class of such XY spin chains, we obtain lower bounds on their Lieb-Robinson velocities {mathfrak{v}} in terms of group velocities of their effective Hamiltonians: mathfrak{v}{≥slant} {mathop {ess sup}_{[0,1]}}2/πdE/dN. where E is considered as a function of the integrated density of states.
Homogeneous and Isotropic Turbulence: A Short Survey on Recent Developments
NASA Astrophysics Data System (ADS)
Benzi, Roberto; Biferale, Luca
2015-12-01
We present a detailed review of some of the most recent developments on Eulerian and Lagrangian turbulence in homogeneous and isotropic statistics. In particular, we review phenomenological and numerical results concerning the issue of universality with respect to the large scale forcing and the viscous dissipative physics. We discuss the state-of-the-art of numerical versus experimental comparisons and we discuss the dicotomy between phenomenology based on coherent structures or on statistical approaches. A detailed discussion of finite Reynolds effects is also presented.
Rotation of slender swimmers in isotropic-drag media
NASA Astrophysics Data System (ADS)
Koens, Lyndon; Lauga, Eric
2016-04-01
The drag anisotropy of slender filaments is a critical physical property allowing swimming in low-Reynolds number flows, and without it linear translation is impossible. Here we show that, in contrast, net rotation can occur under isotropic drag. We first demonstrate this result formally by considering the consequences of the force- and torque-free conditions on swimming bodies and we then illustrate it with two examples (a simple swimmers made of three rods and a model bacterium with two helical flagellar filaments). Our results highlight the different role of hydrodynamic forces in generating translational versus rotational propulsion.
NASA Astrophysics Data System (ADS)
Kirwai, Amey; Chandrakumar, N.
2016-08-01
We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a 1H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a 31P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR.
Large Deviation Statistics of Vorticity Stretching in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2015-11-01
A key feature of 3D fluid turbulence is the stretching/re-alignment of vorticity by the action of the strain-rate. It is shown using the cumulant-generating function that cumulative vorticity stretching along a Lagrangian path in isotropic turbulence behaves statistically like a sum of i.i.d. variables. The Cramer function for vorticity stretching is computed from the JHTDB isotropic DNS (Reλ = 430) and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain-rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramer functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of largest FTLE. A model Fokker-Planck equation is constructed by approximating the viscous destruction of vorticity with a deterministic non-linear relaxation law matching conditional statistics, while the fluctuations in vorticity stretching are modelled by stochastic noise matching the statistics encoded in the Cramer function. The model predicts a stretched-exponential tail for the vorticity magnitude PDF, with good agreement for the exponent but significant error (30-40%) in the pre-factor. Supported by NSF Graduate Fellowship (DGE-1232825) and NSF Grant CMMI-0941530.
Even harmonic generation in isotropic media of dissociating homonuclear molecules
Silva, R. E. F.; Rivière, P.; Morales, F.; Smirnova, O.; Ivanov, M.; Martín, F.
2016-01-01
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609
Isotropic probability measures in infinite-dimensional spaces
NASA Technical Reports Server (NTRS)
Backus, George
1987-01-01
Let R be the real numbers, R(n) the linear space of all real n-tuples, and R(infinity) the linear space of all infinite real sequences x = (x sub 1, x sub 2,...). Let P sub in :R(infinity) approaches R(n) be the projection operator with P sub n (x) = (x sub 1,...,x sub n). Let p(infinity) be a probability measure on the smallest sigma-ring of subsets of R(infinity) which includes all of the cylinder sets P sub n(-1) (B sub n), where B sub n is an arbitrary Borel subset of R(n). Let p sub n be the marginal distribution of p(infinity) on R(n), so p sub n(B sub n) = p(infinity) (P sub n to the -1 (B sub n)) for each B sub n. A measure on R(n) is isotropic if it is invariant under all orthogonal transformations of R(n). All members of the set of all isotropic probability distributions on R(n) are described. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
Structure and stability of isotropic states of hard platelet fluids.
Cheung, David L; Anton, Lucian; Allen, Michael P; Masters, Andrew J; Phillips, Jonathan; Schmidt, Matthias
2008-10-01
We study the thermodynamics and the pair structure of hard, infinitely thin, circular platelets in the isotropic phase. Monte Carlo simulation results indicate a rich spatial structure of the spherical expansion components of the direct correlation function, including nonmonotonical variation of some of the components with density. Integral equation theory is shown to reproduce the main features observed in simulations. The hypernetted chain closure, as well as its extended versions that include the bridge function up to second and third order in density, perform better than both the Percus-Yevick closure and Verlet bridge function approximation. Using a recent fundamental measure density functional theory, an analytic expression for the direct correlation function is obtained as the sum of the Mayer bond and a term proportional to the density and the intersection length of two platelets. This is shown to give a reasonable estimate of the structure found in simulations, but to fail to capture the nonmonotonic variation with density. We also carry out a density functional stability analysis of the isotropic phase with respect to nematic ordering and show that the limiting density is consistent with that where the Kerr coefficient vanishes. As a reference system, we compare to simulation results for hard oblate spheroids with small, but nonzero elongations, demonstrating that the case of vanishingly thin platelets is approached smoothly.
Effective Hydraulic Conductivity of Unsaturated Isotropic Soils with Multidimensional Heterogeneity
Zhang, Z. F.
2010-05-01
Accurate simulation and prediction of flow and transport of solutes in a heterogeneous vadose zone requires the appropriate hydraulic properties corresponding to the spatial scale of interest. Upscaling techniques provide effective properties to describe the vadose zone system’s behavior with information collected at a much smaller scale. Realizing that a saturated system can be considered as a special state of the unsaturated system, the methodologies for upscaling the saturated hydraulic conductivity of heterogeneous isotropic porous media under steady-state flow conditions can be extended for upscaling the unsaturated hydraulic conductivity. An advantage of this approach is that the extended upscaling methods are independent of the choice of hydraulic function models. The Matheron, small-perturbation, and self-consistent upscaling methods were used to demonstrate the approach. The extended upscaling methods were tested using multi-step numerical experiments of gravity-induced flow into Miller-similar synthetic soils with different levels of heterogeneity. Results show that, under 3-D flow conditions in isotropic soils, the self-consistent method applies to all the soil heterogeneity conditions considered while the Matheron and small-perturbation methods are acceptable for soil of relatively low variability.
Even harmonic generation in isotropic media of dissociating homonuclear molecules.
Silva, R E F; Rivière, P; Morales, F; Smirnova, O; Ivanov, M; Martín, F
2016-01-01
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609
Dynamic elastic moduli during isotropic densification of initially granular media
NASA Astrophysics Data System (ADS)
Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Dingwell, Donald B.
2016-03-01
The elastic properties of homogeneous, isotropic materials are well constrained. However, in heterogeneous and evolving materials, these essential properties are less well-explored. During sintering of volcanic ash particles by viscous processes as well as during compaction and cementation of sediments, microstructure and porosity undergo changes that affect bulk dynamic elastic properties. Here using a model system of glass particles as an analogue for initially granular rock-forming materials, we have determined porosity and P-wave velocity during densification. Using these results, we test models for the kinetics of densification and the resultant evolution of the elastic properties to derive a quantitative description of the coupling between the kinetics of isotropic densification and the evolving dynamic elastic moduli. We demonstrate the power of the resultant model on a wide range of data for non-coherent sediments as well as sedimentary and volcanic rocks. We propose that such constraints be viewed as an essential ingredient of time-dependent models for the deformation of evolving materials in volcanoes and sedimentary basins.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
On differential photometric reconstruction for unknown, isotropic BRDFs.
Chandraker, Manmohan; Bai, Jiamin; Ramamoorthi, Ravi
2013-12-01
This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives in the presence of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry, regardless of the form of isotropic BRDF. For the problem of shape-from-shading, we show that a reconstruction may be performed up to isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow; however, it does not suffer from the aperture problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information, but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.
Guided wave interaction with defects in isotropic and composite plates
NASA Astrophysics Data System (ADS)
Obenchain, Matthew B.; Cesnik, Carlos E. S.
2014-03-01
This paper considers the effects of various damage features on guided wave (GW) propagation in isotropic and composite plates using both the local interaction simulation approach (LISA) and experimental methods. First, through-thickness holes in isotropic plates and graphite-epoxy laminates are simulated to establish LISA's ability to capture the GW scattering effects of various hole sizes and positions. GW generation from piezo-ceramic wafers is modeled using the recently developed LISA hybrid approach. The LISA results for the cross-ply case are compared with experimental measurements to evaluate the quality of the simulation. Next, low-velocity impact damage in composite plates is simulated and experimentally characterized. Barely-visible impact damage from a drop-weight fixture is analyzed using laser vibrometry and surface-mounted sensors to quantify its effect on GW fields. Three different methods of simulating the resulting impact are demonstrated using LISA, and the results are compared with the experiment to evaluate the damage modeling techniques. Results from the through thickness hole study show the effect of sensor position on the strength of damage signals. Impact damage is successfully modeled in LISA using an inverted V-shaped profile with reductions in shear and elastic moduli.
Simple theory of transitions between smectic, nematic, and isotropic phases.
Emelyanenko, A V; Khokhlov, A R
2015-05-28
The transitions between smectic, nematic, and isotropic phases are investigated in the framework of a unified molecular-statistical approach. The new translational order parameter is different from the one introduced in K. Kobayashi [Phys. Lett. A 31, 125 (1970)] and W. L. McMillan [Phys. Rev. A 4, 1238 (1971)]. The variance of the square sine of intermolecular shift angle along the director is introduced to take self-consistently into account the most probable location of the molecules with respect to each other, which is unique for every liquid crystal (LC) material and is mainly responsible for the order parameters and phase sequences. The mean molecular field was treated in terms of only two parameters specific to any intermolecular potential of elongated molecules: (1) its global minimum position with respect to the shift of two interacting molecules along the director and (2) its inhomogeneity/anisotropy ratio. A simple molecular model is also introduced, where the global minimum position is determined by the linking groups elongation Δ/d, while the inhomogeneity/anisotropy ratio Gβ/Gγ is determined by the ratio of electrostatic and dispersion contributions. All possible phase sequences, including abrupt/continuous transformation between the smectic and nematic states and the direct smectic-isotropic phase transition, are predicted. The theoretical prediction is in a good agreement with experimental data for some simple materials correlating with our molecular model, but it is expected to be valid for any LC material.
Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials
Plohr, Bradley J.; Plohr, Jeeyeon N.
2012-07-25
We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable
Charge pariticle transport in the non-isotropic turbulences
NASA Astrophysics Data System (ADS)
Sun, P.; Jokipii, J. R.
2015-12-01
The scattering and diffusion of energetic charged particles is not only important for understanding phenomena such as diffusive shock acceleration but it also is a natural probe of the statistical characteristics of magnetohydrodynamic (MHD) turbulence. Although Parker's transport equation (Parker 1965) allows us to describe the propagation of charged particles, the transport coefficients needed in the equation must be determined. Using Quasi-Linear Theory (QLT, e.g. Jokipii (1966)), one finds that coefficients can be related to the correlation function or power spectrum of homogeneous magnetic turbulence. However, different turbulence models will generally have a different influence on particle's scattering and diffusion. Among those models developed in MHD Turbulence, such as isotropic, Slab plus 2D (Tu & Marsch 1993; Gray et al 1996; Bieber et al 1996), etc. Here, using test-particle orbit simulations to calculate the transport coefficients, we study particle transport in synthesized asymmetric turbulence using the form first proposed by Goldreich & Sridhar (1995). We developed and introduce a systematic method to synthesize scale-dependent non-isotropic magnetic turbulences. We also developed and introduce a method to synthesize the 3d turbulent magnetic field from the observed solar wind time series dataset. We present the comparison of their effects on charge particle transport with previous theories and models.
PDF Modeling of Evaporating Droplets in Isotropic Turbulence.
NASA Astrophysics Data System (ADS)
Mashayek, F.; Pandya, R. V. R.
2000-11-01
We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).
NASA Astrophysics Data System (ADS)
Qu, Bingyan; He, Haiyan; Pan, Bicai
2016-07-01
In this paper, using the first-principles calculations, we systemically study the magnetic and the negative thermal expansion (NTE) properties of Mn3(A0.5B0.5)N (A = Cu, Zn, Ag, or Cd; B = Si, Ge, or Sn). From the calculated results, except Mn3(Cu0.5Si0.5)N, all the doped compounds considered would exhibit the NTE. For the dopants at B sites, the working temperature of the NTE shifts to higher temperature range from Si to Sn, and among the compounds with these dopants, Mn3(A0.5Ge0.5)N has the largest amplitude of the NTE coefficient. As to the dopants at A sites, compared to Mn3(Cu0.5B0.5)N, Mn3(A0.5B0.5)N (A = Ag or Cd) exhibit the NTE with higher temperature ranges and lower coefficient of the thermal expansion. In a word, these compounds would have different working temperatures and coefficients of the NTE, which is important for the applications in different conditions.
Ti-doped isotropic graphite: A promising armour material for plasma-facing components
NASA Astrophysics Data System (ADS)
García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.
2009-04-01
Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.
Transient thermal camouflage and heat signature control
NASA Astrophysics Data System (ADS)
Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong
2016-09-01
Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.
Thermal expansion and phase transitions of α-AlF{sub 3}
Morelock, Cody R.; Hancock, Justin C.; Wilkinson, Angus P.
2014-11-15
ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppm K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.
NASA Astrophysics Data System (ADS)
Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping
2016-07-01
For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.
Technology Transfer Automated Retrieval System (TEKTRAN)
The negative perception some consumers hold regarding agricultural chemicals has resulted in an increased demand for organic foods and fibers, and in increasing political pressure for the regulation of agricultural production practices. This has revived interest in thermal defoliation of cotton and ...
Identifying isotropic events using a regional moment tensor inversion
Ford, S R; Dreger, D S; Walter, W R
2008-07-16
The deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, are calculated using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with a low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), but the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data has a good SNR. The sensitivity investigation is extended via the introduction of the network sensitivity solution, which takes
Scattering framework for two particles with isotropic spin-orbit coupling applicable to all energies
NASA Astrophysics Data System (ADS)
Guan, Q.; Blume, D.
2016-08-01
Previous work developed a K -matrix formalism applicable to positive energies for the scattering between two s -wave interacting particles with two internal states, isotropic spin-orbit coupling and vanishing center-of-mass momentum [H. Duan, L. You, and B. Gao, Phys. Rev. A 87, 052708 (2013)., 10.1103/PhysRevA.87.052708]. This work extends the formalism to the entire energy regime. Explicit solutions are obtained for the total angular momentum J =0 and 1 channels. The behavior of the partial cross sections in the negative energy regime is analyzed in detail. We find that the leading contributions to the partial cross sections at the negative energy thresholds are governed by the spin-orbit coupling strength kso and the mass ratio. The fact that these contributions are independent of the two-body scattering length as is a direct consequence of the effective reduction of the dimensionality, and hence of the density of states, near the scattering thresholds due to the single-particle spin-orbit coupling terms. The results are analytically continued to the energy regime where bound states exist. It is shown that our results are consistent with results obtained by alternative approaches. Our formulation, which can be regarded as an extension of the standard textbook partial wave decomposition, can be generalized to two-body systems with other types of spin-orbit coupling, including cases where the center-of-mass momentum does not vanish.
On some physical aspects of isotropic cosmology in Riemann-Cartan spacetime
Minkevich, A.V.; Garkun, A.S.; Kudin, V.I. E-mail: awm@matman.uwm.edu.pl E-mail: kudzin_w@tut.by
2013-03-01
Isotropic cosmology built in the framework of the Poincaré gauge theory of gravity based on sufficiently general expression of gravitational Lagrangian is considered. The derivation of cosmological equations and equations for torsion functions in the case of the most general homogeneous isotropic models is given. Physical aspects of isotropic cosmology connected with possible solution of dark energy problem and problem of cosmological singularity are discussed.
Macroscopic dynamics near the isotropic{endash}smectic-A phase transition
Brand, Helmut R.; Mukherjee, Prabir K.; Pleiner, Harald
2001-06-01
The hydrodynamic theory for the smectic-A phase and the isotropic phase is generalized to the macroscopic dynamics in the vicinity of the isotropic{endash}smectic-A phase transition. The macroscopic dynamic equations are presented on the isotropic side as well as on the smectic-A side of the phase transition, incorporating the effect of an external electric field. Specific experiments to test some of the effects contained in the macroscopic dynamic equations are suggested.
Reverse time migration in tilted transversely isotropic media
Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael
2004-07-01
This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the vertical direction and 1.5 wavelength in the lateral direction.
Assessing the Structure of Isotropic and Anisotropic Turbulent Magnetic Fields
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Holden, Lisa; Grayson, Lindsay; Wallace, Kirk
2016-10-01
Turbulent magnetic fields permeate our universe, impacting a wide range of astronomical phenomena across all cosmic scales. A clear example is the magnetic field that threads the interstellar medium (ISM), which impacts the motion of cosmic rays through that medium. Understanding the structure of magnetic turbulence within the ISM and how it relates to the physical quantities that characterize it can thus inform our analysis of particle transport within these regions. Toward that end, we probe the structure of magentic turbulence through the use of Lyapunov exponents for a suite of isotropic and nonisotropic Alfvénic turbulence profiles. Our results provide a means of calculating a “turbulence lengthscale” that can then be connected to how cosmic rays propagate through magentically turbulent environments, and we perform such an analysis for molecular cloud environments.
Influence of stable stratification on three-dimensional isotropic turbulence
NASA Astrophysics Data System (ADS)
Metais, O.
The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.
Tunable dynamics of microtubule-based active isotropic gels
Henkin, Gil; DeCamp, Stephen J.; Chen, Daniel T. N.; Sanchez, Tim; Dogic, Zvonimir
2014-01-01
We investigate the dynamics of an active gel of bundled microtubules (MTs) that is driven by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives the gel to a highly dynamical turbulent-like state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel. We characterize how enhanced transport and emergent macroscopic flows of active gels depend on relevant molecular parameters, including ATP, kinesin motor and depletant concentrations, MT volume fraction, as well as the stoichiometry of the constituent motor clusters. Our results show that the dynamical and structural properties of MT-based active gels are highly tunable. They also indicate existence of an optimal concentration of molecular motors that maximize far-from-equilibrium activity of active isotropic MT gels. PMID:25332391
Isotropic cosmological models in F(T,TG) theory
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
2016-09-01
This paper is devoted to study evolution of the isotropic universe models in the framework of F(T,TG) gravity (T represents torsion scalar and TG is the teleparallel equivalent of the Gauss-Bonnet (GB) term). We construct F(T,TG) models by taking different eras of the universe like non-relativistic and relativistic matter eras, dark energy (DE) dominated era and their combinations. It is found that the reconstructed models indicate decreasing behavior for DE dominated era and its combination with other eras. We also discuss stability of each reconstructed model. Finally, we evaluate equation of state (EoS) parameter by considering two models and study its behavior graphically.
Diffusion of Heat from a Line Source in Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Uberoi, Mahinder S; Corrsin, Stanley
1953-01-01
An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.
Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene
2011-02-14
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the
Isotropic graphite multistage depressed collectors - A progress report
NASA Astrophysics Data System (ADS)
Ramins, Peter; Ebihara, Ben T.
1989-04-01
A small isotropic-graphite-electrode multistage depressed collector (MDC) was designed, fabricated, and evaluated in conjunction with a 500-W CW 4.8-9.6-GHz TWT. The carbon electrode surfaces were used to improve the TWT overall efficiency by minimizing the secondary-electron emission losses in the MDC. The design and fabrication of the brazed graphite MDC assembly are described. The TWT and graphite-electrode MDC bakeout and processing (outgassing) characteristics were evaluated and found to be comparable to those for TWTs equipped with copper-electrode MDCs. The TWT and MDC performance was optimized for broadband CW operation at saturation. The average RF, overall, and MDC efficiencies were 14.9, 46.4, and 83.6 percent, respectively, across the octave operating band. A 1500-h CW test showed no gas buildup and excellent stability of the electrode surfaces.
Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Collins, Lance R.; Meng, Hui
2004-01-01
A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.
Anomalous glassy relaxation near the isotropic-nematic phase transition.
Jose, Prasanth P; Chakrabarti, Dwaipayan; Bagchi, Biman
2005-03-01
Dynamical heterogeneity in a system of Gay-Berne ellipsoids near its isotropic-nematic (I-N) transition, and also in an equimolar mixture of Lennard-Jones spheres and Gay-Berne ellipsoids in deeply supercooled regime, is probed by the time evolution of non-Gaussian parameters (NGP). The appearance of a dominant second peak in the rotational NGP near the I-N transition signals the growth of pseudonematic domains. Surprisingly, such a second peak is instead observed in the translational NGP for the glassy binary mixture. Localization of orientational motion near the I-N transition is found to be responsible for the observed anomalous orientational relaxation. PMID:15903399
Graphene as a Tunable Anisotropic or Isotropic Plasmonic Metasurface.
Huidobro, Paloma A; Kraft, Matthias; Maier, Stefan A; Pendry, John B
2016-05-24
We demonstrate a tunable plasmonic metasurface by considering a graphene sheet subject to a periodically patterned doping level. The unique optical properties of graphene result in electrically tunable plasmons that allow for extreme confinement of electromagnetic energy in the technologically significant regime of THz frequencies. Here, we add an extra degree of freedom by using graphene as a metasurface, proposing to dope it with an electrical gate patterned in the micron or submicron scale. By extracting the effective conductivity of the sheet, we characterize metasurfaces periodically modulated along one or two directions. In the first case, and making use of the analytical insight provided by transformation optics, we show an efficient control of THz radiation for one polarization. In the second case, we demonstrate a metasurface with an isotropic response that is independent of wave polarization and orientation. PMID:27092391
Electromagnetic cloaking by layered structure of homogeneous isotropic materials
NASA Astrophysics Data System (ADS)
Huang, Ying; Feng, Yijun; Jiang, Tian
Electromagnetic invisibility cloak requires material with anisotropic distribution of the constitutive parameters deduced from a geometrical transformation as first proposed by Pendry et al. [Science 312, 1780 (2006)]. In this paper, we proposed a useful method to realize the required radius-dependent, anisotropic material parameters and to construct an electromagnetic cloak through concentric layered structure of thin, alternating layers of homogeneous isotropic materials. With proper design of the permittivity or the thickness ratio of the alternating layers, we demonstrated the low-reflection and power-flow bending properties of the proposed cloaking structure through rigorous analysis of the scattered electromagnetic fields. The proposed cloaking structure does not require anisotropy or inhomogeneity of the material constitutive parameters usually realized by metamaterials with subwavelength structured inclusions, therefore may lead to a practical path to an experimental demonstration of electromagnetic cloaking, especially in the optical range.
Defect modes of chiral photonic crystals with an isotropic defect
NASA Astrophysics Data System (ADS)
Gevorgyan, A. H.; Oganesyan, K. B.
2011-06-01
Specific features of the defect modes of cholesteric liquid crystals (CLCs) with an isotropic defect, as well as their photonic density of states, Q factor, and emission, have been investigated. The effect of the thicknesses of the defect layer and the system as a whole, the position of the defect layer, and the dielectric boundaries on the features of the defect modes have been analyzed. It is shown that when the CLC layer is thin the density of states and emission intensity are maximum for the defect mode, whereas when the CLC layer is thick, these peaks are observed at the edges of the photonic band gap. Similarly, when the gain is low, the density of states and emission intensity are maximum for the defect mode, whereas at high gains these peaks are also observed at the edges of the photonic band gap. The possibilities of low-threshold lasing and obtaining high- Q microcavities have been investigated.
The free vibration of isotropic and specially orthotropic triangular plates
NASA Astrophysics Data System (ADS)
Kim, C. S.
1991-05-01
A relatively simple Rayleigh Ritz solution, with simple polynomials as the admissible functions, was given for the free vibration analysis of thin, isotropic and orthotropic, right triangular plates. Numerical results were obtained for plates of various aspect ratios and having all combinations of the classical free, simply supported and clamped boundary conditions. In the present paper, the method is extended to apply to plates of general triangular planform. The analysis remains relatively simple and the computational work remains less than that required when using the methods described in most eariler studies, whilst the accuracy is comparable. Sample studies illustrating the convergence of the solution are given and comparison with results available from the literature show the validity of the approach. Natural frequency parameters and nodal patterns have been determined for a fairly comprehensive selection of particular plates, a few of these results being reported here.
NASA Astrophysics Data System (ADS)
Li, Yang; Milton, Kimball
In the last decade, various results on the entropy related to the Casimir interactions between two bodies have been obtained and the striking feature that negative values of Casimir entropy frequently appear. The origin of this effect lies in many factors, such as the dissipation of the materials, the geometry of the configuration and so on. We recently investigated the entropies of one body systems. Although the self-free energy of one body systems are always divergent, the self-entropy could be finite in many cases. These phenomenon may throw more light on thermal dynamical behavior of quantum field systems.
The signature of initial production mechanisms in isotropic turbulence decay
NASA Astrophysics Data System (ADS)
Meldi, M.
2016-03-01
In the present work the quantification of the time-lasting effects of production mechanisms in homogeneous isotropic turbulence decay is addressed. The analysis is developed through the use of theoretical tools as well as numerical calculations based on the eddy damped quasinormal Markovian (EDQNM) model. In both cases a modified Lin equation is used, which accounts for production mechanisms as proposed by Meldi, Lejemble, and Sagaut ["On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence," J. Fluid Mech. 756, 816-843 (2014)]. The approaches used show that an exponential decay law can be observed if the intensity of the forcing is strong enough to drive the turbulence dynamics, before a power-law decay is eventually attained. The EDQNM numerical results indicate that the exponential regime can persist for long evolution times, longer than the observation time in grid turbulence experiments. A rigorous investigation of the self-similar behavior of the pressure spectrum has been performed by a comprehensive comparison of EDQNM data with direct numerical simulation (DNS)/experiments in the literature. While DNS and free decay EDQNM simulations suggest the need of a very high Reλ threshold in order to observe a clear -7/3 slope of the pressure inertial range, experimental data and forced EDQNM calculations indicate a significantly lower value. This observation suggests that the time-lasting effects of production mechanisms, which cannot be excluded in experiments, play a role in the lack of general agreement with classical numerical approaches. These results reinforce the urge to evolve the numerical simulation state of the art towards the prediction of realistic physical states.
Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy.
Minogianni, Chrysa; Gatos, Konstantinos G; Galiotis, Costas
2005-09-01
The Raman spectrum of isotactic polypropylene (iPP) has been found to exhibit vibrational peaks in the region of 750 to 880 cm(-1) that are sensitive to the degree of crystallinity. These features are broadly assigned to various modes of methyl group rocking, rho(CH2), and there have been various attempts to assess crystallinity based on the integrated intensities of these bands. Various vibrational analyses performed in the past in combination with experimental studies have concluded that the presence of crystalline order with trans-gauche conformation gives rise to a peak at 809 cm(-1), which is assigned to a rho(CH2) mode coupled with the skeletal stretching mode. However, the presence of additional peaks at 830 cm(-1), 841 cm(-1), and 854 cm(-1), within the same envelope, have been the subject of controversy. In this work isotropic films of iPP derived from the same precursor of identical tacticity have been subjected to various degrees of annealing and the integrated intensities of the Raman bands were measured. The results showed that true 3d crystallinity in isotropic iPP can only be expressed by the 809 cm(-1) band whereas the band at 841 cm(-1) corresponds to an uncoupled rho(CH2) fundamental mode and thus is a measure of the amorphous content. The less intense satellite bands at 830 cm(-1) and 854 cm(-1) of solid iPP cannot be distinguished from the 841 cm(-1) band in the melt and are generally considered as intermediate phases possibly related to non-crystalline components with 3(1)-helical conformations. Independent differential scanning calorimetry (DSC) crystallinity measurements were in broad agreement with the Raman measurements based on the normalized intensity of the 809 cm(-1) Raman band. By comparing the Raman with the DSC data a new value for the theoretical heat of fusion for the 100% crystalline iPP has been proposed. PMID:18028610
NASA Astrophysics Data System (ADS)
Ishiyama, S.; Burchell, T. D.; Strizak, J. P.; Eto, M.
1996-05-01
A fine-grained isotropic nuclear graphite (IG-110), manufactured from a petroleum coke, was irradiated to a total neutron dose of 3.8 × 10 26 n/m 2 or 25 displacements per atom (dpa) at 600°C in the high flux isotope reactor (HFIR) at Oak Ridge: National Laboratory (ORNL). The effect of irradiation and the influence of post-irradiation thermal annealing on the properties of the graphite were evaluated. Volume change turnaround was clearly observed at 15—20 dpa and the return to original volume ( {ΔV}/{V 0} = 0 ) can be estimated to occur at ˜ 30 dpa. Strength and elastic moduli of the irradiated graphite increased by a factor of 2-3, and maximums in the {δ}/{δ 0}, and {E}/{E o} curves were at ˜20 dpa at 600°C. Recovery of volume, fracture strength and thermal conductivity by thermal annealing were found., and thermal conductivity returned to better than about 30% of the unirradiated value after 1200°C thermal annealing.
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Funk, J. G.
1992-01-01
An analytical study of the sensitivity of the laminate coefficient of thermal expansion, CTE, to changes in lamina elastic properties has been made. High modulus graphite/epoxy (P75/934, P100/934, P120/934), graphite/aluminum (P100/Al), and graphite/glass (HMS/Gl) composite materials were considered in quasi-isotropic, low thermal stress, and 'near-zero' thermal expansion laminate configurations. The effects of a positive or negative 10 percent change in lamina properties on laminate CTE is strongly dependent upon both the composite material and the laminate configuration. A 10 percent change in all of the lamina properties had very little effect on the laminate CTE of the HMS/Gl composite laminates investigated. The sensitivity and direction of change in the laminate CTE of Gr/934 depended very strongly on the fiber properties. A 10 percent change in the lamina transverse CTE resulted in changes as large as 0.216 ppm/C in the laminate CTE of a quasi-isotropic Gr/934 laminate. No significant difference was observed in the sensitivity of the laminate CTE of the P100/934 and P120/934 composite materials due to changes in lamina properties. Large changes in laminate CTE can result from measured temperature and radiation effects on lamina properties.
Theoretical basis for design of thermal-stress-free fasteners
NASA Technical Reports Server (NTRS)
Blosser, M. L.; Mcwithey, R. R.
1983-01-01
A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.
Isotropic three-dimensional MRI-Fricke-infused gel dosimetry
Cho, Nai-Yu; Chu, Woei-Chyn; Huang, Sung-Cheng; Chung, Wen-Yuh; Guo, Wan-Yuo
2013-05-15
Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation
Prestack reverse time migration for tilted transversely isotropic media
NASA Astrophysics Data System (ADS)
Jang, Seonghyung; Hien, Doan Huy
2013-04-01
According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple
Elasto- and electro-capillary instabilities of a nematic-isotropic interface: Experimental results.
Oswald, P
2010-09-01
Recently, we have shown the existence of an electro-capillary instability of a nematic-isotropic interface stabilized by a temperature gradient (P. Oswald, EPL 90, 16005 (2010)). This instability results from a competition between the destabilizing action of the electric Maxwell stress and the stabilizing action of the thermal and capillary forces. The control parameters are the temperature gradient G , the applied voltage V and the thickness h of the nematic layer. In this paper, we present new experimental results on this instability in both the linear and nonlinear regimes. In particular, very rich phase diagrams are mapped out in the (h, V) plane for three different values of G . The divergence of the growth time close to the onset of instability is also studied in detail. In addition, we show the existence at low voltages of another instability of the de Gennes type, where the elastic Ericksen stress is responsible for the destabilization. In this case, a hill-and-valley structure or a square array of umbilics develop at the interface depending on the values of h , V and G . PMID:20924636
Steady shear characteristic and behavior of magneto-thermo-elasticity of isotropic MR elastomers
NASA Astrophysics Data System (ADS)
Gao, Wei; Wang, Xingzhe
2016-02-01
The magneto-thermo-elastic steady shear behaviors of isotropic smart composites of silicon rubber matrix randomly filled with ferromagnetic particles, commonly referred to as magnetorheological (MR) elastomers, are investigated experimentally and theoretically in the present study. The strip specimens of the MR elastomer composite with different ferromagnetic particle concentrations are fabricated and implemented for lap-shear tests under both magnetic and thermal fields. It is illustrated that the magneto-thermo-elastic shear modulus of the MR elastomer is markedly enhanced with the volume fraction of ferromagnetic particles and the applied external magnetic field, while the shear modulus is decreased with the environment temperature. To qualitatively elucidate the magneto-thermo-elastic shear performance of this kind of magnetic smart composites, a modified constitutive of hyperelasticity is suggested taking into account the influence of magnetic field and temperature on the magnetic potential energy and strain energy. The theoretical modeling predictions on the stress-strain behaviors for different applied magnetic fields and environment temperatures are compared to experimental observations to demonstrate a good agreement.
NASA Astrophysics Data System (ADS)
Yang, Cheng; Yuen, Matthew M. F.; Gao, Bo; Ma, Yuhui; Wong, C. P.
2011-01-01
As a candidate dispersant for silver-based isotropically conductive adhesives (ICAs), polyurethane (PU) is an environmentally benign material that can withstand a high deformation rate and that exhibits excellent reliability. In this work we investigated methyl ethyl ketoxime (MEKO) blocked isophorone diisocyanate (IPDI) and MEKO blocked hexamethylene diisocyanate (HDI) as dispersant materials, and we characterize the electrical conductivity, mechanical properties, and reliability of these PU-based ICAs with silver-flake filler content ranging from 30 wt.% to 75 wt.%. Results of temperature-humidity testing (THT) at 85°C and 85% relative humidity (RH) and thermal cycling testing (TCT) at -40°C to 125°C show that these ICAs have excellent reliability. Our experimental results suggest that the MEKO blocked PU dispersants are suitable for preparing ultralow-cost, flexible, high-performance ICAs for printing antennas for ultrahigh-frequency radiofrequency identification (RFID) tags. These tags can potentially be used for identifying washable items and food packaging.
NASA Astrophysics Data System (ADS)
Banshchikova, I. A.; Blinov, V. A.
2016-05-01
This paper describes the results of calculations and experiments on the torsion of plates made of isotropic and transversely isotropic VT-20 and 1163T alloys with low resistance to creep strain in the direction perpendicular to the median surface. The numerical simulation results for plates of different thicknesses related to the class of rigid and flexible plates are compared using the pure bending theory and the finite element method. It is found that the curvature values are smaller in the case of deformation of a plate made of anisotropic material into a sign-variable saddle surface than in the case of a plate of isotropic material. The calculation in the assumption of pure bending provides an upper bound of the curvature difference in the deformation of plates made of transversely isotropic and isotropic materials.
Component separation of a isotropic Gravitational Wave Background
NASA Astrophysics Data System (ADS)
Parida, Abhishek; Mitra, Sanjit; Jhingan, Sanjay
2016-04-01
A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of 0~ 50‑100 Hz, considering one spectral shape at a time. However, one strong component can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for "component separation" of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components and place upper limits. The method is rather straightforward and needs negligible amount of computation. It utilises the linear relationship between the measurements and the amplitudes of the actual components, alleviating the need for a sampling based method, e.g., Markov Chain Monte Carlo (MCMC) or matched filtering, which are computationally intensive and cumbersome in a multi-dimensional parameter space. Using this formalism we could also study how many independent components can be separated using a given dataset from a network of current and upcoming ground based interferometric detectors.
The structure of intense vorticity in homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Jimenez, J.; Wray, A. A.; Saffman, P. G.; Rogallo, R. S.
1992-01-01
The structure of the intense vorticity regions is studied in numerically simulated homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds numbers in the range Re(sub lambda) = 36-171. In accordance with previous investigators, this vorticity is found to be organized in coherent, cylindrical or ribbon-like, vortices ('worms'). A statistical study suggests that they are just especially intense features of the background, O(omega'), vorticity. Their radii scale with the Kolmogorov microscale and their lengths with the integral scale of the flow. An interesting observation is that the Reynolds number based on the circulation of the intense vortices, gamma/nu, increases monotonically with Re(sub lambda), raising the question of the stability of the structures in the limit of Re(sub lambda) approaching infinity. One and two-dimensional statistics of vorticity and strain are presented; they are non-gaussian, and the behavior of their tails depends strongly on the Reynolds number. There is no evidence of convergence to a limiting distribution in our range of Re(sub lambda), even though the energy spectra and the energy dissipation rate show good asymptotic properties in the higher Reynolds number cases. Evidence is presented to show that worms are natural features of the flow and that they do not depend on the particular forcing scheme.
Dynamics of non-local interactions in isotropic turbulence
NASA Astrophysics Data System (ADS)
Maqui, Agustin; Donzis, Diego
2011-11-01
A large database of isotropic turbulence with Rλ ranging from 38 to 1100 and resolutions up to 40963 is used to study aspects of the dynamic response of the small scales to forcing at the largest scales. Time correlations of spectra and transfer show that changes in the large scales have an immediate effect on the smallest dissipative scales. Furthermore, these non-local interactions are strongly anti-correlated for wavenumbers beyond the so-called bottleneck. While the applied large-scale forcing is Gaussian, the probability density function of individual modes of the energy spectrum is skewed for all wavenumbers. On the other hand, transfer spectra shows departures from Gaussianity only at high wavenumbers. Short-term behavior is studied through the evolution of the ratio of spectral levels at different wavenumbers as forcing is abruptly introduced or discontinued. All results demonstrate the direct connection between distant scales. More importantly, the observed trends do not appear to decrease as the Reynolds numbers increases. Different models for the spectral transfer are shown to capture some of the observed behavior. Further consequences of the results will be discussed.
Isotropically sensitive optical filter employing atomic resonance transitions
Marling, J.B.
An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.
Isotropically sensitive optical filter employing atomic resonance transitions
Marling, John B.
1981-01-01
An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.
Statistics of pressure and pressure gradient in homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Gotoh, T.; Rogallo, R. S.
1994-01-01
The statistics of pressure and pressure gradient in stationary isotropic turbulence are measured within direct numerical simulations at low to moderate Reynolds numbers. It is found that the one-point pdf of the pressure is highly skewed and that the pdf of the pressure gradient is of stretched exponential form. The power spectrum of the pressure P(k) is found to be larger than the corresponding spectrum P(sub G)(k) computed from a Gaussian velocity field having the same energy spectrum as that of the DNS field. The ratio P(k)/P(sub G)(k), a measure of the pressure-field intermittence, grows with wavenumber and Reynolds number as -R(sub lambda)(exp 1/2)log(k/k(sub d)) for k less than k(sub d)/2 where k(sub d) is the Kolmogorov wavenumber. The Lagrangian correlations of pressure gradient and velocity are compared and the Lagrangian time scale of the pressure gradient is observed to be much shorter than that of the velocity.
A study of local anisotropy in globally isotropic incompressible MHD
NASA Astrophysics Data System (ADS)
Milano, L. J.; Dmitruk, P.; Matthaeus, W. H.; Montgomery, D.
2000-10-01
It is a well known fact that in presence of a DC applied field, MHD turbulence develops spectral anisotropy from an isotropic initial condition [1]. Typically, the reduced spectrum is steeper in the direction of the magnetic field than it is in any transverse direction. Theoretical insight into the origin of this effect has been derived from simulations in which there is a uniform DC magnetic field, but suggestions of a similar anisotropy is seen in various laboratory devices and also in the solar wind [2,3]. One might expect that a DC field is not essential, and it is the local mean field that is responsible. Here we investigate the occurence of local anisotropy in 3 dimensional MHD, i.e. we search for a local version of the spectral anisotropy effect. We perform 3D MHD pseudo-spectral incompressible relaxation simulations, and compute structure functions accumulated according to whether the separation is parallel to, or transverse to, the local magnetic field. Preliminary results show that correlations decay slower in the locally averaged magnetic field direction. [1] J. Shebalin, W. Matthaeus and D. Montgomery, J. Plasma Phys. 29, 525 (1983) [2] W.H. Matthaeus, M.L. Goldsteon and D.A. Roberts, J. Geophys. Res. 95, 20 673 (1990) [3] J. Armstrong, W. Coles, M. Kojima and B. Rickett, Ap. J. 358, 685 (1990)
Interacting scales and energy transfer in isotropic turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
The dependence of the energy transfer process on the disparity of the interacting scales is investigated in the inertial and far-dissipation ranges of isotropic turbulence. The strategy for generating the simulated flow fields and the choice of a disparity parameter to characterize the scaling of the interactions is discussed. The inertial range is found to be dominated by relatively local interactions, in agreement with the Kolmogorov assumption. The far-dissipation is found to be dominated by relatively non-local interactions, supporting the classical notion that the far-dissipation range is slaved to the Kolmogorov scales. The measured energy transfer is compared with the classical models of Heisenberg, Obukhov, and the more detailed analysis of Tennekes and Lumley. The energy transfer statistics measured in the numerically simulated flows are found to be nearly self-similar for wave numbers in the inertial range. Using the self-similar form measured within the limited scale range of the simulation, an 'ideal' energy transfer function and the corresponding energy flux rate for an inertial range of infinite extent are constructed. From this flux rate, the Kolmogorov constant is calculated to be 1.5, in excellent agreement with experiments.
Energy transfer and dissipation in forced isotropic turbulence.
McComb, W D; Berera, A; Yoffe, S R; Linkmann, M F
2015-04-01
A model for the Reynolds-number dependence of the dimensionless dissipation rate C(ɛ) was derived from the dimensionless Kármán-Howarth equation, resulting in C(ɛ)=C(ɛ,∞)+C/R(L)+O(1/R(L)(2)), where R(L) is the integral scale Reynolds number. The coefficients C and C(ɛ,∞) arise from asymptotic expansions of the dimensionless second- and third-order structure functions. This theoretical work was supplemented by direct numerical simulations (DNSs) of forced isotropic turbulence for integral scale Reynolds numbers up to R(L)=5875 (R(λ)=435), which were used to establish that the decay of dimensionless dissipation with increasing Reynolds number took the form of a power law R(L)(n) with exponent value n=-1.000±0.009 and that this decay of C(ɛ) was actually due to the increase in the Taylor surrogate U(3)/L. The model equation was fitted to data from the DNS, which resulted in the value C=18.9±1.3 and in an asymptotic value for C(ɛ) in the infinite Reynolds-number limit of C(ɛ,∞)=0.468±0.006. PMID:25974586
Isotropic to anisotropic transition in a fractional quantum Hall state
NASA Astrophysics Data System (ADS)
Mulligan, Michael; Nayak, Chetan; Kachru, Shamit
2010-08-01
We study an Abelian gauge theory in 2+1 dimensions which has surprising theoretical and phenomenological features. The theory has a vanishing coefficient for the square of the electric field ei2 , characteristic of a quantum critical point with dynamical critical exponent z=2 , and a level- k Chern-Simons coupling, which is marginal at this critical point. For k=0 , this theory is dual to a free z=2 scalar field theory describing a quantum Lifshitz transition, but k≠0 renders the scalar description nonlocal. The k≠0 theory exhibits properties intermediate between the (topological) pure Chern-Simons theory and the scalar theory. For instance, the Chern-Simons term does not make the gauge field massive. Nevertheless, there are chiral edge modes when the theory is placed on a space with boundary and a nontrivial ground-state degeneracy kg when it is placed on a finite-size Riemann surface of genus g . The coefficient of ei2 is the only relevant coupling; it tunes the system through a quantum phase transition between an isotropic fractional quantum Hall state and an anisotropic fractional quantum Hall state. We compute zero-temperature transport coefficients in both phases and at the critical point and comment briefly on the relevance of our results to recent experiments.
Ultrasonic light diffraction in optically isotropic media with induced birefringence
NASA Astrophysics Data System (ADS)
Blomme, Erik; Sliwinski, Antoni
2001-11-01
Optically isotropic media which are susceptible to acoustically induced birefringence can be used as acousto- optic polarization converters. A comparative study between fused silica and dense flint shows that at normal light incidence 52% of the light can be converted from linear to circular in the case of fused silica and only 20% in the case of dense flint. In each case the conversion appears at moderate sound amplitudes and at frequencies which are typical for the intermediate regime of diffraction. Applying oblique light incidence, most interesting effects can be obtained with fused silica at high sound frequencies which are typical for the Bragg regime of diffraction and in the neighborhood of the Bragg angle. The possibility is shown to use an AO cell fabricated of fused silica as a laser-beam splitter, converting a linearly polarized beam of light partially into a circularly polarized beam and a linearly polarized beam, the light intensity of the two beams being equal. In addition, it is seen that the temporal light intensity modulations which can be observed in the near field of the light diffracted under these specific conditions, can be understood from the polarization changes taking place.
ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE
Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo
2015-10-10
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1983-01-01
The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.
Preferential Rotation of Chiral Dipoles in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Kramel, Stefan; Voth, Greg A.; Tympel, Saskia; Toschi, Federico
2016-10-01
We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.
Density functional theory predictions of isotropic hyperfine coupling constants.
Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C
2005-02-17
The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.
Energy transfer and dissipation in forced isotropic turbulence.
McComb, W D; Berera, A; Yoffe, S R; Linkmann, M F
2015-04-01
A model for the Reynolds-number dependence of the dimensionless dissipation rate C(ɛ) was derived from the dimensionless Kármán-Howarth equation, resulting in C(ɛ)=C(ɛ,∞)+C/R(L)+O(1/R(L)(2)), where R(L) is the integral scale Reynolds number. The coefficients C and C(ɛ,∞) arise from asymptotic expansions of the dimensionless second- and third-order structure functions. This theoretical work was supplemented by direct numerical simulations (DNSs) of forced isotropic turbulence for integral scale Reynolds numbers up to R(L)=5875 (R(λ)=435), which were used to establish that the decay of dimensionless dissipation with increasing Reynolds number took the form of a power law R(L)(n) with exponent value n=-1.000±0.009 and that this decay of C(ɛ) was actually due to the increase in the Taylor surrogate U(3)/L. The model equation was fitted to data from the DNS, which resulted in the value C=18.9±1.3 and in an asymptotic value for C(ɛ) in the infinite Reynolds-number limit of C(ɛ,∞)=0.468±0.006.
Coagulation of monodisperse aerosol particles by isotropic turbulence
NASA Astrophysics Data System (ADS)
Chun, J.; Koch, D. L.
2005-02-01
The rate of coagulation of initially monodisperse aerosols due to isotropic turbulence is studied with particular emphasis on the effects of noncontinuum hydrodynamics and particle inertia. The prevalence of these two factors distinguishes aerosol coagulation from the coagulation of colloidal particles. The turbulent flow seen by an interacting pair of particles is modelled as a stochastically varying flow field that is a linear function of position. This approximation is valid because the 1-10 micron diameter particles for which turbulence dominates coagulation are much smaller than the smallest eddies of a typical turbulent flow field. It is shown that the finite mean-free path of the gas enhances the rate of coagulation and leads to a finite coagulation rate even in the absence of van der Waals attractions. The coupled effects of turbulent shear and Brownian motion are treated. As in the case of laminar shear flows, it is found that Brownian motion plays an important role in the coagulation process even when the Peclet number is moderately large. It is shown that particle inertia increases the coagulation rate in two ways. First, preferential concentration increases the radial distribution function on length scales intermediate between the Kolmogorov length scale and the particle diameter. Second, the greater persistence of particles' relative motion during their local interaction leads to an increase in coagulation rate with increasing particle Stokes number.
Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets
NASA Astrophysics Data System (ADS)
Shao, S.; Pyrak-Nolte, L. J.
2016-10-01
Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.
Self-association of oligothiophenes in isotropic systems.
Lima, Carlos F R A C; Costa, José C S; Galvão, Tiago L P; Tavares, Hilário R; Silva, Artur M S; Santos, Luís M N B F
2014-07-28
The self-association equilibrium constants, Kass, for the dimerization of some small oligothiophenes in acetone, acetonitrile and chloroform were measured by (1)H NMR spectroscopy. The gas phase interaction energies for some oligothiophene dimers were determined by computational quantum chemistry. The (1)H NMR results indicate that Kass generally increases with the chain length (the number of thienyl rings, n) and solvent polarity; however, Kass for thiophene (n = 1) was found to be higher than for the bithiophenes (n = 2). The linear oligothiophenes 2,2'-bithiophene and 2,2',5',2''-terthiophene were found to self-associate less than their corresponding nonlinear isomers 3,3'-bithiophene and 3,2',5',3''-terthiophene in solution and in the gas phase. For α-quaterthiophene (n = 4) Kass in solution was found to be smaller than expected. The non-linear dependence of the standard molar Gibbs energy of self-association, ΔassG, on the chain length in solution could be nicely reproduced and related to the conformational entropy change of dimerization. It was observed that the melting properties of oligothiophenes correlate well with their tendency to self-associate, with more self-association leading to increased liquid stability, and thus lower melting temperatures. These results highlight the relevance of self-association in isotropic systems for the correct molecular interpretation of phase equilibria. PMID:24919865
MAGNETIC FIELD LINE RANDOM WALK IN ISOTROPIC TURBULENCE WITH ZERO MEAN FIELD
Sonsrettee, W.; Ruffolo, D.; Snodin, A. P.; Wongpan, P.; Subedi, P.; Matthaeus, W. H.; Chuychai, P. E-mail: david.ruf@mahidol.ac.th E-mail: pat.wongpan@postgrad.otago.ac.nz E-mail: prasub@udel.edu
2015-01-01
In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B {sub 0})(ℓ{sub ∥}/ℓ ) for rms magnetic fluctuation b, large-scale mean field B {sub 0}, and parallel and perpendicular coherence scales ℓ{sub ∥} and ℓ , respectively. Here we examine the FLRW when R → ∞ by taking B {sub 0} → 0 for finite b{sub z} (fluctuation component along B {sub 0}), which differs from the well-studied route with b{sub z} = 0 or b{sub z} << B {sub 0} as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B {sub 0} = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k {sup –1} or k {sup –2} moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B {sub 0} → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality.
NASA Astrophysics Data System (ADS)
Yu, Huidan; Meneveau, Charles
2010-11-01
We study the Lagrangian time evolution of velocity gradient dynamics near the Vieillefosse tail. The data are obtained from fluid particle tracking through the 1024^4 space-time DNS of forced isotropic turbulence at Reλ=433, using a web-based public database (http://turbulence.pha.jhu.edu). Examination of individual time-series of velocity gradient invariants R and Q show that they are punctuated by strong peaks of negative Q and positive R. Most of these occur very close to the Viellefosse tail along Q = - (3/2^2/3) R^2/3. It is found there that the magnitude of pressure Hessian has positive Lagrangian time-derivative, meaning that it increases in order to resist the rapid growth. We also observe a "phase delay" of the pressure Hessian signals compared to those of R and Q, indicative of an "overshoot" of the controlling mechanism. We also examine the trajectories in the recently proposed 3-D extension of the R-Q plane (see Lüthi B, Holzner M, Tsinober A. 2009, J. Fluid Mech. 641, 497-507). Finally, Lagrangian models of the velocity gradient tensor are examined in the same light to identify similarities and differences with the observed dynamics. Such comparisons supply informative guidance to model improvements.
NASA Astrophysics Data System (ADS)
Bateson, Colin; Aliseda, Alberto
2015-11-01
We present results from wind tunnel experiments on the evolution of small inertial (d ~ 10 - 200 μm) water droplets in homogeneous, isotropic, slowly decaying grid turbulence. High-speed imaging and a Particle Tracking algorithm are used to calculate relative velocity distributions. We analyze the preferential concentration, via the 2D Radial Distribution Function, and enhanced relative velocity of droplets resulting from their inertial interactions with the underlying turbulence. The two-dimensional particle velocities, measured from multi-image tracks along a streamwise plane, are conditionally analyzed with respect to the distance from the nearest particle. We focus on the non-normality of the statistics for the particle-particle separation velocity component to examine the influence of the inertial interaction with the turbulence on the dynamics of the droplets. We observe a negative bias (in the mean and mode) in the separation velocity of particles for short separations, signaling a tendency of particles to collide more frequently than a random agitation by turbulence would predict. The tails of the distribution are interpreted in terms of the collision/coalescence process and the probability of collisions that do not lead to coalescence.
Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets
Beek, D. van der; Petukhov, A.V.; Vroege, G.J.; Lekkerkerker, H.N.W.; Davidson, P.; Ferre, J.; Jamet, J.P.; Wensink, H.H.; Bras, W.
2006-04-15
The magnetic-field-induced orientational order in the isotropic phase of colloidal gibbsite [Al(OH){sub 3}] platelets is studied by means of optical birefringence and small-angle x-ray scattering (SAXS) techniques. The suspensions display field-induced ordering at moderate field strengths (a few Tesla), which increases with increasing particle concentration. The gibbsite particles align their normals perpendicular to the magnetic field and hence possess a negative anisotropy of their diamagnetic susceptibility {delta}{chi}. The results can be described following a simple, Onsager-like approach. A simplified model is derived that allows one to obtain the orientational distribution function directly from the scattering data. However, it leads to an underestimate of the diamagnetic susceptibility anisotropy {delta}{chi}. This accounts for the difference between the {delta}{chi} values provided by the two experimental techniques (SAXS and magneto-optics). The order of magnitude {delta}{chi}{approx}10{sup -22} J/T{sup 2} lies in between that of goethite suspensions and that of suspensions of organic particles.
Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te.
Ouyang, Tao; Zhang, Xiaoliang; Hu, Ming
2015-01-16
Thermoelectric devices, which can generate electricity from waste heat, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. In the past few decades, the search for high-efficiency thermoelectrics has been guided by the concept of 'phonon-glass electron-crystal' (PGEC), i.e. an ideal thermoelectric material should have high carrier mobility and low thermal conductivity. Although remarkable progress has already been made along this line, the efficiency of thermoelectrics is still too poor to compete with other electricity producing methods. Ordered-disordered material, an emerging trend of high performance thermoelectrics under the concept of PGEC, is a new hot topic in the current thermoelectric research community. Taking superionic phase silver telluride (α-Ag2Te) as an example, we performed a comprehensive study of the thermal transport properties and of its physical mechanism by means of equilibrium molecular dynamic simulations. The results show that the thermal conductivity of α-Ag2Te is intrinsically very low. By analyzing the different contributions to the overall thermal conductivity, we revealed for the first time from atomistic simulations that the vibration of the Te(2-) sublattice dominates the thermal transport of α-Ag2Te, while the collision between the randomly diffusing Ag(+) ions and the Te(2-) sublattice yields a significant negative contribution to the thermal transport. We also studied the effect of isotropic compressive stain and carrier concentration on the thermal conductivity of α-Ag2Te. It has been found that the thermal conductivity can be largely reduced by applying compressive strain or with stoichiometric quantity modulation. Our studies shed light on the governing mechanism of thermal transport in ordered-disordered materials and could offer useful guidance for engineering the thermal transport properties of superionic conductors in terms of enhancing their thermoelectric
NASA Astrophysics Data System (ADS)
Kim, Seulong; Kim, Kihong
2016-06-01
Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Tellegen media. In contrast to the case of ordinary isotropic media, we find that the surface wave excitation and the mode conversion occur for both s and p waves in bi-isotropic media.
Large-deviation statistics of vorticity stretching in isotropic turbulence.
Johnson, Perry L; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.
Joint Statistics of Finite Time Lyapunov Exponents in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2014-11-01
Recently, the notion of Lagrangian Coherent Structures (LCS) has gained attention as a tool for qualitative visualization of flow features. LCS visualize repelling and attracting manifolds marked by local ridges in the field of maximal and minimal finite-time Lyapunov exponents (FTLE), respectively. To provide a quantitative characterization of FTLEs, the statistical theory of large deviations can be used based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms (with finite-size correction). We generalize the formalism to characterize the joint distributions of the two independent FTLEs in 3D. The ``joint Cramér function of turbulence'' is measured from the Johns Hopkins Turbulence Databases (JHTDB) isotropic simulation at Reλ = 433 and results are compared with those computed using only the symmetric part of the velocity gradient tensor, as well as with those of instantaneous strain-rate eigenvalues. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude and the most likely ratio of FTLEs changes from 4:1:-5 to 8:3:-11, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. Supported by NSF Graduate Fellowship (DGE-1232825), a JHU graduate Fellowship, and NSF Grant CMMI-0941530. CM thanks Prof. Luca Biferale for useful discussions on the subject.
Large-deviation statistics of vorticity stretching in isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry L.; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Reλ=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.
Energy transfer and constrained simulations in isotropic turbulence
NASA Technical Reports Server (NTRS)
Jimenez, Javier
1993-01-01
The defining characteristic of turbulent flows is their ability to dissipate energy, even in the limit of zero viscosity. The Euler equations, if constrained in such a way that the velocity derivatives remain bounded, conserve energy. But when they arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number goes to infinity, there is persuasive empirical evidence that the gradients become singular as just the right function of Re for the dissipation to remain non-zero and to approach a well defined limit. It is generally believed that this limiting value of the dissipation is a property of the Euler equations themselves, independent of the particular dissipative mechanism involved, and that it can be normalized with the large scale properties of the turbulent flow (e.g. the kinetic energy per unit volume u'(exp 2)/2, and the integral scale L) without reference to the Reynolds number or to other dissipative quantities. This is usually taken to imply that the low wave number end of the energy spectrum, far from the dissipative range, is also independent of the particular mechanism chosen to dispose of the energy transfer. In the following sections, we present some numerical experiments on the effect of substituting different dissipation models into the truncated Euler equations. We will see that the effect is mainly felt in the 'near dissipation' range of the energy spectrum, but that this range can be quite wide in some cases, contaminating a substantial range of wave numbers. In the process, we will develop a 'practical' approximation to the subgrid energy transfer in isotropic turbulence, and we will gain insight into the structure of the nonlinear interactions among turbulent scales of comparable size, and into the nature of energy backscatter. Some considerations on future research directions are offered at the end.
Large-deviation statistics of vorticity stretching in isotropic turbulence.
Johnson, Perry L; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor. PMID:27078458
Coalescence of Aerosol Droplets in an Isotropic Turbulent Flow
NASA Astrophysics Data System (ADS)
Koch, Donald L.; Duru, Paul; Chun, Jaehun; Cohen, Claude
2003-11-01
Turbulence-induced coagulation or coalescence influences the aerosol synthesis of fine particles, the formation of particulate air pollutants and the growth of rain drops. We observed the rate of coalescence of an initially monodisperse aerosol of micron-sized drops in the isotropic turbulent flow field produced by an oscillating grid. The drop size is measured using phase-Doppler anemometry and the number density is measured with a light attenuation probe. The turbulent flow is characterized using laser Doppler and hot wire anemometry. Coalescence is a second-order rate process with a rate coefficient that is found to be approximately proportional the product of the Kolmogorov shear rate and the cube of the particle radius as reflected in the ideal coalescence rate for non-interacting particles predicted by Saffman and Turner and Brunk, Koch, and Lion. A more detailed understanding of the coalescence process is obtained through simulations of the relative trajectories of pairs of drops interacting through non-continuum hydrodynamic interactions and van der Waals attractions. The theory and experiments are in good agreement and indicate that the collision efficiency (ratio of the actual to the ideal rate constant) is of order one and is considerably larger than that observed in particle liquid systems. The larger collision efficiency results from the finite mean-free path of the gas and the larger ratio of van der Waals to viscous forces in a gas compared to that in a liquid. For the smallest drops and Kolmogorov shear rates considered in our experiments, the coupled effects of Brownian motion and turbulent shear are important. Our simulations show that Brownian motion has a significant influence on the coalescence rate for Peclet numbers as large as 10-50.
Lin, Qisheng; Corbett, John D
2012-03-14
SrAu(3)Ge was synthesized by direct fusion of the mixed elements at high temperature followed by annealing treatments, and its structure was determined by single crystal X-ray diffraction means in space group (Pearson symbol: tP10) P4/nmm, a = 6.264(1) Å, c = 5.5082(9) Å, Z = 2 at room temperature. The structure of SrAu(3)Ge, a reapportioned √2 × √2 × 1 superstructure of CeMg(2)Si(2) (P4/mmm), exhibits checkerboard nets of corner-shared bicapped Au squares (or corner-shared Au(Au(4/2))Ge octahedra), in which the apical Au-Ge pairs in adjoining nets are strongly interbonded in the c direction. This motif contrasts with that of the common BaAl(4) (I4/mmm) prototype in which Al squares in comparable layers are alternately monocapped by Al from the top or the bottom. Typical examples show valence electron counts (vec) between 12 and 16 for the BaAl(4) type and that for CeMg(2)Si(2) is similar, 15. The special stability of SrAu3Ge, with vec = 9, derives from significant relativistic contribution of the Au 5d(10) states to the Au-Ge and Au-Au bonding. These factors are also recognized in the marked redistribution of Au and Ge site occupancies from those in CeMg(2)Si(2). SrAu(3)Ge exhibits a pronounced uniaxial negative thermal expansion along c, with a coefficient of -1.57 versus 2.16 × 10(-5) K(-1) in a and b. The reticulated Au(5)Ge octahedral layers expand in the ab plane on heating, whereas the strong, interlayer Au-Ge bonds remain fixed.
Trinquier, Anne; Touboul, Mathieu; Walker, Richard J
2016-02-01
Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng.
Retention of deuterium implanted into B 4C-overlaid isotropic graphites and hot-pressed B 4C
NASA Astrophysics Data System (ADS)
Jimbou, R.; Saidoh, M.; Ogiwara, N.; Ando, T.; Morita, K.; Muto, Y.
1992-12-01
Retention characteristics of two kinds of B 4C-overlaid graphites and hot-pressed B 4C were investigated. An ion beam of 3 keV D 2+ was implanted into the specimens at room temperature. The amount of retained deuteriums was measured as function of the implantation fluence and temperature by elastic recoil detection analysis. Thermal release behavior of implanted deuteriums was also measured by isochronal annealing. The concentration of retained deuterium reaches saturation similarly in three kinds of B 4C-overlaid specimens at the fluences over 10 18 D +/cm 2 as in isotropic graphite. The release temperature, at which the number of retained deuterium decreases to one half in isochronal annealing, are about 250 K lower for three kinds of B 4C specimens than for graphite. The release temperature of deuterium from unsaturated hot-pressed B 4C in isochronal annealing is about 500 K higher than that from saturated one.
Dong, Li-Ming; Lomonosov, Alexey M; Shen, Zhong-Hua; Li, Jia; Ni, Chen-Yin; Ni, Xiao-Wu
2013-08-01
Within the linear elasticity approximation the speed of a small-amplitude sound in conventional linear elasticity is determined only by the second order elastic (SOE) constants and the density of the medium. Subjecting the conveying solid to a static strain of a sufficient magnitude introduces the third-order elastic (TOE) constants in the equation of the sound speed. In this work we applied a homogeneous isotropic deformation caused by a thermal expansion of an aluminum alloy sample. Velocities of three acoustic modes: longitudinal, shear and Rayleigh waves were measured as functions of temperature within a range of 25-100 °C. Two TOE constants C111 and C112 were evaluated in an assumption that the third independent module C144 is far smaller than the former two. PMID:23522685
Do `negative' temperatures exist?
NASA Astrophysics Data System (ADS)
Lavenda, B. H.
1999-06-01
A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.
NASA Astrophysics Data System (ADS)
Lezec, Henri
2009-03-01
Forty years ago, V. Veselago derived the electromagnetic properties of a hypothetical material having simultaneously-negative values of electric permittivity and magnetic permeability [1]. Such a material, denominated ``left-handed'', was predicted to exhibit a negative index of refraction, as well as a number of other counter-intuitive optical properties. For example, it was hypothesized that a perfect mirror illuminated with a plane wave would experience a negative radiation pressure (pull) when immersed in a left-handed medium, as opposed to the usual positive radiation pressure experienced when facing a dielectric medium such as air or glass. Since left-handed materials are not available in nature, considerable efforts are currently under way to implement them under the form of artificial ``metamaterials'' -- composite media with tailored bulk optical characteristics resulting from constituent structures which are smaller in both size and density than the effective wavelength in the medium. Here we show how surface-plasmon modes propagating in a stacked array of metal-insulator-metal (MIM) waveguides can be harnessed to yield a volumetric left-handed metamaterial characterized by an in-plane-isotropic negative index of refraction over a broad frequency range spanning the blue and green. By sculpting this material with a focused-ion beam we realize prisms and micro-cantilevers which we use to demonstrate, for the first time, (a) in-plane isotropic negative-refraction at optical frequencies, and (b) negative radiation pressure. We predict and experimentally verify a negative ``superpressure'', the magnitude of which exceeds the photon pressure experienced by a perfect mirror by more than a factor of two. 1) V. Veselago, Sov. Phys. Usp. 10, p.509 (1968).
Anisotropic internal thermal stress in sea ice from the Canadian Arctic Archipelago
NASA Astrophysics Data System (ADS)
Hata, Y.; Tremblay, L. B.
2015-08-01
Results from an ice stress buoy deployed near the center of a multi-year floe in the Viscount Melville Sound of the Canadian Arctic Archipelago between 10 October 2010 and 17 August 2011 are presented. The position record indicates the landlocked season was approximately 5 months, from 18 January to 22 June, when the sea ice was fast to Melville Island and Victoria Island. Thermal stresses (ranging from -84 to 66 kPa) dominate the internal stress record, with only a few dynamic stress events (˜50 kPa) recorded before the landlocked season. Intriguingly, the thermal stresses are isotropic before the landlocked ice onset and anisotropic during the landlocked season. Two possible causes to explain anisotropy in thermal stresses are considered: preferred c axis alignment of the ice crystal, and land confinement associated with the nearby coastline. The orientation of the principal stresses indicates that land confinement is responsible for the anisotropy. The stress record also clearly shows the presence of residual compressive stresses at the melt onset, suggesting a viscous creep relaxation time constant of several days. Finally, results show an interesting reversal in the sign of the correlation (from negative to positive) between surface air temperature and thermal stress after the onset of surface melt. We attribute this to the onset of water infiltration within sea ice after which colder night temperature leads to refreezing and compressive stresses. To the best of the authors' knowledge, this is the first time that anisotropic thermal stresses have been reported in sea ice.
Investigation on the Thermal Expansion of Four Polymorphs of Crystalline CL-20
NASA Astrophysics Data System (ADS)
Pu, Liu; Xu, Jin-Jiang; Liu, Xiao-Feng; Sun, Jie
2016-04-01
The thermal expansion behaviors of α-CL-20 . 1/2H2O, anhydrous α-, β-, ε-, and γ-CL-20 crystals have been investigated by means of variable-temperature X-ray powder diffraction (XRD) together with Rietveld refinement. The results show that hexanitrohexaazaisowurtane (CL-20) with four polymorphs exhibits linear thermal expansion. The ε phase performs approximately isotropic expansion in the temperature range of 30 to 130°C, but α, β, and γ phases exhibit anisotropic expansion in the temperature ranges of 30 to 130°C, 30 to 120°C, and 30 to 180°C, respectively. The different expansion behaviors are due to the different structures of the four polymorphs. The different thermal expansion behaviors of α-CL-20 . 1/2H2O and anhydrous α are revealed in this work. The a-axis expansion of α-CL-20 . 1/2H2O exhibits a switch from positive thermal expansion (PTE) to negative thermal expansion (NTE) at 90°C, whereas the a-axis of anhydrous α is resilient to PTE. The cause is the loss of the structural water. Moreover, it is easily found that the b-axis of the γ phase shows a constriction that may be attributed to the distortion of the six-membered ring.
Bimaterial Thermal Strip With Increased Flexing
NASA Technical Reports Server (NTRS)
Morrison, Andrew D.
1994-01-01
In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.
Irradiation creep properties of a near-isotropic graphite
NASA Astrophysics Data System (ADS)
Oku, T.; Fujisaki, K.; Eto, M.
1988-05-01
Two irradiation creep tests on near-isotropic graphite (SM1-24) for HTGRs were performed at around 900 °C in the JMTR. Neutron fluences ranged from 5.50 × 10 24 n/m 2 (E> 29 fJ) to 12.4 × 10 24 n/m 2 (E> 29 fJ) , depending on the position of the specimen. Irradiation creep strain (ɛ 0) was obtained from the equation ɛ c = (σ/E 0)[1-exp(-bΦ)] + KσΦ , by measuring dimensional changes in unloaded and loaded tensile specimens before and after irradiation, where E 0 is the Young's modulus before irradiation, K the creep coefficient, and b a constant. The value of K was estimated assuming that 1-exp(-bΦ) ˜-1 over the range of neutron fluence tested here. Mercury porosimetry was employed to add consideration to the mechanism of irradiation creep using unloaded and loaded specimens. The irradiation creep strain is proportional to stress and to neutron fluence for larger fluences. The irradiation creep coefficient is in inverse proportion to Young's modulus before irradiation, KE 0 = 0.247 . From the values of the average Young's moduli before irradiation for two irradiation creep tests, the creep coefficient was estimated to be 3.03 × 10 -29 (MPa/m 2) -1 and 3.18 × 10 -29(MPa/m 2) -1, respectively. The mercury pore diameter distribution changes upon irradiation, that is pores smaller than 10 μm disappear partly, the total porosity decreases, and the stress tends to facilitate disappearance of the pores. The Young's modulus increases as a result of irradiation. The increase in Young's modulus after a creep tests is smaller than that after irradiation only. The experimental result obtained here is consistent with the explanation for the mechanism of irradiation creep in which two to six interstitial clusters as a pinning point to basal slip disappear during the irradiation creep test.
Structure and interactions in isotropic and liquid crystalline neurofilament networks
NASA Astrophysics Data System (ADS)
Jones, Jayna Bea
2007-12-01
Neurofilaments (NFs) are cytoskeletal proteins that are localized within nerve cells, which form long oriented bundles running the length of axons. While abnormal aggregations of these proteins have been implicated in several neurological disorders including Parkinson's disease and ALS, interfilament interactions in both the normal and diseased states are not well understood. In vivo, NFs are supramolecular structures composed of three subunit proteins of low (NF-L), medium (NF-M), and high molecular (NF-H) weight that assemble into a 10 nm diameter rod with radiating sidearms, forming a bottle-brush conformation. In this study we alter the subunit composition and probe the resulting networks with polarized microscopy and synchrotron small angle x-ray scattering (SAXS), in order to isolate the role of each subunit in interfilament interactions. By reassembling NFs in vitro from varying ratios of the subunit proteins, purified from bovine spinal cord, we form filaments with controlled subunit compositions. The resulting filaments, at a high volume fraction, are nematic liquid crystalline gels with a well defined spacing, determined with SAXS. Upon dilution the difference between the subunits is realized with NF-M grafted filaments being dominated by attractive interactions and remaining aligned, while those flanked with NF-H sidearms repel and become isotropic gels. Interplay between these forces is seen in the ternary system composed of all three subunit proteins (NF-LMH). The polyampholytic subunits have a charge distribution that varies along the length of the sidearm, which forms the brush layer, and the distribution is different for each subunit. The interfilament interactions are highly dependent on environmental conditions including salt concentration, pH, and osmotic pressure. Increasing ionic strength induces attractive interactions and a stabilization of the nematic phase in filaments that were repulsive at lower monovalent salt concentration. The
Symmetries and the approach to statistical equilibrium in isotropic turbulence
NASA Astrophysics Data System (ADS)
Clark, Timothy T.; Zemach, Charles
1998-11-01
The relaxation in time of an arbitrary isotropic turbulent state to a state of statistical equilibrium is identified as a transition to a state which is invariant under a symmetry group. We deduce the allowed self-similar forms and time-decay laws for equilibrium states by applying Lie-group methods (a) to a family of scaling symmetries, for the limit of high Reynolds number, as well as (b) to a unique scaling symmetry, for nonzero viscosity or nonzero hyperviscosity. This explains why a diverse collection of turbulence models, going back half a century, arrived at the same time-decay laws, either through derivations embedded in the mechanics of a particular model, or through numerical computation. Because the models treat the same dynamical variables having the same physical dimensions, they are subject to the same scaling invariances and hence to the same time-decay laws, independent of the eccentricities of their different formulations. We show in turn, by physical argument, by an explicitly solvable analytical model, and by numerical computation in more sophisticated models, that the physical mechanism which drives (this is distinct from the mathematical circumstance which allows) the relaxation to equilibrium is the cascade of turbulence energy toward higher wave numbers, with the rate of cascade approaching zero in the low wave-number limit and approaching infinity in the high wave-number limit. Only the low-wave-number properties of the initial state can influence the equilibrium state. This supplies the physical basis, beyond simple dimensional analysis, for quantitative estimates of relaxation times. These relaxation times are estimated to be as large as hundreds or more times the initial dominant-eddy cycle times, and are determined by the large-eddy cycle times. This mode of analysis, applied to a viscous turbulent system in a wind tunnel with typical initial laboratory parameters, shows that the time necessary to reach the final stage of decay is
Preferential concentration of heavy particles in compressible isotropic turbulence
NASA Astrophysics Data System (ADS)
Zhang, Qingqing; Liu, Han; Ma, Zongqiang; Xiao, Zuoli
2016-05-01
Numerical simulations of particle-laden compressible isotropic turbulence with Taylor Reynolds number Reλ ˜ 100 are conducted by using a high-order turbulence solver, which is based on high-order compact finite difference method in the whole flow domain and localized artificial diffusivities for discontinuities. For simplicity, only one-way coupling (i.e., the influence of fluid on particles) between the carrier flow and particles is considered. The focus is on the study of the preferential concentration of heavy particles in dissipative scale of turbulence and the underlying mechanisms. Firstly, the effect of Stokes number (St) on the particle distribution in flow of Mach 1.01 (referred to as high-Mach-number case in this study) is investigated as a necessary supplementation for the previous studies in incompressible and weakly compressible flows. It turns out that heavy particles with Stokes number close to unity exhibit the strongest preferential concentration, which is in agreement with the observation in incompressible flow. All types of heavy particles have a tendency to accumulate in high-density regions of the background flow. While all kinds of particles dominantly collect in low-vorticity regions, intermediate and large particles (St = 1 and St = 5) are also found to collect in high-vorticity regions behind the randomly formed shocklets. Secondly, the impact of turbulent Mach number (Mt) (or the compressibility) of the carrier flow on the spatial distribution of the particles with St = 1 is discussed using the simulated compressible flows with Mt being 0.22, 0.68, and 1.01, respectively. In low-Mach-number flow, particles tend to concentrate in regions of low vorticity due to the centrifuge effect of vortices and particle concentration decreases monotonically with the increasing vorticity magnitude. As Mach number increases, the degree of particle clustering is slightly weakened in low-vorticity regions but is enhanced in high-vorticity regions, which
Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.
Clifton, Timothy; Clarkson, Chris; Bull, Philip
2012-08-01
The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.
Structure of the isotropic transport operators in three independent space variables
NASA Technical Reports Server (NTRS)
Abu-Shumays, I. K.; Bareiss, E. H.
1969-01-01
Based on the idea of separation of variables, a spectral theory for the three-dimensional, stationary, isotropic transport operator in a vector space of complex-valued Borel functions results in continuous sets of regular and generalized eigenfunctions.
In-plane Isotropic Microwave Performance of CoZr Trilayer in GHz Range
Pan, Lulu; Wang, Fenglong; Wang, Wenfeng; Chai, Guozhi; Xue, Desheng
2016-01-01
In this paper, we investigate the high frequency performance of Co90Zr10/SiO2/Co90Zr10 trilayers. It is demonstrated that the in-plane isotropic microwave performance is theoretically derived from the solution of the Landau-Lifshitz-Gilbert equation and experimentally achieved in that sandwich structured film. The valuable isotropic behavior comes from the superposition of two uncouple ferromagnetic layers in which the uniaxial magnetic anisotropic fields are equivalent but mutually orthogonal. Moreover, the isotropic microwave performance can be tuned to higher resonance frequency up to 5.3 GHz by employing the oblique deposition technique. It offers a convenient and effective way to achieve an unusual in-plane isotropic microwave performance with high permeability in GHz, holding promising applications for the magnetic devices in the high frequency information technology. PMID:26883790
In-plane Isotropic Microwave Performance of CoZr Trilayer in GHz Range
NASA Astrophysics Data System (ADS)
Pan, Lulu; Wang, Fenglong; Wang, Wenfeng; Chai, Guozhi; Xue, Desheng
2016-02-01
In this paper, we investigate the high frequency performance of Co90Zr10/SiO2/Co90Zr10 trilayers. It is demonstrated that the in-plane isotropic microwave performance is theoretically derived from the solution of the Landau-Lifshitz-Gilbert equation and experimentally achieved in that sandwich structured film. The valuable isotropic behavior comes from the superposition of two uncouple ferromagnetic layers in which the uniaxial magnetic anisotropic fields are equivalent but mutually orthogonal. Moreover, the isotropic microwave performance can be tuned to higher resonance frequency up to 5.3 GHz by employing the oblique deposition technique. It offers a convenient and effective way to achieve an unusual in-plane isotropic microwave performance with high permeability in GHz, holding promising applications for the magnetic devices in the high frequency information technology.
Carbon fiber-reinforced cyanate ester/nano-ZrW2O8 composites with tailored thermal expansion.
Badrinarayanan, Prashanth; Rogalski, Mark K; Kessler, Michael R
2012-02-01
Fiber-reinforced composites are widely used in the design and fabrication of a variety of high performance aerospace components. The mismatch in coefficient of thermal expansion (CTE) between the high CTE polymer matrix and low CTE fiber reinforcements in such composite systems can lead to dimensional instability and deterioration of material lifetimes due to development of residual thermal stresses. The magnitude of thermally induced residual stresses in fiber-reinforced composite systems can be minimized by replacement of conventional polymer matrices with a low CTE, polymer nanocomposite matrix. Zirconium tungstate (ZrW(2)O(8)) is a unique ceramic material that exhibits isotropic negative thermal expansion and has excellent potential as a filler for development of low CTE polymer nanocomposites. In this paper, we report the fabrication and thermal characterization of novel, multiscale, macro-nano hybrid composite laminates comprising bisphenol E cyanate ester (BECy)/ZrW(2)O(8) nanocomposite matrices reinforced with unidirectional carbon fibers. The results reveal that incorporation of nanoparticles facilitates a reduction in CTE of the composite systems, which in turn results in a reduction in panel warpage and curvature after the cure because of mitigation of thermally induced residual stresses.
NASA Astrophysics Data System (ADS)
Buranasiri, Prathan
2005-04-01
Using barium titanate as the photorefractive material, we demonstrate phase conjugation, beam coupling, higher diffraction order generation. At small incident angles less than 0.015 radian, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) are generated simultaneously. At bigger incident angles approximately more than 0.2094 radian, only codirectional anisotropic-self diffraction (CODAS) are generated. On going imaging correlation is also showing.
Dependence of hydrogen permeabilities of isotropic graphites on the pore structure
NASA Astrophysics Data System (ADS)
Yamawaki, M.; Yamaguchi, K.; Suzuki, Y.; Tanaka, S.
1991-03-01
The permeation behavior of molecular hydrogen through isotropic graphites is investigated. The observed dependences of the permeation rate on pressure, specimen thickness, temperature and molecular weight suggest that hydrogen permeates by molecular flow, probably through open pores. A simple pore structure model is developed and is compared with the experimental results. It is revealed that hydrogen permeation through isotropic graphites depends not only on the pore size or the porosity, but also on the pore size distribution and tortuosity.
Dip-moveout error in transversely isotropic media with linear velocity variation in depth
Larner, K.
1992-10-01
Levin (1990) modeled the moveout, within Common-midpoint (CMP) gathers, of reflections from plane-dipping reflectors beneath homogeneous, transversely isotropic media. For some media, when the axis of symmetry for the anisotropy was vertical, he found departures in stacking velocity from predictions based upon the familiar cosine-of-dip correction for isotropic media. Here, I do similar tests, again with transversely isotropic models with vertical axis of symmetry, but now allowing the medium velocity to vary linearly with depth. Results for the same four anisotropic media studied by Levin show behavior of dip-corrected stacking velocity with reflector dip that, for all velocity gradients considered, differs little from that for the counterpart homogeneous media. As with isotropic media, traveltimes in an inhomogeneous, transversely isotropic medium can be modeled adequately with a homogeneous model with vertical velocity equal to the vertical rms velocity of the inhomogeneous medium. In practice, dip-moveout (DMO) is based on the assumption that either the medium is homogeneous or its velocity varies with depth, but in both cases isotropy is assumed. It turns out that for only one of the transversely isotropic media considered here --shale-limestone -- would v(z) DMO fail to give an adequate correction within CMP gathers. For the shale-limestone, fortuitously the constant-velocity DMO gives a better moveout correction than does the v(z) DMO.
Dip-moveout error in transversely isotropic media with linear velocity variation in depth
Larner, K.
1992-01-01
Levin (1990) modeled the moveout, within Common-midpoint (CMP) gathers, of reflections from plane-dipping reflectors beneath homogeneous, transversely isotropic media. For some media, when the axis of symmetry for the anisotropy was vertical, he found departures in stacking velocity from predictions based upon the familiar cosine-of-dip correction for isotropic media. Here, I do similar tests, again with transversely isotropic models with vertical axis of symmetry, but now allowing the medium velocity to vary linearly with depth. Results for the same four anisotropic media studied by Levin show behavior of dip-corrected stacking velocity with reflector dip that, for all velocity gradients considered, differs little from that for the counterpart homogeneous media. As with isotropic media, traveltimes in an inhomogeneous, transversely isotropic medium can be modeled adequately with a homogeneous model with vertical velocity equal to the vertical rms velocity of the inhomogeneous medium. In practice, dip-moveout (DMO) is based on the assumption that either the medium is homogeneous or its velocity varies with depth, but in both cases isotropy is assumed. It turns out that for only one of the transversely isotropic media considered here --shale-limestone -- would v(z) DMO fail to give an adequate correction within CMP gathers. For the shale-limestone, fortuitously the constant-velocity DMO gives a better moveout correction than does the v(z) DMO.
Yoshizawa, Atsushi; Kato, Yusuke; Sasaki, Haruna; Takanishi, Yoichi; Yamamoto, Jun
2016-06-01
Dark conglomerates of domains with opposite handedness, which are designated dark conglomerate phases (DC phases), have attracted much attention. We prepared an achiral liquid crystal trimer, 4,4'-bis{9-[4-(5-octyloxypyrimidin-2-yl)phenyloxy]nonyloxy}biphenyl (I-9), and investigated the physical properties. A droplet of trimer I-9 formed a conventional nematic phase on cooling from the isotropic liquid, and then changed to an optical isotropic phase with homochirality. X-ray diffraction measurements reveal that the isotropic phase has an intercalated layer structure with a correlation length of 95 nm. We prepared binary mixtures with a nematic liquid crystal, 4'-hexyloxy-4-cyanobiphenyl (6OCB). The mixtures containing 30-75 mol % of 6OCB exhibited smectic phases above the isotropic phase. We investigated mesogenic properties of trimer I-n (n = 5-9) depending on the parity of the linking group. Only trimer I-9 possessing the longest odd-numbered spacers showed the chiral isotropic phase, suggesting that a rigid bent structure is not necessary for the appearance of the isotropic phase. The experimental results reveal that trimer I-9 exhibits a soft crystalline DC phase representing a new modification of chiral symmetry breaking in lamellar liquid crystal phases.
NASA Astrophysics Data System (ADS)
Wong, H. S.; He, S. K.; Chung, H. J.; Zhang, M. S.; Cher, Kelvin; Low, Melvin; Zhou, T. J.; Yang, Y.; Wong, S. K.
2016-11-01
Replacing Ir with Rh in a CoIr system possessing negative uniaxial magnetocrystalline anisotropy (K u ) substantially reduces its magnetic damping and coercivity by more than half while retaining its high negative K u . Moreover, a higher saturation magnetization (M s ) and more isotropic coercivity are achieved. Such material development makes it particularly suitable for use as the soft underlayer (SUL) of magnetic recording media for reducing noise, and as the oscillation layer of a spin-torque oscillator (STO) for achieving higher oscillation frequency, larger AC magnetic field and lower driving current, which can be readily integrated with the current recording head for microwave-assisted magnetic recording. Finally, we recommend a composite free layer by coupling CoIr with a spin polarizer (Co or Co/Cu/Co) for the enhancement of the spin-polarization rate and, therefore, the improvement of STO efficiency. These could pave the way for CoIr-based materials to be implemented in devices requiring a negative Ku with low damping and high ‘softness’, such as oscillators.
Wavefront Imaging in Fractured Transversely-Isotropic Media
NASA Astrophysics Data System (ADS)
Shao, S.; Pyrak-Nolte, L. J.
2013-12-01
Fractures in the Earth's crust are a source of stress-dependent mechanical anisotropy that affect seismic wave attenuation and velocity. While many theoretical and experimental studies have investigated seismic wave propagation in single or multi- fractured isotropic rocks, few studies have examined the seismic response of a fractured anisotropic medium. Fractures and layering each contribute to the mechanical anisotropy of the crust. The coexistence of these two sources of anisotropy complicates the interpretation of the seismic properties of crustal rock. In this study, laboratory wavefront imaging was performed to capture the seismic response of layered media containing multiple parallel fractures. We determined that whether the observed anisotropy is dominated by the matrix anisotropy or by the fracture orientation depends on the applied stress and that late-arriving guided-modes provide information on the orientation of the fractures. Four cubic garolite samples (~102 mm on edge) each containing 5 parallel fractures were used in this study. The fractures were oriented normal, parallel or at acute angles (30 degrees, 60 degrees) to the layering. The fracture and layer spacing were approximately 10mm and 0.5mm, respectively. An intact sample containing no fractures was used as a standard orthorhombic medium for reference. Stress was applied to the samples with a servo-controlled loading machine. Two spherically-focused water-coupled transducers (central frequency 1MHz) were used; one as a fixed-source and the other as a translating receiver. Each sample was scanned over a 60mm×60mm region in 1 mm increments to map out the arriving wavefront (i.e. 3600 signals were recorded) as a function of time. The measured wavefront in the intact reference sample (which contained no fractures) was elliptical with the major axis parallel to the layers as expected and was stress-independent. When the fracture samples were subjected to low stress (<4 MPa), the observed seismic
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Rüpke, Lars; Theissen-Krah, Sonja; Morgan, Jason
2016-04-01
We use 3-D numerical models of hydrothermal fluid flow to assess the magnitude and spatial distribution of hydrothermal mass and energy fluxes within the upper and lower oceanic crust. A better understanding of the hydrothermal flow pattern (e.g. predominantly on-axis above the axial melt lens vs. predominantly off-axis and ridge-perpendicular over the entire crustal thickness) is essential for quantifying the volume of oceanic crust exposed to high-temperature fluid flow and the associated leaching and redistribution of economically interesting metals. The initial setup of all 3-D models is based on our previous 2-D studies (Theissen-Krah et al., 2011), in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these 2-D calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data at the East Pacific Rise. Our reference 3-D model for hydrothermal flow at fast-spreading ridges predicts the existence of a hybrid hydrothermal system (Hasenclever et al., 2014) with two interacting flow components that are controlled by different physical mechanisms. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About ˜60% of the discharging fluid mass is replenished on-axis by warm (up to 300oC) recharge flow surrounding the hot thermal plumes. The remaining ˜40%, however, occurs as colder and broader recharge up to several kilometres away from the ridge axis that feeds hot (500-700oC) deep off-axis flow in the lower crust towards the ridge. Both flow components merge above the melt lens to feed ridge-centred vent sites. In a suite of 3-D model calculations we vary the isotropic crustal permeability to quantify its influence on on-axis vs. off-axis hydrothermal fluxes as well as on along-axis hydrothermal
NASA Astrophysics Data System (ADS)
Lu, Bing-Sui; Ye, Fangfu; Xing, Xiangjun; Goldbart, Paul M.
2013-07-01
Isotropic-genesis nematic elastomers (IGNEs) are liquid crystalline polymers (LCPs) that have been randomly, permanently cross-linked in the high-temperature state so as to form an equilibrium random solid. Thus, instead of being free to diffuse throughout the entire volume, as they would be in the liquid state, the constituent LCPs in an IGNE are mobile only over a finite, segment specific, length-scale controlled by the density of cross-links. We address the effects that such network-induced localization have on the liquid-crystalline characteristics of an IGNE, as probed via measurements made at high temperatures. In contrast with the case of uncross-linked LCPs, for IGNEs these characteristics are determined not only by thermal fluctuations but also by the quenched disorder associated with the cross-link constraints. To study IGNEs, we consider a microscopic model of dimer nematogens in which the dimers interact via orientation-dependent excluded volume forces. The dimers are, furthermore, randomly, permanently cross-linked via short Hookean springs, the statistics of which we model by means of a Deam-Edwards type of distribution. We show that at length-scales larger than the size of the nematogens this approach leads to a recently proposed, phenomenological Landau theory of IGNEs [Lu et al., Phys. Rev. Lett.108, 257803 (2012)], and hence predicts a regime of short-ranged oscillatory spatial correlations in the nematic alignment, of both thermal and glassy types. In addition, we consider two alternative microscopic models of IGNEs: (i) a wormlike chain model of IGNEs that are formed via the cross-linking of side-chain LCPs; and (ii) a jointed chain model of IGNEs that are formed via the cross-linking of main-chain LCPs. At large length-scales, both of these models give rise to liquid-crystalline characteristics that are qualitatively in line with those predicted on the basis of the dimer-and-springs model, reflecting the fact that the three models inhabit a
NASA Astrophysics Data System (ADS)
Shapiro, Luke; Walczak, Kamil
We examine heat transfer via Coulomb Blockaded quantum systems connected to two heat reservoirs (thermal baths). Specifically, we propose simple models for negative differential thermal conductance and pinched hysteretic loops in the heat fluxes as functions of temperature. Our computational method is based on the theory of propagators, where additional mechanisms of shifting and blocking specific energy levels is incorporated. Those devices may play a major role in the future thermal management.
Gram-negative meningitis ... Acute bacterial meningitis can be caused by Gram-negative bacteria. Meningococcal and H. influenzae meningitis are caused by Gram-negative bacteria and are covered in detail in other articles. This article ...
Correlation length of the isotropic quantum Heisenberg antiferromagnet
Cuccoli, A.; Tognetti, V.; Vaia, R.
1997-04-01
The quantum Heisenberg antiferromagnet on the square lattice is known to model the magnetic interactions in the copper ion planes of many high-{ital T{sub c}} superconductors and their parent compounds. The thermodynamics of the model is approached by the {ital pure-quantum self-consistent harmonic approximation}, that reduces the quantum problem to the study of an effective classical antiferromagnetic system. The effective exchange, weakened by quantum fluctuations, enters as a temperature scale the classical-like expressions for the thermal averages, and the quantum spin correlation length is then obtained from its classical counterpart in a simple way. The theory compares very well, for any value of the spin and without need for adjustable parameters, with high temperature expansions, quantum Monte Carlo simulations, and recent neutron and nuclear quadrupole relaxation (NQR) experiments. {copyright} {ital 1997 American Institute of Physics.}
Load-Deflection response of transversely isotropic piles under lateral loads
NASA Astrophysics Data System (ADS)
Han, J.; Frost, J. D.
2000-04-01
In general, pile materials are assumed to be isotropic during the analysis of the load-deflection response of piles under lateral loads. However, commonly used materials such as reinforced concrete and timber as well as potentially promising new pile materials such as fiber reinforced polymers are typically transversely isotropic materials. Experimental studies have shown that transversely isotropic materials have a high ratio of section longitudinal modulus to the section in-plane shear modulus (Ezz/Gxz) compared to the value for isotropic materials. The high modulus ratio leads to a more significant shear deformation effect in beam bending. To account for the shear deformation effect, the Timoshenko Beam Theory has been adopted in deriving the solutions for the load-deflection response of transversely isotropic piles under lateral loads instead of the Classical (Euler-Bernoulli) Beam Theory. The load-deflection responses depend on the shear effect coefficient, the lateral soil resistance, the embedment ratio, and the boundary conditions. The deflection of the pile, if the shear deformation effect is considered, is always larger than if it is neglected.
Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.
2010-10-10
Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.
Delmore, James E.
1987-01-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Torsional vibration of a pipe pile in transversely isotropic saturated soil
NASA Astrophysics Data System (ADS)
Zheng, Changjie; Hua, Jianmin; Ding, Xuanming
2016-09-01
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.
Applicability of the isotropic vorticity theory to an adverse pressure gradient flow
NASA Astrophysics Data System (ADS)
Arora, S. C.; Azad, R. S.
1980-03-01
The isotropic vorticity theory is examined for an adverse pressure gradient flow on the basis of experimental data obtained in a conical diffuser. This conical diffuser is the same as that used by Okwuobi and Azad (1973), having an 8-deg included angle and an area ratio of 4:1 with fully developed pipe flow at the entry. The experiments are conducted in a low-speed open-circuit wind tunnel. It is shown that the rates and ratio of production and dissipation of the turbulent vorticity are constant in the core region of the diffuser but increase significantly in the wall layer. The validity of the analysis of Batchelor and Townsend (1947) for isotropic vorticity is discussed. The results suggest that even in a shear flow subjected to adverse pressure gradient, the isotropic theory of vorticity can be applied to a region far removed from the wall.
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-01
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.
Magnetic properties of pulsed laser deposition-fabricated isotropic Fe-Pt film magnets
Nakano, M.; Oniki, W.; Yanai, T.; Fukunaga, H.
2011-04-01
A high-speed pulsed laser deposition method with the deposition rate of several tens of microns per 1 h enabled us to obtain isotropic Fe-Pt thick film magnets. Increase in the laser power enabled us to obtain as-deposited films with L1{sub 0} ordered phase due to the heat radiation from a target, which means that a substrate heating system and a post-annealing process are not required to achieve hard magnetic properties in the process. Use of an Fe-rich target enhanced the magnetic properties, and as a result (BH){sub max} value exceeded 100 kJ/m{sup 3} in an isotropic Fe-Pt film fabricated at the power of 3 W, which was comparable to those of isotropic Fe-Pt thick film magnets prepared by a sputtering method.
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-01
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance. PMID:27575748
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices
NASA Astrophysics Data System (ADS)
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-01
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.
Xu Zhe; Greiner, Carsten
2007-08-15
To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the transport rate of gluon drift and the transport collision rates of elastic (gg{r_reversible}gg) as well as inelastic (gg{r_reversible}ggg) perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy. The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization. The contributions of the various scattering processes to the momentum isotropization can be separated into the transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show that pQCD gg{r_reversible}ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to kinematics, 2{yields}N (N>2) production processes allow more particles to become isotropic in momentum space and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent and thus cannot serve as a global quantity that describes kinetic equilibration.
NASA Astrophysics Data System (ADS)
Kühn, M.; John, W.; Weigel, R.
2014-11-01
This contribution contains the mechanisms for calculation of magnetic shielding effectiveness from material samples, based on measured electrical parameters. For this, measurement systems for the electrical conductivity of high and low conductive material samples with respect to the direction of current flow are presented and discussed. Also a definition of isotropic and anisotropic materials with electrical circuit diagrams is given. For prediction of shielding effectiveness for isotropic and anisotropic materials, several analytical models are presented. Also adaptions to gain a near field solution are part of this contribution. All analytical models will also be validated with an adequate measurement system.
Isotropic proton-detected local-field nuclear magnetic resonancein solids
Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander
2004-08-04
A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.
How to estimate isotropic distributions and mean values in crystalline solids
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.; Dugdale, S. B.
2015-11-01
The concept of special directions in the Brillouin zone and the applicability of Houston’s formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. The results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples. As George Orwell might have put it: all directions are equal, but some directions are more equal than others.
How to estimate isotropic distributions and mean values in crystalline solids.
Kontrym-Sznajd, G; Dugdale, S B
2015-11-01
The concept of special directions in the Brillouin zone and the applicability of Houston's formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. The results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples. As George Orwell might have put it: all directions are equal, but some directions are more equal than others.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Coupling between the nematic/isotropic transition and a thickness transition: A theoretical approach
NASA Astrophysics Data System (ADS)
van Effenterre, D.; Valignat, M. P.; Roux, D.
2003-05-01
In this letter, we develop a theoretical model of the effect of a free surface on the nematic-to-isotropic phase transition in a confined geometry. Simply by coupling a bulk first-order phase transition with a thickness-dependent elastic distortion field in a Landau-like description, the model predicts a coexistence at equilibrium between the isotropic and the nematic phases at two different thicknesses. A phase diagram is constructed in the temperature-thickness plane and a comparison is given with experimental results obtained on thin films (van Effenterre D., Ober R., Valignat M. P. and Cazabat A. M., Phys. Rev. Lett. 87(2001) 125701).
NASA Astrophysics Data System (ADS)
Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao
2016-06-01
This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.
Adamson, Peep
2009-11-01
The reflection of s- and p-polarized electromagnetic plane waves from an anisotropic ultrathin dielectric film on transparent isotropic substrate is investigated in the long-wavelength limit. The analytical approximate formulas are obtained for the reflection coefficients and ellipsometric angles that agree with the exact computer solution of the reflection problem for anisotropic systems. The possibilities of using the obtained expressions for resolving the inverse problem for ultrathin anisotropic dielectric films upon isotropic dielectric substrates are discussed. It is shown that a promising technique for determining the optical constants of anisotropic dielectric films on transparent substrates is the integration of ellipsometry and differential reflectivity. PMID:19881659
NASA Astrophysics Data System (ADS)
Chen, Ming-Ji; Pei, Yong-Mao; Fang, Dai-Ning
2010-03-01
The classic anisotropic spherical cloak can be mimicked by many alternating thin layers of isotropic metamaterials [Qiu et al. Phys. Rev. E 79 (2009) 047602]. We propose an improved method of designing permittivity and permeability in each isotropic layer, which eliminates the jumping of the refractive index at the interface. Multilayered spherical cloaks designed by the present method perform much better than those by Qiu et al., especially for forward scattering. It is found that the ratio of layer thickness to the operating wavelength plays an important role in achieving invisibility. The presented cloak should be discretized to at least 40 layers to meet the thickness threshold corresponding to 10% scattering.
Chemical bonding of lead in glasses through isotropic vs anisotropic correlation: PASS shifted echo.
Fayon, F; Bessada, C; Douy, A; Massiot, D
1999-03-01
When observing spin I = (1/2) nuclei with important chemical shift anisotropy in disordered materials, the distribution of isotropic shift can become so large that no accessible spinning rate is able to provide a resolved spectrum. This is the case of 207Pb in glasses where static and high-speed MAS spectra are nearly identical. It is still possible in such a case to rebuild a spinning sideband free spectrum using a shifted echo modified PASS sequence. This makes it possible to discuss isotropic and anisotropic chemical shifts of lead in phosphate glasses, to characterize its structural role and its chemical bonding state.
Effect of ferroelectric nanoparticles on the isotropic-smectic-A phase transition
NASA Astrophysics Data System (ADS)
Mukherjee, Prabir K.
2016-06-01
Recent experimental studies have shown that ferroelectric nanoparticles play an important role on smectic liquid crystals. These include the weakly discontinuous nature of the isotropic-smectic-A transition, the decrease of the temperature metric discontinuity, the decrease of the dielectric constant and a slight increase of the transition temperature. We described all these experimental observations within phenomenological theory. The impact of ferroelectric nanoparticles on the isotropic-smectic-A transition temperature, Kerr constant and non-linear dielectric effect is discussed. The theoretical predictions were found to be in good qualitative agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Chatterjee, Avik P.
2008-03-01
A model is developed for the elastic moduli of networks composed of transversely isotropic elongated particles characterized by aspect ratio polydispersity. An effective medium approach is employed to integrate our treatment of elastic fiber networks with results from (i) the Mori-Tanaka model for dispersions of transversely isotropic inclusions and from (ii) percolation theory, and to describe fiber-reinforced nanocomposites. Model calculations are presented for the dependences of composite moduli on particle aspect ratios, volume fractions, and polydispersities, and on anisotropy in the fiber stiffness tensor.
Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders
NASA Astrophysics Data System (ADS)
Falakzaadeh, F.; Mehryar, R.
2016-08-01
To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.
Felten, T.; Schlickeiser, R.
2013-08-15
Closed analytical expressions for the spontaneously emitted fluctuation spectra of weakly damped/amplified fluctuations in unmagnetized plasmas are derived using fully relativistic dispersion functions and form factors for the important class of isotropic thermal plasmas. Especially, an electron-proton plasma is investigated in the limits of nonrelativistic and ultrarelativistic plasma temperatures. The results confirm the earlier nonrelativistic approach for positive values of the imaginary frequency γ and complete the nonrelativistic treatment for negative values of γ<0. The well known electrostatic, collective Langmuir mode also occurs within the relativistic theory of spontaneously emitted fluctuations and is analytically and graphically identified. For the first time, the ultrarelativistic temperature limit is analyzed for subluminal phase speeds, which leads to the identification of an additional, so far unknown, longitudinal subluminal collective mode.
NASA Astrophysics Data System (ADS)
Felten, T.; Schlickeiser, R.
2013-08-01
Closed analytical expressions for the spontaneously emitted fluctuation spectra of weakly damped/amplified fluctuations in unmagnetized plasmas are derived using fully relativistic dispersion functions and form factors for the important class of isotropic thermal plasmas. Especially, an electron-proton plasma is investigated in the limits of nonrelativistic and ultrarelativistic plasma temperatures. The results confirm the earlier nonrelativistic approach for positive values of the imaginary frequency γ and complete the nonrelativistic treatment for negative values of γ <0. The well known electrostatic, collective Langmuir mode also occurs within the relativistic theory of spontaneously emitted fluctuations and is analytically and graphically identified. For the first time, the ultrarelativistic temperature limit is analyzed for subluminal phase speeds, which leads to the identification of an additional, so far unknown, longitudinal subluminal collective mode.
Transformation optical design of a bending waveguide by use of isotropic materials.
Wu, Xiaojiong; Lin, Zhifang; Chen, Huanyang; Chan, C T
2009-11-01
Based on the effective medium theory, we designed a simplified transformation media bending waveguide by use of only three kinds of isotropic material in an alternating layered structure. The design can be used to guide incoming waves smoothly along the bending part of a waveguide with slight distortions. Numerical simulations are performed to illustrate its functionality.
A comparative study of orthotropic and isotropic bone adaptation in the femur
Geraldes, Diogo M; Phillips, Andrew T M
2014-01-01
Functional adaptation of the femur has been studied extensively by embedding remodelling algorithms in finite element models, with bone commonly assumed to have isotropic material properties for computational efficiency. However, isotropy is insufficient in predicting the directionality of bone's observed microstructure. A novel iterative orthotropic 3D adaptation algorithm is proposed and applied to a finite element model of the whole femur. Bone was modelled as an optimised strain-driven adaptive continuum with local orthotropic symmetry. Each element's material orientations were aligned with the local principal stress directions and their corresponding directional Young's moduli updated proportionally to the associated strain stimuli. The converged predicted density distributions for a coronal section of the whole femur were qualitatively and quantitatively compared with the results obtained by the commonly used isotropic approach to bone adaptation and with ex vivo imaging data. The orthotropic assumption was shown to improve the prediction of bone density distribution when compared with the more commonly used isotropic approach, whilst producing lower comparative mass, structurally optimised models. It was also shown that the orthotropic approach can provide additional directional information on the material properties distributions for the whole femur, an advantage over isotropic bone adaptation. Orthotropic bone models can help in improving research areas in biomechanics where local structure and mechanical properties are of key importance, such as fracture prediction and implant assessment. © 2014 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd. PMID:24753477
Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide
Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo
2016-01-01
Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475
Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide
NASA Astrophysics Data System (ADS)
Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo
2016-08-01
Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.
Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1 /2 Chain
NASA Astrophysics Data System (ADS)
Ilievski, Enej; Medenjak, Marko; Prosen, Tomaž
2015-09-01
Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1 /2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.
Lake, Kayll
2009-09-15
I use the Newtonian equation of hydrostatic equilibrium for an isotropic fluid sphere to generate exact anisotropic solutions of Einstein's equations. The input function is simply the density. An infinite number of regular solutions are constructed, some of which satisfy all the standard energy conditions. Two classes of these solutions generalize the Newtonian polytropes of index 0 and 1.
Effects of focusing on third-order nonlinear processes in isotropic media. [laser beam interactions
NASA Technical Reports Server (NTRS)
Bjorklund, G. C.
1975-01-01
Third-order nonlinear processes in isotropic media have been successfully used for tripling the efficiency of high-power laser radiation for the production of tunable and fixed-frequency coherent vacuum UV radiation and for up-conversion of IR radiation. The effects of focusing on two processes of this type are studied theoretically and experimentally.
Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo
2016-01-01
Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 (o)C) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Xi-Feng; Yuan, Wen; Wang, Xiao-Tian
2014-06-01
A new analytical perturbation method is developed in this study to investigate the general reflection coefficients in the frequency-wavenumber domain of the acoustic field in a fluid-filled borehole surrounded by a transversely isotropic medium (TIM). The transversely isotropic medium with a symmetric axis parallel to the borehole axis, which is usually called a VTI medium, was adopted because its exact solutions exists, and a corresponding isotropic medium was adopted as a reference state of perturbation solution. The general reflection coefficients were originally calculated by using the perturbation method and were compared with the analytical solutions. The zero-, first- and second-order perturbation solutions for the general reflection coefficients excited by monopole, dipole and quadrupole sources were investigated for a transversely isotropic elastic solid. The results showed that the general reflection coefficients obtained by using the perturbation solutions and the analytical solutions were similar for all three sources. In summary, our study demonstrated that the perturbation method is valid and effective in acoustical logging. This work provided a theoretical foundation for extending perturbation analyses to complicated anisotropic acoustical logging applications.
Zhao, Yuqiang; Huang, Rongjin; Li, Shaopeng; Wang, Wei; Jiang, Xingxing; Lin, Zheshuai; Li, Jiangtao; Li, Laifeng
2016-07-27
Cubic NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds were synthesized and extensively explored through crystal structure and magnetization analyses. By optimizing the chemical composition, the isotropic abnormal properties of excellent zero and giant negative thermal expansion in a pure form were both found at different temperature ranges through room temperature. Moreover, the temperature regions with the remarkable abnormal thermal expansion (ATE) properties have been broadened which are controlled by the dM/dT. The present study demonstrates that the ATE behavior mainly depends on special structural and magnetic properties. These diverse properties suggest the high potential of La(Fe1-xCox)11.4Al1.6 for the development of abnormal expansion materials. PMID:27411397
Stinnett, Regan W.
1984-01-01
A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.
Stinnett, R.W.
1984-05-08
A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.
Sentential Negation in English
ERIC Educational Resources Information Center
Mowarin, Macaulay
2009-01-01
This paper undertakes a detailed analysis of sentential negation in the English language with Chomsky's Government-Binding theory of Transformational Grammar as theoretical model. It distinguishes between constituent and sentential negation in English. The essay identifies the exact position of Negation phrase in an English clause structure. It…
NASA Astrophysics Data System (ADS)
Lee, Jin Seung; Lee, Seung S.
2008-02-01
In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators.
Anisotropic thermal conductivity in uranium dioxide.
Gofryk, K; Du, S; Stanek, C R; Lashley, J C; Liu, X-Y; Schulze, R K; Smith, J L; Safarik, D J; Byler, D D; McClellan, K J; Uberuaga, B P; Scott, B L; Andersson, D A
2014-08-01
The thermal conductivity of uranium dioxide has been studied for over half a century, as uranium dioxide is the fuel used in a majority of operating nuclear reactors and thermal conductivity controls the conversion of heat produced by fission events to electricity. Because uranium dioxide is a cubic compound and thermal conductivity is a second-rank tensor, it has always been assumed to be isotropic. We report thermal conductivity measurements on oriented uranium dioxide single crystals that show anisotropy from 4 K to above 300 K. Our results indicate that phonon-spin scattering is important for understanding the general thermal conductivity behaviour, and also explains the anisotropy by coupling to the applied temperature gradient and breaking cubic symmetry.
Cloaking an acoustic sensor with single-negative materials
Cai, Chen; Zhu, Xue-Feng; Xu, Tao; Zou, Xin-Ye; Liang, Bin; Cheng, Jian-Chun
2015-07-15
In this review, a brief introduction is given to the development of acoustic superlens cloaks that allow the cloaked object to receive signals while its presence is not sensed by the surrounding, which can be regarded as “cloaking an acoustic sensor”. Remarkably, the designed cloak consists of single-negative materials with parameters independent of the background medium or the sensor system, which is proven to be a magnifying superlens. This has facilitated significantly the design and fabrication of acoustic cloaks that generally require double-negative materials with customized parameters. Such innovative design has then been simplified further as a multi-layered structure comprising of two alternately arranged complementary media with homogeneous isotropic single-negative materials. Based on this, a scattering analyses method is developed for the numerical simulation of such multi-layered cloak structures, which may serve as an efficient approach for the investigation on such devices.
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Faccenda, M.; Toomey, D. R.
2016-08-01
Despite the widely known fact that mantle flow in and around subduction zones produces the development of considerable seismic anisotropy, most P-wave tomography efforts still rely on the assumption of isotropy. In this study, we explore the potential effects of erroneous assumption on tomographic images and explore an alternative approach. We conduct a series of synthetic tomography tests based on a geodynamic simulation of subduction and rollback. The simulation results provide a self-consistent distribution of isotropic (thermal) anomalies and seismic anisotropy which we use to calculate synthetic delay times for a number of realistic and hypothetical event distributions. We find that anisotropy-induced artifacts are abundant and significant for teleseismic, local and mixed event distributions. The occurrence of artifacts is not reduced, and indeed can be exacerbated, by increasing richness in ray-path azimuths and incidence angles. The artifacts that we observe are, in all cases, important enough to significantly impact the interpretation of the images. We test an approach based on prescribing the anisotropy field as an a priori constraint and find that even coarse approximations to the true anisotropy field produce useful results. Using approximate anisotropy, fields can result in reduced RMS misfit to the travel time delays and reduced abundance and severity of imaging artifacts. We propose that the use of anisotropy fields derived from geodynamic modeling and constrained by seismic observables may constitute a viable alternative to isotropic tomography that does not require the inversion for anisotropy parameters in each node of the model.
The photon gas formulation of thermal radiation
NASA Technical Reports Server (NTRS)
Ried, R. C., Jr.
1975-01-01
A statistical consideration of the energy, the linear momentum, and the angular momentum of the photons that make up a thermal radiation field was presented. A general nonequilibrium statistical thermodynamics approach toward a macroscopic description of thermal radiation transport was developed and then applied to the restricted equilibrium statistical thermostatics derivation of the energy, linear momentum, and intrinsic angular momentum equations for an isotropic photon gas. A brief treatment of a nonisotropic photon gas, as an example of the results produced by the nonequilibrium statistical thermodynamics approach, was given. The relativistic variation of temperature and the invariance of entropy were illustrated.
Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke
2016-01-01
Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).
Igor Kaganovich
2000-12-18
Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.
Negative-Refraction Metamaterials: Fundamental Principles and Applications
NASA Astrophysics Data System (ADS)
Eleftheriades, G. V.; Balmain, K. G.
2005-06-01
Learn about the revolutionary new technology of negative-refraction metamaterials Negative-Refraction Metamaterials: Fundamental Principles and Applications introduces artificial materials that support the unusual electromagnetic property of negative refraction. Readers will discover several classes of negative-refraction materials along with their exciting, groundbreaking applications, such as lenses and antennas, imaging with super-resolution, microwave devices, dispersion-compensating interconnects, radar, and defense. The book begins with a chapter describing the fundamentals of isotropic metamaterials in which a negative index of refraction is defined. In the following chapters, the text builds on the fundamentals by describing a range of useful microwave devices and antennas. Next, a broad spectrum of exciting new research and emerging applications is examined, including: Theory and experiments behind a super-resolving, negative-refractive-index transmission-line lens 3-D transmission-line metamaterials with a negative refractive index Numerical simulation studies of negative refraction of Gaussian beams and associated focusing phenomena Unique advantages and theory of shaped lenses made of negative-refractive-index metamaterials A new type of transmission-line metamaterial that is anisotropic and supports the formation of sharp steerable beams (resonance cones) Implementations of negative-refraction metamaterials at optical frequencies Unusual propagation phenomena in metallic waveguides partially filled with negative-refractive-index metamaterials Metamaterials in which the refractive index and the underlying group velocity are both negative This work brings together the best minds in this cutting-edge field. It is fascinating reading for scientists, engineers, and graduate-level students in physics, chemistry, materials science, photonics, and electrical engineering.
Design of 3D isotropic metamaterial device using smart transformation optics.
Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik
2015-08-24
We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.
Design of 3D isotropic metamaterial device using smart transformation optics.
Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik
2015-08-24
We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology. PMID:26368165
Lee, Hee Jung; Cho, Yea Jin; Cho, Won; Oh, Moonhyun
2013-01-22
The ability to fabricate multicompositional hybrid materials in a precise and controlled manner is one of the primary goals of modern materials science research. In addition, an understanding of the phenomena associated with the systematic growth of one material on another can facilitate the evolution of multifunctional hybrid materials. Here, we demonstrate precise manipulation of the isotropic and/or anisotropic nanoscale growth of various coordination polymers (CPs) to obtain heterocompositional hybrid coordination polymer particles. Chemical composition analyses conducted at every growth step reveal the formation of accurately assembled hybrid nanoscale CPs, and microscopy images are used to examine the morphology of the particles and visualize the hybrid structures. The dissimilar growth behavior, that is, growth in an isotropic or anisotropic fashion, is found to be dependent on the size of the metal ions involved within the CPs.
Entropic wetting and the free isotropic-nematic interface of hard colloidal platelets.
Reich, Hendrik; Dijkstra, Marjolein; van Roij, René; Schmidt, Matthias
2007-07-12
We study bulk and interfacial properties of a model suspension of hard colloidal platelets with continuous orientations and vanishing thickness using both density functional theory, based on either a second virial approach or fundamental measure theory (FMT), and Monte Carlo (MC) simulations. We calculate the bulk equation of state, bulk isotropic-nematic (IN) coexistence, and properties of the (planar) free IN interface and of adsorption at a planar hard wall, where we find complete wetting of the nematic phase at the isotropic-wall interface upon approaching bulk IN coexistence. We investigate in detail the asymptotic decay of correlations at large distances. In all cases, the results from FMT and MC agree quantitatively. Our findings are of direct relevance to understanding interfacial properties of dispersions of colloidal platelets. PMID:17579390
Micellar-shape anisometry near isotropic-liquid-crystal phase transitions
NASA Astrophysics Data System (ADS)
Itri, R.; Amaral, L. Q.
1993-04-01
Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.
High-stability compact atomic clock based on isotropic laser cooling
Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas; Guerandel, Stephane; Dimarcq, Noel
2010-09-15
We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such a high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.
Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics
Gubitosi, Giulia; Migliaccio, Marina; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Natoli, Paolo; Polenta, Gianluca E-mail: Marina.Migliaccio@roma2.infn.it E-mail: giovanni.amelino-camelia@roma1.infn.it E-mail: paolo.natoli@roma2.infn.it
2011-11-01
We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.
Photoionization cross-section of isotropic defects or impurity centers in isolators
NASA Astrophysics Data System (ADS)
Lima, H.; Batista, J. V.; Couto dos Santos, M. A.
2016-08-01
An analytical expression to calculate the photoionization cross-section of isotropic defects or impurity centers is being proposed by using the time-dependent perturbation theory. The ground-state wave function of the electron captured in the impurity state is described by a three-dimensional isotropic harmonic oscillator and the electron excited state in the continuum conduction band is described by a plane wave. The expression has been obtained considering all multipoles terms in the Hamiltonian, and that the radiation field which interacts with electrons is semi-classical and linearly polarized. This approximation is assumed because the effects of the linear contribution are dominant. The available data of the Al2O3:C and Lu2SiO5:Ce systems are in good agreement with our predictions. Such satisfactory comparison is a strong indication that the present model can be used to provide good predictions of the photoionization cross-section in several areas.
Oscillating test of the isotropic shift of the speed of light.
Baynes, Fred N; Tobar, Michael E; Luiten, Andre N
2012-06-29
In this Letter, we present an improved constraint on possible isotropic variations of the speed of light. Within the framework of the standard model extension, we provide a limit on the isotropic, scalar parameter κ̃(tr) of 3±11×10({-10), an improvement by a factor of 6 over previous constraints. This was primarily achieved by modulating the orientation of the experimental apparatus with respect to the velocity of Earth. This orientation modulation shifts the signal for Lorentz invariance to higher frequencies, and we have taken advantage of the higher stability of the resonator at shorter time scales, together with better rejection of systematic effects, to provide a new constraint.
Isotropic properties of the photonic band gap in quasicrystals with low-index contrast
NASA Astrophysics Data System (ADS)
Priya Rose, T.; di Gennaro, E.; Abbate, G.; Andreone, A.
2011-09-01
We report on the formation and development of the photonic band gap in two-dimensional 8-, 10-, and 12-fold symmetry quasicrystalline lattices of low-index contrast. Finite-size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties were compared with a conventional hexagonal crystal. Band-gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0∘ to 30∘ were used to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band-gap materials, which are perfectly suitable for hosting waveguides or cavities.
JKR adhesive contact for a transversely isotropic layer of finite thickness
NASA Astrophysics Data System (ADS)
Argatov, I. I.; Borodich, F. M.; Popov, V. L.
2016-02-01
A frictionless contact interaction with a circular area of contact between an arbitrary axisymmetric rigid probe and a transversely isotopic elastic layer deposited on a substrate is studied in the framework of the JKR (Johnson, Kendall, and Roberts) adhesion theory. Under the assumption that the diameter of the contact area is less than the thickness of the elastic layer, the forth-order asymptotic model is explicitly written out. The effect of the layer thickness and the material anisotropy is taken into account via the asymptotic coefficients, which are integral characteristics of the elastic layer and also depend on the boundary conditions at the layer/substrate interface. A special case of an isotropic elastic layer bonded to an isotropic elastic half-space is considered in detail.
Kerr effect at high electric field in the isotropic phase of mesogenic materials
NASA Astrophysics Data System (ADS)
Li, Bing-Xiang; Borshch, Volodymyr; Shiyanovskii, Sergij V.; Liu, Shao-Bin; Lavrentovich, Oleg D.
2015-11-01
The well-known Kerr effect in isotropic fluids consists in the appearance of uniaxial orientational order and birefringence that grows as the square of the applied electric field. We predict and observe that at a high electric field, the Kerr effect displays features caused by the nonlinear dependence of dielectric permittivity on the field-induced orientational order parameter. Namely, the field-induced birefringence grows faster than the square of the electric field and the dynamics of birefringence growth slows down as the field increases. As a function of temperature, the field-induced birefringence is inversely proportional to the departure from an asymptotic critical temperature, but this temperature is no longer a constant (corresponding to the lower limit of the supercooled isotropic phase) and increases proportionally to the square of the electric field.
NASA Astrophysics Data System (ADS)
deBotton, G.; Hariton, I.
2002-12-01
This work is concerned with the determination of the effective behavior of sequentially laminated composites with nonlinear behavior of the constituting phases. An exact expression for the effective stress energy potential of two-dimensional and incompressible composites is introduced. This allows to determine the stress energy potential of a rank- N sequentially laminated composite with arbitrary volume fractions and lamination directions of the core laminates in terms of an N-dimensional optimization problem. Stress energy potentials for sequentially laminated composites with pure power-law behavior of the phases are determined. It is demonstrated that as the rank of the lamination becomes large the behaviors of certain families of sequentially laminated composite tend to be isotropic. Particulate composites with both, stiffer and softer inclusions are considered. The behaviors of these almost isotropic composites are, respectively, softer and stiffer than the corresponding second-order estimates recently introduced by Ponte Castañeda (1996).
Optical properties of a stack of cholesteric liquid crystal and isotropic medium layers
Gevorgyan, A. H.
2015-12-15
Some new optical properties of a stack consisting of cholesteric liquid crystal (CLC) and isotropic medium layers are studied. The problem is solved by the modified Ambartsumyan method for the summation of layers. Bragg conditions for the photonic band gaps of the proposed system are presented. It is shown that the choice of proper sublayer parameters can be used to control the band structure of the system. In the general case, the effect of full suppression of absorption, which is observed in a finite homogeneous CLC layer, is not detected in the presence of anisotropic absorption in CLC sublayers. It is shown that this effect can be generated in the system under study if certain conditions are imposed on the isotropic sublayer thickness. Under these conditions, the maximum photonic density of states (PDS) increases significantly at the boundaries of the corresponding band. The influence of a change in the CLC sublayer thickness and the system thickness on PDS is investigated.
The design of tendon-driven manipulators with isotropic transmission characteristics
Ou, Y.J.; Tsai, L.W.
1994-12-31
This paper deals with the synthesis of the mechanical power transmission structure in tendon-driven manipulators. Based on the analysis of static force transmission from the actuator space to the end-effector space, a general theory is developed for the synthesis of tendon-driven manipulators with isotropic transmission characteristics. It is shown that an n-dof (degree of freedom) manipulator can possess these characteristics if it is made-up of n+1 or 2n tendons and if its link lengths and pulley sizes are designed according to two equations of constraint. Two examples are used to demonstrate the theory. It is shown that manipulators with an isotropic transmission structure do have more uniform force distribution among their tendons.
Inelastic Stability Analysis Of Uniaxially Compressed Flat Rectangular Isotropic CCSS Plate
NASA Astrophysics Data System (ADS)
Ibearugbulem, O. M.; Eziefula, U. G.; Onwuka, D. O.
2015-08-01
This study investigates the inelastic stability of a thin flat rectangular isotropic plate subjected to uniform uniaxial compressive loads using Taylor-Maclaurin series formulated deflection function. The plate has clamped and simply supported edges in both characteristic directions (CCSS boundary conditions). The governing equation is derived using a deformation plasticity theory and a work principle. Values of the plate buckling coefficient are calculated for aspect ratios from 0.1 to 2.0 at intervals of 0.1. The results compared favourably with the elastic stability values and the percentage differences ranged from -0.353% to -7.427%. Therefore, the theoretical approach proposed in this study is recommended for the inelastic stability analysis of thin flat rectangular isotropic plates under uniform in-plane compression.
String limit of the isotropic Heisenberg chain in the four-particle sector
Antipov, A. G. Komarov, I. V.
2008-05-15
The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.
NASA Technical Reports Server (NTRS)
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
NASA Astrophysics Data System (ADS)
Audus, Debra J.; Starr, Francis W.; Douglas, Jack F.
2016-02-01
The interactions of molecules and particles in solution often involve an interplay between isotropic and highly directional interactions that lead to a mutual coupling of phase separation and self-assembly. This situation arises, for example, in proteins interacting through hydrophobic and charged patch regions on their surface and in nanoparticles with grafted polymer chains, such as DNA. As a minimal model of complex fluids exhibiting this interaction coupling, we investigate spherical particles having an isotropic interaction and a constellation of five attractive patches on the particle's surface. Monte Carlo simulations and mean-field calculations of the phase boundaries of this model depend strongly on the relative strength of the isotropic and patch potentials, where we surprisingly find that analytic mean-field predictions become increasingly accurate as the directional interactions become increasingly predominant. We quantitatively account for this effect by noting that the effective interaction range increases with increasing relative directional to isotropic interaction strength. We also identify thermodynamic transition lines associated with self-assembly, extract the entropy and energy of association, and characterize the resulting cluster properties obtained from simulations using percolation scaling theory and Flory-Stockmayer mean-field theory. We find that the fractal dimension and cluster size distribution are consistent with those of lattice animals, i.e., randomly branched polymers swollen by excluded volume interactions. We also identify a universal functional form for the average molecular weight and a nearly universal functional form for a scaling parameter characterizing the cluster size distribution. Since the formation of branched clusters at equilibrium is a common phenomenon in nature, we detail how our analysis can be used in experimental characterization of such associating fluids.
Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating
NASA Astrophysics Data System (ADS)
He, Xiujie; Song, Jinliang; Xu, Li; Tan, Jie; Xia, Huihao; Zhang, Baoliang; He, Zhoutong; Gao, Lina; Zhou, Xingtai; Zhao, Mingwen; Zhu, Zhiyong; Bai, Shuo
2013-11-01
Infiltration studies were performed on uncoated nuclear graphite and isotropic pyrolytic carbon (PyC) coated graphite in molten FLiNaK salt at 650 °C under argon atmosphere at 1, 3 and 5 atm. Uncoated graphite shows weight gain more obviously than that of PyC coated graphite. Nuclear graphite with PyC coating exhibits excellent infiltration resistance in molten salt due to the small open porosity as conformed from scanning electron microscopy and mercury injection experiments.
NASA Astrophysics Data System (ADS)
Lee, J. M.; Kim, K. C.
1995-11-01
An iterative Kantorovich method is presented for the vibration analysis of rectangular isotropic thick plates. Mindlin plate characteristic functions are derived in general forms by the Kantorovich method initially starting with Timoshenko beam functions consistent with the boundary conditions of the plate. Through numerical calculations of a natural pairs and dynamic responses of appropriate models, it has been confirmed that the method presented is superior to the Rayleigh-Ritz analysis or the FEM analysis in accuracy and computational efficiency.
Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field
NASA Astrophysics Data System (ADS)
Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.
2016-08-01
In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R=(b/{B}0)({{\\ell }}\\parallel /{{\\ell }}\\perp ) for rms magnetic fluctuation b, large-scale mean field {{\\boldsymbol{B}}}0, and coherence scales parallel ({{\\ell }}\\parallel ) and perpendicular ({{\\ell }}\\perp ) to {{\\boldsymbol{B}}}0. Here we use a nonperturbative analytic framework based on Corrsin’s hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B 0 with finite b and isotropic fluctuations with {{\\ell }}\\parallel /{{\\ell }}\\perp =1, instead of the well-studied route of varying {{\\ell }}\\parallel /{{\\ell }}\\perp for b \\ll {B}0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with b z = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B 0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with b z = 0, when different routes to R\\to ∞ are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
NASA Technical Reports Server (NTRS)
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki
2011-10-10
We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing. PMID:21997076
The role of wall confinement on the decay rate of an initially isotropic turbulent field
NASA Astrophysics Data System (ADS)
Dowling, David R.; Movahed, Pooya; Johnsen, Eric
2014-11-01
The problem of freely decaying isotropic turbulence has been the subject of intensive research during the past few decades due to its importance for modeling purposes. While isotropy and periodic boundary conditions assumptions simplify the analysis, large-scale anisotropy (e.g., caused by rotation, shear, acceleration or walls) is in practice present in most turbulent flows and affects flow dynamics across different scales, as well as the kinetic energy decay. We investigate the role of wall confinement and viscous dissipation on the decay rate of an initially isotropic field for confining volumes of different aspect ratios. We first generate an isotropic velocity field in a cube with periodic boundary conditions. Next, using this field, we change the boundary conditions to no-slip walls on all sides. These walls restrict the initial field to a confined geometry and also provide an additional viscous dissipation mechanism. The problem is considered for confining volumes of different aspect ratios by adjusting the initial field. The change in confining volume introduces an additional length scale to the problem. Direct numerical simulation of the proposed set-up is used to verify the scaling arguments for the decay rate of kinetic energy. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.
Excitation of surface waves on the interfaces of general bi-isotropic media.
Kim, Seulong; Kim, Kihong
2016-07-11
We study theoretically the characteristics of surface waves excited at the interface between a metal and a general bi-isotropic medium, which includes isotropic chiral media and Tellegen media as special cases. We derive an analytical dispersion relation for surface waves, using which we calculate the effective index and the propagation length numerically. We also calculate the absorptance, the cross-polarized reflectance and the spatial distribution of the electromagnetic fields for plane waves incident on a bilayer system consisting of a metal layer and a bi-isotropic layer in the Kretschmann configuration, using the invariant imbedding method. The results obtained using the invariant imbedding method agree with those obtained from the dispersion relation perfectly. In the case of chiral media, the effective index is an increasing function of the chirality index, whereas in Tellegen media, it is a decreasing function of the Tellegen parameter. The propagation length for surface waves in both cases increase substantially as either the chirality index or the Tellegen parameter increases. In Tellegen media, it diverges to infinity when the effective index goes to zero, whereas in chiral media, it does when the parameters approach the cutoff values where quasi surface waves are excited. We investigate the characteristics of quasi surface waves excited when the chirality index is sufficiently large.
Whole-animal functional and developmental imaging with isotropic spatial resolution.
Chhetri, Raghav K; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C; Keller, Philipp J
2015-12-01
Imaging fast cellular dynamics across large specimens requires high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To meet these requirements, we developed isotropic multiview (IsoView) light-sheet microscopy, which rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. Combining these four views by means of high-throughput multiview deconvolution yields images with high resolution in all three dimensions. We demonstrate whole-animal functional imaging of Drosophila larvae at a spatial resolution of 1.1-2.5 μm and temporal resolution of 2 Hz for several hours. We also present spatially isotropic whole-brain functional imaging in Danio rerio larvae and spatially isotropic multicolor imaging of fast cellular dynamics across gastrulating Drosophila embryos. Compared with conventional light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Stress distribution in a premolar 3D model with anisotropic and isotropic enamel.
Munari, Laís S; Cornacchia, Tulimar P M; Moreira, Allyson N; Gonçalves, Jason B; De Las Casas, Estevam B; Magalhães, Cláudia S
2015-08-01
The aim of this study was to compare the areas of stress concentration in a three-dimensional (3D) premolar tooth model with anisotropic or isotropic enamel using the finite element method. A computed tomography was imported to an image processing program to create the tooth model which was exported to a 3D modeling program. The mechanical properties and loading conditions were prescribed in Abaqus. In order to evaluate stresses, axial and oblique loads were applied simulating realistic conditions. Compression stress was observed on the side of load application, and tensile stress was observed on the opposite side. Tensile stress was concentrated mainly in the cervical region and in the alveolar insertion bone. Although stress concentration analyses of the isotropic 3D models produced similar stress distribution results when compared to the anisotropic models, tensile stress values shown by anisotropic models were smaller than the isotropic models. Oblique loads resulted in higher values of tensile stresses, which concentrate mainly in the cervical area of the tooth and in the alveolar bone insertion. Anisotropic properties must be utilized in enamel stress evaluation in non-carious cervical lesions. PMID:25850984
NASA Astrophysics Data System (ADS)
Abdelsamie, Abouelmagd H.; Lee, Changhoon
2013-03-01
The current paper examines the heavy particle statistics modification by two-way interaction in particle-laden isotropic turbulence in an attempt to interpret their statistics modification using the information of modulated turbulence. Moreover, we clarify the distinctions of this modification between decaying and stationary turbulence as an extension of our previous work [A. H. Abdelsamie and C. Lee, "Decaying versus stationary turbulence in particle-laden isotropic turbulence: Turbulence modulation mechanism," Phys. Fluids 24, 015106 (2012), 10.1063/1.3678332]. Direct Numerical Simulation (DNS) was carried out using 1283 grid points at a Taylor micro-scale Reynolds number of Rλ ˜ 70. The effect of O(10^6) solid particles with a different Stokes number (St) was implemented as a point-force approximation in the Navier-Stokes equation. Various statistics associated with particle dispersion are investigated, and the auto-correlations models which was provided by Jung et al. ["Behavior of heavy particles in isotropic turbulence," Phys. Rev. E 77, 016307 (2008), 10.1103/PhysRevE.77.016307] are extended in the current paper. DNS results reveal that the two-way coupling interaction enhances the fluid and heavy particle auto-correlation functions and the alignment between their velocity vectors for all Stokes numbers in decaying and stationary turbulence, but for different reasons. The modification mechanisms of particle dispersion statistics in stationary turbulence are different from those in decaying turbulence depending on the Stokes number, particularly for St <1.
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei
2015-09-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei
2015-01-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250
First-order isotropic smectic- A transition in liquid-crystal aerosil gels
NASA Astrophysics Data System (ADS)
Ramazanoglu, M. K.; Clegg, P. S.; Birgeneau, R. J.; Garland, C. W.; Neubert, M. E.; Kim, J. M.
2004-06-01
The short-range order which remains when the isotropic to smectic- A transition is perturbed by a gel of silica nanoparticles (aerosils) has been studied using high-resolution synchrotron x-ray diffraction. The gels have been created in situ in decylcyanobiphenyl, which has a strongly first-order isotropic to smectic- A transition. The effects are determined by detailed analysis of the temperature and gel density dependence of the smectic structure factor. In previous studies of the continuous nematic to smectic- A transition in a variety of thermotropic liquid crystals the aerosil gel appeared to pin, at random, the phase of the smectic density modulation. For the isotropic to smectic- A transition the same gel perturbation yields different results. The smectic correlation length decreases more slowly with increasing random-field variance in good quantitative agreement with the effect of a random pinning field at a transition from a uniform phase directly to a phase with one-dimensional translational order. We thus compare the influence of random fields on a freezing transition with and without an intervening orientationally ordered phase.
ERIC Educational Resources Information Center
Yat-shing, Cheung
1974-01-01
Mainly concerned with where negative questions in Chinese originate.An abstract treatment allows the derviation of all questions from a general underlying structure with disjunctive pattern and accounts for the discordance between the answer to a negative question and its answer particle. (Author/RM)
The rotation and translation of non-spherical particles in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Byron, Margaret
The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of F=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity
Isotropic Crustal Velocity beneath Central Idaho/ Eastern Oregon using Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M.; Hongsresawat, S.
2013-12-01
We present a new, high resolution isotropic crustal velocity model beneath central Idaho and eastern Oregon. We produced the velocity model from vertical component Rayleigh wave group velocity measurements on data from the IDaho/ORegon (IDOR) Passive seismic network, 85 3-component broadband seismic stations, using ambient noise tomography and the method of Gallego et. al (2010). We calculated inter-station group velocities in narrow frequency bands from travel-time measurements of the stacked cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/ West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath the batholith. We cross-correlated seismograms for each IDOR Passive station pair in 24 hr segments, and then band-passed, removed mean and trend, whitened, and progressively stacked these cross-correlated seismograms for the number of days of available data for each station pair. We made travel-time measurements in relative width, narrow frequency bands by picking the peak of the envelope of the stacked seismograms. To overcome the loss of temporal resolution in the narrow bands, we measured 1-sided cross-correlated seismograms made by adding the negative side to the positive side of the stacked seismograms, and multiplying by a step function. We derived Rayleigh wave group velocity models for each frequency band using the least-squares inversion method of Tarantola (2005). We determined depth sensitivity of the various frequency bands from group velocity dispersion curves. Similarly
THERMAL: A routine designed to calculate neutron thermal scattering. Revision 1
Cullen, D.E.
1995-09-19
THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the relative system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy, e.g., the keV energy range. The THERMAL method is simple, clean, easy to understand, and most important very efficient; on a SUN SPARC-10 workstation, at low energies with thermal scattering it can do almost 6 million scatters a minute and at high energy over 13 million. Warning: This version of THERMAL completely supersedes the original version described in the same report number, dated February 24, 1995. The method used in the original code is incorrect, as explained in this report.
NASA Astrophysics Data System (ADS)
Buranasiri, Prathan; Banerjee, Partha P.; Polejaev, Vladimir; Sun, Ching-Cherng
2003-10-01
Using two beam coupling geometry, high order copropagating and contrapropagating isotropic and copropagating anisotropic self-diffraction are demonstrated using photorefractive cerium doped barium titanate. At small incident angles, typically less than 0.015 radians, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) orders are generated simultaneously. At larger incident angles, typically approximately more than 0.2094 radians, only codirectional anisotropic-self diffraction (CODAS) orders are generated. Ongoing work on image auto/cross correlation results are also shown.
Kriging without negative weights
Szidarovszky, F.; Baafi, E.Y.; Kim, Y.C.
1987-08-01
Under a constant drift, the linear kriging estimator is considered as a weighted average of n available sample values. Kriging weights are determined such that the estimator is unbiased and optimal. To meet these requirements, negative kriging weights are sometimes found. Use of negative weights can produce negative block grades, which makes no practical sense. In some applications, all kriging weights may be required to be nonnegative. In this paper, a derivation of a set of nonlinear equations with the nonnegative constraint is presented. A numerical algorithm also is developed for the solution of the new set of kriging equations.
Negative birefringent polyimide films
NASA Technical Reports Server (NTRS)
Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)
1994-01-01
A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.
Thermal sensitivity of Lamb waves for structural health monitoring applications.
Dodson, J C; Inman, D J
2013-03-01
One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.
Ito, Tsuyoshi; Imai, Hiroshi; Avis, David
2006-04-15
We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I{sub 3322} Bell inequality for 3x3 isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination.
Negative electrode composition
Kaun, Thomas D.; Chilenskas, Albert A.
1982-01-01
A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.
ERIC Educational Resources Information Center
Strawn, Candace A.
1998-01-01
Describes LOGO's turtle graphics capabilities based on a sixth-grade classroom's activities with negative numbers and Logo programming. A sidebar explains LOGO and offers suggestions to teachers for using LOGO effectively. (LRW)
Wiley, H. S.
2008-04-01
A frequent criticism in biology is that we don’t publish our negative data. As a result, the literature has become biased towards papers that favor specific hypotheses1. Some scientists have become so concerned about this trend that they have created journals dedicated to publishing negative results (e.g. the Journal of Negative Results in Biomedicine). Personally, I don’t think they should bother. I say this because I believe negative results are not worth publishing. Rest assured that I do not include drug studies that show a lack of effectiveness towards a specific disease or condition. This type of finding is significant in a societal context, not a scientific one, and thus we all have a vested interest in seeing this type of result published. I am talking about a set of experimental results that fail to support a particular hypothesis. The problem with these types of negative results is that they don’t actually advance science. Science is a set of ideas that can be supported by observations. A negative result does not support any specific idea, but only tells you what isn’t right. Well, there are only a small number of potential hypotheses that are correct, but essentially an infinite number of ideas are not correct. I don’t want to waste my time reading a paper about what doesn’t happen, just about those things that do. I can remember a positive result because I can associate it with a specific concept. What do I do with a negative one? It is hard enough to following the current literature. A flood of negative results would make that task all but impossible
Kihara, Hideyuki; Yoshida, Masaru
2013-04-10
As new organic materials for rewritable photopatterning, 2-anthroyl and 9-anthroyl ester compounds were synthesized. Their bulk-phase changes (we use "bulk-phase change" as complete phase change in a mass of a material neither in a surface nor in a small quantity in this study) triggered by photodimerization under melting conditions (melt-photodimerization) and subsequent thermal back reactions were investigated. All the anthroyl compounds exhibited melting points lower than ca. 160 °C, and they were nearly quantitatively converted to the corresponding photodimers by UV irradiation at temperatures of ∼5 °C higher than their respective melting points. We found that there were two kinds of bulk-phase change behaviors through the photoreaction. Two of the anthroyl compounds remained isotropic and lost fluidity during the melt-photodimerization. The obtained photodimers exhibited robust solid-state amorphous phases at room temperature. In contrast, the other three anthroyl compounds showed crystallization during the melt-photodimerization. The resulting photodimers changed from isotropic to crystalline phases, even at high temperature. Various experiments revealed that the bulk phase of the photodimers was affected not by the existence of regioisomers but by their fluidity at the photoirradiation temperature. The latter three photodimers retained enough fluidity, reflecting their high molecular mobilities at the photoirradiation temperature at which the isothermal crystallization occurred. The other two products were not able to crystallize due to low fluidity, resulting in amorphous phases. We also found that all the photodimers reverted to the corresponding monomers by thermal back reaction and recovered their initial photochemical and thermal properties. Using these reversible bulk-phase changes of the anthroyl compounds, we successfully demonstrated rewritable photopatterning in not only negative images but also positive ones, based on the optical contrast
Negative affixes in medical English.
Dzuganova, B
2006-01-01
Many medical terms have negative meaning expressed by means of a negative prefix or suffix. The most frequently used negative prefixes are: a-, dis-, in-, non-, and un-. There is only one negative suffix -less (Ref. 15). PMID:17125069
Thermal-stress-free fasteners for joining orthotropic materials
NASA Technical Reports Server (NTRS)
Blosser, Max L.
1987-01-01
Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stress and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTE's) in each of the three principal material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.
Thermal-stress-free fasteners for joining orthotropic materials
NASA Technical Reports Server (NTRS)
Blosser, M. L.
1987-01-01
Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.
Low temperature thermal hall conductivity of a nodal chiral superconductor
NASA Astrophysics Data System (ADS)
Yip, Sungkit
2016-08-01
Motivated by Sr2RuO4, we consider a chiral superconductor where the gap is strongly suppressed along certain momentum directions. We evaluate the thermal Hall conductivity in the gapless regime, i.e., at low temperature compared with the impurity band width γ, taking the simplest model of isotropic impurity scattering. We find that, under favorable circumstances, this thermal Hall conductivity can be quite significant and is smaller than the diagonal component (the universal thermal conductivity) only by a factor of 1/{ln}(2{{{Δ }}}M/γ ), where {{{Δ }}}M is the maximum gap.
Small membranes under negative surface tension.
Avital, Yotam Y; Farago, Oded
2015-03-28
We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes-(i) a weak negative tension regime characterized by stretching-dominated elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys, Rev. Lett. 64, 2094 (1990)]. However, in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, while in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension is related to the relationship between the mechanical and fluctuation tensions, which are equal to each other for non-negative values. When the tension decreases to negative values, the fluctuation tension γ drops somewhat faster than the mechanical tension τ in the small negative tension regime, before it saturates (and becomes larger than τ) for large negative tensions. The bending modulus exhibits an "opposite" trend. It remains almost unchanged in the stretching-dominated elastic regime, and decreases in the bending-dominated regime. Both the amplitudes of the thermal height undulations and the projected area variations diverge at the onset of mechanical instability.
The effects of unaccounted-for elastic anisotropy in isotropic seismic tomographies
NASA Astrophysics Data System (ADS)
Faccenda, Manuele; Bezada, Max; Toomey, Doug R.
2016-04-01
The present-day structure of Earth's interior is commonly determined by means of seismic tomography techniques. Most of the tomographic models, however, assume that the mantle is isotropic, which produces a physical inconsistency in regions where significant mantle anisotropy is sampled by a heterogeneous seismic ray distribution. We investigate the possible effects of unaccounted-for anisotropy in seismic imaging of the upper mantle in a subduction setting by carrying out a synthetic test in three steps: (1) We build an anisotropic velocity model of a subduction zone. The model was built from self-consistent estimates of mantle velocity structure and strain-induced anisotropy that are derived from thermo-mechanical and microstructural modeling. (2) We generate P-wave travel-time delay data for this model using an event distribution that is representative of what is typically recorded by a temporary seismic array. The anisotropic travel times are calculated through the prescribed model using a graph-theory ray tracer. (3) We invert the anisotropic synthetic delays under the assumption of isotropy, as is common practice. The tomographic inversion of the synthetic data recovers the input velocity structure fairly well, but delays caused solely by anisotropy result in very significant additional isotropic velocity anomalies that are artificial. Some of these apparent seismic anomalies are nonetheless attractive targets for (mis)interpretation. For example, one of the most notable apparent seismic anomalies is a low velocity zone in the mantle wedge. Our results suggest that significant artifacts may be common in isotropic velocity models of subduction zones and stress the need for mantle imaging that properly handles anisotropy.
The average cosine due to an isotropic light source in the ocean
NASA Astrophysics Data System (ADS)
Maffione, R. A.; Jaffe, J. S.
1995-07-01
The average cosine ? of the light field created by an isotropic point source (IPS) embedded in a homogeneous ocean is investigated with a Monte Carlo model. Two volume scattering functions (VSFs) are used in the model, taken from Petzold (1972), to compute the radiance distributions at various distances from the source. The simulated radiance distributions are compared with measurements of the point spread function made at Lake Pend Oreille, Idaho, during the 1992 optical closure experiment. An analytic model is presented for ? which is valid to at least 15 optical lengths from the source. The model shows that the mean light path, derived from ?, is a strong function of the single scattering albedo and the VSF. We found that errors in estimating the absorption coefficient by neglecting the increase in the mean light path, which is due to scattering, vary between 5% and 12% for nearly all natural waters. A mathematical proof is given that ? as the distance to the IPS goes to zero. An analytic expression is derived for ? close to a finite diffuse-isotropic source which shows that ? approaches one as the distance decreases, but at extremely close distances, ? as the distance to the surface of the source goes to zero. At distances beyond one attenuation length, for finite sources small compared to an attenuation length, ? behaves essentially as it would for a point source. An asymptotic model for ? as a function of the single scattering albedo is given with coefficients that depend on the VSF. Model results and comparisons with measured PSFs reveal the surprising result that the light field from an embedded isotropic point source in the ocean does not exhibit asymptotic behavior as far as 15 attenuation lengths from the source.
Hu, Lei; Chen, Jun; Fan, Longlong; Ren, Yang; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran
2014-09-18
The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc_{1-x}M_{x})F_{3} (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), α_{l} = 2.34 × 10^{-7} K^{-1}, 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc_{0.85}Ga_{0.05}Fe_{0.1})F_{3} adheres to the cubic system (Pm3^{-}m) according to the results of Xray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation Xray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc_{1-x}M_{x})F_{3} can be functionalized to exhibit high-T_{c} ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.
Anxiety and feedback negativity.
Gu, Ruolei; Huang, Yu-Xia; Luo, Yue-Jia
2010-09-01
It has been suggested that anxious individuals are more prone to feel that negative outcomes are particularly extreme and to interpret ambiguous outcomes as negative compared to nonanxious individuals. Previous studies have demonstrated that the feedback negativity (FN) component of event-related brain potential (ERP) is sensitive to outcome evaluation and outcome expectancy. Hence, we predicted that the FN should be different between high trait-anxiety (HTA) and low trait-anxiety (LTA) individuals. To test our hypothesis, the ERPs were recorded during a simple monetary gambling task. The FN was measured as a difference wave created across conditions. We found that the amplitude of the FN indicating negative versus positive outcomes was significantly larger for LTA individuals compared to HTA individuals. However, there was no significant difference in the FN between groups in response to ambiguous versus positive outcomes. The results indicate that there is a relationship between the FN and individual differences in anxiety. We suggest that these results reflect the impact of anxiety on outcome expectation. Our results challenge the reinforcement learning theory of error-related negativity, which proposes that ERN and FN reflect the same cognitive process.
LDEF (Prelaunch), AO187-02 : Chemical and Isotropic Measurements of Micrometeoroids by Secondary Ion
NASA Technical Reports Server (NTRS)
1984-01-01
LDEF (Prelaunch), AO187-02 : Chemical and Isotropic Measurements of Micrometeoroids by Secondary Ion Mass Spectrometry, Tray E08 The prelaunch photograph shows one hundred twenty (120) experiment capture cells installed on six support panels that are mounted in LDEF provided experiment trays. A capture cell consist of four polished high purity germanium plates covered with a 2.5um thick Mylar foil coated with 1300 angstroms of tantalum vapor deposited on the backside and 100 angstroms of gold-palladium vapor deposited on the front side. The capture cells are mounted within an aluminum frame on each panel. The fasteners are nonmagnetic stainless steel.
Energy landscapes of ion clusters in isotropic quadrupolar and octupolar traps
NASA Astrophysics Data System (ADS)
Calvo, F.; Yurtsever, E.; Wales, D. J.
2012-01-01
The energy landscapes of ion clouds confined in isotropic quadrupolar and octupolar traps are characterized for several representative cluster sizes. All clusters exhibit stable multishell structures that belong to separate funnels. Quadrupolar confinement leads to more homogeneous clusters and denser distributions of isomers than octupolar confinement. Statistical analysis of the transition states indicates that the barriers associated with intrashell motion are lower but more asymmetric and more cooperative compared to intershell motion. The relaxation between low-energy funnels with different arrangements of shells mostly exhibits Arrhenius kinetics, with a weak variation of the activation energy at higher temperatures.
Study on isotropic Heisenberg interaction for the realization of SWAP {sup ±α} gates
Muthuganesan, R.; Sankaranarayanan, R.; Balakrishnan, S.
2015-06-24
It is known that nonlocal two-qubit gates are geometrically represented by tetrahedron called as Weyl chamber. Two edges of the Weyl chamber are formed by SWAP{sup ±α} family gates with 0 ≤ α ≤ 1. In this work SWAP{sup ±α} are being realized as two spin system with isotropic Heisenberg exchange interaction. The real parameter α is shown to be the function of duration and strength of interaction. Entanglement of the states generated by these two families of gates is studied with concurrence. Significance of time scale in realizing CNOT using SWAP{sup ±1/2} is highlighted.
Velocity Fluctuations in the Interaction of Homogeneous, Isotropic Turbulence and a Detonation Wave
NASA Astrophysics Data System (ADS)
Hussein, S. M.; Blaiszik, E. M.; Baydar, E.; Lu, F. K.
The canonical problem of a shock wave interacting with homogeneous, isotropic turbulence (STI) has been well studied for over 40 years [1] and remains a topic of interest [2, 3]. One of the motivations for studying this canonical STI problem is that it captures key physics of the complex viscous-inviscid interaction that occur in other more realistic situations such as shock/boundary-layer interactions. A relatively less well-studied problem is the interaction with a detonation wave (DTI), with initial studies dating to almost as far back [4, 5].
NASA Astrophysics Data System (ADS)
Fang, L.; Zhang, Y. J.; Fang, J.; Zhu, Y.
2016-08-01
We show by direct numerical simulations (DNSs) that in different types of isotropic turbulence, the fourth-order statistical invariants have approximately a linear relation, which can be represented by a straight line in the phase plane, passing two extreme states: the Gaussian state and the restricted Euler state. Also, each DNS case corresponds to an equilibrium region that is roughly Reynolds-dependent. In addition, both the time reversal and the compressibility effect lead to nonequilibrium transition processes in this phase plane. This observation adds a new restriction on the mean-field theory.
Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.
Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y
2016-08-12
We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability. PMID:27563969
Spin-wave logic devices based on isotropic forward volume magnetostatic waves
Klingler, S. Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.
2015-05-25
We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.
NASA Astrophysics Data System (ADS)
Salili, S. M.; Tamba, M. G.; Sprunt, S. N.; Welch, C.; Mehl, G. H.; Jákli, A.; Gleeson, J. T.
2016-05-01
We have determined the nematic-isotropic transition temperature as a function of an applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15 K when subjected to a 22 T magnetic field. The increase is conjectured to be caused by a magnetic-field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers.
Isotropic plasma etching of Ge Si and SiNx films
Henry, Michael David; Douglas, Erica Ann
2016-08-31
This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.
Fast IIR isotropic 2-D complex Gabor filters with boundary initialization.
Bernardino, Alexandre; Santos-Victor, José
2006-11-01
Gabor filters are widely applied in image analysis and computer vision applications. This paper describes a fast algorithm for isotropic complex Gabor filtering that outperforms existing implementations. The main computational improvement arises from the decomposition of Gabor filtering into more efficient Gaussian filtering and sinusoidal modulations. Appropriate filter initial conditions are derived to avoid boundary transients, without requiring explicit image border extension. Our proposal reduces up to 39% the number of required operations with respect to state-of-the-art approaches. A full C++ implementation of the method is publicly available.
Energy landscapes of ion clusters in isotropic quadrupolar and octupolar traps.
Calvo, F; Yurtsever, E; Wales, D J
2012-01-14
The energy landscapes of ion clouds confined in isotropic quadrupolar and octupolar traps are characterized for several representative cluster sizes. All clusters exhibit stable multishell structures that belong to separate funnels. Quadrupolar confinement leads to more homogeneous clusters and denser distributions of isomers than octupolar confinement. Statistical analysis of the transition states indicates that the barriers associated with intrashell motion are lower but more asymmetric and more cooperative compared to intershell motion. The relaxation between low-energy funnels with different arrangements of shells mostly exhibits Arrhenius kinetics, with a weak variation of the activation energy at higher temperatures.
Distribution of Ionized Carbon during Simulated Plasma Disruption for the Isotropic Graphite Target
NASA Astrophysics Data System (ADS)
Sukegawa, Toshio; Okamoto, Koji; Madarame, Haruki
The behavior of ionized carbon during the simulated plasma disruption is investigated with the Magneto-Plasma-Dynamic (MPD) Arc Jet. The temporal and spatial distributions of the ionized carbon were measured by emission spectroscopy. Distributions of CII and CIII were obtained. For the isotropic graphite target, the emission intensity increased as the target is exposed by the heat flux from plasma. Two consecutive peaks of intensity were observed at the point near the target surface. A simple model of redeposition and surface roughness could explain these phenomena.
Isotropic photo-decomposition of spherical organic polymers on rutile TiO₂(110) surfaces.
Ishida, Nobuyuki; Iwasaki, Tamaki; Fujita, Daisuke
2011-04-15
We observed the photo-decomposition process of polystyrene latex (PSL) spheres on a rutile TiO₂(110) single crystal surface by using atomic force microscopy. During the decomposition process, both the height and width of the PSL spheres linearly decreased with the irradiation time in a similar way from the beginning, suggesting that the PSL spheres are isotropically decomposed. This indicates that the interface between the PSL spheres and the TiO₂ surface is not a dominant reaction site, as expected from normal photocatalytic reactions.
Mixed-derivative skewness for high Prandtl and Reynolds numbers in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Briard, Antoine; Gomez, Thomas
2016-08-01
The mixed-derivative skewness Suθ of a passive scalar field in high Reynolds and Prandtl numbers decaying homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal Markovian closure, for Reλ ≥ 103 up to Pr = 105. A convergence of Suθ for Pr ≥ 103 is observed for any high enough Reynolds number. This asymptotic high Pr regime can be interpreted as a saturation of the mixing properties of the flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the influence of large scales initial conditions are investigated as well.
Dynamic stability of fcc crystals under isotropic loading from first principles.
Rehák, Petr; Cerný, Miroslav; Pokluda, Jaroslav
2012-05-30
Lattice dynamics and stability of four fcc crystals (Al, Ir, Pt and Au) under isotropic (hydrostatic) tensile loading are studied from first principles using the linear response method and the harmonic approximation. The results reveal that, contrary to former expectations, strengths of all the studied crystals are limited by instabilities related to soft phonons with finite or vanishing wavevectors. The critical strains associated with such instabilities are remarkably lower than those related to the volumetric instability. On the other hand, the corresponding reduction of the tensile strength is by 20% at the most. An analysis of elastic stability conditions is also performed and the results obtained by means of both approaches are compared.
Fang, L; Zhang, Y J; Fang, J; Zhu, Y
2016-08-01
We show by direct numerical simulations (DNSs) that in different types of isotropic turbulence, the fourth-order statistical invariants have approximately a linear relation, which can be represented by a straight line in the phase plane, passing two extreme states: the Gaussian state and the restricted Euler state. Also, each DNS case corresponds to an equilibrium region that is roughly Reynolds-dependent. In addition, both the time reversal and the compressibility effect lead to nonequilibrium transition processes in this phase plane. This observation adds a new restriction on the mean-field theory. PMID:27627399
NASA Astrophysics Data System (ADS)
Ji, Jing; Tay, Francis E. H.; Miao, Jianmin; Sun, Jianbo
2006-04-01
This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.
All-optical steering of the interactions between multiple spatial solitons in isotropic polymers
NASA Astrophysics Data System (ADS)
Yan, Li-fen; Zhang, Dong; Jin, Qing-li; Wang, Hong-cheng; Zhang, Yao-ju
2010-11-01
All-optical steering of the nonlinear interactions between multiple spatial solitons can be performed in an isotropic photoisomerization polymer, by propagating an external control beam in perpendicular direction. Fusing, giving birth to another new soliton, and transferring energy can take place in the interactions of signal beams, which can be achieved by changing the incident position of the control beam, the initial relative phase and the power ratio between the signal beams and the control beam. These phenomena are physically explained, and they have significantly potential applications in optical signal readdressing, logic gating, and all-optical switching, etc.
NASA Astrophysics Data System (ADS)
Aliev, M. A.
2015-12-01
The analytical expressions have been obtained to describe the dependence of spinodal curve at which isotropic state of polydisperse melt of semiflexible diblock copolymer becomes unstable with respect to formation of nematic state on the polydispersity indices of the blocks, parameters of anisotropic interactions, and flexibility of blocks. The flexibility of blocks is taken into account within discrete worm-like chain model, lengths of blocks are assumed to be distributed by the Schulz-Zimm distribution. It is shown that increase of degree of polydispersity of blocks yields the increase of nematic spinodal temperature.