Sample records for iss module shielding

  1. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  2. Honeycomb vs. Foam: Evaluating Potential Upgrades to ISS Module Shielding

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon J.; Christiansen, Eric L.

    2009-01-01

    The presence of honeycomb cells in a dual-wall structure is advantageous for mechanical performance and low weight in spacecraft primary structures but detrimental for shielding against impact of micrometeoroid and orbital debris particles (MMOD). The presence of honeycomb cell walls acts to restrict the expansion of projectile and bumper fragments, resulting in the impact of a more concentrated (and thus lethal) fragment cloud upon the shield rear wall. The Multipurpose Laboratory Module (MLM) is a Russian research module scheduled for launch and ISS assembly in 2011 (currently under review). Baseline shielding of the MLM is expected to be predominantly similar to that of the existing Functional Energy Block (FGB), utilizing a baseline triple wall configuration with honeycomb sandwich panels for the dual bumpers and a thick monolithic aluminum pressure wall. The MLM module is to be docked to the nadir port of the Zvezda service module and, as such, is subject to higher debris flux than the FGB module (which is aligned along the ISS flight vector). Without upgrades to inherited shielding, the MLM penetration risk is expected to be significantly higher than that of the FGB module. Open-cell foam represents a promising alternative to honeycomb as a sandwich panel core material in spacecraft primary structures as it provides comparable mechanical performance with a minimal increase in weight while avoiding structural features (i.e. channeling cells) detrimental to MMOD shielding performance. In this study, the effect of replacing honeycomb sandwich panel structures with metallic open-cell foam structures on MMOD shielding performance is assessed for an MLM-representative configuration. A number of hypervelocity impact tests have been performed on both the baseline honeycomb configuration and upgraded foam configuration, and differences in target damage, failure limits, and derived ballistic limit equations are discussed.

  3. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module crew quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.

    With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  5. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  6. PHITS simulations of the Protective curtain experiment onboard the Service module of ISS: Comparison with absorbed doses measured with TLDs

    NASA Astrophysics Data System (ADS)

    Ploc, Ondřej; Sihver, Lembit; Kartashov, Dmitry; Shurshakov, Vyacheslav; Tolochek, Raisa

    2013-12-01

    "Protective curtain" was the physical experiment onboard the International Space Station (ISS) aimed on radiation measurement of the dose - reducing effect of the additional shielding made of hygienic water-soaked wipes and towels placed on the wall in the crew cabin of the Service module Zvezda. The measurements were performed with 12 detector packages composed of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs) placed at the Protective curtain, so that they created pairs of shielded and unshielded detectors.

  7. Space Shuttle drops down the SAA doses on ISS

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Semkova, J.; Tomov, B.; Matviichuk, Yu.; Dimitrov, Pl.; Koleva, R.; Malchev, St.; Reitz, G.; Horneck, G.; De Angelis, G.; Häder, D.-P.; Petrov, V.; Shurshakov, V.; Benghin, V.; Chernykh, I.; Drobyshev, S.; Bankov, N. G.

    2011-06-01

    Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5-3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm -2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30-150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East-West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected.

  8. ISS Observations of the Trapped Proton Anisotropic Effect: A Comparison with Model Calculations

    NASA Astrophysics Data System (ADS)

    Dachev, T.; Atwell, W.; Semones, E.; Tomov, B.; Reddell, B.

    Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Unit (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during 2001. Four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). Space radiation flight measurements were obtained during the time period May 11 - July 26, 2001. In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the development of a shielding model using combinatorial geometry and 3-D visualization and the orientation and placement of the five detectors at the locations within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton anisotropy (East-West effect) was computed for the individual passes through the South Atlantic Anomaly based on the Badhwar-Konradi anisotropy model.

  9. Observations of the SAA radiation distribution by Liulin-E094 instrument on ISS

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Atwell, William; Semones, Edward; Tomov, Borislav; Reddell, Brandon

    Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Units (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during the time period May 11-July 26, 2001. In the time span 11-27 May 2001 four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the shielding differences generated by different geometry between the predominating eastward drifting protons and the orientation and placement of the MDUs within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton incident spectra inside of ISS were calculated using calibration curve of MDU obtained during the tests with protons at the Louvain-la-Neuve cyclotron facility. The energy of incident spectra maximums were analyzed against L value for the individual passes through the South Atlantic Anomaly.

  10. TransHab Materials Selection

    NASA Technical Reports Server (NTRS)

    Pedley, M. D.; Mayeaux, B.

    2001-01-01

    A viewgraph presentation gives an overview of the materials selection for the TransHab, the habitation module on the International Space Station (ISS). Details are given on the location of TransHab on the ISS, the multilayer inflatable shell that surrounds the module, the materials requirements (including information on the expected thermal environment), the materials selection challenges, the bladder materials requirements and testing, and meteoroid/debris shielding material.

  11. [Analysis of the importance of cosmonaut's location and orientation onboard the International space station to levels of visceral irradiation during traverse of the region of the South Atlantic Anomaly].

    PubMed

    Drobyshev, S G; Benghin, V V

    2015-01-01

    Parametric analysis of absorbed radiation dose to the cosmonaut working in the Service module (SM) of the International space station (ISS) was made with allowance for anisotropy of the radiation field of the South Atlantic Anomaly. Calculation data show that in weakly shielded SM compartments the radiation dose to poorly shielded viscera may depend essentially on cosmonaut's location and orientation relative to the ISS shell. Difference of the lens absorbed dose can be as high as 5 times depending on orientation of the cosmonaut and the ISS. The effect is less pronounced on the deep seated hematopoietic system; however, it may increase up to 2.5 times during the extravehicular activities. When the cosmonaut is outside on the ISS SM side presented eastward, the absorbed dose can be affected noticeably by remoteness from the SM. At a distance less than 1.5 meters away from the SM east side in the course of ascending circuits, the calculated lens dose is approximately half as compared with the situation when the cosmonaut is not shielded by the ISS material.

  12. Nespolia moving the Neurospat Hardware in the Columbus Module during Expedition 26

    NASA Image and Video Library

    2010-12-20

    ISS026-E-012919 (20 Dec. 2010) --- European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, moves the Neurospat hardware (including light shield and frame) used for the Bodies in the Space Environment (BISE) experiment, in the Columbus Module aboard the International Space Station.

  13. Projectile Shape Effects Analysis for Space Debris Impact

    NASA Astrophysics Data System (ADS)

    Shiraki, Kuniaki; Yamamoto, Tetsuya; Kamiya, Takeshi

    2002-01-01

    (JEM IST), has a manned pressurized module used as a research laboratory on orbit and planned to be attached to the International Space Station (ISS). Protection system from Micrometeoroids and orbital debris (MM/OD) is very important for crew safety aboard the ISS. We have to design a module with shields attached to the outside of the pressurized wall so that JEM can be protected when debris of diameter less than 20mm impact on the JEM wall. In this case, the ISS design requirement for space debris protection system is specified as the Probability of No Penetration (PNP). The PNP allocation for the JEM is 0.9738 for ten years, which is reallocated as 0.9814 for the Pressurized Module (PM) and 0.9922 for the Experiment Logistics Module-Pressurized Section (ELM-PS). The PNP is calculated with Bumper code provided by NASA with the following data inputs to the calculation. (1) JEM structural model (2) Ballistic Limit Curve (BLC) of shields pressure wall (3) Environmental conditions: Analysis type, debris distribution, debris model, debris density, Solar single aluminum plate bumper (1.27mm thickness). The other is a Stuffed Whipple shield with its second bumper composed of an aluminum mesh, three layers of Nextel AF62 ceramic fabric, and four layers of Kevlar 710 fabric with thermal isolation material Multilayer Insulation (MLI) in the bottom. The second bumper of Stuffed Whipple shields is located at the middle between the first bumper and the 4.8 mm-thick pressurized wall. with Two-Stage Light Gas Gun (TSLGG) tests and hydro code simulation already. The remaining subject is the verification of JEM debris protection shields for velocities ranging from 7 to 15 km/sec. We conducted Conical Shaped Charge (CSC) tests that enable hypervelocity impact tests for the debris velocity range above 10 km/sec as well as hydro code simulation. because of the jet generation mechanism. It is therefore necessary to analyze and compensate the results for a solid aluminum sphere, which is the design requirement.

  14. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  15. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  16. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  17. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  18. The Potential for Health Monitoring in Expandable Space Modules: The Bigelow Expandable Activity Module on the ISS

    NASA Technical Reports Server (NTRS)

    Wells, Nathan D.; Madaras, Eric I.

    2017-01-01

    Expandable modules for use in space and on the Moon or Mars offer a great opportunity for volume and mass savings in future space exploration missions. This type of module can be compressed into a relatively small shape on the ground, allowing them to fit into space vehicles with a smaller cargo/fairing size than a traditional solid, metallic structure based module would allow. In April 2016, the Bigelow Expandable Activity Module (BEAM) was berthed to the International Space Station (ISS). BEAM is the first human-rated expandable habitat/module to be deployed and crewed in space. BEAM is a NASA managed ISS payload project in partnership with Bigelow Aerospace. BEAM is intended to stay attached to ISS for an operational period of 2 years to help advance the technology readiness for future expandable modules. BEAM has been instrumented with a suite of space flight certified sensors systems which will help characterize the module's performance for thermal, radiation shielding and impact monitoring against potential Micro Meteoroid/Orbital Debris (MM/OD) providing fundamental information on the BEAM environment for potential health monitoring requirements and capabilities. This paper will provide an overview of how the sensors/instrumentation systems were developed, tested, installed and an overview of the current sensor system operations. It will also discuss how the MM/OD impact detection system referred to as the Distributed Impact Detection System (DIDS) data is being processed and reviewed on the ground by the principle investigators.

  19. On Structural Design of a Mobile Lunar Habitat With Multi- Layered Environmental Shielding

    NASA Technical Reports Server (NTRS)

    Pruitt, J. R. (Technical Monitor); Rais-Rohani, M.

    2005-01-01

    This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.

  20. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021060 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021061 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021284 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021044 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021296 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021028 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020884 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021046 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020610 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021024 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021058 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021085 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020576 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020594 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021081 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020856 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020683 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021037 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  19. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020581 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  20. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021293 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021286 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020892 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021054 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021080 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. [Results of measuring neutrons doses and energy spectra inside Russian segment of the International Space Station in experiment "Matryoshka-R" using bubble detectors during the ISS-24-34 missions].

    PubMed

    Khulapko, S V; Liagushin, V I; Arkhangel'skiĭ, V V; Shurshakov, V A; Smith, M; Ing, H; Machrafi, R; Nikolaev, I V

    2014-01-01

    The paper presents the results of calculating the equivalent dose from and energy spectrum of neutrons in the right-hand crewquarters in module Zvezda of the ISS Russian segment. Dose measurements were made in the period between July, 2010 and November, 2012 (ISS Missions 24-34) by research equipment including the bubble dosimeter as part of experiment "Matryoshka-R". Neutron energy spectra in the crewquarters are in good agreement with what has been calculated for the ISS USOS and, earlier, for the MIR orbital station. The neutron dose rate has been found to amount to 196 +/- 23 microSv/d on Zvezda panel-443 (crewquarters) and 179 +/- 16 microSv/d on the "Shielding shutter" surface in the crewquarters.

  6. Portrait view of Whitson in Orlan suit

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09716 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  7. Portrait view of Whitson in Orlan suit

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09713 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  8. Whitson after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09719 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, photographed in her thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  9. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose rate values and data collected by the R3DE/R instruments and NASA Tissue Equivalent Proportional Counter (TEPC) during real cosmonauts and astronauts EVA in 79 the 2008-2010 time interval including large relativistic electrons doses during the magnetosphere enhancement in April 2010. The model was also used to be predicted the accumulated along the orbit of ISS galactic cosmic rays and inner radiation belt dose for 1 orbit (1.5 hours) and 4 consequences orbits (6 hours), which is the usual EVA continuation in dependence by the longitude of the ascending node of ISS. These predictions of the model could be used by space agencies medical and other not specialized in the radiobiology support staff for first approach in the ISS EVA time and space planning.

  10. Simulation of Spatial and Temporal Radiation Exposures for ISS in the South Atlantic Anomaly

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, John E.; Luetke, Nathan J.; Sandridge, Christopher A.; Qualls, Garry D.

    2004-01-01

    The International Space Station (ISS) living areas receive the preponderance of ionizing radiation exposure from Galactic Cosmic Rays (GCR) and geomagnetically trapped protons. Practically all trapped proton exposure occurs when the ISS passes through the South Atlantic Anomaly (SAA) region. The fact that this region is in proximity to a trapping mirror point indicates that the proton flux is highly directional. The inherent shielding provided by the ISS structure is represented by a recently-developed CAD model of the current 11-A configuration. Using modeled environment and configuration, trapped proton exposures have been analytically estimated at selected target points within the Service and Lab Modules. The results indicate that the directional flux may lead to substantially different exposure characteristics than the more common analyses that assume an isotropic environment. Additionally, predictive capability of the computational procedure should allow sensitive validation with corresponding on-board directional dosimeters.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020596 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021078 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020619 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020601 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021072 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021067 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Radiation investigations with Liulin-5 charged particle telescope on the International Space Station: review of results for years 2007-2015

    NASA Astrophysics Data System (ADS)

    Koleva, Rositza; Semkova, Jordanka; Krastev, Krasimir; Bankov, Nikolay; Malchev, Stefan; Benghin, Victor; Shurshakov, Vyacheslav

    2017-04-01

    The radiation field around the Earth is complex, composed of galactic cosmic rays, trapped particles of the Earth's radiation belts, solar energetic particles, albedo particles from the Earth's atmosphere and secondary radiation produced in the space vehicle shielding materials around the biological objects. Dose characteristics in near Earth and space radiation environment also depend on many other parameters such as the orbit parameters, solar cycle phase and current helio-and geophysical conditions. Since June 2007 till 2015 the Liulin-5 charged particle telescope has been observing the radiation characteristics in two different modules of the International Space Station (ISS). In the period from 2007 to 2009 measurements were conducted in the spherical tissue-equivalent phantom of MATROSHKA-R project located in the PIRS module of ISS. In the period from 2012 to 2015 measurements were conducted in and outside the phantom located in the Small Research Module of ISS. In this presentation attention is drawn to the obtained results for the dose rates, particle fluxes and dose equivalent rates in and outside the phantom from the galactic cosmic rays, trapped protons and solar energetic particle events which occurred in that period.

  18. STS-114 Discovery's approach for docking

    NASA Image and Video Library

    2005-07-28

    ISS011-E-11255 (28 July 2005) --- Space shuttle Discovery was about 600 feet from the international space station when cosmonaut Sergei K. Krikalev, Expedition 11 commander, and astronaut John L. Phillips, NASA science officer and flight engineer, photographed the spacecraft as it approached the station and performed a backflip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 commander, guided the shuttle through the flip. The photos will be analyzed by engineers on the ground as additional data to evaluate the condition of Discovery’s heat shield. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is visible in the cargo bay.

  19. Korzun after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09725 (14 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, attired in his thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Korzun and astronaut Peggy A. Whitson, flight engineer, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts. Korzun, who represents Rosaviakosmos, is also scheduled for a spacewalk on August 22, 2002.

  20. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  1. Phantom torso experiment on the international space station; flight measurements and calculations

    NASA Astrophysics Data System (ADS)

    Atwell, W.; Semones, E.; Cucinotta, F.

    The Phantom Torso Experiment (PTE) first flew on the 10-day Space Shuttle mission STS-91 in June 1998 during a period near solar minimum. The PTE was re- f l o w n on the I ternational Space Station (ISS) Increment 2 mission from April-n A u g u s t 2001 during a period near solar maximum. The experiment was located with a suite of other radiation experiments in the US Lab module Human Research Facility (HRF) rack. The objective of the experiment was to measure space radiation exposures at several radiosensitive critical body organs (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin) of a modified RandoTM phantom. Prior to flight, active solid -state silicon dosimeters were located at the RandoTM critical body organ locations and passive dosimeters were placed at the two surface locations. Using a mathematically modified Computerized Anatomical Male (CAM) model, shielding distributions were generated for the five critical body organ and two skin locations. These shielding distributions were then combined with the ISS HRF rack shielding distribution to account for the total shielding "seen" by the PTE. Using the trapped proton and galactic cosmic radiation environment models and high -energy particle transport codes, absorbed dose, dose equivalent, and LET (linear energy transfer) values were computed for the seven dose point locations of interest. The results of these computations are compared with the actual flight measurements.

  2. Honeycomb vs. Foam: Evaluating a Potential Upgrade to ISS Module Shielding for Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Hedman, Troy; Christiansen, Eric L.

    2009-01-01

    The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration.

  3. Predictions of secondary neutrons and their importance to radiation effects inside the International Space Station

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2001-01-01

    As part of a study funded by NASA MSFC to assess thecontribution of secondary particles in producing radiation damage to optoelectronics devices located on the International Space Station (IS), Monte Carlo calculations have been made to predict secondary spectra vs. shielding inside ISS modules and in electronics boxes attached on the truss (Armstrong and Colborn, 1998). The calculations take into account secondary neutron, proton, and charged pion production from the ambient galactic cosmic-ray (GCR) proton, trapped proton, and neutron albedo environments. Comparisons of the predicted neutron spectra with measurments made on the Mir space station and other spacecraft have also been made (Armstrong and Colborn, 1998). In this paper, some initial results from folding the predicted neutron spectrum inside ISS modules from Armstrong and Colborn (1998) with several types of radiation effects response functions related to electronics damage and astronaut-dose are given. These results provide an estimate of the practical importance of neutrons compared to protons in assessing radiation effects for the ISS. Also, the important neutron energy ranges for producing these effects have been estimated, which provides guidance for onboard neutron measurement requirements.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  7. View of Kotov working with Debris Panels during EVA18

    NASA Image and Video Library

    2007-05-30

    ISS015-E-10043 (30 May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Kotov and cosmonaut Fyodor N. Yurchikhin (out of frame), commander representing Russia's Federal Space Agency, retrieved the "Christmas tree" bundle of three packages of 17 protective debris panels for installation around the forward cone of the Zvezda Service Module of the International Space Station and to install the first set of those panels. The aluminum debris protection panels are designed to shield the module from micro-meteoroids.

  8. Why Deep Space Habitats Should Be Different from the International Space Station

    NASA Technical Reports Server (NTRS)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  9. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  10. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  11. [Radiation protective quality of spacesuit "Orlan-M" during extravehicular activities on the International Space Station].

    PubMed

    Shurshakov, V A; Kartashov, D A; Kolomenskiĭ, A V; Petrov, V M; Red'ko, V I; Abramov, I P; Letkova, L I; Tikhomirov, E P

    2006-01-01

    Sampling irradiation of spacesuit "Orlan-M" allowed construction of a simulation model of the spacesuit shielding function for critical body organs. The critical organs self-shielding model is a Russian standard anthropomorphic phantom. Radiation protective quality of the spacesuit was assessed by calculating the dose attenuation rates for several critical body organs of an ISS crewmember implementing EVA. These calculations are intended for more accurate assessment of radiation risk to the ISS crews donning "Orlan-M" in near-Earth orbits.

  12. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  13. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.

  14. International Space Station (ISS) Meteoroid/Orbital Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    1999-01-01

    Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.

  15. Bubble-detector measurements in the Russian segment of the International Space Station during 2009-12.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2015-01-01

    Measurements using bubble detectors have been performed in order to characterise the neutron dose and energy spectrum in the Russian segment of the International Space Station (ISS). Experiments using bubble dosemeters and a bubble-detector spectrometer, a set of six detectors with different energy thresholds that is used to determine the neutron spectrum, were performed during the ISS-22 (2009) to ISS-33 (2012) missions. The spectrometric measurements are in good agreement with earlier data, exhibiting expected features of the neutron energy spectrum in space. Experiments using a hydrogenous radiation shield show that the neutron dose can be reduced by shielding, with a reduction similar to that determined in earlier measurements using bubble detectors. The bubble-detector data are compared with measurements performed on the ISS using other instruments and are correlated with potential influencing factors such as the ISS altitude and the solar activity. Surprisingly, these influences do not seem to have a strong effect on the neutron dose or energy spectrum inside the ISS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Electrodynamic Dust Shield for Lunar/ISS Experiment Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul

    2015-01-01

    The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.

  17. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  18. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  19. STS-114 Space Shuttle Discovery Performs Back Flip For Photography

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  20. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017245 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  1. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017246 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  2. Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017237 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  3. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017249 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  4. Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017236 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  5. Phantom Torso in HRF section of Destiny module

    NASA Image and Video Library

    2001-05-02

    ISS002-E-6080 (2 May 2001) --- The Phantom Torso, seen here in the Human Research Facility (HRF) section of the Destiny/U.S. laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights. The experiment was delivered to the orbiting outpost during by the STS-100/6A crew in April 2001. Dr. Gautam Badhwar, NASA JSC, Houston, TX, is the principal investigator for this experiment. A digital still camera was used to record this image.

  6. Enterprise: an International Commercial Space Station Option

    NASA Astrophysics Data System (ADS)

    Lounge, John M.

    2002-01-01

    In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

  7. Heavy ion contributions to organ dose equivalent for the 1977 galactic cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Walker, Steven A.; Townsend, Lawrence W.; Norbury, John W.

    2013-05-01

    Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents.

  8. Nespoli works with ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017243 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  9. The Advanced Re-Entry Vehicle (ARV) A Development Step From ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, Massimiliano; Berthe, Philippe; Vo, Xavier; Pietsch, Klaus

    2011-05-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of unpressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU’s); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and de-orbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat-shield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a dedicated adapter. Its thermo-mechanical design, GNC, descent & landing systems take into account its future evolution for crew transportation. The ARV Crew version is also composed of three main modules: - an Integrated Resource Module (IRM) providing the main propulsion and power functions during the on-orbit phases of the mission; - a Re-entry Module (RM) providing the re-entry function and a pressurized environment for four crew members and about 250 kg of passive / active cargo; - a Crew Escape System (CES) providing the function of emergency separation of the RM from the launcher (in case of failure of this latter). The paper presents an overview of the ARV Cargo and Crew versions requirements derived from the above objectives, their mission scenarios, system architectures and performances. The commonality aspects between the ARV Cargo version and future transportation systems (including also the ARV Crew version and logistic carriers) are also highlighted.

  10. [Space radiation doses in the anthropomorphous phantom in space experiment "Matryeshka-R" and spacesuit "Orlan-M" during extravehicular activity].

    PubMed

    Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A

    2010-01-01

    Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.

  11. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are financially supported by BMWi under Grants 50WB0826, 50WB1026 and 50WB1232

  12. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  13. Reuse International Space Station (ISS) Modules as Lunar Habitat

    NASA Technical Reports Server (NTRS)

    Miernik, Janie; Owens, James E.; Floyd, Brian A.; Strong, Janet; Sanford, Joseph

    2005-01-01

    NASA currently projects ending the ISS mission in approximately 2016, due primarily to the expense of re-boost and re-supply. Lunar outposts are expected to be in place in the same timeframe. In support of these mission goals, a scheme to reuse ISS modules on the moon has been identified. These modules could function as pressurized volumes for human habitation in a lunar vacuum as they have done in low-earth orbit. The ISS hull is structurally capable of withstanding a lunar landing because there is no atmospheric turbulence or friction. A compelling reason to send ISS modules to the moon is their large mass; a large portion of the ISS would survive re-entry if allowed to de-orbit to Earth. ISS debris could pose a serious risk to people or structures on Earth unless a controlled re-entry is performed. If a propulsive unit is devised to be attached to the ISS and control re-entry, a propulsion system could be used to propel the modules to the moon and land them there. ISS modules on the lunar surface would not require re-boost. Radiation protection can be attained by burying the module in lunar regolith. Power and a heat removal system would be required for the lunar modules which would need little support structure other than the lunar surface. With planetary mass surrounding the module, heat flux may be controlled by conductance. The remaining requirement is the re-supply of life-support expendables. There are raw materials on the moon to supplement these vital resources. The lunar maria is known to contain approximately 40% oxygen by mass in inorganic mineral compounds. Chemical conversion of moon rocks to release gaseous oxygen is known science. Recycling and cleaning of air and water are currently planned to be accomplished with ISS Environmental Control & Life Support Systems (ECLSS). By developing a Propulsion and Landing Module (PLM) to dock to the Common Berthing Mechanism (CBM), several identical PLMs could be produced to rescue and transfer the ISS modules to the lunar surface, one by one. The propulsion does not need to be as swift as Apollo, nor would the modules need to be manned during transportation to the moon. The trajectory from low-Earth to lunar orbit would avoid or quickly pass through the Van Allen belts to minimize radiation exposure to electronics onboard. A landing technology similar to Apollo's could be utilized to land an ISS module on the moon. Since the mission will be unmanned, system redundancy could be minimized to keep the cost down. If the mission failed and a module crashed landed on the moon, the risk of debris landing on Earth would be avoided and the raw materials could be used in future lunar missions.

  14. ISS General Resource Reel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This video is a collection of computer animations and live footage showing the construction and assembly of the International Space Station (ISS). Computer animations show the following: (1) ISS fly around; (2) ISS over a sunrise seen from space; (3) the launch of the Zarya Control Module; (4) a Proton rocket launch; (5) the Space Shuttle docking with Zarya and attaching Zarya to the Unity Node; (6) the docking of the Service Module, Zarya, and Unity to Soyuz; (7) the Space Shuttle docking to ISS and installing the Z1 Truss segment and the Pressurized Mating Adapter (PMA); (8) Soyuz docking to the ISS; (9) the Transhab components; and (10) a complete ISS assembly. Live footage shows the construction of Zarya, the Proton rocket, Unity Node, PMA, Service Module, US Laboratory, Italian Multipurpose Logistics Module, US Airlock, and the US Habitation Module. STS-88 Mission Specialists Jerry Ross and James Newman are seen training in the Neutral Buoyancy Laboratory (NBL). The Expedition 1 crewmembers, William Shepherd, Yuri Gidzenko, and Sergei Krikalev, are shown training in the Black Sea and at Johnson Space Flight Center for water survival.

  15. Converting an MPLM to a PMM

    NASA Technical Reports Server (NTRS)

    Perez, Hector P.

    2010-01-01

    The Multi-Purpose Logistics Module (MPLM) are pressurized modules for transporting equipment, supplies and experimental devices to and from the International Space Station (ISS). An MPLM is carried in the cargo bay of a Shuttle and attached to the Unity or Harmony modules on the ISS for the duration of a mission, usually about 10 days. From there, supplies are offloaded, and finished experiments and waste are reloaded. The MPLM is then returned to the Space Shuttle payload bay for return to Earth. Three modules were built, Leonardo, Raffaello and Donatello. The modules were provided to NASA under contract by the Italian Space Agency. Each MPLM was built to be on-orbit a maximum of one month at a time. The MPLM Leonardo is being modified to turn it into the Pressurized Multipurpose Module (PMM), which will remain permanently attached to the ISS following the STS- 133 mission. The Space Shuttle is the only vehicle or rocket that has the capacity to carry the MPLM to the ISS. With the planned retirement of the Space Shuttle in 2011, NASA has found another use for the MPLM. With the modifications of the MPLM into a PMM the ISS will have another permanent module as part of the ISS that will be used as a storage module

  16. Radiation safety analysis of the ISS bone densitometer

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Vellinger, John C.; Barton, Kenneth; Faget, Paul

    A Bone Densitometer (BD) has been developed for installation on the International Space Station (ISS) with delivery by the Space-X Dragon spacecraft planned for mid 2014. After initial tests on orbit the BD will be used in longitudinal measurements of bone mineral density in experimental mice as a means of evaluating countermeasures to bone loss. The BD determines bone mineral density (and other radiographic parameters) by dual energy x-ray absorptiometry (DEXA). In a single mouse DEXA “scan” its 80 kV x-ray tube is operated for 15 seconds at 35 kV and 3 seconds at 80 kV in four repetitions, giving the subject a total dose of 2.5 mSv. The BD is a modification of a commercial mouse DEXA product known as PIXImus(TM). Before qualifying the BD for utilization on ISS it was necessary to evaluate its radiation safety features and any level of risk to ISS crew members. The BD design reorients the PIXImus so that it fits in an EXPRESS locker on ISS with the x-ray beam directed into the crew aisle. ISS regulation SSP 51700 considers the production of ionizing radiation to be a catastrophic-level hazard. Accidental exposure is prevented by three independent levels of on-off control as required for a catastrophic hazard. The ALARA (As Low as Reasonably Achievable) principle was applied to the BD hazard just as would be done on the ground, so deliberate exposure is limited by lead shielding according to ALARA. Hot spots around the BD were identified by environmental dosimetry using a Ludlum 9DP pressurized ionization chamber survey meter. Various thicknesses of lead were applied to the BD housing in areas where highest dose-per-scan readings were made. It was concluded that 0.4 mm of lead shielding at strategic locations, adding only a few kg of mass to the payload, would accomplish ALARA. With shielding in place the BD now exposes a crew member floating 40 cm away to less than 0.08 microSv per mouse scan. There is an upper limit of 20 scans per day, or 1.6 microSv per day, which may occur a few times per year. This dose may be compared with the 400 microSv per day received by crew members in low earth orbit. The designed shielding level also protects adjacent payloads by maintaining less than 2 mrad/day at 5 cm - a requirement for the protection of electronic instrumentation. It is concluded that the ISS Bone Densitometer minimizes ionizing radiation risks associated with its operation. Research supported by NASA Contract NNJ13GA01C and the Center for the Advancement of Science in Space (CASIS).

  17. Building 9 ISS mock-ups and trainers

    NASA Image and Video Library

    1999-08-02

    Photographic documentation showing the bldg. 9 ISS module mock-ups and trainers. Views include: various overall views of the configuration of the ISS module trainers on the floor of bldg. 9 (08445-46, 08449-51, 08458-61, 08464-65, 08469, 08471, 08476); various portions of the mock-ups (08447-48, 08470); views of the Node 2, Experiment Module and Logistics Module (08452); Node 2 (08453, 08466); Destiny and Node 2 (08454); Destiny, Unity and Airlock (08455); Zarya, Service Module and shuttle mock-ups (08456); Logistics Module and Experiment Module (08457, 08468); various views of Columbia, Node 2 and Destiny (08462-63); Columbus, Node 2, Experiment Module and Logistics Module (08467); U.S. Laboratory module (08472); Logistics Module (08473); module layout (08474); Logistics Module and Experiment Module (08475).

  18. Method for the prediction of the effective dose equivalent to the crew of the International Space Station

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.

    2014-03-01

    This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.

  19. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286 μGy/day with dose equivalent values of 647 μSv/day.

  20. [Effect of the ISS Russian segment configuration on the service module radiation environment].

    PubMed

    Mitrikas, V G

    2011-01-01

    Mathematical modeling of variations in the Service module radiation environment as a function of ISS Russian segment configuration was carried out using models of the RS modules and a spherical humanoid phantom. ISS reconfiguration impacted significantly only the phantom brought into the transfer compartment (ExT). The Radiation Safety Service prohibition for cosmonauts to stay in this compartment during solar flare events remains valid. In all other instances, error of dose estimation is higher as compared to dose value estimation with consideration for ISS RS reconfiguration.

  1. International Space Station: becoming a reality.

    PubMed

    David, L

    1999-07-01

    An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.

  2. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  3. Bigelow Expandable Activity Module (BEAM) Monitoring System

    NASA Technical Reports Server (NTRS)

    Wells, Nathan

    2017-01-01

    What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.

  4. Operational Use of the Air Quality Monitor on ISS and Potential for Air Quality Monitoring Onboard Submarines

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Jones, Jared; Wallace, William; Mudgett, Paul

    2015-01-01

    The air quality monitor (AQM) began operations on the International Space Station (ISS) in March 2013 and was validated for operational use in January 2014. The AQM is a gas chromatograph-differential mobility spectrometer that currently monitors 22 target compounds in the ISS atmosphere. Data are collected twice per week, although data collection can be more frequent in contingency situations. In its second year, the AQM has provided data to decision-makers on several ISS contaminant related issues in both air and water. AQM has been used in strictly air incidents, such as a potential ammonia leak, and to investigate air contaminants affecting the water processing (excess ethanol). In the latter case data from water monitors and AQM were compared to understand the issue with the water processor. Additionally, the AQM has been moved to different ISS modules to determine whether air is sufficiently mixed between modules so that a central LAB module location is representative of the entire ISS atmosphere. Historic data on the ISS atmosphere in different modules from archival samples (ground lab analysis) suggest that the atmosphere is usually homogenous. This presentation will briefly describe the technical aspects of the AQM operations and summarize the validation results. The main focus of the presentation will be to discuss the results from the AQM survey of the ISS modules and to show how the AQM data has contributed to an understanding of environmental issues that have arisen on ISS. Presentation of a potential ammonia leak (indicated by an alarm) in 2015 will illustrate the use and value of the AQM in such situations.

  5. Foreman during Expedition 16 / STS-123 EVA 4

    NASA Image and Video Library

    2008-03-21

    ISS016-E-033394 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  6. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles, dose rates and LET spectra will be presented in comparison to the data of the DOSIS experiment as well as the DOSMAP experiment which has been performed during solar maximum in 2001.

  7. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    NASA Astrophysics Data System (ADS)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the characteristics of solar events leading to highest radiation risks in a human habitat during deep space exploration to best focus the needed forecasting.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-01

    This image of the International Space Station (ISS) was taken during the STS-106 mission. The ISS component nearest the camera is the U.S. built Node 1 or Unity module, which cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The FGB was linked with the Service Module or Zvezda. On the far end is the Russian Progress supply ship.

  10. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  11. Phillips with probe-and-cone docking mechanism (StM) in the Zvezda module

    NASA Image and Video Library

    2005-06-19

    ISS011-E-09205 (19 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, works on the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.

  12. International Space Station (ISS)

    NASA Image and Video Library

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  13. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37

    PubMed Central

    Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.

    2016-01-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609

  14. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  15. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e260338 - iss042e261334). Shows night time Earth views taken from the Cupola module.

  16. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. Back dropped by the blackness of space and Earth’s horizon, astronaut Stephen K. Robinson, STS-114 mission specialist, is anchored to a foot restraint on the extended ISS’s Canadarm-2.

  17. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles.

  18. Photographing Shuttle Thermal Tiles in Space

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles.

  19. Gidzenko in Service Module WMC

    NASA Image and Video Library

    2001-04-02

    ISS01-E-5166 (December 2000) --- Cosmonaut Yuri P. Gidzenko, Soyuz commander for Expedition One, performs some electrician's work just outside the waste management compartment in the Zvezda Service Module of the Earth-orbiting International Space Station (ISS).

  20. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard the ISS, the other is re-integrated on the ground with new experiments. When the cryogen of the facility in space are exhausted, it will be swapped with the other facility with the new experiment. A total of 20 science missions are envisioned over the next 20 years.

  1. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    NASA Astrophysics Data System (ADS)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-01

    This image of the International Space Station (ISS) was taken when Space Shuttle Atlantis (STS-106 mission) approached the ISS for docking. At the top is the Russian Progress supply ship that is linked with the Russian built Service Module or Zvezda. The Zvezda is cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The U.S. built Node 1 or Unity module is seen at the bottom.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-11

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  4. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2016-02-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Behnken during Expedition 16 / STS-123 EVA 4

    NASA Image and Video Library

    2008-03-21

    ISS016-E-033400 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground. A portion of the Space Shuttle Endeavour payload bay is visible in the background.

  6. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  7. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  9. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-26

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  10. ISS Expedition 18 Food Prep in Service Module (SM)

    NASA Image and Video Library

    2009-01-01

    ISS018-E-017005 (1 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, poses for a photo with food which she prepared at the galley in the Zvezda Service Module of the International Space Station.

  11. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment (2012 - 2014) in comparison to the data of the DOSIS experiment (2009 - 2011). The Polish contribution was supported by the National Science Centre (No DEC-2012/06/M/ST9/00423). The CAU contributions to DOSIS and DOSIS 3D are financially supported by BMWi under Grants 50WB0826, 50WB1026 and 50WB1232.

  12. Initial Results from the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Swenson, Charles; Thompson, Don; Barjatya, Aroh; Koontz, Steven L.; Schneider, Todd; Vaughn, Jason; Minow, Joseph; Craven, Paul; Coffey, Victoria; hide

    2007-01-01

    The Floating Potential Measurement Unit (FPMU) is a multi-probe package designed to measure the floating potential of the 1nternational Space Station (ISS) as well as the density and temperature of the local ionospheric plasma environment. The role oj the FPMU is to provide direct measurements of ISS spacecraft charging as continuing construction leads to dramatic changes in ISS size and configuration. FPMU data are used for refinement and validation of the ISS spacecraft charging models used to evaluate the severity and frequency of occurrence of ISS charging hazards. The FPMU data and the models are also used to evaluate the effectiveness of proposed hazard controls. The FPMU consists of four probes: a floating potential probe, two Langmuir probes. and a plasma impedance probe. These probes measure the floating potential of the ISS, plasma density, and electron temperature. Redundant measurements using different probes support data validation by inter-probe comparisons. The FPMU was installed by ISS crewmembers, during an ExtraVehicular Activity, on the starboard (Sl) truss of the ISS in early August 2006, when the ISS incorporated only one 160V US photovoltaic (PV) array module. The first data campaign began a few hours after installation and continued for over five days. Additional data campaigns were completed in 2007 after a second 160V US PV array module was added to the ISS. This paper discusses the general performance characteristics of the FPMU as integrated on ISS, the functional performance of each probe, the charging behavior of the ISS before and after the addition of a second 160V US PV array module, and initial results from model comparisons.

  13. Gidzenko in Service Module with laptop computers

    NASA Image and Video Library

    2001-03-30

    ISS-01-E-5070 (December 2000) --- Astronaut Yuri P. Gidzenko, Expedition One Soyuz commander, works with computers in the Zvezda or Service Module aboard the Earth-orbiting International Space Station (ISS). The picture was taken with a digital still camera.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-30

    Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  15. Heavy-ion anisotropy measured by ALTEA in the International Space Station.

    PubMed

    Di Fino, L; Casolino, M; De Santis, C; Larosa, M; La Tessa, C; Narici, L; Picozza, P; Zaconte, V

    2011-09-01

    The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Station's shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Station's radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50 keV/µm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.

  16. International Space Station Assembly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  17. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  18. Expedition Seven Malenchenko eating in Zvezda Service module

    NASA Image and Video Library

    2003-09-01

    ISS007-E-14282 (1 September 2003) --- Cosmonaut Yuri I. Malenchenko, Expedition 7 mission commander, is pictured holding a spoon while a package of food floats nearby in the Zvezda Service Module on the International Space Station (ISS). Malenchenko represents Rosaviakosmos.

  19. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  20. A Year in the Life of International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2006-01-01

    The past twelve months (October 2005 to September 2006) have been among the busiest in the life of the International Space Station (ISS), both in terms of on-orbit operations as well as future planning, for both ISS systems and research. The Expedition 12 and 13 crews completed their missions successfully, carrying out research for Russia, the United States, Europe and Japan, and bringing continuous ISS occupancy to nearly six years. The European Space Agency's (ESA) first Long Duration Mission on ISS is underway, involving significant international research. The Expedition 14 crew completed its training and is embarking on its own 6-month mission with a full slate of international research. Future crews are in training for their respective assembly and research missions. Shuttle flights resumed after a 10-month hiatus, delivering new research facilities and resuming assembly of ISS. ESA's Columbus research module was delivered to the Kennedy Space Center, joining Japan's Kibo research module already there. Following preflight testing, the two modules will launch in 2007 and 2008, respectively, joining Destiny as ISS's research infrastructure. A revised ISS configuration and assembly sequence were endorsed by all the Partners, with a reduced number of Shuttle flights, but for the first time including plans for post-Shuttle ISS operations after 2010. The new plan will pose significant challenges to the ISS research community. As Europe and Japan build their on-orbit research infrastructure, and long-term plans become firmer, the next 12 months should prove to be equally challenging and exciting.

  1. Culbertson cuts his hair in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-09-22

    ISS003-E-6104 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr., Expedition Three mission commander, cuts his hair in the Zvezda Service Module on the International Space Station (ISS). This picture was taken with a digital still camera.

  2. Krikalev in Service module with tools

    NASA Image and Video Library

    2001-03-30

    ISS01-E-5150 (December 2000) --- Cosmonaut Sergei K. Krikalev, Expedition One flight engineer, retrieves a tool during an installation and set-up session in the Zvezda service module aboard the International Space Station (ISS). The picture was recorded with a digital still camera.

  3. Usachev performs maintenance on TVIS system in Service module

    NASA Image and Video Library

    2001-04-01

    ISS002-E-5137 (April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, performs routine maintenance on the International Space Station's (ISS) Treadmill Vibration Isolation System (TVIS) in the Zvezda / Service Module. This image was recorded with a digital still camera.

  4. Usachev in sleep station in Service Module

    NASA Image and Video Library

    2001-04-22

    ISS002-E-5360 (22 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, writes down some notes in his sleeping compartment in the Zvezda / Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.

  5. Usachev at sleep station in Service Module

    NASA Image and Video Library

    2001-04-28

    ISS002-E-6337 (28 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, writes down some notes in his sleeping compartment in the Zvezda / Service Module of the International Space Station (ISS). The image was taken with a digital still camera.

  6. Helms in Node 1/Unity module

    NASA Image and Video Library

    2001-04-07

    ISS002-E-5511 (07 April 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, pauses from moving through the Node 1 / Unity module of the International Space Station (ISS) to pose for a photograph. This image was recorded with a digital still camera.

  7. Voss with soldering tool in Service Module

    NASA Image and Video Library

    2001-03-28

    ISS002-E-5069 (28 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, uses a soldering tool for a maintenance task in the Zvezda Service Module onboard the International Space Station (ISS). The image was recorded with a digital still camera.

  8. ISS Expedition 18 Multi Purpose Logistics Module (MPLM) Interior

    NASA Image and Video Library

    2008-11-19

    ISS018-E-009225 (18 Nov. 2008) --- Astronaut Shane Kimbrough, STS-126 mission specialist, floats in the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node while Space Shuttle Endeavour is docked with the station.

  9. ISS Expedition 18 Multi Purpose Logistics Module (MPLM) Interior

    NASA Image and Video Library

    2008-11-19

    ISS018-E-009227 (18 Nov. 2008) --- Astronaut Donald Pettit, STS-126 mission specialist, floats in the Leonardo Multi-Purpose Logistics Module attached to the Earth-facing port of the International Space Station's Harmony node while Space Shuttle Endeavour is docked with the station.

  10. Voss with coffee and snack in Service Module

    NASA Image and Video Library

    2001-04-12

    ISS002-E-5532 (12 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, has a coffee and a snack at the table in the Zvezda / Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.

  11. Usachev typing while in sleep station in the Service Module

    NASA Image and Video Library

    2001-03-23

    ISS002-E-5730 (23 March 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, works at a laptop computer in his crew compartment in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  12. Usachev with IRED hardware in Node 1/Unity module

    NASA Image and Video Library

    2001-04-07

    ISS002-E-5507 (07 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, wears a harness while conducting resistance exercises in the Node 1 / Unity module of the International Space Station (ISS). This image was recorded with a digital still camera.

  13. Helms and Voss in Service Module

    NASA Image and Video Library

    2001-04-10

    ISS002-E-5335 (10 April 2001) --- Astronaut Susan J. Helms (left and astronaut James S. Voss, both Expedition Two flight engineers, pose for a photograph aboard the Zvezda/Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.

  14. Service Life Extension of the ISS Propulsion System Elements

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Grant, Gregory; Kuznetsov, Sergei; Shaevich, Sergey; Spencer, Victor

    2015-01-01

    The International Space Station (ISS) is a result of international collaboration in building a sophisticated laboratory of an unprecedented scale in Low Earth Orbit. After a complex assembly sequence spanning over a decade, some of the early modules launched at the beginning of the program would reach the end of their certified lives, while the newer modules were just being commissioned into operation. To maximize the return on global investments in this one-of-a-kind orbiting platform that was initially conceived for a service life until 2016, it is essential for the cutting edge research on ISS to continue as long as the station can be sustained safely in orbit. ISS Program is assessing individual modules in detail to extend the service life of the ISS to 2024, and possibly to 2028. Without life extension, Functional Cargo Block (known by its Russian acronym as FGB) and the Service Module (SM), two of the early modules on the Russian Segment, would reach the end of their certified lives in 2013 and 2015 respectively. Both FGB and SM are critical for the propulsive function of the ISS. This paper describes the approach used for the service life extension of the FGB propulsion system. Also presented is an overview of the system description along with the process adopted for developing the life test plans based on considerations of system failure modes, fault tolerance and safety provisions. Tests and analyses performed, important findings and life estimates are summarized. Based on the life extension data, FGB propulsion system, in general, is considered ready for a service life until 2028.

  15. Usachev in hatch at aft end of Service module

    NASA Image and Video Library

    2001-03-22

    ISS002-E-5705 (22 March 2001) --- Cosmonaut Yury V. Usachev of Rosaviakosmos drifts through the forward hatch of the Zvezda Service Module during early days of his tour of duty aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  16. ISS Expedition 18 Sandra Magnus on the Treadmill Vibration Isolation and Stabilization (TVIS) in Service Module (SM)

    NASA Image and Video Library

    2009-02-12

    ISS018-E-030101 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  17. ISS Expedition 18 Sandra Magnus on the Treadmill Vibration Isolation and Stabilization (TVIS) in Service Module (SM)

    NASA Image and Video Library

    2009-02-12

    ISS018-E-030096 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  18. Voss in Service module with cycle ergometer

    NASA Image and Video Library

    2001-03-23

    ISS002-E-5734 (23 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, gives his arms and upper body a workout with the bicycle ergometer facility in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  19. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; hide

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  20. Measurements on radiation shielding efficacy of Polyethylene and Kevlar in the ISS (Columbus)

    PubMed Central

    Di Fino, L.; Larosa, M.; Zaconte, V.; Casolino, M.; Picozza, P.; Narici, L.

    2014-01-01

    The study and optimization of material effectiveness as radiation shield is a mandatory step toward human space exploration. Passive radiation shielding is one of the most important element in the entire radiation countermeasures package. Crewmembers will never experience direct exposure to space radiation; they will be either inside some shelter (the spacecraft, a ‘base’) or in an EVA (Extra Vehicular Activity) suit. Understanding the radiation shielding features of materials is therefore an important step toward an optimization of shelters and suits construction in the quest for an integrated solution for radiation countermeasures. Materials are usually tested for their radiation shielding effectiveness first with Monte Carlo simulations, then on ground, using particle accelerators and a number of specific ions known to be abundant in space, and finally in space. Highly hydrogenated materials perform best as radiation shields. Polyethylene is right now seen as the material that merges a high level of hydrogenation, an easiness of handling and machining as well as an affordable cost, and it is often referred as a sort of ‘standard’ to which compare other materials' effectiveness. Kevlar has recently shown very interesting radiation shielding properties, and it is also known to have important characteristics toward debris shielding, and can be used, for example, in space suits. We have measured in the ISS the effectiveness of polyethylene and kevlar using three detectors of the ALTEA system [ 1– 3] from 8 June 2012 to 13 November 2012, in Express Rack 3 in Columbus. These active detectors are able to provide the radiation quality parameters in any orbital region; being identical, they are also suitable to be used in parallel (one for the unshielded baseline, two measuring radiation with two different amounts of the same material: 5 and 10 g/cm2). A strong similarity of the shielding behavior between polyethylene and kevlar is documented. We measured shielding providing as much as ∼40% reduction for high Z ions. In Fig. 1, the integrated behavior (3 ≤LET ≤ 350 keV/µm) is shown (ratios with the baseline measurements with no shield) both for polyethylene and kevlar, in flux, dose and dose equivalent. The measured reductions in dose for the 10 g/cm2 shields for high LET (>50 keV/µm, not shown in the figure) are in agreement with what found in accelerator measurements (Fe, 1 GeV) [4]. The thinner shielding (5 g/cm2) in our measurements performs ∼2% better (in unit areal density). Fig. 1.Integrated behavior (3 ≤ LET ≤ 350 keV/μm) of Flux, Dose and Equivalent Dose. The ratios with the baseline measurements with no shield are shown, both for Kevlar and Polyethylene as measured with the two different material thicknesses.

  1. Culbertson floats through a hatch into the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-12

    STS-105-E-5118 (12 August 2001) --- Frank L. Culbertson, Expedition Three mission commander, gives a thumbs up as he enters the Zvezda Service Module during the initial ingress into the International Space Station (ISS) for the STS-105 mission. Culbertson, accompanied by cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents on the ISS. This image was taken with a digital still camera.

  2. KSC-98pc916

    NASA Image and Video Library

    1998-08-13

    An Integrated Equipment Assembly (IEA) is moved from the low bay into the high bay at the Space Station Processing Facility at KSC. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the ISS. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999

  3. Characteristics of Whipple Shield Performance in the Shatter Regime

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Bjorkman, Michael; Christiansen, Eric L.

    2009-01-01

    Between the onset of projectile fragmentation and the assumption of rear wall failure due to an impulsive load, multi-wall ballistic limit equations are linearly interpolated to provide reasonable yet conservative predictions of perforation thresholds with conveniently simple mathematics. Although low velocity and hypervelocity regime predictions are based on analytical expressions, there is no such scientific foundation for predictions in the intermediate (or shatter) regime. As the debris flux in low earth orbit (LEO) becomes increasingly dominated by manmade pollution, the profile of micrometeoroid and orbital debris (MMOD) risk shifts continually towards lower velocities. For the International Space Station (ISS), encounter velocities below 7 km/s now constitute approximately 50% of the penetration risk. Considering that the transition velocity from shatter to hypervelocity impact regimes described by common ballistic limit equations (e.g. new non-optimum Whipple shield equation [1]) occurs at 7 km/s, 50% of station risk is now calculated based on failure limit equations with little analytical foundation. To investigate projectile and shield behavior for impact conditions leading to projectile fragmentation and melt, a series of hypervelocity impact tests have been performed on aluminum Whipple shields. In the experiments projectile diameter, bumper thickness, and shield spacing were kept constant, while rear wall thickness was adjusted to determine spallation and perforation limits at various impact velocities and angles. The results, shown in Figure 1 for normal and 45 impacts, demonstrated behavior that was not sufficiently described by the simplified linear interpolation of the NNO equation (also shown in Figure 1). Hopkins et al. [2] investigated the performance of a nominally-identical aluminum Whipple shield, identifying the effects of phase change in the shatter regime. The results (conceptually represented in Figure 2) were found to agree well with those obtained in this study at normal incidence, suggesting that shielding performance in the shatter regime could be well described by considering more complex phase conditions than currently implemented in most BLEs. Furthermore, evidence of these phase effects were found in the oblique test results, providing the basis for an empirical description of these effects that can be applied in MMOD risk assessment software. In this paper, results of the impact experiments are presented, and characteristics of target damage are evaluated. A comparison of intermediate velocity impact failure mechanisms in current BLEs are discussed and compared to the findings of the experimental study. Risk assessment calculations have been made on a simplified structure using currently implemented penetration equations and predicted limits from the experimental program, and the variation in perceived mission risk is discussed. It was found that ballistic limit curves that explicitly incorporated phase change effects within the intermediate regime lead to a decrease in predicted MMOD risk for ISS-representative orbits. When considered for all Whipple-based shielding configurations onboard the ISS, intermediate phase change effects could lead to significant variations in predicted mission risk.

  4. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  5. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-06

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  6. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated approximately every four weeks for this action. The first data downlink was performed on July 31st 2009. First Results for the DOSTEL measurements such as count rate profiles, dose rates and LET spectra will be presented in comparison to the data obtained by other experiments.

  7. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles, and a portion of the Canadian built Remote Manipulator System (RMS) robotic arm and the Nile River is visible at the bottom.

  8. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. Astronaut Stephen K. Robinson, STS-114 mission specialist, used the pictured still digital camera to expose a photo of his helmet visor during the EVA. Also visible in the reflection are thermal protection tiles on Discovery’s underside.

  9. Close-up of Shuttle Thermal Tiles in Space

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. This close up of the thermal tiles was taken by astronaut Stephen K. Robinson, STS-114 mission specialist (out of frame). Astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration (JAXA), can be seen in the background perched on a Space Station truss.

  10. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. This close up of the thermal tiles was taken by astronaut Stephen K. Robinson, STS-114 mission specialist (out of frame). Astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration (JAXA), can be seen in the background perched on a Space Station truss.

  11. Close-up of Shuttle Thermal Tiles in Space

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles, and a portion of the Canadian built Remote Manipulator System (RMS) robotic arm and the Nile River is visible at the bottom.

  12. Voss in Service Module with apples

    NASA Image and Video Library

    2001-03-22

    ISS002-E-5710 (22 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, appears to be trying to decide between two colors or two species of apples as he ponders them in the Zvezda Service Module on the International Space Station (ISS). This photo was taken with a digital still camera.

  13. iss055e024310

    NASA Image and Video Library

    2018-04-17

    iss055e024310 (April 17, 2018) --- NASA astronauts Drew Feustel and Scott Tingle are at work inside the U.S. Destiny laboratory module. Feustel works on routing and installing ethernet cables throughout the International Space Station. Tingle conducts research for the Metabolic Tracking experiment inside the lab module's Microgravity Science Glovebox.

  14. Usachev in Raffaello Multi-Purpose Logistics Module (MPLM)

    NASA Image and Video Library

    2001-04-26

    ISS002-E-5852 (26 April 2001) --- Yury V. Usachev of Rosaviakosmos, Expedtion Two mission commander, enjoys the extra space provided by the Multipurpose Logistics Module (MPLM) Raphaello which was mated to the International Space Station (ISS) during the STS-100 mission. The image was taken with a digital still camera.

  15. Helms at photo quality window in Destiny Laboratory module

    NASA Image and Video Library

    2001-03-31

    ISS002-E-5489 (31 March 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, views the topography of a point on Earth from the nadir window in the U.S. Laboratory / Destiny module of the International Space Station (ISS). The image was recorded with a digital still camera.

  16. Helms eats apple and carrot stick in Service module

    NASA Image and Video Library

    2001-04-21

    ISS002-E-5357 (21 April 2001) --- Just hours before the arrival of the STS-100/Endeavour crew, astronaut Susan J. Helms, Expedition Two flight engineer, enjoys a brief snack in the Zvezda Service Module on the International Space Station (ISS). The image was recorded with a digital still camera.

  17. Expedition Two crewmembers pose in Destiny Laboratory module

    NASA Image and Video Library

    2001-03-31

    ISS002-E-5488 (31 March 2001) --- The Expedition Two crewmembers -- astronaut Susan J. Helms (left), cosmonaut Yury V. Usachev and astronaut James S. Voss -- pose for a photograph in the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. At center left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. On the left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  20. CTC Sentinel. Volume 1, Issue 6, May 2008. Abu Yahya al-Libi’s Human Shields in Modern Jihad

    DTIC Science & Technology

    2008-05-01

    own include The Healing of the Believers’ Chests and The Exoneration. 7 Although the essay is dated January 6, 2006, it was not published and widely...Yahya’s small essay on al-Tatarrus is nothing short of a religious revolution. Early Islamic thinkers typically used three general forms of shielding...traditional Islamic discussions in that it simplifies mat- ters considerably. MAY 2008 . VoL 1 . IssUE 6 “Abu Yahya’s small essay on al-Tatarrus is nothing

  1. High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.

    1997-01-01

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near equilibrium temperature of 2072 K was achieved. The aperture shield sustained no visible damage as a result of the exposures. This paper describes the aperture shield thermal-vacuum qualification test program including the test article, test facility, procedures, data collection, test success criteria, results and conclusions.

  2. Lu plays music with a keyboard in the Destiny module

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18033 (26 October 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, plays a musical keyboard during off-shift time in the Destiny laboratory on the International Space Station (ISS).

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-12

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-25

    Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  8. Study Of Dose Distribution In A Human Body In Space Flight With The Spherical Tissue-Equivalent Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.

    In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.

  9. iss049e012018

    NASA Image and Video Library

    2016-09-27

    ISS049e012018 (09/27/2016) --- Expedition 49 crewmember Kate Rubins of NASA works with the airlock inside of Kibo, the Japanese Experiment Module. Rubins was installing the Robotics External Leak Locator (RELL), a technology demonstration designed to locate external ISS ammonia (NH3) leaks.

  10. Flight Engineer Donald R. Pettit exercises on the TVIS in the SM during Expedition Six

    NASA Image and Video Library

    2003-03-20

    ISS006-E-45265 (20 March 2003) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS).

  11. iss003e8406

    NASA Image and Video Library

    2001-12-12

    ISS003-E-8406 (12 December 2001) --- Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  12. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  13. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  14. Voss unpacks stowage bags in Destiny module

    NASA Image and Video Library

    2001-05-03

    ISS002-E-5246 (03 May 2001) --- Astronaut James S. Voss (left), Expedition Two flight engineer, unpacks a stowage bag while cosmonaut Yury V. Usachev, Expedition Two mission commander, takes notes in the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  15. Tyurin and Voss perform maintenance on the TVIS treadmill in the Service Module

    NASA Image and Video Library

    2001-08-19

    ISS003-E-5200 (19 August 2001) --- Cosmonaut Mikhail Tyurin (left), Expedition Three flight engineer representing Rosaviakosmos, and astronaut James S. Voss, Expedition Two flight engineer, perform maintenance in the Zvezda Service Module on the International Space Station (ISS). This image was taken with a digital still camera.

  16. Voss with soldering tool in Service Module

    NASA Image and Video Library

    2001-03-28

    ISS002-E-5068 (28 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, prepares to use a soldering tool for a maintenance task in the Zvezda Service Module onboard the International Space Station (ISS). Astronaut Susan J. Helms, flight engineer, is in the background. The image was recorded with a digital still camera.

  17. Expedition Two crew eat a meal in the Service Module

    NASA Image and Video Library

    2001-04-12

    ISS002-E-5339 (12 April 2001) --- The Expedition Two crewmembers -- astronaut Susan J. Helms (left), cosmonaut Yury V. Usachev and astronaut James S. Voss -- share a meal at the table in the Zvezda / Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.

  18. Helms with laptop in Destiny laboratory module

    NASA Image and Video Library

    2001-03-30

    ISS002-E-5478 (30 March 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, works at a laptop computer in the U.S. Laboratory / Destiny module of the International Space Station (ISS). The Space Station Remote Manipulator System (SSRMS) control panel is visible to Helms' right. This image was recorded with a digital still camera.

  19. Fincke smiles at the camera as he holds a partially eaten apple during Expedition 9

    NASA Image and Video Library

    2004-10-14

    ISS009-E-28931 (16 October 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, enjoys eating a fresh apple in the Zvezda Service Module of the International Space Station (ISS).

  20. Fincke watches apples and a tennis ball float in the Service Module during Expedition 9

    NASA Image and Video Library

    2004-08-15

    ISS009-E-18563 (15 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, is pictured near fresh fruit floating freely in the Unity node of the International Space Station (ISS).

  1. Lu and Kaleri in Node 1/Unity module

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18035 (26 October 2003) --- Cosmonaut Alexander Y. Kaleri (left), Expedition 8 flight engineer, and astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, hold tools in the Unity node on the International Space Station (ISS). Kaleri represents Rosaviakosmos.

  2. SLS INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE ARRIVAL

    NASA Image and Video Library

    2016-06-19

    SLS INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE ARRIVES AT WEST DOCK ON SHIELDS ROAD AND IS OFF LOADED FROM BARGEUAH ENGINEERING STUDENT ROBERT HILLAN TALKS TO SPACE STATION CREW MEMBERS ABOUT HIS WINNING 3-D PRINTED TOOL DESIGNED FOR USE ON ISS, AND IS INTERVIEWED BY LOCAL MEDIA

  3. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  4. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  6. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  7. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  8. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  9. Fincke holds the active docking assembly inside the SM during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18539 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the Progress 15 supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).

  10. A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Erie

    2010-01-01

    A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.

  11. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  12. Voss with video camera in Service Module

    NASA Image and Video Library

    2001-04-08

    ISS002-E-5329 (08 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, sets up a video camera on a mounting bracket in the Zvezda / Service Module of the International Space Station (ISS). A 35mm camera and a digital still camera are also visible nearby. This image was recorded with a digital still camera.

  13. Onufrienko holds a Grab Sample Container (GSC) in the SM during Expedition Four

    NASA Image and Video Library

    2002-05-23

    ISS004-E-12368 (23 May 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander representing Rosaviakosmos, holds a Grab Sample Container (GSC) in the Zvezda Service Module on the International Space Station (ISS). The GSC is used to take air samples in various modules as part of environmental quality control.

  14. Helms and Usachev in Destiny Laboratory module

    NASA Image and Video Library

    2001-04-05

    ISS002-E-5497 (05 April 2001) --- Astronaut Susan J. Helms (left), Expedition Two flight engineer, pauses from her work to pose for a photograph while Expedition Two mission commander, cosmonaut Yury V. Usachev, speaks into a microphone aboard the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  15. Horowitz is hugged by Usachev in the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-12

    STS-105-E-5121 (12 August 2001) --- Yury V. Usachev of Rosaviakosmos, Expedition Two mission commander, and Scott J. Horowitz, STS-105 commander, embrace in the Zvezda Service Module with open arms during the initial ingress into the International Space Station (ISS) for the STS-105 mission. This image was taken with a digital still camera.

  16. Voss in Service Module

    NASA Image and Video Library

    2001-03-31

    ISS002-E-5084 (31 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, floats in the Zvezda Service Module onboard the International Space Station (ISS). Voss, along with astronaut Susan J. Helms and cosmonaut Yury V. Usachev of Rosaviakosmos, recently replaced the initial three-member crew onboard the orbital outpost. The image was taken with a digital still camera.

  17. Deep Space Habitat Configurations Based On International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples,Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  18. Deep Space Habitat Configurations Based on International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  20. KSC-99pp1379

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-102's Expedition II discuss the Pressurized Mating Adapter (PMA-3) (top of photo) with workers from Johnson Space Center. From left are Yuriy Vladimirovich Usachev, Dave Moore (JSC), Susan J. Helms, James S. Voss, Arne Aamodt and Matt Myers (both of JSC). The PMA-3 is a component of the International Space Station (ISS). Voss, Helms and Usachev will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  1. KSC-99pp1376

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- STS-102 crew member Susan J. Helms looks over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Helms is one of three who will be staying on the ISS as the Expedition II crew. The others are Yuriy Vladimirovich Usachev and James S. Voss. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  2. KSC-99pp1378

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- From a work stand in the Space Station Processing Facility, STS-102 crew members James S. Voss (left) and Yuriy Vladimirovich Usachev (right), of Russia, look over the Pressurized Mating Adapter (PMA-3). The PMA-3 is a component of the International Space Station (ISS). Voss and Usachev are two crew members who will be staying on the ISS as the Expedition II crew. The third is Susan J. Helms. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  3. KSC-99pp1380

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, members of the STS-102 crew pose with workers from Johnson Space Center in front of the Pressurized Mating Adapter (PMA-3), a component of the International Space Station (ISS). From left are Dave Moore (JSC), Susan J. Helms, Arne Aamodt (JSC), Yuriy Vladimirovich Usachev, Matt Myers (JSC) and James S. Voss. Voss, Helms and Usachev, known as the Expedition II crew, will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  4. Foale holds the top endcap for the TVIS Gyroscope in SM during Expedition 8

    NASA Image and Video Library

    2003-12-09

    ISS008-E-07384 (9 Dec. 2003) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, holds the top end-cap for the Treadmill Vibration Isolation System (TVIS) gyroscope in the Zvezda Service Module on the International Space Station (ISS).

  5. Foale works at the MSG / ESEM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20622 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, conducts an inspection of the Microgravity Science Glovebox (MSG) / Exchangeable Standard Electronic Module (ESEM) in the Destiny laboratory of the International Space Station (ISS).

  6. Foale works at the MSG / ESEM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20632 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, conducts an inspection of the Microgravity Science Glovebox (MSG) / Exchangeable Standard Electronic Module (ESEM) in the Destiny laboratory of the International Space Station (ISS).

  7. International Space Station Active Thermal Control Sub-System On-Orbit Pump Performance and Reliability Using Liquid Ammonia as a Coolant

    NASA Technical Reports Server (NTRS)

    Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.

    2011-01-01

    The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.

  8. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  9. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  10. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  11. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  12. Shielding Structures for Interplanetary Human Mission

    NASA Astrophysics Data System (ADS)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.

  13. Usachev in Service Module with Russian food cans

    NASA Image and Video Library

    2001-07-16

    STS104-E-5126 (16 July 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, appears surrounded by food in the Zvezda service module aboard the International Space Station (ISS). Representing Rosaviakosmos, Usachev, commander, along with two astronauts, are hosting the STS-104 crew of astronauts on the International Space Station (ISS). The image was recorded with a digital still camera.

  14. Haignere works in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-10-23

    ISS003-E-6855 (23-31 October 2001) --- French Flight Engineer Claudie Haignere, works in the Zvezda Service Module on the International Space Station (ISS). Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.

  15. Krikalev with probe-and-cone docking mechanism (StM) in the Zvezda module

    NASA Image and Video Library

    2005-06-19

    ISS011-E-09210 (19 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, holds the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.

  16. View of the STS-88 crew in the Node 1/Unity module

    NASA Image and Video Library

    1998-12-10

    STS088-322-021 (4-15 DECEMBER 1998) --- Astronaut Robert D. Cabana (left), mission commander, and cosmonaut Sergei K. Krikalev, mission specialist representing the Russian Space Agency (RSA), plan their approach to tasks in the U.S.-built Unity module. All six STS-88 crew members were involved in tasks to ready Unity and the now-connected Russian-built FGB module, also called Zarya, for their International Space Station (ISS) roles. Krikalev has been named as a member of the first ISS crew.

  17. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module is moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88 . The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  18. International Space Station: Meteoroid/Orbital Debris Survivability and Vulnerability

    NASA Technical Reports Server (NTRS)

    Graves, Russell

    2000-01-01

    This slide presentation reviews the surviability and vulnerability of the International Space Station (ISS) from the threat posed by meteoroid and orbital debris. The topics include: (1) Space station natural and induced environments (2) Meteoroid and orbital debris threat definition (3) Requirement definition (4) Assessment methods (5) Shield development and (6) Component vulnerability

  19. A space radiation transport method development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.

  20. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  1. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. Thermal Analysis of ISS Service Module Active TCS

    NASA Technical Reports Server (NTRS)

    Altov, Vladimir V.; Zaletaev, Sergey V.; Belyavskiy, Evgeniy P.

    2000-01-01

    ISS Service Module mission must begin in July 2000. The verification of design thermal requirements is mostly due to thermal analysis. The thermal analysis is enough difficult problem because of large number of ISS configurations that had to be investigated and various orbital environments. Besides the ISS structure has articulating parts such as solar arrays and radiators. The presence of articulating parts greatly increases computation times and requires accurate approach to organization of calculations. The varying geometry needs us to calculate the view factors several times during the orbit, while in static geometry case we need do it only once. In this paper we consider the thermal mathematical model of SM that includes the TCS and construction thermal models and discuss the results of calculations for ISS configurations 1R and 9Al. The analysis is based on solving the nodal heat balance equations for ISS structure by Kutta-Merson method and analytical solutions of heat transfer equations for TCS units. The computations were performed using thermal software TERM [1,2] that will be briefly described.

  3. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  4. iss051e041841

    NASA Image and Video Library

    2017-05-12

    iss051e041841 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  5. iss051e041847

    NASA Image and Video Library

    2017-05-12

    iss051e041847 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  6. iss051e041836

    NASA Image and Video Library

    2017-05-12

    iss051e041836 (05/12/2017) -- NASA astronaut Peggy Whitson is seen prior to the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  7. iss051e041849

    NASA Image and Video Library

    2017-05-12

    iss051e041849 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  8. iss051e041844

    NASA Image and Video Library

    2017-05-12

    iss051e041844 (05/12/2017) -- NASA astronaut Jack Fischer is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  9. iss051e041860

    NASA Image and Video Library

    2017-05-12

    iss051e041860 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  10. Software Defined GPS Receiver for International Space Station

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-10

    Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.

  12. iss055e035378

    NASA Image and Video Library

    2018-04-27

    iss055e035378 (April 27, 2018) --- NASA astronauts Drew Feustel (left) and Scott Tingle play guitar inside the Destiny laboratory module during an educational event with school districts in Aransas Pass, Texas.

  13. SPACECRAFT (S/C)-012 - COMMAND MODULE (CM) - HEAT SHIELD INSTALLATION

    NASA Image and Video Library

    1966-04-18

    S66-41851 (1966) --- High angle view of Spacecraft 012 Command Module, looking toward -Z axis, during preparation for installation of the crew compartment heat shield, showing mechanics working on aft bay.

  14. Basic and Applied Materials Science Research Efforts at MSFC Germane to NASA Goals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Presently, a number of investigations are ongoing that blend basic research with engineering applications in support of NASA goals. These include (1) "Pore Formation and Mobility (PFMI) " An ISS Glovebox Investigation" NASA Selected Project - 400-34-3D; (2) "Interactions Between Rotating Bodies" Center Director's Discretionary Fund (CDDF) Project - 279-62-00-16; (3) "Molybdenum - Rhenium (Mo-Re) Alloys for Nuclear Fuel Containment" TD Collaboration - 800-11-02; (4) "Fabrication of Alumina - Metal Composites for Propulsion Components" ED Collaboration - 090-50-10; (5) "Radiation Shielding for Deep-Space Missions" SD Effort; (6) "Other Research". In brief, "Pore Formation and Mobility" is an experiment to be conducted in the ISS Microgravity Science Glovebox that will systematically investigate the development, movement, and interactions of bubbles (porosity) during the controlled directional solidification of a transparent material. In addition to promoting our general knowledge of porosity physics, this work will serve as a guide to future ISS experiments utilizing metal alloys. "Interactions Between Rotating Bodies" is a CDDF sponsored project that is critically examining, through theory and experiment, claims of "new" physics relating to gravity modification and electric field effects. "Molybdenum - Rhenium Alloys for Nuclear Fuel Containment" is a TD collaboration in support of nuclear propulsion. Mo-Re alloys are being evaluated and developed for nuclear fuel containment. "Fabrication of Alumina - Metal Composites for Propulsion Components" is an ED collaboration with the intent of increasing strength and decreasing weight of metal engine components through the incorporation of nanometer-sized alumina fibers. "Radiation Shielding for Deep-Space Missions" is an SD effort aimed at minimizing the health risk from radiation to human space voyagers; work to date has been primarily programmatic but experiments to develop hydrogen-rich materials for shielding are planned. "Other Research" includes: BUNDLE (Bridgman Unidirectional Dendrite in a Liquid Experiment) activities (primarily crucible development), vibrational float-zone processing (with Vanderbilt University), use of ultrasonics in materials processing (with UAH), rotational effects on microstructural development, and application of magnetic fields for mixing.

  15. Thermoelectric generator with hinged assembly for fins

    DOEpatents

    Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.

    1976-11-02

    A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield.

  16. Voss with globe in Service module

    NASA Image and Video Library

    2001-04-08

    ISS002-E-5136 (8 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, holds a globe to be used for assistance in Earth observation duties. Voss is in the Zvezda Service Module aboard the International Space Station (ISS), where's he been working for several weeks along with cosmonaut Yury V. Usachev of Rosaviakosmos and astronaut Susan J. Helms. The image was recorded with a digital still camera.

  17. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  18. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  19. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  20. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  1. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  2. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  3. iss051e029335

    NASA Image and Video Library

    2017-04-30

    iss051e029335 (April 30, 2017) --- European Space Agency astronaut Thomas Pesquet exercises on the Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), the station’s exercise bike, inside the Destiny laboratory module.

  4. STS-114 Flight Day 6 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.

  5. November 2013 Analysis of High Energy Electrons on the Japan Experimental Module (JEM: Kibo)

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Matsumoto, Haruhisa; Koga, Kiyokazu; Mertens, Christopher J.; Slaba, Tony C.; Norbury, John W.

    2015-01-01

    Albedo (precipitating/splash) electrons, created by galactic cosmic rays (GCR) interaction with the upper atmosphere move upwards away from the surface of the earth. In the past validation work these particles were often considered to have negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Estimates of astronaut exposure based on the available Computer Aided Design (CAD) models of ISS consistently underestimated measurements onboard ISS when the contribution of albedo particles to exposure were neglected. Recent measurements of high energy electrons outside ISS Japan Experimental Module (JEM) using Exposed Facility (EF), Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP) and Standard DOse Monitor (SDOM), indicates the presence of high energy electrons at ISS altitude. In this presentation the status of these energetic electrons is reviewed and mechanism for the creation of these particles inside/outside South Atlantic Anomaly (SAA) region explained. In addition, limited dosimetric evaluation of these electrons at 600 MeV and 10 GeV is presented.

  6. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  7. Expedition 8 Crew Interview: Pedro Duque

    NASA Technical Reports Server (NTRS)

    2003-01-01

    European Space Agency (ESA) astronaut Pedro Duque is interviewed in preparation for his flight to and eight day stay on the International Space Station (ISS) as part of the Cervantes mission. Duque arrived on the ISS with the Expedition 8 crew onboard a Soyuz TMA-3, the seventh Soyuz flight to the station. He departed from the ISS on a Soyuz TMA-2 with the Expedition 7 crew of the ISS. In the video, Duque answers questions on: the goals of his flight; his life and career path; the Columbus Module, which ESA will contribute to the ISS, the ride onboard a Soyuz, and the importance of the ISS.

  8. Fincke inside the Progress Vehicle with open SM/Progress transfer hatch during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18533 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, appears behind the probe-and-cone mechanism on the hatch of the Progress 15 supply vehicle docked to the aft port on the Zvezda Service Module of the International Space Station (ISS).

  9. Kuipers holds the Plasma-03 experiment container as Foale looks on during Expedition 9 / Expedition 8

    NASA Image and Video Library

    2004-04-29

    ISS008-E-22393 (29 April 2004) --- European Space Agency (ESA) astronaut Andre Kuipers of the Netherlands, holds a Complex “Plasma-03” canister in the Zvezda Service Module of the International Space Station (ISS). Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, is at right.

  10. iss031e140701

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140701 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  11. iss031e140699

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140699 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  12. Cosmonaut Dezhurov Talks With Flight Controllers

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  13. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  14. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This closer image of the International Space Station (ISS) showing the newly installed U.S. Laboratory, Destiny (left), was taken from the departing Space Shuttle Atlantis. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  15. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Looking like a painting, this wide-angle view shows the Unity connecting module being moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  16. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  17. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed from below, the Unity connecting module is moved into the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  18. KSC-98pc1410

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  19. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  20. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  1. Electrodynamic Dust Shield for Space Applications

    NASA Technical Reports Server (NTRS)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  2. Nuclear Technology. Course 28: Welding Inspection. Module 28-2, Shielded Metal Arc and Oxyacetylene Welding.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This second in a series of ten modules for a course titled Welding Inspection describes the key features of the oxyacetylene and shielded metal arc welding process. The apparatus, process techniques, procedures, applications, associated defects, and inspections are presented. The module follows a typical format that includes the following…

  3. MS Malenchenko conducts electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5197 (13 September 2000) --- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, works aboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of the day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them.

  4. Tyurin gives Culbertson a haircut in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-09-22

    ISS003-E-5901 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely, as Mikhail Tyurin cuts his hair in the Zvezda Service Module on the International Space Station (ISS). Tyurin is a flight engineer representing Rosaviakosmos. This image was taken with a digital still camera.

  5. Tyurin gives Dezhurov a haircut in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-09-22

    ISS003-E-5891 (22 September 2001) --- Cosmonauts Mikhail Tyurin (left) and Vladimir N. Dezhurov, Expedition Three flight engineers representing Rosaviakosmos, take turns cutting each other’s hair in the Zvezda Service Module on the International Space Station (ISS). Dezhurov holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely. This image was taken with a digital still camera.

  6. Tyurin gives Culbertson a haircut in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-09-22

    ISS003-E-5896 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely, as Mikhail Tyurin cuts his hair in the Zvezda Service Module on the International Space Station (ISS). Tyurin is a flight engineer representing Rosaviakosmos. This image was taken with a digital still camera.

  7. Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2001-01-01

    A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.

  8. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  11. Expedition Seven CDR Malenchenko with LADA greenhouse

    NASA Image and Video Library

    2003-06-04

    ISS007-E-06175 (21 May 2003) --- Cosmonaut Yuri I. Malenchenko, Expedition 7 mission commander, works with the Russian Lada greenhouse in the Zvezda Service Module on the International Space Station (ISS). Malenchenko represents Rosaviakosmos.

  12. CDR Malenchenko removes pea pods from Lada greenhouse

    NASA Image and Video Library

    2003-05-15

    ISS007-E-05458 (15 May 2003) --- Cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, works with the Russian Lada greenhouse in the Zvezda Service Module on the International Space Station (ISS). Malenchenko represents Rosaviakosmos.

  13. Expedition Seven CDR Malenchenko with LADA greenhouse

    NASA Image and Video Library

    2003-06-04

    ISS007-E-06178 (21 May 2003) --- Cosmonaut Yuri I. Malenchenko, Expedition 7 mission commander, works with the Russian Lada greenhouse in the Zvezda Service Module on the International Space Station (ISS). Malenchenko represents Rosaviakosmos.

  14. Fincke holds up a spare RPCM in the A/L during Expedition 9

    NASA Image and Video Library

    2004-06-04

    ISS009-E-10554 (4 June 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the spare Remote Power Controller Module (RPCM) in the Quest airlock of the International Space Station (ISS). The spare is scheduled to replace the failed RPCM on the S0 (S-Zero) Truss.

  15. Whitson cuts Treschev's hair in the SM during Expedition Five on the ISS

    NASA Image and Video Library

    2002-07-20

    ISS005-E-08151 (July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, cuts cosmonaut Sergei Y. Treschev’s hair in the Zvezda Service Module on the International Space Station (ISS). Treschev, flight engineer representing Rosaviakosmos, holds a vacuum device the crew has fashioned to garner freshly cut hair, which is floating freely.

  16. Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample

    NASA Image and Video Library

    2002-12-18

    ISS006-E-08628 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.

  17. Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample

    NASA Image and Video Library

    2002-12-18

    ISS006-E-08616 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.

  18. Foale performs potable water analysis OPS in the SM during Expedition 8

    NASA Image and Video Library

    2003-11-07

    ISS008-E-05553 (7 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, floats in front of the galley in the Zvezda Service Module on the International Space Station (ISS) as he fills a Crew Healthcare System (CheCSS) Water Microbiology (WMK) in-flight analysis bag from the potable warter dispenser.

  19. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  20. Distant view of the ISS as OV-104 makes its initial approach during STS-106

    NASA Image and Video Library

    2000-09-09

    S106-E-5056 (10 September 2000) --- The International Space Station (ISS) is now in the view of the crew aboard the Space Shuttle Atlantis as evidenced in this electronic image. The last time astronauts saw the ISS, it was not sporting the recently-arriving Progress, which appears at the top in this perspective. Also, next to the Progress, appears the Zvezda service module, which had been delivered by a Proton rocket since the most recent human visit to ISS.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  3. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  4. Space Debris Senso

    NASA Image and Video Library

    2017-12-11

    Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  5. iss002e6675

    NASA Image and Video Library

    2001-05-15

    ISS002-E-6675 (15 May 2001) --- James S. Voss, Expedition Two flight engineer, wearing a safety harness, exercises on the Treadmill Vibration Isolation System (TVIS) equipment in the Zvezda Service Module. This image was taken with a digital still camera.

  6. Plant growth experiment inside the Russian Lada greenhouse

    NASA Image and Video Library

    2003-07-01

    ISS007-E-10348 (July 2003) --- This view of a plant growth experiment inside the Russian Lada greenhouse, located in the Zvezda Service Module, was taken by an Expedition 7 crewmember onboard the International Space Station (ISS).

  7. iss042e136099

    NASA Image and Video Library

    2015-01-15

    ISS042e136099 (Jan 15, 20105) -- Interior view of the Columbus European Laboratory taken during the crew's sleep period (main lights are turned off). The pink glow comes from the Vegetable Production System (Veggie) greenhouse, housed in the module.

  8. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  9. MS Lu conducts electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5213 (13 September 2000) --- Astronaut Edward T. Lu follows printed guidelines as he assumes the role of an electrician onboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of the day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them.

  10. Culbertson and Haignere work in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-10-23

    ISS003-E-6854 (23-31 October 2001) --- Astronaut Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and French Flight Engineer Claudie Haignere, work in the Zvezda Service Module on the International Space Station (ISS). Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.

  11. The International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Watson, Patricia Mendoza; Engle, Mike

    2003-01-01

    The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as construction goes on. The habitability resources available to the crew are the crew sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to deal with ISS assembly will continue with the truss build and the addition of International Partner Laboratories. Also, Node 2 and 3 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The Node 3 module will provide additional Environmental Control and Life Support Capability. The purpose of the ISS is to perform research and a major area of emphasis is the effects of long duration space flight on humans, a result of this research they will determine what are the habitability requirements for long duration space flight.

  12. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    PubMed

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-20

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  14. United States Control Module Guidance, Navigation, and Control Subsystem Design Concept

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Bartlow, B. E.

    1997-01-01

    Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control Moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module. This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baselined GN&C components.

  15. Microgravity

    NASA Image and Video Library

    2000-01-30

    Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at center is former astronaut Brewster Shaw (center), now a program official with the Boeing Co., the ISS prime contractor. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  16. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  17. Unity nameplate added to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  18. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  19. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  20. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker places the nameplate on the side of the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  1. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  2. Krikalev with failed Elektron Liquid Unit #6 (BZh-6)

    NASA Image and Video Library

    2005-06-09

    ISS011-E-08465 (9 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works on the Elektron oxygen-generation system in the Zvezda Service Module on the International Space Station (ISS).

  3. Usachev with docking probe in Destiny module

    NASA Image and Video Library

    2001-05-30

    ISS002-E-6576 (30 May 2001) --- Yury V. Usachev of Rosaviakosmos, Expedition Two mission commander, moves a docking probe through the Destiny Laboratory on the International Space Station (ISS). The image was recorded with a digital still camera.

  4. Bursch poses next to the Elektron oxygen generator in the SM during Expedition Four

    NASA Image and Video Library

    2002-04-26

    ISS004-E-11791 (26 April 2002) --- Astronaut Daniel W. Bursch, Expedition Four flight engineer, works on the Elektron Oxygen Generator in the Zvezda Service Module on the International Space Station (ISS).

  5. Walz poses next to the Elektron oxygen generator in the SM during Expedition Four

    NASA Image and Video Library

    2002-04-26

    ISS004-E-11792 (26 April 2002) --- Astronaut Carl E. Walz, Expedition Four flight engineer, works on the Elektron Oxygen Generator in the Zvezda Service Module on the International Space Station (ISS).

  6. iss028e025963

    NASA Image and Video Library

    2011-08-18

    ISS028-E-025963 (18 Aug. 2011) --- Russian cosmonaut Andrey Borisenko, Expedition 28 commander, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  7. STS-114 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Flight Day 11 begins with the STS-114 crew of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) awaking to "Anchors Away," to signify the undocking of the Raffaello Multipurpose Logistics Module (MPLM) from the International Space Station (ISS). Canadarm 2, the Space Station Remote Manipulator System (SSRMS), retrieves the Raffaello Multipurpose Logistics Module (MPLM) from the nadir port of the Unity node of the ISS and returns it to Discovery's payload bay. The Shuttle Remote Manipulator System (SRMS) hands the Orbiter Boom Sensor System (OBSS) to its counterpart, the SSRMS, for rebearthing in the payload bay as well. The rebearthing of the OBSS is shown in detail, including centerline and split-screen views. Collins sends a message to her husband, and talks with Representative Tom DeLay (R-TX). Earth views include the Amalfi coast of Italy. The ISS control room bids farewell to the STS-114 crew and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS.

  8. Radiation shielding materials characterization in the MoMa-Count program and further evolutions

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare

    In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.

  9. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  12. Selfie in Cupola module

    NASA Image and Video Library

    2015-05-24

    ISS043E241729 (05/24/2015) --- Expedition 43 commander and NASA astronaut Terry Virts is seen here inside of the station’s Cupola module. The Cupola is designed for the observation of operations outside the ISS such as robotic activities, the approach of vehicles, and spacewalks. It also provides spectacular views of Earth and celestial objects for use in astronaut observation experiments. It houses the robotic workstation that controls the space station’s robotic arm and can accommodate two crewmembers simultaneously.

  13. Raffaello Multi-Purpose Logistics Module (MPLM) in the Endeavour payload bay prior to docking

    NASA Image and Video Library

    2001-04-21

    ISS002-E-5815 (21 April 2001) --- The Raffaello Multi-Purpose Logistics Module (MPLM), built by the Italian Space Agency (ASI), sits in its berthed position in the cargo bay of the Space Shuttle Endeavour as the STS-100 crew eases the vehicle close to the International Space Station (ISS) for docking. The image was recorded with a digital still camera by one of the Expedition Two crew members aboard the Station.

  14. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  15. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  16. Modular space station mass properties

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.

  17. Offgassing Characterization of the Columbus Laboratory Module

    NASA Technical Reports Server (NTRS)

    Rampini, riccardo; Lobascio, Cesare; Perry, Jay L.; Hinderer, Stephan

    2005-01-01

    Trace gaseous contamination in the cabin environment is a major concern for manned spacecraft, especially those designed for long duration missions, such as the International Space Station (ISS). During the design phase, predicting the European-built Columbus laboratory module s contribution to the ISS s overall trace contaminant load relied on "trace gas budgeting" based on material level and assembled article tests data. In support of the Qualification Review, a final offgassing test has been performed on the complete Columbus module to gain cumulative system offgassing data. Comparison between the results of the predicted offgassing load based on the budgeted material/assembled article-level offgassing rates and the module-level offgassing test is presented. The Columbus module offgassing test results are also compared to results from similar tests conducted for Node 1, U.S. Laboratory, and Airlock modules.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-08

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  19. Lonchakov checks the Rasteniya-2 plant growth experiment in the SM during Expedition Five

    NASA Image and Video Library

    2002-11-08

    ISS005-E-20309 (8 November 2002) --- Soyuz 5 Flight Engineer Yuri V. Lonchakov looks at a plant growth experiment in the Zvezda Service Module on the International Space Station (ISS). Lonchakov represents Rosaviakosmos.

  20. Korzun checks the Rasteniya-2 plant growth experiment in the SM during Expedition Five

    NASA Image and Video Library

    2002-11-08

    ISS005-E-20302 (8 November 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, checks a plant growth experiment in the Zvezda Service Module on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  1. Solar array at sunrise

    NASA Image and Video Library

    2001-04-05

    ISS002-E-5121 (5 April 2001) --- The solar panel supporting the Zvezda Service Module on the International Space Station (ISS) is backdropped against Earth's horizon at dawn. The image was made by one of the Expedition Two crew members using a digital still camera.

  2. Krikalev during TVIS IFM

    NASA Image and Video Library

    2005-05-16

    ISS011-E-06188 (16 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works with the Treadmill Vibration Isolation System (TVIS) removed from the Zvezda Service Module floor during In-Flight Maintenance (IFM) on the International Space Station (ISS).

  3. iss028e028794

    NASA Image and Video Library

    2011-08-22

    ISS028-E-028794 (18 Aug. 2011) --- Russian cosmonaut Andrey Borisenko, Expedition 28 commander, works with a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  4. iss028e050058

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050058 (15 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  5. System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies

    NASA Technical Reports Server (NTRS)

    Nolte, L. J.; Stephenson, D. S.

    1973-01-01

    A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.

  6. Status of the Correlation Process of the V-HAB Simulation with Ground Tests and ISS Telemetry Data

    NASA Technical Reports Server (NTRS)

    Ploetner, Peter; Anderson, Molly S.; Czupalla, Markus; Ewert, Micahel K.; Roth, Christof Martin; Zhulov, Anton

    2012-01-01

    The Virtual Habitat (V-HAB) is a dynamic Life Support System (LSS) simulation, created to investigate future human spaceflight missions. V-HAB provides the capability to optimize LSS during early design phases. Furthermore, it allows simulation of worst case scenarios which cannot be tested in reality. In a nutshell, the tool allows the testing of LSS robustness by means of computer simulations. V-HAB is a modular simulation consisting of a: 1. Closed Environment Module 2. Crew Module 3. Biological Module 4. Physio-Chemical Module The focus of the paper will be the correlation and validation of V-HAB against ground test and flight data. The ECLSS technologies (CDRA, CCAA, OGA, etc.) are correlated one by one against available ground test data, which is briefly described in this paper. The technology models in V-HAB are merged to simulate the ISS ECLSS. This simulation is correlated against telemetry data from the ISS, including the water recovery system and the air revitalization system. Finally, an analysis of the results is included in this paper.

  7. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  8. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  10. Skylab 2 Farewell View from the Departing Skylab Command/Service Module

    NASA Image and Video Library

    1973-06-22

    SL2-07-667 (22 June 1973) --- This overhead view of the Skylab Space Station was taken from the Departing Skylab Command/Service Module during the Skylab 2's final fly-around inspection. The single solar panel is quite evident as well as the parasol solar shield, rigged to replace the missing micrometeoroid shield. Both the second solar panel and the micrometeoroid shield were torn away during a mishap in the original Skylab 1 liftoff and orbital insertion. Photo credit: NASA

  11. Skylab 2 Farewell View from the Departing Skylab Command/Service Module

    NASA Image and Video Library

    1973-06-22

    SL2-07-651 (22 June 1973) --- This overhead view of the Skylab Space Station was taken from the Departing Skylab Command/Service Module during the Skylab 2's final fly-around inspection. The single solar panel is quite evident as well as the parasol solar shield, rigged to replace the missing micrometeoroid shield. Both the second solar panel and the micrometeoroid shield were torn away during a mishap in the original Skylab 1 liftoff and orbital insertion. Photo credit: NASA

  12. International Space Station exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  13. Foale uses takes photographs of a BCAT SGSM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20613 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, works with a Slow Growth Sample Module (SGSM) for the Binary Colloidal Alloy Test-3 (BCAT) experiment. The SGSM is on a mounting bracket attached to the Maintenance Work Area (MWA) table set up in the Destiny laboratory of the International Space Station (ISS).

  14. iss055e016074

    NASA Image and Video Library

    2018-04-06

    iss055e016074 (April 6, 2018) --- Expedition 55 Flight Engineer Drew Feustel of NASA is inside the Japanese Kibo laboratory module talking to dignitaries on Earth, including university officials, musicians and scientists, during an educational event that took place at Queen's University in Kingston, Ontario.

  15. Cabana closes the hatch leading to the ISS stack

    NASA Image and Video Library

    1999-01-12

    STS088-370-014 (4-15 Dec. 1998) --- Astronaut Robert D. Cabana, commander, closes the hatch to the International Space Station (ISS) following several days of work by the crew members to ready its first two components (Zarya and Unity Modules).

  16. iss031e150060

    NASA Image and Video Library

    2012-06-28

    ISS031-E-150060 (28 June 2012) --- In the Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Oleg Kononenko, Expedition 31 commander, adds the Soyuz TMA-03M patch to the growing collection of insignias representing crews who have worked on the International Space Station.

  17. iss031e150059

    NASA Image and Video Library

    2012-06-28

    ISS031-E-150059 (28 June 2012) --- In the Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Oleg Kononenko, Expedition 31 commander, adds the Soyuz TMA-03M patch to the growing collection of insignias representing crews who have worked on the International Space Station.

  18. Onufrienko makes repairs to the Elektron oxygen generator in the SM during Expedition Four

    NASA Image and Video Library

    2002-04-26

    ISS004-E-11793 (26 April 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, performs maintenance on the Elektron Oxygen Generator in the Zvezda Service Module on the International Space Station (ISS). Onufrienko represents Rosaviakosmos.

  19. Usachev with IRED hardware in Node 1/Unity module

    NASA Image and Video Library

    2001-04-07

    ISS002-E-5508 (7 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, wears a harness while conducting resistance exercises in the Unity Node 1 on the International Space Station (ISS). The image was recorded with a digital still camera.

  20. iss047e111084

    NASA Image and Video Library

    2016-05-10

    ISS047e111084 (05/10/2016) --- NASA astronaut Tim Kopra poses inside the cupola module onboard the International Space Station. Kopra, who was born in Austin, Texas, is the commander of Expedition 47 and previously served as a flight engineer during Expeditions 46 and 20.

  1. Voss and Helms in Progress module

    NASA Image and Video Library

    2001-04-18

    ISS002-E-5603 (18 April 2001) --- Astronauts Susan J. Helms and James S. Voss, both Expedition Two flight engineers, share a task in the Soyuz spacecraft which is docked to the International Space Station (ISS). The image was recorded with a digital still camera.

  2. iss028e034854

    NASA Image and Video Library

    2011-08-31

    ISS028-E-034854 (31 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, checks the progress of a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  3. CDR Malenchenko with Russian/German Plasma Crystal-3 (PK-3) payload

    NASA Image and Video Library

    2003-07-30

    ISS007-E-11507 (31 July 2003) --- Cosmonaut Yuri I. Malenchenko, Expedition 7 mission commander, is pictured with the Plasma Crystal Experiment in the Zvezda Service Module’s transfer compartment on the International Space Station (ISS). Malenchenko represents Rosaviakosmos.

  4. NASA and ISS Winner of 2009 Collier Trophy

    NASA Image and Video Library

    2010-05-12

    NASA and the International Space Station (ISS) team is selected as the recipient of the 2009 Robert J. Collier Trophy on Thursday, May 13, 2010, in Arlington, VA. Lori Garver, fourth from left, Deputy Administrator of NASA accepts the Collier Trophy on behalf of NASA. The ISS Team nomination consisted NASA, The Boeing Company, Draper Laboratory, Honeywell, Lockheed Martin Corporation, United Space Alliance, and United Technologies/Hamilton Sunstrand. Seen from left are: Virginia Barnes, President and CEO, United Space Alliance; Alain Bellemare, President, United Technologies/Hamilton Sunstrand; James Crocker, VP and GM, Sensing & Exploration, Lockheed Martin; Lori Garver; Wayne Boyne, Chairman, National Aeronautic Association; Jonathan Gaffney, President, National Aeronautic Association; Jim Albaugh, Executive VP of The Boeing Company, President and CEO of Boeing Commercial Airplanes; Dennis Muilenberg, Executive Vice President, The Boeing Company, President and CEO, Boeing Defense, Space and Security; James Shields, President and CEO, Draper Laboratory and Dave Douglas, Vice President, Space, Missiles and Munitions, Honeywell. Photo Credit: (NASA/Carla Cioffi)

  5. iss054e027048

    NASA Image and Video Library

    2018-02-02

    iss054e027048 (Feb. 2, 2018) --- A Russian spacewalker is seen in an Orlan spacesuit with blue stripes (center image) working outside the Zvezda service module during the longest spacewalk in Russian space program history on Feb. 2, 2018. Cosmonauts Alexander Misurkin and Anton Shkaplerov wrapped up the eight hour and 13 minute spacewalk after installing a new electronics and telemetry box for the high gain antenna on Zvezda. The new gear will enhance communications between Russian flight controllers and the Russian modules.

  6. MS Malenchenko conducts electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5200 (13 September 2000) --- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, works aboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of this day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them. Astronaut Edward T. Lu, mission specialist, is out of frame at right.

  7. KSC-98pc921

    NASA Image and Video Library

    1998-08-14

    Technicians carefully lower an Integrated Equipment Assembly (IEA) onto a work stand in the Space Station Processing Facility at KSC . The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999

  8. KSC-98pc920

    NASA Image and Video Library

    1998-08-14

    Technicians in the Space Station Processing Facility at KSC prepare to lower an Integrated Equipment Assembly (IEA) onto a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999

  9. KSC-98pc1411

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  10. Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William

    2006-01-01

    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.

  11. Microgravity

    NASA Image and Video Library

    2000-01-30

    Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at left (coat and patterned tie) is John-David Bartoe, ISS research manager at NASA's Johnson Space Center and a payload specialist on Spacelab 2 mission (1985). Photo credit: NASA/Marshall Space Flight Center (MSFC)

  12. Unity nameplate gets final check before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  13. The Unity connecting module rests inside the payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module rests inside the payload bay of the orbiter Endeavour at Launch Pad 39A. The first U.S. element of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.

  14. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, Joan Higgenbotham, with KSC's Astronaut Office Computer Support, checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  15. Toxicological Assessment of ISS Air Quality: June - September 2013 (Increment 36)

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2014-01-01

    Fourteen mini grab sample containers (msGSCs) were collected on ISS between June and September 2013 and were returned on 34S; however, the ATV-4 first ingress mGSC did not contain sufficient sample to report results (initial sample pressure = 1.2 psia). Of the remaining 13 mGSCs, 12 were collected as routine monthly samples in the Russian Service Module (SM), US Laboratory (Lab), and either the Japanese Pressurized Module (JPM) or the Columbus module (Col), and 1 was collected during HTV-4 first ingress. A summary of the analytical results from the 13 valid mGSCs is shown.

  16. International Space Station in Orbit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  17. Foale works with the Pilot experiment during Expedition 8

    NASA Image and Video Library

    2003-10-31

    ISS008-E-05181 (31 October 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, works with the Russian biomedical “Pilot” experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill.

  18. View of STS-100 orbiter Endeavour approaching for docking

    NASA Image and Video Library

    2001-04-21

    ISS002-E-5876 (21 April 2001) --- A distant view of the Space Shuttle Endeavour preparing to dock with the International Space Station (ISS) during the STS-100 mission. The STS-100 crewmembers are delivering the Canadarm2, Space Station Remote Manipulator System (SSRMS), and equipment stowed in the Multipurpose Logistics Module (MPLM) Raphaello to the ISS which are visible in Endeavour's payload bay. The image was taken with a digital still camera.

  19. View of STS-100 orbiter Endeavour approaching for docking

    NASA Image and Video Library

    2001-04-21

    ISS002-E-5887 (21 April 2001) --- A view of the Space Shuttle Endeavour preparing to dock with the International Space Station (ISS) during the STS-100 mission. The STS-100 crewmembers are delivering the Canadarm2, Space Station Remote Manipulator System (SSRMS), and equipment stowed in the Multipurpose Logistics Module (MPLM) Raphaello to the ISS which are visible in Endeavour's payload bay. The image was taken with a digital still camera.

  20. Flight Engineer Budarin uses a laptop computer in the SM during Expedition Six

    NASA Image and Video Library

    2003-03-21

    ISS006-E-45279 (21 March 2003) --- Cosmonaut Nikolai M. Budarin, Expedition Six flight engineer, uses a computer as he talks on a communication system in the Zvezda Service Module on the International Space Station (ISS). Budarin represents Rosaviakosmos.

  1. iss055e036790

    NASA Image and Video Library

    2018-04-30

    iss055e036790 (April 30, 2018) --- NASA astronaut Drew Feustel conducts science operations inside the Multi-use Variable-g Platform Module which enables research into how small organisms such as fruit flies, flatworms, plants, fish, cells, protein crystals and many others adapt to different types of gravity scenarios.

  2. Whitson and Treschev work on TVIS treadmill

    NASA Image and Video Library

    2002-08-07

    ISS005-E-08808 (7 August 2002) --- Cosmonaut Sergei Y. Treschev (left) and astronaut Peggy A. Whitson, both Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Treschev represents Rosaviakosmos.

  3. Whitson and Treschev work on TVIS treadmill

    NASA Image and Video Library

    2002-08-07

    ISS005-E-08819 (7 August 2002) --- Cosmonaut Sergei Y. Treschev (left) and astronaut Peggy A. Whitson, both Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Treschev represents Rosaviakosmos.

  4. McArthur runs the Half Marathon onboard the ISS on Expedition 12

    NASA Image and Video Library

    2006-01-15

    ISS012-E-15158 (15 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  5. Whitson and Treschev work on TVIS treadmill

    NASA Image and Video Library

    2002-08-07

    ISS005-E-08821 (7 August 2002) --- Cosmonaut Sergei Y. Treschev (left) and astronaut Peggy A. Whitson, both Expedition Five flight engineers, are photographed near the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Treschev represents Rosaviakosmos.

  6. Whitson and Treschev perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17387 (13 October 2002) --- Cosmonaut Sergei Y. Treschev (left) and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Treschev represents Rosaviakosmos.

  7. iss051e034021

    NASA Image and Video Library

    2017-05-02

    iss051e034021 (May 2, 2017) --- Astronaut Thomas Pesquet, of the European Space Agency (ESA), participates in the Fluidics experiment inside the Columbus laboratory module developed by ESA. Fluidics is exploring how liquids behave in spacecraft tanks and wave turbulence phenomena that occurs at the surface of liquids.

  8. Whitson and Treschev perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17388 (13 October 2002) --- Cosmonaut Sergei Y. Treschev (left) and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Treschev represents Rosaviakosmos.

  9. Flight Engineer Budarin is changing a part in the water recycling system in the SM

    NASA Image and Video Library

    2003-03-21

    ISS006-E-45275 (21 March 2003) --- Cosmonaut Nikolai M. Budarin, Expedition Six flight engineer, holds a piece of hardware near a worktable in the Zvezda Service Module on the International Space Station (ISS). Budarin represents Rosaviakosmos.

  10. Pea plants growing in the Lada-4 greenhouse during Expedition 8

    NASA Image and Video Library

    2004-03-01

    ISS008-E-18534 (March 2004) --- A close-up view, taken by an Expedition 8 crewmember, shows the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment located in the Zvezda Service Module on the International Space Station (ISS).

  11. iss038e055240

    NASA Image and Video Library

    2014-02-24

    ISS038-E-055240 (24 Feb. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Advanced Colloids Experiment (ACE) housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack. ACE studies microscopic particles suspended in a liquid.

  12. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  13. Design and Characterization of a Gradient-Transparent RF Copper Shield for PET Detector Modules in Hybrid MR-PET Imaging

    NASA Astrophysics Data System (ADS)

    Berneking, Arne; Trinchero, Riccardo; Ha, YongHyun; Finster, Felix; Cerello, Piergiorgio; Lerche, Christoph; Shah, Nadim Jon

    2017-05-01

    This paper focuses on the design and the characterization of a frequency-selective shield for positron emission tomography (PET) detector modules of hybrid magnetic resonance-PET scanners, where the shielding of the PET cassettes is located close to the observed object. The proposed shielding configuration is designed and optimized to guarantee a high shielding effectiveness (SE) of up to 60 dB for B1-fields at the Larmor frequency of 64 MHz, thus preventing interactions between the radio-frequency (RF) coil and PET electronics. On the other hand, the shield is transparent to the gradient fields with the consequence that eddy-current artifacts in the acquired EPI images are significantly reduced with respect to the standard solid-shield configuration. The frequency-selective behavior of the shield is characterized and validated via simulation studies with CST MICROWAVE STUDIO in the megahertz and kilohertz range. Bench measurements with an RF coil built in-house demonstrated the high SE at the Larmor frequency. Moreover, measurements on a 4-T human scanner confirmed the abolishment of eddy current artifact and also provided an understanding of where the eddy currents occur with respect to the sequence parameters. Simulations and measurements for the proposed shielding concept were compared with a solid copper shielding configuration.

  14. Galactic cosmic ray abundances and spectra behind defined shielding.

    PubMed

    Heinrich, W; Benton, E V; Wiegel, B; Zens, R; Rusch, G

    1994-10-01

    LET spectra have been measured for lunar missions and for several near Earth orbits ranging from 28 degrees to 83 degrees inclination. In some of the experiments the flux of GCR was determined separately from contributions caused by interactions in the detector material. Results of these experiments are compared to model calculations. The general agreement justifies the use of the model to calculate GCR fluxes. The magnitude of variations caused by solar modulation, geomagnetic shielding, and shielding by matter determined from calculated LET spectra is generally in agreement with experimental data. However, more detailed investigations show that there are some weak points in modeling solar modulation and shielding by material. These points are discussed in more detail.

  15. ISS Propulsion Module Crew Systems Interface Analysis in the Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Chen, Di-Wen

    1999-01-01

    ERGO, a human modeling software for ergonomic assessment and task analysis, was used for the crew systems interface analysis of the International Space Station (ISS) Propulsion Module (PM). The objective of analysis was to alleviate passageway size concerns. Three basic passageway configuration concepts: (1) 45" clear passageway without centerline offset (2) 50" clear passageway, 12" centerline offset, (3) 50" clear passageway, no centerline offset, and were reviewed. 95 percentile male and female models which were provided by the software performed crew system analysis from an anthropometric point of view. Four scenarios in which the crew floats in microgravity through a 50" no-offset passageway as they carry a 16" x 20" x 30" avionics box were simulated in the 10-weeks of intensive study. From the results of the analysis, concept (3) was the preferred option. A full scale, three-dimensional virtual model of the ISS Propulsion Module was created to experience the sense of the Intelligent Synthesis Environment and to evaluate the usability and applicability of the software.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2005-06-09

    The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  17. Benchmark Studies of the Effectiveness of Structural and Internal Materials as Radiation Shielding for the International Space Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.; Zeitlin, C.; Cucinotta, F.A.

    2002-05-09

    Accelerator-based measurements and model calculations have been used to study the heavy ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high energy Fe ions characteristic of a significant part of the Galactic Cosmic Ray (GCR) heavy ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energiesmore » and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field.« less

  18. Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the international space station.

    PubMed

    Miller, J; Zeitlin, C; Cucinotta, F A; Heilbronn, L; Stephens, D; Wilson, J W

    2003-03-01

    Accelerator-based measurements and model calculations have been used to study the heavy-ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high-energy iron ions characteristic of a significant part of the galactic cosmic-ray (GCR) heavy-ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energies and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however, the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field. Copyright 2003 by Radiation Research Society

  19. Distant view of the ISS as OV-104 makes its initial approach during STS-106

    NASA Image and Video Library

    2000-09-09

    S106-E-5057 (10 September 2000) --- The International Space Station (ISS) is only a few hundred meters away from the Space Shuttle Atlantis in this electronic image. The last time astronauts saw the ISS, it was not sporting the recently-arriving Progress, which appears at the top in this perspective. Also, next to the Progress, appears the Zvezda service module, which had been delivered by a Proton rocket since the most recent human visit to ISS. The ruled markings in the upper right are part of the Crew Optical Alignment Sight (COAS) on Atlantis.

  20. STS-105 Flight Day 5 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this fifth day of the STS-105 mission, the transfer of supplies from the Leonardo Multipurpose Logistics Module to the International Space Station (ISS) and the handover of control of the ISS from the Expedition 2 crew (Yuriy Usachev, Jim Voss, and Susan Helms) to the Expedition 3 crew (Frank Culbertson, Jr., Mikhail Turin, and Vladimir Dezhurov) continue. Commanders Usachev and Culbertson answer questions about the ISS in an on-orbit interview, and the Expedition 3 crewmembers give a video tour of their new sleeping quarters on the ISS. The north Pacific Ocean and the United States Pacific northwest are seen from space.

  1. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-12

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  2. Shuttle and ISS Food Systems Management

    NASA Technical Reports Server (NTRS)

    Kloeris, Vickie

    2000-01-01

    Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated insufficient caloric intake for many crewmembers. Additional thermostabilized and irradiated foods have been developed for ISS to improve the ease of preparation and overall acceptability. Dehydrated foods offer limited advantage, since water must be delivered to ISS. An effort is underway to introduce other International Partner's food into the ISS food system. At first this will be one or two selected foods with the potential for more as the program matures. An increase in the variety of available foods would improve the overall acceptability. Additional galley capability will be required when the crew size increases on ISS. Anticipated improvements include freezers, refrigerators and microwave ovens. All of the ISS food development efforts are devoted to improving the food acceptability and subsequent consumption and mission success

  3. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  4. Boeing CST-100 Starliner Base Heat Shield Installation

    NASA Image and Video Library

    2018-03-15

    On March 15, the base heat shield for Boeing’s CST-100 Starliner was freshly installed on the bottom of Spacecraft 1 in the High Bay of the Commercial Crew and Cargo Processing Facility at Kennedy Space Center. This is the spacecraft that will fly during the Pad Abort Test. The next step involves installation of the back shells and forward heat shield, and then the crew module will be mated to the service module for a fit check. Finally, the vehicle will head out to White Sands Missile Range in New Mexico for testing.

  5. Assessment of the Impacts of ACLS on the ISS Life Support System Using Dynamic Simulations in V-HAB

    NASA Technical Reports Server (NTRS)

    Putz, Daniel; Olthoff, Claas; Ewert, Michael; Anderson, Molly

    2016-01-01

    The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is the Virtual Habitat (V-HAB). Based on MATLAB, V-HAB has been under development at the Institute of Astronautics of the Technical University of Munich (TUM) since 2004 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large, ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside individual modules of the ISS by splitting it into twelve distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS Simulation and several different operating modes for both ACLS and the existing ISS life support systems are studied and the impacts of ACLS on the rest of the system are determined. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to a achieve a very low CO2 concentration in the cabin atmosphere.

  6. Assessment of the Impacts of ACLS on the ISS Life Support System using Dynamic Simulations in V-HAB

    NASA Technical Reports Server (NTRS)

    Puetz, Daniel; Olthoff, Claas; Ewert, Michael K.; Anderson, Molly S.

    2016-01-01

    The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is Virtual Habitat (V-HAB). Based on Matlab (Registered Trademark) V-HAB has been under development at the Institute of Astronautics of the Technical University Munich (TUM) since 2006 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside the individual modules of the ISS by splitting it into ten distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS simulation and different operating modes for both ACLS and the existing ISS life support systems are studied to determine the impacts of ACLS on the rest of the system. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to achieve the highest possible CO2 recycling together with a low CO2 concentration.

  7. Re-rendezvous and approach of Progress 33P

    NASA Image and Video Library

    2009-07-12

    ISS020-E-018056 (12 July 2009) --- An unpiloted ISS Progress 33 cargo craft approaches the International Space Station. On June 30, the Progress undocked from the station and was commanded into a parking orbit for its re-rendezvous with the ISS on July 12, approaching to within 10-15 meters of the Zvezda Service Module to test new automated rendezvous equipment mounted on Zvezda during a pair of spacewalks earlier this month by Gennady Padalka and Mike Barratt that will be used to guide the new Mini-Research Module-2 (MRM2) to an unpiloted docking to the zenith port of Zvezda later this year. MRM2 will serve as a new docking port for Russian spacecraft and an additional airlock for spacewalks conducted out of the Russian segment.

  8. Commercial Platforms Allow Affordable Space Research

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At an altitude of about 240 miles, its orbital path carries it over 90 percent of the Earth s population. It circles the Earth in continuous free fall; its crew of six and one Robonaut pass the days, experiencing 16 sunrises and 16 sunsets every 24 hours, in microgravity, an environment in which everything from bodily functions to the physical behavior of materials changes drastically from what is common on the ground. Outside its shielded confines, temperatures cycle from one extreme to the other, radiation is rampant, and atomic oxygen corrodes everything it touches. A unique feat of engineering, the International Space Station (ISS) also represents the most remarkable platform for scientific research ever devised. In 2005, anticipating the space station s potential for NASA and non-NASA scientists alike, the NASA Authorization Act designated the US segment of the ISS as a national laboratory, instructing the Agency to "increase the utilization of the ISS by other Federal entities and the private sector." With the ISS set to maintain operations through at least 2020, the station offers an unprecedented long-term access to space conditions, enabling research not previously possible. "There will be new drug discoveries, new pharmaceuticals, a better understanding of how we affect the planet and how we can maintain it," says Marybeth Edeen, the ISS National Laboratory manager, based at Johnson Space Center. The ISS, she says, represents a major example of the government s role in making such advancements possible. "The government is key in that researchers cannot afford to build the kind of infrastructure that the government can provide. But we then have to make that infrastructure available at a reasonable cost." Enter Jeff Manber, who saw in the ISS National Lab an extraordinary opportunity to advance science, education, and business in ways never before seen.

  9. Signing ISS RS Handover Protocol

    NASA Image and Video Library

    2014-09-09

    ISS040-E-123948 (9 Sept. 2014) --- In the Zvezda Service Module, Russian cosmonaut Maxim Suraev (right), Expedition 41 commander, signs a ceremonial document as the new commander of the International Space Station following the traditional Change of Command Ceremony. Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, looks on.

  10. Culbertson dons his communication headset before the third EVA of Expedition Three

    NASA Image and Video Library

    2001-11-12

    ISS003-E-8020 (12 November 2001) --- Astronaut Frank L. Culbertson, Jr., Expedition Three mission commander, wearing thermal undergarment, adjusts his communication headgear in the Zvezda Service Module on the International Space Station (ISS). This image was taken with a digital still camera.

  11. Sharipov holds the probe-and-cone docking mechanism in the SM during Expedition 10

    NASA Image and Video Library

    2005-03-03

    ISS010-E-19105 (3 March 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, holds the Progress supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).

  12. iss055e016051

    NASA Image and Video Library

    2018-04-11

    iss055e016051 (April 11, 2018) --- NASA astronaut and Flight Engineer Ricky Arnold works with the student-designed Genes in Space-5 experiment inside the Harmony module. The genetic research is helping scientists understand the relationship between DNA alterations and weakened immune systems possibly caused by living in space.

  13. Living Together in Space: The Design and Operation of the Life Support Systems on the International Space Station. Volume 1

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    1998-01-01

    The International Space Station (ISS) incorporates elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. This current volume, Volume 1, is divided into three chapters. Chapter 1 is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter 2 describes the U.S. ECLSS and technologies in greater detail. Chapter 3 describes the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume II describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

  14. The International Space Station as a Research Laboratory: A View to 2010 and Beyond

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Sotomayor, Jorge L.

    2007-01-01

    Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent a threefold increase from the current research laboratory infrastructure on ISS. In addition, the increase in resident crew size will increase from three to six in 2009, will provide the long-term capacity for completing research on board ISS. Transportation to and from ISS for crew and cargo will be provided by a fleet of vehicles from the United States, Russia, ESA and Japan, including accommodations for thermally-conditioned cargo. The completed ISS will have robust research accommodations to support the multidisciplinary research objective of scientists worldwide.

  15. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  16. KSC-99pp1375

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Looking over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility are Arne Aamodt, with Johnson Space Center, Yuriy Vladimirovich Usachev and Susan J. Helms. Usachev and Helms are two members of the STS-102 crew, who will be staying on the International Space Station (ISS). The third crew member is James S. Voss. They have been designated the Expedition II crew. Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  17. KSC-99pp1377

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-102 crew, known as the Expedition II crew, and workers from Johnson Space Center get a close look at the Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Making up the Expedition II crew are James S. Voss, Susan J. Helms and Yuriy Vladimirovich Usachev, of Russia. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  18. Foale uses takes photographs of a BCAT SGSM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20610 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, uses a digital still camera to photograph a Slow Growth Sample Module (SGSM) for the Binary Colloidal Alloy Test-3 (BCAT) experiment. The SGSM is on a mounting bracket attached to the Maintenance Work Area (MWA) table set up in the Destiny laboratory of the International Space Station (ISS).

  19. International Standard Payload Rack volume

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Outer dimensions of the International Standard Payload Rack (ISPR) that will be used on the International Space Station (ISS) sets the envelope for scientists designing hardware for experiments in biological and physical sciences aboard ISS. The ISPR includes attachments to ISS utilities (electrical power, heating and cooling, data, fluids, vacuum, etc.) through standoffs that hold the racks in place in the lab modules. Usage will range from facilities that take entire racks to specialized drawers occupying a portion of a rack.

  20. Korzun and STS-112 crewmembers in the SM during Expedition Five on the ISS

    NASA Image and Video Library

    2002-10-09

    ISS005-E-16542 (9 October 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, and the STS-112 crewmembers were photographed in the Zvezda Service Module on the International Space Station (ISS). Others pictured are astronauts Jeffrey S. Ashby, STS-112 mission commander; Pamela A. Melroy, pilot; Sandra H. Magnus, Piers J. Sellers, David A. Wolf, and cosmonaut Fyodor N. Yurchikhin, all mission specialists. Korzun and Yurchikhin represent Rosaviakosmos.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-13

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  2. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  3. KSC-00pp0181

    NASA Image and Video Library

    2000-02-03

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.

  4. KSC00pp0181

    NASA Image and Video Library

    2000-02-03

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.

  5. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  6. The Importance of the International Space Station for Life Sciences Research: Past and Future

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Evans, C. A.; Tate, Judy

    2008-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations, it hosted a few early science experiments months before the first international crew took up residence in November 2000. Since that time, science returns from the ISS have been growing at a steady pace. To date, early utilization of the U.S. Operating Segment of ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting U.S. and international partner research. This paper will summarize the life science accomplishments of early research aboard the ISS both applied human research for exploration, and research on the effects of microgravity on life. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities (both pressurized and external) will be tripled, with multiple scientific modules that support a wide variety of research racks and science and technology experiments conducted by all of the International Partners. A milestone was reached in February 2008 with the launch and commissioning of ESA s Columbus module and in March of 2008 with the first of three components of the Japanese Kibo laboratory. Although challenges lie ahead, the realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research disciplines engaged on ISS. As the ISS nears completion of assembly in 2010, we come to full international utilization of the facilities for research. Using the past as an indicator, we are now able to envision the multidisciplinary contributions to improving life on Earth that the ISS can make as a platform for life sciences research.

  7. Space hands-on universe telescope and orbiting wide-angle light-collector telescope to be built on the Japanese experiment module exposure facility of the international space station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Ebisuzaki, T.; Pennypacker, C.

    1999-01-01

    A concept study to build great observatories on, and deploy from, the ISS is presented. Use of the ISS infra-structure including robotic arms and astronauts{close_quote} EVA would permit a construction of very large optical telescopes. We envisage that the second phase of the ISS after its initial construction can landmark a new era for both ISS and Space Sciences. Ultimately, this study would plan a 10-or 20-meter class space telescope. For its first step, we envisioned an immediate extension of the Exposed Facility of ISS for building a {open_quotes}Work-bench{close_quotes} for this purpose. Initial activities can begin with two modest-sized telescopesmore » soon after the ISS construction. These early missions being studied are space Hands-On Universe Telescope (SHOUT) and Orbiting Wide-angle Light-collector (OWL). SHOUT is a 1-m telescope for science education. It will be built and adjusted on the exposure module of the Japanese Experiment Module (JEM) of the International Space Station by using a robotic arm and the EVA of astronauts. We also seek the possibility to release it from ISS after its perfection on orbit, so that it is free from the vibrations and gas contaminations on and around the ISS. SHOUT is an engineering prototype of 10-m Space Telescope (Space SUBARU Telescope). It would be scaled from the Space-SUBARU telescope so that the testing with the SHOUT would warrant the required specifications for the 10-meter Space-SUBARU construction on the ISS. The goal of the test with the SHOUT is to warrant a spatial resolution of 0.01 arc-seconds using the active/adaptive optics. It will test the following three major engineering challenges: (1) active/adaptive optics in space; (2) building of large structures by astronauts; and (3) release of a spacecraft from ISS to a free-flying orbit. The present feasibility study for the next generation great observatories that are to be built on the JEM Exposure Facility (EF) has been already funded by the Japan Space Forum, under the auspices of the National Space Development Agency (NASDA) of Japan. Included in this study are SHOUT, Space SUBARU telescope as well as OWL, Large Area gamma-ray Telescope (LAGT), and Space Submilimeter and Infrared Telescope (S-SIT). {copyright} {ital 1999 American Institute of Physics.}« less

  8. DeWinne posing at the Rasteniya-2 plant growth experiment in the SM during Expedition Five

    NASA Image and Video Library

    2002-11-08

    ISS005-E-20310 (8 November 2002) --- Belgian Soyuz 5 Flight Engineer Frank DeWinne is pictured near a plant growth experiment in the Zvezda Service Module on the International Space Station (ISS). DeWinne represents the European Space Agency (ESA).

  9. Onufrienko with fresh fruit in the Zvezda SM, Expedition Four

    NASA Image and Video Library

    2002-01-16

    ISS004-E-6334 (January 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander representing Rosaviakosmos, is photographed in the Zvezda Service Module on the International Space Station (ISS). Apples and oranges are visible floating freely in front of Onufrienko. The image was taken with a digital still camera.

  10. Close-up view of dwarf peas with red flowers on the Russian Plant Growth Experiment

    NASA Image and Video Library

    2003-04-06

    ISS006-E-44973 (6 April 2003) --- A close up view of a bloom on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  11. Close-up view of dwarf peas with red flowers on the Russian Plant Growth Experiment

    NASA Image and Video Library

    2003-04-06

    ISS006-E-44969 (6 April 2003) --- A close up view of a bloom on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  12. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-10

    ISS006-E-44995 (10 March 2003) --- A close up view of water droplets on leaves on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  13. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-08

    ISS006-E-44929 (9 March 2003) --- A close up view of water droplets on leaves on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  14. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-10

    ISS006-E-44980 (10 March 2003) --- A close up view of water droplets on leaves on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  15. Kaleri works on the SKV-2 AC in the SM during Expedition 8

    NASA Image and Video Library

    2003-12-16

    ISS008-E-08615 (16 December 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, works to remove and replace a Heat Exchanger on the SKV-2 Air Conditioner in the Zvezda Service Module on the International Space Station (ISS). Kaleri represents Rosaviakosmos.

  16. Chiao performs in-flight maintenance on the TVIS in the SM during Expedition 10

    NASA Image and Video Library

    2005-02-15

    ISS010-E-17815 (15 February 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, performs in-flight maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station (ISS).

  17. Kaleri prepares for a data collection / exercise session on the TVIS in the SM during Expedition 8

    NASA Image and Video Library

    2003-11-23

    ISS008-E-05964 (23 November 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, performs in-flight maintenance (IFM) on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Kaleri represents Rosaviakosmos.

  18. Walz configures the Amateur Radio (HAM) WA3 Antenna Assembly, Expedition Four

    NASA Image and Video Library

    2002-01-12

    ISS004-E-5930 (January 2002) --- Astronaut Carl E. Walz, Expedition Four flight engineer, works with the Amateur Radio (HAM) WA3 Antenna Assembly in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  19. Onufrienko holds the Amateur Radio (HAM) WA3 Antenna Assembly, Expedition Four

    NASA Image and Video Library

    2002-01-12

    ISS004-E-5931 (January 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander representing Rosaviakosmos, works with the Amateur Radio (HAM) WA3 Antenna Assembly in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  20. iss047e083584

    NASA Image and Video Library

    2016-04-27

    ISS047e083584 (04/27/2016) --- The DIWATA-1 satellite is deployed from outside of the Japanese Kibo modul. Intended to observe earth and monitor climate changes, this was the first microsatellite owned by the Philippine government that involved Filipino engineers in the development. It was a joint project between Philippine and Japanese universities.

  1. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17412 (13 October 2002) --- Cosmonaut Valery G. Korzun (left), Expedition Five mission commander, and astronaut Peggy A. Whitson, Expedition Five flight engineer, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  2. Sharipov holds a package of Russian food near the galley in the SM during Expedition 9/10 joint OPS

    NASA Image and Video Library

    2004-10-16

    ISS009-E-29027 (17 October 2004) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, holds a package of food near the galley in the Zvezda Service Module of the International Space Station (ISS).

  3. External view of ISS

    NASA Image and Video Library

    2014-09-02

    ISS040-E-123171 (2 Sept. 2014) --- A portion of the International Space Station’s Russian segment is pictured in this image photographed by an Expedition 40 crew member onboard the station. A portion of the "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) docked to the Zvezda Service Module is visible at right background.

  4. External view of ISS

    NASA Image and Video Library

    2014-09-02

    ISS040-E-123168 (2 Sept. 2014) --- A portion of the International Space Station’s Russian segment is pictured in this image photographed by an Expedition 40 crew member onboard the station. A portion of the "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) docked to the Zvezda Service Module is visible at right background.

  5. Particle Cooler/Generator Module in the MRM1

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029764 (13 Jan. 2014) --- Russian cosmonaut Oleg Kotov, Expedition 38 commander, sets up the Particle Cooler/Generator Module for the Kaplya-2 experiment in the Rassvet Mini-Research Module 1 (MRM1) of the International Space Station.

  6. Module Architecture for in Situ Space Laboratories

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  7. Unity nameplate examined before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, holding the nameplate for the Unity connecting module are (left) Joan Higginbotham, with the Astronaut Office Computer Support Branch, and (right) Nancy Tolliver, with Boeing-Huntsville. Part of the International Space Station, Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  8. On-Orbit Checkout and Activation of the ISS Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Prokhorov, Kimberlee S.

    2007-01-01

    NASA has developed and; deployed an Oxygen Generation System (OGS) into the Destiny Module of the International Space Station (ISS). The major. assembly; included in this system is the Oxygen Generator Assembly. (OGA) which was developed under NASA contract by Hamilton Sundstrand Space Systems International (HSSSI), Inc. This paper summarizes the installation of the system into the Destiny Module, its initial checkout and periodic preventative maintenance activities, and its operational activation. Trade studies and analyses that were conducted with the goal of mitigating on-orbit operational risks are also discussed.

  9. MS Malenchenko and MS Lu conduct electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5202 (13 September 2000) --- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, teams up with astronaut Edward T. Lu for some electrical work aboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of the day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them. Astronaut Edward T. Lu, is out of frame at right.

  10. KSC-98pc917

    NASA Image and Video Library

    1998-08-13

    An Integrated Equipment Assembly (IEA) is moved into the center of the Space Station Processing Facility clean room at KSC for transition to the high bay. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999

  11. KSC-98pc918

    NASA Image and Video Library

    1998-08-14

    An Integrated Equipment Assembly (IEA) is lifted from a rotation stand in the Space Station Processing Facility at KSC to be placed on a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999

  12. Fly-around view between the Starboard and Zenith (+YA, -ZA) sides of the ISS

    NASA Image and Video Library

    2013-11-19

    STS088-365-004 (4-15 Dec. 1998) --- The U.S.-built Unity Connecting Module and the Russian-built FGB (Zarya, with solar panels deployed) are backdropped against the blackness of space in this 35mm photograph taken from the Space Shuttle Endeavour. After devoting the major portion of its mission time to various tasks to ready the two docked modules for their International Space Station (ISS) roles, the six-member crew released the tandem and performed a fly-around survey of the hardware.

  13. KSC-98pc1412

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  14. KSC-98pc1413

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  15. Parmitano with checklist in Service module

    NASA Image and Video Library

    2013-11-08

    ISS037-E-028305 (8 Nov. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, reads a procedures checklist in the Zvezda Service Module of the International Space Station.

  16. STS-88 Onboard Photograph - The Unity Module and the Zarya

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph taken during the STS-88 mission, shows the cornected Zarya (top with solar wings) and the Unity Module after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  17. STS-88 Onboard Photograph - Unity and Zarya Modules

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph, taken during the STS-88 mission, shows the cornected Unity Module or Node 1 and Zarya or the Functional Cargo Block (FGB) after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach. It was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity Module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  18. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  19. Chiao holds an Electronic Box Assembly from the TVIS in the SM during Expedition 10

    NASA Image and Video Library

    2005-02-17

    ISS010-E-18164 (17 February 2005) --- Astronaut Leroy Chiao, Expedition 10 commander and NASA ISS science officer, holds an Electronic Box Assembly, and Violation Isolation and Stabilization (VIS) Controller Assembly, which is part of the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station (ISS). Also in view is a VIS/TM data cable and VIS/TM power cable. This box receives power and distributes it between the treadmill and the VIS subassemblies.

  20. Fincke unstows a spare RPCM from the U.S. Lab during Expedition 9

    NASA Image and Video Library

    2004-06-04

    ISS009-E-10551 (4 June 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, moves the Zero-G Storage Rack (ZSR) in the Destiny laboratory of the International Space Station (ISS) in order to retrieve the spare Remote Power Controller Module (RPCM), scheduled to replace the failed RPCM on the S0 (S-Zero) Truss. Fincke is positioned above the ZSR, which has been pulled from the Express Rack.

  1. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  2. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  3. The FCF Fluids Integrated Rack: Microgravity Fluid Physics Experimentation on Board the ISS

    NASA Technical Reports Server (NTRS)

    Gati, Frank G.; Hill, Myron E.; SaintOnge, Tom (Technical Monitor)

    2001-01-01

    The Fluids Integrated Rack (FIR) is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The FIR will be one of the racks that will constitute the Fluids and Combustion Facility (FCF). The ISS will provide the FCF and therefore the FIR with the necessary resources, such as power and cooling, so that the FIR can carry out its primary mission of accommodating fluid physics science experiments. This paper discusses the mission, design, and the capabilities of the FIR in carrying out research on the ISS.

  4. Progress 33P undock

    NASA Image and Video Library

    2009-06-30

    ISS020-E-015987 (30 June 2009) --- An unpiloted ISS Progress 33 cargo craft, filled with trash and unneeded items, departs from the International Space Station?s Pirs Docking Compartment at 1:30 p.m. (CDT) on June 30, 2009. The Progress was commanded into a parking orbit for its re-rendezvous with the ISS on July 12, approaching to within 10-15 meters of the Zvezda Service Module to test new automated rendezvous equipment mounted on Zvezda during a pair of spacewalks earlier this month by Gennady Padalka and Mike Barratt that will be used to guide the new Mini-Research Module-2 (MRM2) to an unpiloted docking to the zenith port of Zvezda later this year. MRM2 will serve as a new docking port for Russian spacecraft and an additional airlock for spacewalks conducted out of the Russian segment.

  5. System interface for an integrated intelligent safety system (ISS) for vehicle applications.

    PubMed

    Hannan, Mahammad A; Hussain, Aini; Samad, Salina A

    2010-01-01

    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  6. KSC-98pc592

    NASA Image and Video Library

    1998-05-05

    Pressurized Mating Adapter (PMA)-2 is in the process of being mated to Node 1 of the International Space Station (ISS) under the supervision of Boeing technicians in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements

  7. System Interface for an Integrated Intelligent Safety System (ISS) for Vehicle Applications

    PubMed Central

    Hannan, Mahammad A.; Hussain, Aini; Samad, Salina A.

    2010-01-01

    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications. PMID:22205861

  8. Boeing technicians discuss mating PMA-2 to Node 1 in the SSPF as STS-88 launch preparations continue

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Boeing technicians discuss mating Pressurized Mating Adapter (PMA)-2 to Node 1 of the International Space Station (ISS) in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.

  9. The FLECS expandable module concept for future space missions and an overall description on the material validation

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Guarrera, Giuseppe; Marchetti, Mario; Ferrari, Giorgio; Nebiolo, Marco; Augello, Gerlando; Bitetti, Grazia; Carnà, Emiliano; Marranzini, Andrea; Mazza, Fabio

    2006-07-01

    The future space exploration missions aim to reduce the costs associated with design, fabrication and launch for ISS, Moon and Mars modules, while simultaneously increasing the useful volume. Flexible and inflatable structures offer many advantages over conventional structures for space applications. Principal among the advantages is the ability to package these structures into small volumes for launch. Design maturation and the development of advanced materials and fabrication processes have made the concept of an inflatable module achievable in the near future. The Multipurpose Expandable Module (FLECS) Project sponsored by ASI (Italian Space Agency) whose prime contractor is Alcatel Alenia Space Italia, links the conventional and traditional technology of modules with the innovative solutions of inflatable technology. This project emphasizes on demonstrating the capability in using inflatable technology on space structures aiming to substitute the conventional modules in future manned missions. FLECS has been designed using advanced textiles and films in order to guarantee the structural reliability necessary for the deployment and packaging configurations. A non-linear structural analysis has been conducted using several numerical codes that simulate the deployed structural characteristics achieving also the damping resistance during the packaging. All the materials used for the flexible parts have been selected through a series of mechanical tests in order to validate the more appropriate ones for the mission. The multi-layer pneumatic retention bladder and the intermediate restraint layer are composed of polymer sheets, ortho-fabrics and elastomers like polyurethanes. The External protection shield is configured using several layers of impact absorption materials and also several layers of space environment (UV, IR, atomic oxygen) protection materials such as Kapton, Mylar and Nextel. The validation of the fabrics, the films and the final prototype assembly are tested in the Space Environment Simulator (SAS), located in the SASLab laboratory of the Aerospace Engineering Department of the “La Sapienza” University of Rome.

  10. The features of radiation dose variations onboard ISS and Mir space station: comparative study.

    PubMed

    Tverskaya, L V; Panasyuk, M I; Reizman, S Ya; Sosnovets, E N; Teltsov, M V; Tsetlin, V V

    2004-01-01

    The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-10

    ISS006-E-44990 (10 March 2003) --- A close up view of a water droplet on a leaf on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  12. Close-up view of sprouts on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) Plant Growth Experiment

    NASA Image and Video Library

    2003-03-17

    ISS006-E-45076 (17 March 2003) --- A close up view of sprouts on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  13. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-09

    ISS006-E-44970 (9 March 2003) --- A close up view of a water droplet on a leaf on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  14. Close-up view of a bloom on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) Plant Growth Experiment

    NASA Image and Video Library

    2003-04-05

    ISS006-E-44917 (5 April 2003) --- A close up view of a bloom on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  15. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-10

    ISS006-E-44989 (10 March 2003) --- A close up view of a water droplet on a leaf on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  16. Close-up view of sprouts on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) Plant Growth Experiment

    NASA Image and Video Library

    2003-03-17

    ISS006-E-45080 (17 March 2003) --- A close up view of sprouts on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  17. Close-up view of sprouts on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment

    NASA Image and Video Library

    2003-03-13

    ISS006-E-45049 (14 March 2003) --- A close up view of sprouts on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  18. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-09

    ISS006-E-44936 (9 March 2003) --- A close up view of a water droplet on a leaf on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  19. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-10

    ISS006-E-44985 (10 March 2003) --- A close up view of a water droplet on a leaf on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  20. Water droplet on a leaf on the Russian BIO-5 Rastenya-2 Plant Growth Experiment

    NASA Image and Video Library

    2003-03-09

    ISS006-E-44962 (9 March 2003) --- A close up view of a water droplet on a leaf on the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment, which is located in the Zvezda Service Module on the International Space Station (ISS).

  1. iss047e038968

    NASA Image and Video Library

    2016-04-05

    ISS047e038968 (04/05/2016) --- ESA (European Space Agency) astronaut Tim Peake operates the Muscle Atrophy Research and Exercise System (MARES) equipment inside the Columbus module. MARES is an ESA system that will be used for research on musculoskeletal, biomechanical, and neuromuscular human physiology to better understand the effects of microgravity on the muscular system.

  2. Whitson receives haircut from Korzun in Zvezda

    NASA Image and Video Library

    2002-10-01

    ISS005-E-18072 (October 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, cuts astronaut Peggy A. Whitson’s hair in the Zvezda Service Module on the International Space Station (ISS). Whitson, flight engineer, holds a vacuum device the crew has fashioned to garner freshly cut hair, which is floating freely.

  3. Whitson receives haircut from Korzun in Zvezda

    NASA Image and Video Library

    2002-10-01

    ISS005-E-18071 (October 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, cuts astronaut Peggy A. Whitson’s hair in the Zvezda Service Module on the International Space Station (ISS). Whitson, flight engineer, holds a vacuum device the crew has fashioned to garner freshly cut hair, which is floating freely.

  4. FORRAY experiment for the ESA DELTA Research during Expedition 8/9 joint operations

    NASA Image and Video Library

    2004-05-01

    ISS009-E-07646 (May 2004) --- Cosmonaut Gennady I. Padalka, Expedition 9 commander representing Russia’;s Federal Space Agency, holds a procedures checklist as the Fluorescence Orbital Radiation Risk Assessment Using Yeast (FORRAY) assembly floats freely nearby in the Zvezda Service Module of the International Space Station (ISS).

  5. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17402 (13 October 2002) --- Cosmonauts Valery G. Korzun (left), Expedition Five mission commander, Sergei Y. Treschev and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun and Treschev represent Rosaviakosmos.

  6. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17390 (13 October 2002) --- Cosmonauts Valery G. Korzun (left), Expedition Five mission commander, Sergei Y. Treschev and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun and Treschev represent Rosaviakosmos.

  7. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17392 (13 October 2002) --- Cosmonauts Valery G. Korzun (left), Expedition Five mission commander, Sergei Y. Treschev and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun and Treschev represent Rosaviakosmos.

  8. Onufrienko and Bursch perform IFM on SM Potok air purification unit during Expedition Four

    NASA Image and Video Library

    2002-01-01

    ISS004-E-5387 (January 2002) --- Cosmonaut Yuri I. Onufrienko (right), Expedition Four mission commander, and astronaut Daniel W. Bursch, flight engineer, perform maintenance on equipment in the Zvezda Service Module on the International Space Station (ISS). Onufrienko represents Rosaviakosmos. The image was taken with a digital still camera.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.

  10. International Space Station Major Constituent Analyzer On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Gardner, Ben D.; Erwin, Philip M.; Thoresen, Souzan; Granahan, John; Matty, Chris

    2011-01-01

    The Major Constituent Analyzer (MCA) is an integral part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor. These gases are sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). The MCA is the primary tool for management of atmosphere constituents and is therefore critical for ensuring a habitable ISS environment during both nominal ISS operations and campout EVA preparation in the Airlock. The MCA has been in operation in the US Destiny Laboratory Module for over 10 years, and a second MCA has been delivered to the ISS for Node 3 operation. This paper discusses the performance of the MCA over the two past year, with particular attention to lessons learned regarding the operational life of critical components. Recent data have helped drive design upgrades for a new set of orbit-replaceable units (ORUs) currently in production. Several ORU upgrades are expected to increase expected lifetimes and reliability.

  11. Expedition One crew in Russian with Service Module

    NASA Image and Video Library

    2000-07-14

    Photographic documentation of Expedition One crew in Russia with Service Module. Views include: The three crew members for ISS Expedition One train with computers on the trainer / mockup for the Zvezda Service Module. From the left are cosmonauts Yuri Gidzenko, Soyuz commander; and Sergei Krikalev, flight engineer; and astronaut William Shepherd, mission commander. The session took place at the Gagarin Cosmonaut Training Center in Russia (18628). View looking toward the hatch inside the Zvezda Service Module trainer / mockup at the Gagarin Cosmonaut Training Center in Russia (18629). A wide shot of the Zvezda Service Module trainer / mockup, with the transfer compartment in the foreground (18630). Side view of the Zvezda Service Module (18631). An interior shot of the Zarya / Functional Cargo Bay (FGB) trainer / mockup (18632). Astronaut Scott Kelly, director of operations - Russia, walks through a full scale trainer / mockup for the Zvezda Service Module at the Gagarin Cosmonaut Training Center in Russia (18633). Astronaut William Shepherd (right) mission commander for ISS Expedition One, and Sergei Krikalev, flight engineer, participate in a training session in a trainer / mockup of the Zvezda Service Module (18634).

  12. Marshburn performs maintenance on the CDRA in the JPM

    NASA Image and Video Library

    2013-03-08

    ISS034-E-063336 (8 March 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, performs maintenance on the Carbon Dioxide Removal Assembly in the Japanese Experiment Module (JEM) Pressurized Module (JPM).

  13. Ford performs maintenance on the CDRA in the JPM

    NASA Image and Video Library

    2013-03-09

    ISS034-E-063052 (9 March 2013) --- NASA astronaut Kevin Ford, Expedition 34 commander, performs maintenance on the Carbon Dioxide Removal Assembly in the Japanese Experiment Module (JEM) Pressurized Module (JPM).

  14. Hadfield performs regular maintenance on Biolab, in the Columbus Module

    NASA Image and Video Library

    2013-02-20

    ISS034-E-051715 (20 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs routine maintenance on Biolab in the Columbus Module aboard the International Space Station.

  15. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  16. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  18. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  19. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for Wireless Sensor Networks

    PubMed Central

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values. PMID:22163687

  20. An architecture for performance optimization in a collaborative knowledge-based approach for wireless sensor networks.

    PubMed

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.

Top