International Space Station Utilization: Tracking Investigations from Objectives to Results
NASA Technical Reports Server (NTRS)
Ruttley, T. M.; Mayo, Susan; Robinson, J. A.
2011-01-01
Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods
International Research Results and Accomplishments From the International Space Station
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will continue to contribute to the science literature in a way that helps to formulate new hypotheses and conclusions that will enable science advancements across a wide range of scientific disciplines both in space and on Earth.
Five Years of NASA Research on ISS: A Continuing Saga
NASA Technical Reports Server (NTRS)
Uri, John J.
2005-01-01
The first NASA experiments reached ISS in September 2000, a very modest beginning to what later became a more robust, diverse and overall highly successful research program, continuing essentially uninterrupted since March 2001. Along the way, several major challenges had to be overcome. First, there were delays in the initial construction of the station. Second, maintenance of the station exceeded earlier assumptions resulting in less crew time being available for research. Third, the lengthy interruption of Shuttle flights after the Columbia accident significantly, but temporarily, reduced the research traffic to and from ISS. And fourth, the Vision of Space Exploration as caused a refocusing of NASA's research efforts on ISS from a multi-disciplinary basic and applied science program to one dedicated to solving the critical questions to enable exploration missions. The principal factors that allowed these challenges to be overcome have been flexibility and cooperation. Flexibility on the part of the ISS Program to minimize impacts to research from delays and resource bottlenecks, flexibility on the part of researchers to adapt their research to changing environments, and flexibility to be able to use existing and planned facilities not only for their original basic science purpose but also for new applications. And cooperation not only between the ISS Program and the research community, but also among NASA and its International Partners to continually strive to optimize the research conducted aboard ISS. Once the challenges were overcome, the research program has been remarkably successful, with an expanding on-orbit capability. Over 80 investigations have been completed, many resulting in publications.
Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M
2003-07-01
This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. c2003 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. Examples of the highest pro le publications to date from each discipline will also be presented. As ISS research activities and operations continue, scientific data derived from earlier experiments will continuously be re-examined, refined, and assembled with new data and findings, including data from other fields never considered. New results will be produced, allowing breakthroughs in new areas of research and innovative solutions to problems on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will continue to contribute to the science literature in a way that helps to formulate new hypotheses and conclusions that will enable science advancements across a wide range of scientific disciplines both in space and on Earth.
Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete
2016-01-01
The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging systems mounted on ISS as well as other orbiting spacecraft to improve our understanding of the Earth and its climate. NASA and Roscosmos continue to encourage international scientific cooperation and expanded use of the ISS Laboratory. "Long-term", larger collaborations will achieve scientific objectives that no single national science team or agency can achieve on its own. The joint accomplishments achieved so far have paved the way for a stronger international scientific community and improved results and benefits from ISS.
NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Szofran, Frank
2008-01-01
The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.
Research on International Space Station - Building a Partnership for the Future
NASA Technical Reports Server (NTRS)
Gindl, Heinz; Scheimann, Jens; Shirakawa, Masaki; Suvorov, Vadim; Uri, John J.
2004-01-01
As its name implies, the International Space Station is a platform where the research programs of 16 partner nations are conducted. While each partner pursues its own research priorities, cooperation and coordination of the various national and agency research programs occurs at multiple levels, from strategic through tactical planning to experiment operations. Since 2000, a significant number of experiments have been carried out in the Russian ISS utilization program, which consists of the Russian national program of fundamental and applied research in 11 research areas and international cooperative programs and contract activities. The US research program began with simple payloads in 2000 and was significantly expanded with the addition of the US Laboratory module Destiny in 2001, and its outfitting with seven research racks to date. The Canadian Space Agency (CSA), the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) have made use of international cooperative arrangements with both the US and Russia to implement a variety of investigations in diverse research areas, and in the case of ESA included the flights of crewmembers to ISS as part of Soyuz Science Missions. In the future, ESA and JAXA will add their own research modules, Columbus and Kibo, respectively, to expand research capabilities both inside and outside ISS. In the aftermath of the Columbia accident and the temporary grounding of the Space Shuttle fleet, all ISS logistics have relied on Russian Progress and Sopz vehicles. The Russian national program has continued as before the Shuttle accident, as have international cooperative programs and contract activities, both during long-duration expeditions and visiting taxi missions. In several instances, Russian international cooperative activities with JAXA and ESA have also involved the use of US facilities and crewmembers in successful truly multilateral efforts. The US research program was rapidly refocused after the Shuttle accident to rely on greatly reduced upmass, and for the first time in the ISS program, US research hardware was launched on Progress vehicles and returned with crews on Soyuz spacecraft. It is hoped that these small but significant steps in international cooperation will lead to even greater endeavors once the remaining research modules are added to ISS.
Enterprise: an International Commercial Space Station Option
NASA Astrophysics Data System (ADS)
Lounge, John M.
2002-01-01
In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.
NASA Technical Reports Server (NTRS)
Charles, John B.; Bogomolov, Valery V.
2015-01-01
Effective use of the unique capabilities of the International Space Station (ISS) for risk reduction on future deep space missions involves preliminary work in analog environments to identify and evaluate the most promising techniques, interventions and treatments. This entails a consolidated multinational approach to biomedical research both on ISS and in ground analogs. The Multilateral Human Research Panel for Exploration (MHRPE) was chartered by the five ISS partners to recommend the best combination of partner investigations on ISS for risk reduction in the relatively short time available for ISS utilization. MHRPE will also make recommendations to funding agencies for appropriate preparatory analog work. In 2011, NASA's Human Research Program (HRP) and the Institute of Biomedical Problems (IBMP) of the Russian Academy of Science, acting for MHRPE, developed a joint US-Russian biomedical program for the 2015 one-year ISS mission (1YM) of American and Russian crewmembers. This was to evaluate the possibilities for multilateral research on ISS. An overlapping list of 16 HRP, 9 IBMP, 3 Japanese, 3 European and 1 Canadian investigations were selected to address risk-reduction goals in 7 categories: Functional Performance, Behavioral Health, Visual Impairment, Metabolism, Physical Capacity, Microbial and Human Factors. MHRPE intends to build on this bilateral foundation to recommend more fully-integrated multilateral investigations on future ISS missions commencing after the 1YM. MHRPE has also endorsed an on-going program of coordinated research on 6-month, one-year and 6-week missions ISS expeditions that is now under consideration by ISS managers. Preparatory work for these missions will require coordinated and collaborative campaigns especially in the psychological and psychosocial areas using analog isolation facilities in Houston, Köln and Moscow, and possibly elsewhere. The multilateral Human Analogs research working group (HANA) is the focal point of those planning discussions, with MHRPE coordinating between the national programs and then supporting implementation on ISS. Experience gained during preparations for the 1YM has identified improvements in both American and Russian processes to enable well-integrated investigations on all subsequent ISS expeditions. Among those is that the greatest efficiency is to be gained with investigations that are fully integrated from their conception, with co-principal investigators, a consolidated proposal and integrated plans for crewmember time and other flight-related resources. Analog investigations preceding future ISS expeditions will employ these lessons in efficiency to evaluate the techniques and tools to be validated aboard ISS. In this way, the resources and capabilities of ISS can be applied most efficiently to solving the problems facing astronauts of all nations in missions deep into the solar system.
The International Space Station in Space Exploration
NASA Technical Reports Server (NTRS)
Gerstenmaier, William H.; McKay, Meredith M.
2006-01-01
The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.
Report by the International Space Station (ISS) Management and Cost Evaluation (IMCE) Task Force
NASA Technical Reports Server (NTRS)
Young, A. Thomas; Kellogg, Yvonne (Technical Monitor)
2001-01-01
The International Space Station (ISS) Management and Cost Evaluation Task Force (IMCE) was chartered to conduct an independent external review and assessment of the ISS cost, budget, and management. In addition, the Task Force was asked to provide recommendations that could provide maximum benefit to the U.S. taxpayers and the International Partners within the President's budget request. The Task Force has made the following principal findings: (1) The ISS Program's technical achievements to date, as represented by on-orbit capability, are extraordinary; (2) The Existing ISS Program Plan for executing the FY 02-06 budget is not credible; (3) The existing deficiencies in management structure, institutional culture, cost estimating, and program control must be acknowledged and corrected for the Program to move forward in a credible fashion; (4) Additional budget flexibility, from within the Office of Space Flight (OSF) must be provided for a credible core complete program; (5) The research support program is proceeding assuming the budget that was in place before the FY02 budget runout reduction of $1B; (6) There are opportunities to maximize research on the core station program with modest cost impact; (7) The U.S. Core Complete configuration (three person crew) as an end-state will not achieve the unique research potential of the ISS; (8) The cost estimates for the U.S.-funded enhancement options (e.g., permanent seven person crew) are not sufficiently developed to assess credibility. After these findings, the Task Force has formulated several primary recommendations which are published here and include: (1) Major changes must be made in how the ISS program is managed; (2) Additional cost reductions are required within the baseline program; (3) Additional funds must be identified and applied from the Human Space Flight budget; (4) A clearly defined program with a credible end-state, agreed to by all stakeholders, must be developed and implemented.
Russian Earth Science Research Program on ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armand, N. A.; Tishchenko, Yu. G.
1999-01-22
Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
Statistical Evaluation of Utilization of the ISS
NASA Technical Reports Server (NTRS)
Andrews, Ross; Andrews, Alida
2006-01-01
PayLoad Utilization Modeler (PLUM) is a statistical-modeling computer program used to evaluate the effectiveness of utilization of the International Space Station (ISS) in terms of the number of research facilities that can be operated within a specified interval of time. PLUM is designed to balance the requirements of research facilities aboard the ISS against the resources available on the ISS. PLUM comprises three parts: an interface for the entry of data on constraints and on required and available resources, a database that stores these data as well as the program output, and a modeler. The modeler comprises two subparts: one that generates tens of thousands of random combinations of research facilities and another that calculates the usage of resources for each of those combinations. The results of these calculations are used to generate graphical and tabular reports to determine which facilities are most likely to be operable on the ISS, to identify which ISS resources are inadequate to satisfy the demands upon them, and to generate other data useful in allocation of and planning of resources.
Designing an Effective In-School Suspension Program.
ERIC Educational Resources Information Center
Morris, Robert C.; Howard, Angela C.
2003-01-01
Identifies four popular models of in-school suspension (ISS) and discusses research on modifying the behaviors of ISS students. Hopes that by identifying and analyzing successful ones educators can develop more insightful and effective programs. Considers how counseling makes a difference. (SG)
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2003-01-01
This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Hasbrook, Pete; Tate Brown, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki;
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the e orts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible \\open data" repositories. For ISS data, these repositories include GeneLab, the Physical Science Informatics System, and different Earth science data systems. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores effectiveness of international collaboration in the course of the ISS Program execution. The collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) are also considered in the paper in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.
NASA Astrophysics Data System (ADS)
Sutliff, T. J.; Otero, A. M.; Urban, D. L.
2002-01-01
The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the Combustion Integrated Rack and the Microgravity Science Glovebox are made based on facility capabilities and research requirements. To maximize research potential, additional research objectives are specified as desires a priori during the research design phase. These expanded research goals, which are designed to be achievable even with late addition of operational resources, allow additional research of a known, peer-endorsed scope to be conducted at marginal cost. Additional operational resources such as upmass, crewtime, data downlink bandwidth, and stowage volume may be presented by the ISS planners late in the research mission planning process. The Combustion Discipline has put in place plans to be prepared to take full advantage of such opportunities.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Human Research Program: Long Duration, Exploration-Class Mission Training Design
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Dempsey, Donna L.
2016-01-01
This is a presentation to the International Training Control Board that oversees astronaut training for ISS. The presentation explains the structure of HRP, the training-related work happening under the different program elements, and discusses in detail the research plan for the Training Risk under SHFHSHFE. The group includes the crew training leads for all the space agencies involved in ISS: Japan, Europe, Russia, Canada, and the US.
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete; Robinson, Julie A.; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Shirakawa, Masaki; Karabadzhak, Georgy; Sorokin, Igor V.; Valentini, Giovanni
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and down mass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab, the Physical Science Informatics System, and different Earth data systems. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete; Robinson, Julie A.; Brown Tate, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki;
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab and the Physical Science Informatics System. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores international collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
NASA Technical Reports Server (NTRS)
SaintOnge, Thomas H.
2010-01-01
The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.
2012-01-01
Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
School-Wide Discipline Policies: In-School Suspension in One Middle School.
ERIC Educational Resources Information Center
Chung, Gloria; Paul, Rachel
One of the more perplexing problems facing middle schools is the use of in-school suspension (ISS). So as to understand better the effects of this practice, one middle school's ISS program was studied and evaluated. Current research on ISS polices and practices is limited, and there is little evidence that supports its use or reform; however, in…
SPHERES: From Ground Development to Operations on ISS
NASA Technical Reports Server (NTRS)
Katterhagen, A.
2015-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of experts who can guide the Payload Developer (PD) and Principle Investigator (PI) in reaching critical milestones to make their science a reality using the SPHERES platform. From performing integrated safety and verification assessments, to assisting in developing crew procedures and operations products, to organizing, planning, and executing all test sessions, to helping manage data products, the SPHERES team at ARC is available to support microgravity research with the SPEHRES Guest Scientist Program.
ISS Expedition 43 Soyuz Rollout
2015-04-06
NASA TV (NTV) video file of ISS Expedition 43 Soyuz rollout to launch pad. Includes footage of the rollout by train; Rocket hoisted into upright position; interview with Bob Behnken, Chief of Astronaut Office; Dr. John Charles, chief of the International Science Office of NASA's Human Research Program , Johnson Space Center; and family and friends speaking with and saying goodbye to ISS Expedition 43 - 46 One Year crewmember Scott Kelly .
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer
2009-01-01
This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
2017-02-21
How hard would it be to keep track of your stuff if it could literally float away—which does happen on the International Space Station. Well, the crews in space have help, in the form of the Stowage team at NASA’s Marshall Space Flight Center in Huntsville, Alabama. From tools to trash, learn how the team keeps track of everything the astronauts need as they conduct groundbreaking science research on orbit. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/arEf05Yf5IY
NASA Technical Reports Server (NTRS)
Ronbinson, Julie A.; Harm, Deborah L.
2009-01-01
As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.
Exploration-Related Research on ISS: Connecting Science Results to Future Missions
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.
2005-01-01
In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.
The International Space Station: A National Laboratory
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2012-01-01
After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.
NASA Technical Reports Server (NTRS)
Grimaldi, Rebecca; Horvath, Tim; Morris, Denise; Willis, Emily; Stacy, Lamar; Shell, Mike; Faust, Mark; Norwood, Jason
2011-01-01
Payload science operations on the International Space Station (ISS) have been conducted continuously twenty-four hours per day, 365 days a year beginning February, 2001 and continuing through present day. The Payload Operations Integration Center (POIC), located at the Marshall Space Flight Center in Huntsville, Alabama, has been a leader in integrating and managing NASA distributed payload operations. The ability to conduct science operations is a delicate balance of crew time, onboard vehicle resources, hardware up-mass to the vehicle, and ground based flight control team manpower. Over the span of the last ten years, the POIC flight control team size, function, and structure has been modified several times commensurate with the capabilities and limitations of the ISS program. As the ISS vehicle has been expanded and its systems changed throughout the assembly process, the resources available to conduct science and research have also changed. Likewise, as ISS program financial resources have demanded more efficiency from organizations across the program, utilization organizations have also had to adjust their functionality and structure to adapt accordingly. The POIC has responded to these often difficult challenges by adapting our team concept to maximize science research return within the utilization allocations and vehicle limitations that existed at the time. In some cases, the ISS and systems limitations became the limiting factor in conducting science. In other cases, the POIC structure and flight control team size were the limiting factors, so other constraints had to be put into place to assure successful science operations within the capabilities of the POIC. This paper will present the POIC flight control team organizational changes responding to significant events of the ISS and Shuttle programs.
Astrobee: Space Station Robotic Free Flyer
NASA Technical Reports Server (NTRS)
Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.
2016-01-01
Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.
International Space Station Research and Facilities for Life Sciences
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Ruttley, Tara M.
2009-01-01
Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
NASA Technical Reports Server (NTRS)
Fuller, Sean; Dillon, William F.
2006-01-01
As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.
NASA Technical Reports Server (NTRS)
Ortiz, James N.; Scott,Kelly; Smith, Harold
2004-01-01
The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.
Validating the Use of ICD-9 Code Mapping to Generate Injury Severity Scores
Fleischman, Ross J.; Mann, N. Clay; Dai, Mengtao; Holmes, James F.; Wang, N. Ewen; Haukoos, Jason; Hsia, Renee Y.; Rea, Thomas; Newgard, Craig D.
2017-01-01
The Injury Severity Score (ISS) is a measure of injury severity widely used for research and quality assurance in trauma. Calculation of ISS requires chart abstraction, so it is often unavailable for patients cared for in nontrauma centers. Whether ISS can be accurately calculated from International Classification of Diseases, Ninth Revision (ICD-9) codes remains unclear. Our objective was to compare ISS derived from ICD-9 codes with those coded by trauma registrars. This was a retrospective study of patients entered into 9 U.S. trauma registries from January 2006 through December 2008. Two computer programs, ICDPIC and ICDMAP, were used to derive ISS from the ICD-9 codes in the registries. We compared derived ISS with ISS hand-coded by trained coders. There were 24,804 cases with a mortality rate of 3.9%. The median ISS derived by both ICDPIC (ISS-ICDPIC) and ICDMAP (ISS-ICDMAP) was 8 (interquartile range [IQR] = 4–13). The median ISS in the registry (ISS-registry) was 9 (IQR = 4–14). The median difference between either of the derived scores and ISS-registry was zero. However, the mean ISS derived by ICD-9 code mapping was lower than the hand-coded ISS in the registries (1.7 lower for ICDPIC, 95% CI [1.7, 1.8], Bland–Altman limits of agreement = −10.5 to 13.9; 1.8 lower for ICDMAP, 95% CI [1.7, 1.9], limits of agreement = −9.6 to 13.3). ICD-9-derived ISS slightly underestimated ISS compared with hand-coded scores. The 2 methods showed moderate to substantial agreement. Although hand-coded scores should be used when possible, ICD-9-derived scores may be useful in quality assurance and research when hand-coded scores are unavailable. PMID:28033134
The role of the space station in earth science research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaye, Jack A.
1999-01-22
The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less
NASA Technical Reports Server (NTRS)
Benavides, Jose
2014-01-01
SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.
SAGE-III Ready for Ozone Checkup
2017-02-15
A third-generation investigation into the state of the ozone layer of Earth’s atmosphere is scheduled for launch to the International Space Station on the SpaceX-10 cargo ship. Marilee Roell of NASA’s Langley Research Center explains how the third iteration of the Stratospheric Aerosol and Gas Experiment will measure ozone, aerosols and other components of the atmosphere for scientists who hope to see an improvement in the atmosphere’s ability to protect the planet—and everyone and everything on it—from harmful ultraviolet radiation. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/HQdMZ5OAU3U
International Space Station (ISS)
2001-02-01
The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.
International Space Station (ISS)
2000-02-01
The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka;
2013-01-01
Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million teachers located in 49 countries have participated in some aspect of ISS educational activities. These activities include student-developed investigations, education competitions, and classroom versions of ISS investigations, participating in ISS investigator experiments, ISS hardware development, educational demonstrations, and cultural activities. Through the many inquiry-based educational activities, students and teachers are encouraged to participate in the ISS program thus motivating the next generation of students to pursue careers in STEM.
NASA Astrophysics Data System (ADS)
Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore
2014-10-01
Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million teachers located in 49 countries have participated in some aspect of ISS educational activities. These activities include student-developed investigations, education competitions and classroom versions of ISS investigations, participating in ISS investigator experiments, ISS hardware development, educational demonstrations and cultural activities. Through the many inquiry-based educational activities, students and teachers are encouraged to participate in the ISS program thus motivating the next generation of students to pursue careers in STEM.
Flight Planning and Procedures
NASA Technical Reports Server (NTRS)
Rich, Allison C.
2016-01-01
The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.
International Space Station Earth Observations Working Group
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Oikawa, Koki
2015-01-01
The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.
NASA Technical Reports Server (NTRS)
Finckenor, Miria
2006-01-01
Marshall Space Flight Center worked with the Air Force Research Laboratory, Naval Research Laboratory, Langley Research Center, Glenn Research Center, the Jet Propulsion Laboratory, Johnson Space Center, Boeing, Lockheed Martin, TRW, the Aerospace Corporation, Triton Systems, AZ Technology, Alion (formerly IITRI), ENTECH, and L'Garde to bring together the first external materials exposure experiment on International Space Station (ISS). MISSE re-uses hardware from the MEEP flown on the Russian space station Mir. MISSE has returned a treasure trove of materials data that will be useful not only for ISS but also for programs as diverse as the new Crew Exploration Vehicle, the James Webb Telescope, the Lunar Surface Access Module, the Robotic Lunar Exploration Program, High Altitude Airships, and solar sails. MISSE-1 and -2 (Figure 1) were attached to the Quest airlock on ISS for 4 years and were retrieved during STS-114. MISSE-3 and -4 were bumped fr-om STS-114 and are currently slated for deployment during STS-121. MISSE-5 (Figure 2) was deployed during STS-114.
FLEX: A Decisive Step Forward in NASA's Combustion Research Program
NASA Technical Reports Server (NTRS)
Hickman, John M.; Dietrich, Daniel L.; Hicks, Michael C.; Nayagam, Vedha; Stocker, Dennis
2012-01-01
Stemming from the need to prevent, detect and suppress on-board spacecraft fires, the NASA microgravity combustion research program has grown to include fundamental research. From early experiment, we have known that flames behave differently in microgravity, and this environment would provide an ideal laboratory for refining many of the long held principals of combustion science. A microgravity environment can provide direct observation of phenomena that cannot be observed on Earth. Through the years, from precursor work performed in drop towers leading to experiments on the International Space Station (ISS), discoveries have been made about the nature of combustion in low gravity environments. These discoveries have uncovered new phenomena and shed a light on many of the fundamental phenomena that drive combustion processes. This paper discusses the NASA microgravity combustion research program taking place in the ISS Combustion Integrated Rack, its various current and planned experiments, and the early results from the Flame Extinguishment (FLEX) Experiment.
NASA Technical Reports Server (NTRS)
Spivey, Reggie; Flores, Ginger N.
2009-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address the role of the MSG facility in the ISS National Lab.
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Wagner, James; Phelps, Amanda
2014-01-01
What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.
Research on the International Space Station - An Overview
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.
2009-01-01
The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three laboratories, together with external payload accommodations, support a wide variety of research racks and science and technology experiments. In 2009, the number of crewmembers will increase from three to six, greatly increasing the time available for research. The realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research potential on the ISS. Engineers and scientists from around the world are working together to refine their operational relationships and build from their experiences conducting early science to ensure maximum utilization of the expanded capabilities aboard ISS. This paper will summarize science results and accomplishments, and discuss how the early science utilization provides the foundation for continuing research campaigns aboard the ISS that will benefit future exploration programs.
2017-06-01
Josh Cassada made a bet with his wife when he applied to become a NASA astronaut—find out about the wager, what he’s doing to get himself ready for his first trip to space, and the questions he gets asked most often by kids, in this video from the International Space Station’s Program Science Office. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research
[Enhancement of the medical care system for crews on space missions].
Bogomolov, V V; Egorov, A D
2013-01-01
An overview of structural, operational and research aspects of the Russian system of medical support to health and performance of cosmonauts on the International space station (ISS) is presented. The backbone of the current tactics of cosmonauts' health maintenance is the original Russian medical care system developed for long-term piloted space fights. Over 12 years of its existence, the ISS has been operated by 33 main crews. The ISS program entrusted the established multilateral medical boards and panels with laying down the health standards as well as the generic and specific medical and engineering requirements mandatory to all international partners. Due to the program international nature, MedOps planning and implementation are coordinated within the network of working level groups with members designated by each IP. The article sums up the experiences and outlines future trends of the Russian medical care system for ISS cosmonauts. The authors pay tribute to academician Anatoli I. Grigoriev for his contribution to creation of the national system of medical safety in long-term piloted space missions, setting the ISS health and environmental standards and uniform principles of integrated crew health management, and gaining consensus on medical policy and operational issues equally during the ISS construction and utilization.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
NASA Technical Reports Server (NTRS)
Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond
2015-01-01
Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.
2002-01-01
The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.
Reinventing the International Space Station Payload Integration Processes and Capabilities
NASA Technical Reports Server (NTRS)
Jones, Rod; Price, Carmen; Copeland, Scott; Geiger, Wade; Geiger, Wade; Rice, Amanda; Lauchner, Adam
2011-01-01
The fundamental ISS payload integration philosophy, processes and capabilities were established in the context of how NASA science programs were conducted and executed in the early 1990 s. Today, with the designation of the United States (US) portion of ISS as a National Lab, the ISS payload customer base is growing to include other government agencies, private and commercial research. The fields of research are becoming more diverse expanding from the NASA centric physical, materials and human research sciences to test beds for exploration and technology demonstration, biology and biotechnology, and as an Earth and Space science platform. This new customer base has a broader more diverse set of expectations and requirements for payload design, verification, integration, test, training, and operations. One size fits all processes are not responsive to this broader customer base. To maintain an organization s effectiveness it must listen to its customers, understand their needs, learn from its mistakes, and foster an environment of continual process improvement. The ISS Payloads office is evolving to meet these new customer expectations.
Analysis of Noise Exposure Measurements Made Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Limardo, Jose G.; Allen, Christopher S.
2011-01-01
The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements are made aboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2000). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Discussions related to hearing protection will also be included. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers aboard the ISS.
Analysis of Noise Exposure Measurements Acquired Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Limardo, Jose G.; Allen, Christopher S.
2011-01-01
The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements were made onboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2001). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn dosimeters during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers onboard the ISS.
Using Distributed Operations to Enable Science Research on the International Space Station
NASA Technical Reports Server (NTRS)
Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna
2011-01-01
In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload operations and discusses the benefits and drawbacks.
The International Space Station (ISS) Education Accomplishments and Opportunities
NASA Technical Reports Server (NTRS)
Alleyne, Camille W.; Blue, Regina; Mayo, Susan
2012-01-01
The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks on a regular basis. These diverse student experiments and programs fall into one of the following categories: student-developed experiments; students performing classroom versions of ISS experiments; students participating in ISS investigator experiments; students participating in ISS engineering education; education demonstrations and cultural activities. This paper summarizes some of the main student experiments and educational activities that have been conducted on the ISS. It also highlights some upcoming projects.
Evolution of International Space Station Program Safety Review Processes and Tools
NASA Technical Reports Server (NTRS)
Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.
2013-01-01
The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on the new ISS hazard system utilized focused user research and iterative design methods employed by the Human Computer Interaction Group at NASA Ames Research Center. Particularly, the approach emphasized the reduction of workload associated with document and data management activities so more resources can be allocated to the operational use of data in problem solving, safety analysis, and recurrence control. The methods and techniques used to understand existing processes and systems, to recognize opportunities for improvement, and to design and review improvements are described with the intent that similar techniques can be employed elsewhere in safety operations. A second goal of this paper is to provide and overview of the web-based data system implemented by ISS. The software selected for the ISS hazard systemMission Assurance System (MAS)is a NASA-customized vairant of the open source software project Bugzilla. The origin and history of MAS as a NASA software project and the rationale for (and advantages of) using open-source software are documented elsewhere (Green, et al., 2009).
The International Space Station: Stepping-stone to Exploration
NASA Technical Reports Server (NTRS)
Gerstenmaier, William H.; Kelly, Brian K.; Kelly, Brian K.
2005-01-01
As the Space Shuttle returns to flight this year, major reconfiguration and assembly of the International Space Station continues as the United States and our 5 International Partners resume building and carry on operating this impressive Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush ratified the United States' commitment to completing construction of the ISS by 2010. The current ongoing research aboard the Station on the long-term effects of space travel on human physiology will greatly benefit human crews to venture through the vast voids of space for months at a time. The continual operation of ISS leads to new knowledge about the design, development and operation of system and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration. This paper will provide an overview of the ISS Program, including a review of the events of the past year, as well as plans for next year and the future.
International Space Station Evolution Data Book. Volume 1; Baseline Design; Revised
NASA Technical Reports Server (NTRS)
Jorgensen, Catherine A. (Editor); Antol, Jeffrey (Technical Monitor)
2000-01-01
The International Space Station (ISS) will provide an Earth-orbiting facility that will accommodate engineering experiments as well as research in a microgravity environment for life and natural sciences. The ISS will distribute resource utilities and support permanent human habitation for conducting this research and experimentation in a safe and habitable environment. The objectives of the ISS program are to develop a world-class, international orbiting laboratory for conducting high-value scientific research for the benefit of humans on Earth; to provide access to the microgravity environment; to develop the ability to live and work in space for extended periods; and to provide a research test bed for developing advanced technology for human and robotic exploration of space. The current design and development of the ISS has been achieved through the outstanding efforts of many talented engineers, designers, technicians, and support personnel who have dedicated their time and hard work to producing a state-of-the-art Space Station. Despite these efforts, the current design of the ISS has limitations that have resulted from cost and technology issues. Regardless, the ISS must evolve during its operational lifetime to respond to changing user needs and long-term national and international goals. As technologies develop and user needs change, the ISS will be modified to meet these demands. The design and development of these modifications should begin now to prevent a significant lapse in time between the baseline design and the realization of future opportunities. For this effort to begin, an understanding of the baseline systems and current available opportunities for utilization needs to be achieved. Volume I of this document provides the consolidated overview of the ISS baseline systems. It also provides information on the current facilities available for pressurized and unpressurized payloads. Information on current plans for crew availability and utilization; resource timelines and margin summaries including power, thermal, and storage volumes; and an overview of the ISS cargo traffic and the vehicle traffic model is also included.
The NASA Microgravity Fluid Physics Program: Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.
2003-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
International Cooperation of Payload Operations on the International Space Station
NASA Technical Reports Server (NTRS)
Melton, Tina; Onken, Jay
2003-01-01
One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.
2010-01-04
ISS024-S-001 (January 2010) --- Science and Exploration are the cornerstones of NASA?s mission onboard the International Space Station (ISS). This emblem signifies the dawn of a new era in our program?s history. With each new expedition, as we approach assembly complete, our focus shifts toward the research nature of this world-class facility. Prominently placed in the foreground, the ISS silhouette leads the horizon. Each ray of the sun represents the five international partner organizations that encompass this cooperative program. Expedition 24 is one of the first missions expanding to a crew of six. These crews, symbolized here as stars arranged in two groups of three, will launch on Soyuz vehicles. The unbroken flight track symbolizes our continuous human presence in space, representing all who have and will dedicate themselves as crew and citizens of the International Space Station. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.
International Space Station Instmments Collect Imagery of Natural Disasters
NASA Technical Reports Server (NTRS)
Evans, C. A.; Stefanov, W. L.
2013-01-01
A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.
NASA Technical Reports Server (NTRS)
Raftery, Michael; Carter-Journet, Katrina
2013-01-01
The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Chamberlain, jim; Bradford, Bob; Best, Susan; Nichols, Kelvin
2002-01-01
Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to per orm scientific experiments on-board ISS. The deployment of reliable high-speed Internet Protocol (IP)-based networks promises to greatly enhance telescience capabilities. These networks are now being used to cost-effectively extend the reach of remote mission support systems. They reduce the need for dedicated leased lines and travel while improving distributed workgroup collaboration capabilities. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing mission voice communications system used by researchers at their remote sites. The Internet Voice Distribution System (IVoDS) connects remote researchers to mission support "loopsll or conferences via NASA networks and Internet 2. Researchers use NODS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the ;capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors & Technology, First Virtual Communications, Lockheed-Martin, and VoIP Group. NODS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is being performed in parallel with IVoDS deployment for a next-generation system to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data/application-sharing capabilities are being investigated. IVoDS technology is also being considered for mission support systems for programs such as Space Launch Initiative and Homeland Defense.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, I.; Cristescu, I. R.; Doerr, L.
2008-07-15
The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less
NASA Technical Reports Server (NTRS)
Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph
2016-01-01
The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2002-01-01
This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.
An Initial Strategy for Commercial Industry Awareness of the International Space Station
NASA Technical Reports Server (NTRS)
Jorgensen, Catherine A.
1999-01-01
While plans are being developed to utilize the ISS for scientific research, and human and microgravity experiments, it is time to consider the future of the ISS as a world-wide commercial marketplace developed from a government owned, operated and controlled facility. Commercial industry will be able to seize this opportunity to utilize the ISS as a unique manufacturing platform and engineering testbed for advanced technology. NASA has begun the strategic planning of the evolution and commercialization of the ISS. The Pre-Planned Program Improvement (P3I) Working Group at NASA is assessing the future ISS needs and technology plans to enhance ISS performance. Some of these enhancements will allow the accommodation of commercial applications and the Human Exploration and Development of Space mission support. As this information develops, it is essential to disseminate this information to commercial industry, targeting not only the private and public space sector but also the non-aerospace commercial industries. An approach is presented for early distribution of this information via the ISS Evolution Data book that includes ISS baseline system information, baseline utilization and operations plans, advanced technologies, future utilization opportunities, ISS evolution and Design Reference Missions (DRM). This information source and tool can be used as catalyst in the commercial world for the generation of ideas and options to enhance the current capabilities of the ISS.
Role of the Space Station in Private Development of Space
NASA Astrophysics Data System (ADS)
Uhran, M. L.
2002-01-01
The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken by the ISS partnership today will effect the later outcome. This paper reviews the range of activities underway in the U.S., as well those being pursued on a multilateral basis across the partnership. It will report on the status of NASA planning for establishment of a non-governmental organization (NGO) to manage the U.S. share of ISS user resources and accommodations. This initiative is unprecedented for a human-rated space craft of ISS magnitude and represents an extraordinarily complex undertaking due to the multi-mission, multi-partner nature of the program. Nonetheless, major advances are scheduled for 2002, as a new NASA Administrator takes the helm and declares the study phase is over. On the global front, the ISS Partners have formed a Multilateral Commercialization Group (MCG) charged to develop Recommended Guidelines for ISS Commercial Activities. Areas such as advertising, merchandising, entertainment, and sponsorship are actively under consideration with plans to advance to the long-awaited decision phase. In conjunction with this project, the challenging issue of how to create, protect, and potentially market the ISS brand to the benefit of the Partners, as well as the scientific, technological and commercial users of the station, is approaching resolution. In the area of space product development, the NASA Commercial Space Centers are entering the era of the space station with new operating principles and practices that promise a focused and sustainable research and development program. This portfolio of seventeen cooperative agreements spans applications in biotechnology, agriculture, remote sensing, and advanced materials. The rate-limiting step has long been access to space and we now stand ready to seize the opportunities afforded by a continuously operating, full-service laboratory in orbit. Each of these initiatives will have a marked effect on evolution of the space station program from a commercial development perspective and each offers the potential to open up economic development of low-Earth orbit in the first half of the 21st century.
The Future of New Discoveries on the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian
2000-01-01
The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.
Ukrainian Program for Material Science in Microgravity
NASA Astrophysics Data System (ADS)
Fedorov, Oleg
Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.
Lunar Human Research Requirements (LHRR)
NASA Technical Reports Server (NTRS)
Denkins, Pamela
2009-01-01
Biomedical research will be conducted during transit and on the surface of the Moon to prepare for extended stays on the Moon and to prepare for the exploration of Mars. The objective of the Human Research Program (HRP) is to preserve the health and enhance performance of astronaut explorers. Specific objectives of the HRP include developing the knowledge, capabilities, and necessary countermeasures and technologies in support of human space exploration; focusing on mitigating the highest risks to crew health and performance; and defining and improving human spaceflight medical, environmental, behavioral, and human factors standards. This document contains a detailed description of the resource accommodations, interfaces, and environments to be provided by the Constellation Program (CxP) to support the HRP research in transit and on the lunar surface. Covered, specifically, are the requirements for mass and volume transport; crew availability; ground operations, baseline data collection, and payload processing; power, and data. Volumes and mass are given for transport of conditioned samples only. They do not account for the engineering solution that the Constellation Program will implement (refrigerator/freezer volume/mass). This document does not account for requirements on the Orion vehicle for transportation to and from the International Space Station (ISS). The ISS Program has supplied requirements for this mission.
2000-01-30
Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at center is former astronaut Brewster Shaw (center), now a program official with the Boeing Co., the ISS prime contractor. Photo credit: NASA/Marshall Space Flight Center (MSFC)
International Space Station (ISS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
Quantitative Risk Modeling of Fire on the International Space Station
NASA Technical Reports Server (NTRS)
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
NASA Technical Reports Server (NTRS)
Whitmore, M.; Blume, J.
2003-01-01
Advanced technology coupled with the desire to explore space has resulted in increasingly longer human space missions. Indeed, any exploration mission outside of Earth's neighborhood, in other words, beyond the moon, will necessarily be several months or even years. The International Space Station (ISS) serves as an important advancement toward executing a successful human space mission that is longer than a standard trip around the world or to the moon. The ISS, which is a permanently occupied microgravity research facility orbiting the earth, will support missions four to six months in duration. In planning for the ISS, the NASA developed an agency-wide set of human factors standards for the first time in a space exploration program. The Man-Systems Integration Standard (MSIS), NASA-STD-3000, a multi-volume set of guidelines for human-centered design in microgravity, was developed with the cooperation of human factors experts from various NASA centers, industry, academia, and other government agencies. The ISS program formed a human factors team analogous to any major engineering subsystem. This team develops and maintains the human factors requirements regarding end-to-end architecture design and performance, hardware and software design requirements, and test and verification requirements. It is also responsible for providing program integration across all of the larger scale elements, smaller scale hardware, and international partners.
NASA Technical Reports Server (NTRS)
Cragg, Clinton H.; Dibbern, Andreas W.; Beil, Robert J.; Terrone, Mark; Rotter, Henry A.; Ernest, Steve; Frankenfield, Bruce; Solano, Paul
2009-01-01
Based on an anonymous request, an NESC Assessment Team was formed to investigate potential leakage problems from the ISS Program's Node 2 Anhydrous Ammonia System AN fittings. The Team's charter was to provide the ISS Program with a path to follow, which could include testing, to ensure the ISS Program felt confident that the AN fittings' leakage would not exceed specified limits in orbit. The findings from that assessment are contained in this document.
National Aeronautics and Space Administration Biological Specimen Repository
NASA Technical Reports Server (NTRS)
McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne
2008-01-01
The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.
Floating Potential Probe Deployed on the International Space Station
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2001-01-01
In the spring and summer of 2000, at the request of the International Space Station (ISS) Program Office, a Plasma Contactor Unit Tiger Team was set up to investigate the threat of the ISS arcing in the event of a plasma contactor outage. Modeling and ground tests done under that effort showed that it is possible for the external structure of the ISS to become electrically charged to as much as -160 V under some conditions. Much of this work was done in anticipation of the deployment of the first large ISS solar array in November 2000. It was recognized that, with this deployment, the power system would be energized to its full voltage and that the predicted charging would pose an immediate threat to crewmembers involved in extravehicular activities (EVA's), as well as long-term damage to the station structure, were the ISS plasma contactors to be turned off or stop functioning. The Floating Potential Probe was conceived, designed, built, and deployed in record time by a crack team of scientists and engineers led by the NASA Glenn Research Center in response to ISS concerns about crew safety.
Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force
NASA Technical Reports Server (NTRS)
Kicza, M.; Erickson, K.; Trinh, E.
2003-01-01
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-12-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.
Exercise Countermeasures on ISS: Summary and Future Directions.
Loerch, Linda H
2015-12-01
The first decade of the International Space Station Program (ISS) yielded a wealth of knowledge regarding the health and performance of crewmembers living in microgravity for extended periods of time. The exercise countermeasures hardware suite evolved during the last decade to provide enhanced capabilities that were previously unavailable to support human spaceflight, resulting in attenuation of cardiovascular, muscle, and bone deconditioning. The ability to protect crew and complete mission tasks in the autonomous exploration environment will be a critical component of any decision to proceed with manned exploration initiatives.The next decade of ISS habitation promises to be a period of great scientific utilization that will yield both the tools and technologies required to safely explore the solar system. Leading countermeasure candidates for exploration class missions must be studied methodically on ISS over the next decade to ensure protocols and systems are highly efficient, effective, and validated. Lessons learned from the ISS experience to date are being applied to the future, and international cooperation enables us to maximize this exceptional research laboratory.
STS-114 Flight Day 6 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.
1998-12-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
ISS Training Best Practices and Lessons Learned
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Dempsey, Donna L.
2017-01-01
Training our crew members for long duration exploration-class missions (LDEM) will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for LDEM, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
ISS Training Best Practices and Lessons Learned
NASA Technical Reports Server (NTRS)
Dempsey, Donna L.; Barshi, Immanuel
2018-01-01
Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss
NASA Astrophysics Data System (ADS)
Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana
As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.
NASA Technical Reports Server (NTRS)
Meyer, William; Foster, William M.; Motil, Brian J.; Sicker, Ronald; Abbott-Hearn, Amber; Chao, David; Chiaramonte, Fran; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher M.;
2016-01-01
The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.
Physical sciences research plans for the International Space Station.
Trinh, E H
2003-01-01
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Physical sciences research plans for the International Space Station
NASA Technical Reports Server (NTRS)
Trinh, E. H.
2003-01-01
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.
1996-01-01
It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).
NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE
NASA Technical Reports Server (NTRS)
Gaier, James R.
2016-01-01
The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.
Expanded Benefits for Humanity from the International Space Station
NASA Technical Reports Server (NTRS)
Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore
2016-01-01
In 2012, the International Space Station (ISS) partnership published the updated International Space Station Benefits for Humanity, 2nd edition, a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, Innovative Technology, merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are examples of materials improvements that are being developed using data from ISS. The publication also expands the benefits of research results in human health, environmental change and disaster response and in education activities developed to capture student imaginations in support of science, technology, engineering and mathematics, or STEM, education internationally. Applications to human health of the knowledge gained on ISS continues to grow and improve healthcare technologies and our understanding of human physiology. Distinct benefits return to Earth from the only orbiting multi-disciplinary laboratory of its kind. The ISS is a stepping stone for future space exploration by providing findings that develop LEO and improve life on our planet.
Expanded benefits for humanity from the International Space Station
NASA Astrophysics Data System (ADS)
Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore
2016-09-01
In 2012, the International Space Station (ISS) (Fig. 1) partnership published the updated International Space Station Benefits for Humanity[1], a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, "Innovative Technology," merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are examples of materials improvements that are being developed using data from ISS. The publication also expands the benefits of research results in human health, environmental change and disaster response and in education activities developed to capture student imaginations in support of science, technology, engineering and mathematics, or STEM, education internationally. Applications to human health of the knowledge gained on ISS continue to grow and improve healthcare technologies and our understanding of human physiology. Distinct benefits return to Earth from the only orbiting multi-disciplinary laboratory of its kind. The ISS is a stepping stone for future space exploration by providing findings that develop LEO and improve life on our planet.
NASA Astrophysics Data System (ADS)
Frederick, M. E.; Cox, E. L.; Friedl, L. A.
2006-12-01
NASA's Earth Science Theme is charged with implementing NASA Strategic Goal 3A to "study Earth from space to advance scientific understanding and meet societal needs." In the course of meeting this objective, NASA produces research results, such as scientific observatories, research models, advanced sensor and space system technology, data active archives and interoperability technology, high performance computing systems, and knowledge products. These research results have the potential to serve society beyond their intended purpose of answering pressing Earth system science questions. NASA's Applied Sciences Program systematically evaluates the potential of the portfolio of research results to serve society by conducting projects in partnership with regional/national scale operational partners with the statutory responsibility to inform decision makers. These projects address NASA's National Applications and the societal benefit areas under the IEOS and GEOSS. Prototyping methods are used in two ways in NASA's Applied Sciences Program. The first is part of the National Applications program element, referred to as Integrated Systems Solutions (ISS) projects. The approach for these projects is to use high fidelity prototypes to benchmark the assimilation of NASA research results into our partners' decision support systems. The outcome from ISS projects is a prototype system that has been rigorously tested with the partner to understand the scientific uncertainty and improved value of their modified system. In many cases, these completed prototypes are adopted or adapted for use by the operational partners. The second falls under the Crosscutting Solutions program element, referred to as Rapid Prototyping (RP) experiments. The approach for RP experiments is to use low fidelity prototypes that are low cost and quickly produced to evaluate the potential of the breadth of NASA research results to serve society. The outcome from the set of RP experiments is an evaluation of many and varied NASA research results for their potential to be candidates for further development as an ISS project. The intention is to seed the community with many creative ideas for projects that use "un-applied" NASA research results to serve society, such as simulations of future missions.
Accomplishments in bioastronautics research aboard International Space Station.
Uri, John J; Haven, Cynthia P
2005-01-01
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. c2005 Published by Elsevier Ltd.
Accomplishments in Bioastronautics Research Aboard International Space Station
NASA Technical Reports Server (NTRS)
Uri, John J.
2003-01-01
The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.
International Space Station Assembly
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
International Space Station Medical Project
NASA Technical Reports Server (NTRS)
Starkey, Blythe A.
2008-01-01
The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.
Advanced Power System Analysis Capabilities
NASA Technical Reports Server (NTRS)
1997-01-01
As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.
Comparison of ISS Power System Telemetry with Analytically Derived Data for Shadowed Cases
NASA Technical Reports Server (NTRS)
Fincannon, H. James
2002-01-01
Accurate International Space Station (ISS) power prediction requires the quantification of solar array shadowing. Prior papers have discussed the NASA Glenn Research Center (GRC) ISS power system tool SPACE (System Power Analysis for Capability Evaluation) and its integrated shadowing algorithms. On-orbit telemetry has become available that permits the correlation of theoretical shadowing predictions with actual data. This paper documents the comparison of a shadowing metric (total solar array current) as derived from SPACE predictions and on-orbit flight telemetry data for representative significant shadowing cases. Images from flight video recordings and the SPACE computer program graphical output are used to illustrate the comparison. The accuracy of the SPACE shadowing capability is demonstrated for the cases examined.
Accommodations for earth-viewing payloads on the international space station
NASA Astrophysics Data System (ADS)
Park, B.; Eppler, D. B.
The design of the International Space Station (ISS) includes payload locations that are external to the pressurized environment. These external or attached payload accommodation locations will allow direct access to the space environment at the ISS orbit and direct viewing of the earth and space. NASA sponsored payloads will have access to several different types of standard external locations; the S3 Truss Sites, the Columbus External Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). As the ISS Program develops, it may also be possible to locate external payloads at the P3 Truss Sites or at non-standard locations similar to the handrail-attached payloads that were flown during the MIR Program. Earth-viewing payloads may also be located within the pressurized volume of the US Lab in the Window Observational Research Facility (WORF). Payload accommodations at each of the locations will be described, as well as transport to and retrieval from the site.
Service Life Extension of the ISS Propulsion System Elements
NASA Technical Reports Server (NTRS)
Kamath, Ulhas; Grant, Gregory; Kuznetsov, Sergei; Shaevich, Sergey; Spencer, Victor
2015-01-01
The International Space Station (ISS) is a result of international collaboration in building a sophisticated laboratory of an unprecedented scale in Low Earth Orbit. After a complex assembly sequence spanning over a decade, some of the early modules launched at the beginning of the program would reach the end of their certified lives, while the newer modules were just being commissioned into operation. To maximize the return on global investments in this one-of-a-kind orbiting platform that was initially conceived for a service life until 2016, it is essential for the cutting edge research on ISS to continue as long as the station can be sustained safely in orbit. ISS Program is assessing individual modules in detail to extend the service life of the ISS to 2024, and possibly to 2028. Without life extension, Functional Cargo Block (known by its Russian acronym as FGB) and the Service Module (SM), two of the early modules on the Russian Segment, would reach the end of their certified lives in 2013 and 2015 respectively. Both FGB and SM are critical for the propulsive function of the ISS. This paper describes the approach used for the service life extension of the FGB propulsion system. Also presented is an overview of the system description along with the process adopted for developing the life test plans based on considerations of system failure modes, fault tolerance and safety provisions. Tests and analyses performed, important findings and life estimates are summarized. Based on the life extension data, FGB propulsion system, in general, is considered ready for a service life until 2028.
NASA Technical Reports Server (NTRS)
Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.
2017-01-01
Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives.
An Evaluation of In-School Suspension Programs.
ERIC Educational Resources Information Center
Siskind, Theresa G.; And Others
Findings of a study that determined the effectiveness of the Berkeley County (South Carolina) in-school suspension (ISS) program are presented in this paper. Methodology involved personal interviews conducted with the ISS director and ISS teacher in 8 middle and 8 high schools in the county, a total of 16 principals and 16 teachers. Findings…
The International Space Station: Systems and Science
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2010-01-01
ISS Program Mission: Safely build, operate, and utilize a permanent human outpost in space through an international partnership of government, industry, and academia to advance exploration of the solar system, conduct scientific research, and enable commerce in space.
Research Progress and Accomplishments on ISS
NASA Technical Reports Server (NTRS)
Roe, Lesa B.; Uri, John J.
2002-01-01
The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. The first research payloads arrived at ISS more than two years ago, and continuous science has been ongoing for more than one and a half years. During this time, the research capabilities have been tremendously increased, even as assembly of the overall platform continues. Despite significant challenges along the way, ISS continues to successfully support a large number of investigations in a variety of research disciplines. The results of some of the early investigations are reaching the publication stage. The near future looms with new challenges, but experience to date and dedicated efforts give reason to be optimistic that the challenges will be overcome and that new and greater successes will be added to past ones.
2017-07-11
Commercial businesses and scientific researchers have a new capability to capture digital imagery of Earth, thanks to MUSES: the Multiple User System for Earth Sensing facility. This platform on the outside of the International Space Station is capable of holding four different payloads, ranging from high-resolution digital cameras to hyperspectral imagers, which will support Earth science observations in agricultural awareness, air quality, disaster response, fire detection, and many other research topics. MUSES program manager Mike Soutullo explains the system and its unique features including the ability to change and upgrade payloads using the space station’s Canadarm2 and Special Purpose Dexterous Manipulator. For more information about MUSES, please visit: https://www.nasa.gov/mission_pages/station/research/news/MUSES For more on ISS science, https://www.nasa.gov/mission_pages/station/research/index.html or follow us on Twitter @ISS_research
Now’s the Time for Science in Space
2017-01-25
It’s easier than ever for researchers to get their experiments on the International Space Station: chief scientist Dr. Julie Robinson says scientists from nearly 100 countries around the world have been able to take advantage of the station to do research as access and funding have opened up. Since the station has been hosting science for more than fifteen years now, there has been enough time for station research results to have become new products that are helping people in their daily lives on Earth, and she says the increased access of today will lead to a huge wave of new results in just the next few years. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram
A Hybrid Cadre Concept for International Space Station (ISS) Operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Mears, Teri
2000-01-01
The International Space Station (ISS) is a continuously operating on-orbit facility, with a ten to fifteen year lifetime. The staffing and rotation concepts defined and implemented for the ISS program must take into account the unique aspects associated with long duration mission operations. Innovative approaches to mission design and operations support must be developed and explored which address these unique aspects. Previous National Aeronautics and Space Administration (NASA) man-based space programs, with the exception of Skylab, dealt primarily with short duration missions with some amount of down time between missions; e.g., Shuttle, Spacelab, and Spacehab programs. The ISS Program on the other hand requires continuous support, with no down time between missions. ISS operations start with the first element launch and continue through the end of the program. It is this key difference between short and long duration missions that needs to be addressed by the participants in the ISS Program in effectively and efficiently staffing the positions responsible for mission design and operations. The primary drivers considered in the development of staffing and rotation concepts for the ISS Program are budget and responsiveness to change. However, the long duration aspects of the program necessitate that personal and social aspects also be considered when defining staffing concepts. To satisfy these needs, a Hybrid Cadre concept has been developed and implemented in the area of mission design and operations. The basic premise of the Hybrid Cadre concept is the definition of Increment-Independent and Increment-Dependent cadre personnel. This paper provides: definitions of the positions required to implement the concept, the rotation scheme that is applied to the individual positions, and a summary of the benefits and challenges associated with implementing the Hybrid Cadre concept.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various scientific disciplines represented in investigations on ISS? Are there lessons specific to human research, technology development, life sciences, and physical sciences that can be used to increase future research accomplishments? Research has been conducted and completed on ISS under a set of challenging constraints during the past 7 years. The history of research accomplished on ISS during this time serves as an indicator of the value and potential of ISS when full utilization begins. By learning from our early experience in completing research on ISS, NASA and our partners can be positioned to optimize research returns as a full crew complement comes onboard, assembly is completed, and research begins in full.
The International Space Station Evolution Data Book: An Overview and Status
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Jorgensen, Catherine A.
1999-01-01
The evolution and enhancement of the International Space Station (ISS) is currently being planned in conjunction with the on-orbit construction of the baseline configuration. Three principal areas have been identified that will contribute to the evolution of ISS: Pre-Planned Program Improvement (P3I), Utilization & Commercialization, and Human Exploration and Development of Space (HEDS) missions. The ISS Evolution Strategy, under development by the Spacecraft and Sensors Branch of NASA Langley Research Center, seeks to coordinate the P3I technology development with Commercialization/Utilization activities and HEDS advanced mission accommodation to provide synergistic technology developments for all three areas. The focal point of this proposed strategy is the ISS Evolution Data Book (EDB), a tool for aiding the evolution and enhancement of ISS beyond Assembly Complete. This paper will discuss the strategy and provide an overview of the EDB, describing the contents of each section. It will also discuss potential applications of the EDB and present an example Design Reference Mission (DRM). The latest status of the EDB and the plans for completing and enhancing the book will also be summarized.
Things That Scientists Don't Understand About NASA Spaceflight Research
NASA Technical Reports Server (NTRS)
Platts, S. H.; Bauer, Terri; Rogers, Shanna
2017-01-01
So you want to conduct human spaceflight research aboard the International Space Station (ISS)? Once your spaceflight research aboard the ISS is proposal is funded.... the real work begins. Because resources are so limited for ISS research, it is necessary to maximize the work being done, while at the same time, minimizing the resources spent. Astronauts may be presented with over 30 human research experiments and select, on average approximately 15 in which to participate. In order to conduct this many studies, ISSMP uses the study requirements provided by the principle investigator to integrate all of this work into the astronauts' complement. The most important thing for investigators to convey to the ISSMP team is their RESEARCH REQUIREMENTS. Requirements are captured in the Experiment document. This document is the official record of how, what, where and when data will be collected. One common mistake that investigators make is not taking this document seriously, but when push comes to shove, if a research requirement is not in this document....it will not get done. The research requirements are then integrated to form a complement of research for each astronaut. What do we mean by integration? Many experiments have overlapping requirements; blood draws, behavioral surveys, heart rate measurement. Where possible, these measures are combined to reduce redundancy and save crew time. Investigators can access these data via data sharing agreements. More examples of how ISS research is integrated will be presented. There are additional limitations commonly associated with human spaceflight research that will also be discussed. Large/heavy hardware, invasive procedures, and toxic reagents are extremely difficult to implement on the ISS. There are strict limits placed on the amount of blood that can be drawn from crew members during (and immediately after) spaceflight. These limits are based on 30-day rolling accumulations. We have recently had to start restricting studies due to this limit. The NASA Human Research Program (HRP) provides extensive support, via ISSMP, to help investigators cope with all of the intricacies of conducting human spaceflight research. This presentation will help you take the best advantage of that support.
20 CFR 628.530 - Referrals of participants to non-title II programs.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-title II programs. (a) When it is determined, through the objective assessment and the ISS, that a... ISS. (b) In cases where there will be a continuing relationship with a participant, a referral to... will be recorded in the ISS. (c) When there will not be a continuing relationship with a participant as...
20 CFR 628.530 - Referrals of participants to non-title II programs.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-title II programs. (a) When it is determined, through the objective assessment and the ISS, that a... ISS. (b) In cases where there will be a continuing relationship with a participant, a referral to... will be recorded in the ISS. (c) When there will not be a continuing relationship with a participant as...
Martin-Brennan, Cindy; Joshi, Jitendra
2003-12-01
Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.
2010-03-16
L TO R: DR. FRANCIS CHIARAMONTE, PROGRAM EXECUTIVE FOR PHYSICAL SCIENCES, ISS RESEARCH PROJECT, NASA HEADQUARTERS; DR. RAYMOND CLINTON, ACTING MANAGER FOR SCIENCE AND MISSION SYSTEMS OFFICE, NASA MARSHALL; DR. FRANK SZOFRAN, MICROGRAVITY MATERIALS SCIENCE PROJECT MANAGER AND DISCIPLINE SCIENTIST MATERIALS AND PROCESSES LABORATORY AT MSFC.
International Space Station Data Collection for Disaster Response
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A..
2014-01-01
Natural disasters - including such events as tropical storms, earthquakes, floods, volcanic eruptions, and wildfires -effect hundreds of millions of people worldwide, and also cause billions of dollars (USD) in damage to the global economy. Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to free-flyer based, sun-synchronous sensor systems in higher altitude polar orbits. While several nations have well-developed terrestrial remote sensing programs and assets for data collection, many developing nations do not have ready access to such resources. The International Charter, Space and Major Disasters (also known as the "International Disaster Charter", or IDC; http://www.disasterscharter.org/home) addresses this disparity. It is an agreement between agencies of several countries to provide - on a best-effort basis - remotely sensed data of natural disasters to requesting countries in support of disaster response. The lead US agency for interaction with the IDC is the United States Geological Survey (USGS); when an IDC request or "activation" is received, the USGS notifies the science teams for NASA instruments with targeting information for data collection. In the case of the ISS, the Earth Sciences and Remote Sensing (ESRS) Unit, part of the Astromaterials Research and Exploration Science Directorate and supporting the ISS Program Science Office at NASA's Johnson Space Center, receives notification from the USGS and coordinates targeting and data collection with the NASA ISS sensor teams. If data is collected, it is passed back to the USGS for posting on their Hazards Data Distribution System and made available for download. The ISS International Partners (CSA, ESA, JAXA, Roscosmos/Energia) have their own procedures for independently supporting IDC activations using their assets on ISS, and there is currently no joint coordination with NASA ISS sensor teams. Following completion of ISS assembly, NASA remote sensing assets began collecting IDC response data in May 2012. The initial NASA ISS sensor systems available to respond to IDC activations included the ISS Agricultural Camera (ISSAC), an internal multispectral visible-near infrared wavelength system mounted in the Window Observational Research Facility, or WORF; the Crew Earth Observations (CEO) Facility, where the crew collects imagery through Station windows using off-the-shelf handheld digital visible-wavelength cameras; and the Hyperspectral Imager for the Coastal Oceans (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission and was removed from the WORF in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response by NASA sensors on the ISS in May 2012 and as of this report, there have been eighty IDC activations; NASA sensor systems have collected data for twenty-three of these events. Of the twenty-three successful data collections, five involved 2 or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program. Data collected in response to IDC activations is delivered by the ISS sensor teams to the ESRS for quality review and transfer to the USGS, where it is ingested into the Hazards Data Distribution System, or HDDS (https://hdds.usgs.gov/hdds2/; figure 1). This system allows the local agencies that issued the IDC activation request to review and download data. The data is then used to develop secondary products useful for humanitarian response such as flood maps. As of this report, approximately 1000 images collected by NASA ISS sensor systems have been downloaded from the HDDS, indicating that the ISS has assumed a valuable role in disaster response efforts. The ISS is also a unique platform in that it will have multiple users over its lifetime, and that no single remote sensing system has a permanent internal or external berth. This scheduled turnover provides for development of new remote sensing capabilities relevant to disaster response -as well as both research and applied science-and represents a significant contribution to continuance and enhancement of the NASA mission to investigate changes on our home planet.
A Year in the Life of International Space Station
NASA Technical Reports Server (NTRS)
Uri, John J.
2006-01-01
The past twelve months (October 2005 to September 2006) have been among the busiest in the life of the International Space Station (ISS), both in terms of on-orbit operations as well as future planning, for both ISS systems and research. The Expedition 12 and 13 crews completed their missions successfully, carrying out research for Russia, the United States, Europe and Japan, and bringing continuous ISS occupancy to nearly six years. The European Space Agency's (ESA) first Long Duration Mission on ISS is underway, involving significant international research. The Expedition 14 crew completed its training and is embarking on its own 6-month mission with a full slate of international research. Future crews are in training for their respective assembly and research missions. Shuttle flights resumed after a 10-month hiatus, delivering new research facilities and resuming assembly of ISS. ESA's Columbus research module was delivered to the Kennedy Space Center, joining Japan's Kibo research module already there. Following preflight testing, the two modules will launch in 2007 and 2008, respectively, joining Destiny as ISS's research infrastructure. A revised ISS configuration and assembly sequence were endorsed by all the Partners, with a reduced number of Shuttle flights, but for the first time including plans for post-Shuttle ISS operations after 2010. The new plan will pose significant challenges to the ISS research community. As Europe and Japan build their on-orbit research infrastructure, and long-term plans become firmer, the next 12 months should prove to be equally challenging and exciting.
2010-01-04
ISS024-S-001A (January 2010) --- Science and Exploration are the cornerstones of NASA?s mission onboard the International Space Station (ISS). This emblem signifies the dawn of a new era in our program?s history. With each new expedition, as we approach assembly complete, our focus shifts toward the research nature of this world-class facility. Prominently placed in the foreground, the ISS silhouette leads the horizon. Each ray of the sun represents the five international partner organizations that encompass this cooperative program. Expedition 24 is one of the first missions expanding to a crew of six. These crews, symbolized here as stars arranged in two groups of three, will launch on Soyuz vehicles. The unbroken flight track symbolizes our continuous human presence in space, representing all who have and will dedicate themselves as crew and citizens of the International Space Station. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.
Internet Voice Distribution System (IVoDS) Utilization in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Bradford, Bob; Chamberlain, Jim; Nichols, Kelvin; Bailey, Darrell (Technical Monitor)
2002-01-01
Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to perform scientific experiments on-board ISS. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing HVoDS mission voice communications system used by researchers. The Internet Voice Distribution System (IVoDS) connects researchers to mission support "loops" or conferences via Internet Protocol networks such as the high-speed Internet 2. Researchers use IVoDS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors A2 Technology, Inc. FVC, Lockheed- Martin, and VoIP Group. IVoDS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is currently being performed to take full advantage of the digital world - the Personal Computer and Internet Protocol networks - to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data-sharing capabilities are being investigated. Major obstacles being addressed include network bandwidth capacity and strict security requirements. Techniques being investigated to reduce and overcome these obstacles include emerging audio-video protocols and network technology including multicast and quality-of-service.
International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research
NASA Technical Reports Server (NTRS)
Charles, John B.
2012-01-01
Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the effects of a simulated lag in communications (mimicking that expected in transit to Mars) on astronaut performance aboard ISS. Extension of the current ISS increment duration from six months to nine or even twelve months would provide opportunities for expanded research relevant to long duration missions, albeit at the cost of fewer astronauts as subjects for those investigations. Given the possible limited access to ISS after 2020, if ISS is intended to facilitate future exploration missions, then the in-flight human investigations should focus on those that clearly enable future exploration missions.
Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A
2010-02-01
A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.
The international space station: An opportunity for industry-sponsored global education
NASA Astrophysics Data System (ADS)
Shields, Cathleen E.
1999-01-01
The International Space Station provides an excellent opportunity for industry sponsorship of international space education. As a highly visible worldwide asset, the space station already commands our interest. It has captured the imagination of the world's researchers and connected the world's governments. Once operational, it can also be used to capture the dreams of the world's children and connect the world's industry through education. The space station's global heritage and ownership; its complex engineering, construction, and operation; its flexible research and technology demonstration capability; and its long duration make it the perfect educational platform. These things also make a space station education program attractive to industry. Such a program will give private industry the opportunity to sponsor space-related activities even though a particular industry may not have a research or technology-driven need for space utilization. Sponsors will benefit through public relations and goodwill, educational promotions and advertising, and the sale and marketing of related products. There is money to be made by supporting, fostering, and enabling education in space through the International Space Station. This paper will explore various ISS education program and sponsorship options and benefits, will examine early industry response to such an opportunity, and will make the case for moving forward with an ISS education program as a private sector initiative.
The First Decade of ISS Exercise: Lessons Learned on Expeditions 1-25.
Hayes, Judith
2015-12-01
Long-duration spaceflight results in musculoskeletal, cardiorespiratory, and sensorimotor deconditioning. Historically, exercise has been used as a countermeasure to mitigate these deleterious effects that occur as a consequence of microgravity exposures. The International Space Station (ISS) exercise community describes their approaches, biomedical surveillance, and lessons learned in the development of exercise countermeasure modalities and prescriptions for maintaining health and performance among station crews. This report is focused on the first 10 yr of ISS defined as Expeditions 1-25 and includes only crewmembers with missions > 30 d on ISS for all 5 partner agencies (United States, Russia, Europe, Japan, and Canada). All 72 cosmonauts and astronauts participated in the ISS exercise countermeasures program. This Supplement presents a series of papers that provide an overview of the first decade of ISS exercise from a multidisciplinary, multinational perspective to evaluate the initial countermeasure program and record its operational limitations and challenges. In addition, we provide results from standardized medical evaluations before, during, and after each mission. Information presented in this context is intended to describe baseline conditions of the ISS exercise program. This paper offers an introduction to the subsequent series of manuscripts.
Cargo Commercial Orbital Transportation Services Environmental Control and Life Support Integration
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie; Thacker, Karen; Williams, Dave
2012-01-01
The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.
Commercial Orbital Transportation Cargo Services Environmental Control and Life Support Integration
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie; Williams, Dave; Orozco, Nicole; Philistine, Cynthia
2010-01-01
The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, will retire in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.
NASA Astrophysics Data System (ADS)
Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian
1999-01-01
The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.
Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Shindo, David; Modica, Cathy
2012-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
Space Station Power Generation in Support of the Beta Gimbal Anomaly Resolution
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Propp, Timothy W.
2003-01-01
The International Space Station (ISS) is the largest and most complex spacecraft ever assembled and operated in orbit. The first U.S. photovoltaic (PV) module, containing two solar arrays, was launched, installed, and activated in early December 2000. After the first week of continuously rotating the U.S. solar arrays, engineering personnel in the ISS Mission Evaluation Room (MER) observed higher than expected electrical currents on the drive motor in one of the Beta Gimbal Assemblies (BGA), the mechanism used to maneuver a U.S. solar array. The magnitude of the motor currents continued to increase over time on both BGA's, creating concerns about the ability of the gimbals to continue pointing the solar arrays towards the sun, a function critical for continued assembly of the ISS. A number of engineering disciplines convened in May 2001 to address this on-orbit hardware anomaly. This paper reviews the ISS electrical power system (EPS) analyses performed to develop viable operational workarounds that would minimize BGA use while maintaining sufficient solar array power to continue assembly of the ISS. Additionally, EPS analyses performed in support of on-orbit BGA troubleshooting exercises is reviewed. EPS capability analyses were performed using SPACE, a computer code developed by NASA Glenn Research Center (GRC) for the ISS program office.
A Summary of the NASA ISS Space Debris Collision Avoidance Program
NASA Technical Reports Server (NTRS)
Frisbee, Joseph
2002-01-01
Creating and implementing a process for the mitigation of the impact hazards due to cornets and asteroids will prove to be a complex and involved process. The closest similar program is the collision avoidance process currently used for protection of the International Space Station (ISS). This process, in operation for over three years, has many similarities to the NEG risk problem. By reviewing the ISS program, a broader perspective on the complications of and requirements for a NEO risk mitigation program might be obtained. Specifically, any lessons learned and continuing issues of concern might prove useful in the development of a NEO risk assessment and mitigation program.
Electrostatic Discharge Issues in International Space Station Program EVAs
NASA Technical Reports Server (NTRS)
Bacon, John B.
2009-01-01
EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations
2017-07-17
In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Planning, Implementing, and Maintaining an Effective In-School Suspension Program.
ERIC Educational Resources Information Center
Sullivan, Judy S.
1989-01-01
Notes that many in-school suspension (ISS) programs are used as a temporary controlling technique, rather than a truly rehabilitative measure. Presents 12 steps in planning and implementing, and 10 steps in maintaining, an ISS program that is a positive disciplinary strategy. (NH)
ISS Expedition 42 Crew Profiles - Version 01
2014-11-14
Narrated program with biographical information about ISS Expedition 42 crewmembers Terry Virts, Samantha Cristoforetti and Anton Shjaplerov. The program covers the crewmember's career including childhood photographs; footage from previous missions; and interview sound bites.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes
NASA Technical Reports Server (NTRS)
Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth
2012-01-01
The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.
2013-02-20
Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)
Corporate sponsored education initiatives on board the ISS
NASA Astrophysics Data System (ADS)
Durham, Ian T.; Durham, Alyson S.; Pawelczyk, James A.; Brod, Lawrence B.; Durham, Thomas F.
1999-01-01
This paper proposes the creation of a corporate sponsored ``Lecture from Space'' program on board the International Space Station (ISS) with funding coming from a host of new technology and marketing spin-offs. This program would meld existing education initiatives in NASA with new corporate marketing techniques. Astronauts in residence on board the ISS would conduct short ten to fifteen minute live presentations and/or conduct interactive discussions carried out by a teacher in the classroom. This concept is similar to a program already carried out during the Neurolab mission on Shuttle flight STS-90. Building on that concept, the interactive simulcasts would be broadcast over the Internet and linked directly to computers and televisions in classrooms worldwide. In addition to the live broadcasts, educational programs and demonstrations can be recorded in space, and marketed and sold for inclusion in television programs, computer software, and other forms of media. Programs can be distributed directly into classrooms as an additional presentation supplement, as well as over the Internet or through cable and broadcast television, similar to the Canadian Discovery Channel's broadcasts of the Neurolab mission. Successful marketing and advertisement can eventually lead to the creation of an entirely new, privately run cottage industry involving the distribution and sale of educationally related material associated with the ISS that would have the potential to become truly global in scope. By targeting areas of expertise and research interest in microgravity, a large curriculum could be developed using space exploration as a unifying theme. Expansion of this concept could enhance objectives already initiated through the International Space University to include elementary and secondary school students. The ultimate goal would be to stimulate interest in space and space related sciences in today's youth through creative educational marketing initiatives while at the same time drawing funds almost entirely from the private sector.
1998-02-06
The STS-90 Neurolab payload is honored with a ceremony after being lowered into its payload canister in KSC's Operations and Checkout Building for the last time. This phase of the Shuttle program is winding down as the second phase of the International Space Station (ISS) program gets under way. Microgravity and life science research that formerly was conducted in Spacelab modules, such as Neurolab, will eventually be conducted inside the completed ISS. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D
NASA Technical Reports Server (NTRS)
Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.
2015-01-01
The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.
ERIC Educational Resources Information Center
Silvey, Donald F.
This paper presents findings of a study that explored the effects of assignment to an inschool suspension (ISS) program on high school students' academic performance. The study compared the before- and after-ISS grades in English and science of 32 ninth- and tenth-grade students who had spent a minimum of 5 days in an ISS program during a 6-week…
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni
2004-01-01
The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.
Conducting Research on the International Space Station Using the EXPRESS Rack Facilities
NASA Technical Reports Server (NTRS)
Thompson, Sean W.; Lake, Robert E.
2014-01-01
EXPRESS Racks provide capability for payload access to ISS resources. The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come. EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM. Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient. Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers. EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight. NASA is planning to expand the EXPRESS payload capacity by developing new Basic Express Racks expected to be on ISS in 2018.
International Space Station Research Benefits for Humanity
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Kamigaichi, Shigeki; Sorokin, Igor V.; Zell, Martin; Fuglesang, Christer;
2012-01-01
The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth -- not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.
NASA Technical Reports Server (NTRS)
Carter-Journet, Katrina; Clahoun, Jessica; Morrow, Jason; Duncan, Gary
2012-01-01
The National Aeronautics and Space Administration (NASA) originally designed the International Space Station (ISS) to operate until 2015, but have extended operations until at least 2020. As part of this very dynamic Program, there is an effort underway to simplify the certification of Commercial ]of ]the ]Shelf (COTS) hardware. This change in paradigm allows the ISS Program to take advantage of technologically savvy and commercially available hardware, such as the iPad. The iPad, a line of tablet computers designed and marketed by Apple Inc., was chosen to support this endeavor. The iPad is functional, portable, and could be easily accessed in an emergency situation. The iPad Electronic Flight Bag (EFB), currently approved for use in flight by the Federal Aviation Administration (FAA), is a fraction of the cost of a traditional Class 2 EFB. In addition, the iPad fs ability to use electronic aeronautical data in lieu of paper in route charts and approach plates can cut the annual cost of paper data in half for commercial airlines. ISS may be able to benefit from this type of trade since one of the most important factors considered is information management. Emergency procedures onboard the ISS are currently available to the crew in paper form. Updates to the emergency books can either be launched on an upcoming visiting vehicle such as a Russian Soyuz flight or printed using the onboard ISS printer. In both cases, it is costly to update hardcopy procedures. A new operations concept was proposed to allow for the use of a tablet system that would provide a flexible platform to support space station crew operations. The purpose of the system would be to provide the crew the ability to view and maintain operational data, such as emergency procedures while also allowing Mission Control Houston to update the procedures. The ISS Program is currently evaluating the safety risks associated with the use of iPads versus paper. Paper products can contribute to the flammability risk and require manual updates that take time away from research tasks. The ISS program has recently purchased three iPads for the astronauts and the certification has been approved. The crew is currently using the iPads onboard. The results of this analysis could be used to discern whether the iPad is a viable option for use in emergencies by assessing the risk posture through the development of a quantitative probabilistic risk assessment (PRA).
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph J.; Jordan, Lee P.
2008-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.
ISS Robotic Student Programming
NASA Technical Reports Server (NTRS)
Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.
2016-01-01
The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.
NASA Technical Reports Server (NTRS)
1996-01-01
In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.
Biotechnology Facility: An ISS Microgravity Research Facility
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Tsao, Yow-Min
2000-01-01
The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.
Space Shuttle Program (SSP) Dual Docked Operations (DDO)
NASA Technical Reports Server (NTRS)
Sills, Joel W., Jr.; Bruno, Erica E.
2016-01-01
This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.
Fundamental Biological Research on the International Space Station
NASA Technical Reports Server (NTRS)
Souza, K. A.; Yost, Bruce; Fletcher, L.; Dalton, Bonnie P. (Technical Monitor)
2000-01-01
The fundamental Biology Program of NASA's Life Sciences Division is chartered with enabling and sponsoring research on the International Space Station (ISS) in order to understand the effects of the space flight environment, particularly microgravity, on living systems. To accomplish this goal, NASA Ames Research Center (ARC) has been tasked with managing the development of a number of biological habitats, along with their support systems infrastructure. This integrated suite of habitats and support systems is being designed to support research requirements identified by the scientific community. As such, it will support investigations using cells and tissues, avian eggs, insects, plants, aquatic organisms and rodents. Studies following organisms through complete life cycles and over multiple generations will eventually be possible. As an adjunct to the development of these basic habitats, specific analytical and monitoring technologies are being targeted for maturation to complete the research cycle by transferring existing or emerging analytical techniques, sensors, and processes from the laboratory bench to the ISS research platform.
NASA Technical Reports Server (NTRS)
Perry, J. L.
2016-01-01
As the Space Station Freedom program transitioned to become the International Space Station (ISS), uncertainty existed concerning the performance capabilities for U.S.- and Russian-provided trace contaminant control (TCC) equipment. In preparation for the first dialogue between NASA and Russian Space Agency personnel in Moscow, Russia, in late April 1994, an engineering analysis was conducted to serve as a basis for discussing TCC equipment engineering assumptions as well as relevant assumptions on equipment offgassing and cabin air quality standards. The analysis presented was conducted as part of the efforts to integrate Russia into the ISS program via the early ISS Multilateral Medical Operations Panel's Air Quality Subgroup deliberations. This analysis, served as a basis for technical deliberations that established a framework for TCC system design and operations among the ISS program's international partners that has been instrumental in successfully managing the ISS common cabin environment.
ISS mapped from ICD-9-CM by a novel freeware versus traditional coding: a comparative study.
Di Bartolomeo, Stefano; Tillati, Silvia; Valent, Francesca; Zanier, Loris; Barbone, Fabio
2010-03-31
Injury severity measures are based either on the Abbreviated Injury Scale (AIS) or the International Classification of diseases (ICD). The latter is more convenient because routinely collected by clinicians for administrative reasons. To exploit this advantage, a proprietary program that maps ICD-9-CM into AIS codes has been used for many years. Recently, a program called ICDPIC trauma and developed in the USA has become available free of charge for registered STATA users. We compared the ICDPIC calculated Injury Severity Score (ISS) with the one from direct, prospective AIS coding by expert trauma registrars (dAIS). The administrative records of the 289 major trauma cases admitted to the hospital of Udine-Italy from 1 July 2004 to 30 June 2005 and enrolled in the Italian Trauma Registry were retrieved and ICDPIC-ISS was calculated. The agreement between ICDPIC-ISS and dAIS-ISS was assessed by Cohen's Kappa and Bland-Altman charts. We then plotted the differences between the 2 scores against the ratio between the number of traumatic ICD-9-CM codes and the number of dAIS codes for each patient (DIARATIO). We also compared the absolute differences in ISS among 3 groups identified by DIARATIO. The discriminative power for survival of both scores was finally calculated by ROC curves. The scores matched in 33/272 patients (12.1%, k 0.07) and, when categorized, in 80/272 (22.4%, k 0.09). The Bland-Altman average difference was 6.36 (limits: minus 22.0 to plus 34.7). ICDPIC-ISS of 75 was particularly unreliable. The differences increased (p < 0.01) as DIARATIO increased indicating incomplete administrative coding as a cause of the differences. The area under the curve of ICDPIC-ISS was lower (0.63 vs. 0.76, p = 0.02). Despite its great potential convenience, ICPIC-ISS agreed poorly with its conventionally calculated counterpart. Its discriminative power for survival was also significantly lower. Incomplete ICD-9-CM coding was a main cause of these findings. Because this quality of coding is standard in Italy and probably in other European countries, its effects on the performances of other trauma scores based on ICD administrative data deserve further research. Mapping ICD-9-CM code 862.8 to AIS of 6 is an overestimation.
International Space Station Benefits for Humanity
NASA Technical Reports Server (NTRS)
Thumm, Tracy L.; Robinson, Julie A.; Buckley, Nicole; Johnson-Green, Perry; Kamigaichi, Shigeki; Karabadzhak, George; Nakamura, Tai; Sabbagh, Jean; Sorokin, Igor; Zell, Martin
2012-01-01
The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth--not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.
Implementation of Programmatic Quality and the Impact on Safety
NASA Technical Reports Server (NTRS)
Huls, Dale Thomas; Meehan, Kevin
2005-01-01
The purpose of this paper is to discuss the implementation of a programmatic quality assurance discipline within the International Space Station Program and the resulting impact on safety. NASA culture has continued to stress safety at the expense of quality when both are extremely important and both can equally influence the success or failure of a Program or Mission. Although safety was heavily criticized in the media after Colimbiaa, strong case can be made that it was the failure of quality processes and quality assurance in all processes that eventually led to the Columbia accident. Consequently, it is possible to have good quality processes without safety, but it is impossible to have good safety processes without quality. The ISS Program quality assurance function was analyzed as representative of the long-term manned missions that are consistent with the President s Vision for Space Exploration. Background topics are as follows: The quality assurance organizational structure within the ISS Program and the interrelationships between various internal and external organizations. ISS Program quality roles and responsibilities with respect to internal Program Offices and other external organizations such as the Shuttle Program, JSC Directorates, NASA Headquarters, NASA Contractors, other NASA Centers, and International Partner/participants will be addressed. A detailed analysis of implemented quality assurance responsibilities and functions with respect to NASA Headquarters, the JSC S&MA Directorate, and the ISS Program will be presented. Discussions topics are as follows: A comparison of quality and safety resources in terms of staffing, training, experience, and certifications. A benchmark assessment of the lessons learned from the Columbia Accident Investigation (CAB) Report (and follow-up reports and assessments), NASA Benchmarking, and traditional quality assurance activities against ISS quality procedures and practices. The lack of a coherent operational and sustaining quality assurance strategy for long-term manned space flight. An analysis of the ISS waiver processes and the Problem Reporting and Corrective Action (PRACA) process implemented as quality functions. Impact of current ISS Program procedures and practices with regards to operational safety and risk A discussion regarding a "defense-in-depth" approach to quality functions will be provided to address the issue of "integration vs independence" with respect to the roles of Programs, NASA Centers, and NASA Headquarters. Generic recommendations are offered to address the inadequacies identified in the implementation of ISS quality assurance. A reassessment by the NASA community regarding the importance of a "quality culture" as a component within a larger "safety culture" will generate a more effective and value-added functionality that will ultimately enhance safety.
NASA Technical Reports Server (NTRS)
Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean
2011-01-01
During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.
Onboard Short Term Plan Viewer
NASA Technical Reports Server (NTRS)
Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason
2011-01-01
Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.
NASA Technical Reports Server (NTRS)
Gilbrech, Richard J.; Kichak, Robert A.; Davis, Mitchell; Williams, Glenn; Thomas, Walter, III; Slenski, George A.; Hetzel, Mark
2005-01-01
The Space Shuttle Program (SSP) has a zero-fault-tolerant design related to an inadvertent firing of the primary reaction control jets on the Orbiter during mated operations with the International Space Station (ISS). Failure modes identified by the program as a wire-to-wire "smart" short or a Darlington transistor short resulting in a failed-on primary thruster during mated operations with ISS can drive forces that exceed the structural capabilities of the docked Shuttle/ISS structure. The assessment team delivered 17 observations, 6 findings and 15 recommendations to the Space Shuttle Program.
ISS Payload Operations: The Need for and Benefit of Responsive Planning
NASA Technical Reports Server (NTRS)
Nahay, Ed; Boster, Mandee
2000-01-01
International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of science programs and the crew desire for flexibility; the means by which responsive plans readily accommodate ISS communications constraints; manpower efficiencies to be achieved through use of responsive plans; and the implications of responsive planning relative to resource utilization efficiency.
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh
2010-01-01
With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours. Extension of the ISS through 2020 and beyond will insure that the benefits of research will be achievable for the International Partnership.
MOBI and FEANICS Programming in Labview
NASA Technical Reports Server (NTRS)
Rios, Jeffrey N.
2004-01-01
The flight software engineering branch provides design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. This branch supports other divisions and is involved with many other projects. My mentor Rochelle and I are involved in the Fluids and Combustion Facility (FCF) project, the MOBI project, and the FEANICS project. The Fluids and Combustion Facility (FCF) will occupy two powered racks on the International Space Station (ISS). It will be a permanent modular, multiuser facility to accommodate microgravity science experiments onboard the ISS's U.S. Laboratory Module. FCF will support NASA Human Exploration and Development of Space program objectives requiring sustained, systematic research in the disciplines of fluid physics and combustion science. The fluids experiment is called FIR and the combustion experiment is called CIR. The MOBI Experiment is an experiment that is performed to understand the physics of bubble segregation and resuspension in an inertia, monodisperse gas-liquid suspension, and to understand how bubble pressure resists segregation in suspensions with continuous phase inertia. The main focus of FEANICS and the solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. Based on data obtained in microgravity and experience gained from the beginning of the U.S. manned space program, these normal gravity flammability assessments have been assumed to be conservative with respect to flammability in all environments. However, some of the complex interactions that govern ignition and flame growth can only be evaluated in the long durations of microgravity available on the ISS. Before any of these projects actually go to the ISS, they are going to be tested on NASA's KC-135 Low-G airplane, the KC-135 Low-G Flight Research aircraft (a predecessor of the Boeing 707) is used to fly parabolas to create 20-25 seconds of weightlessness so that the astronauts can experience and researchers can investigate the effects of zero gravity. My mentor and I have been working with Labview to write the programs that are going to acquire, analyze and present the data acquired from these Test flights on the KC-135. We have been working closely with electrical, and mechanical engineers to make sure the program and the hardware can communicate and perform the operations necessary for the flight test. LabVIEW delivers a powerful graphical development environment for signal acquisition, measurement analysis, and data presentation, giving you the flexibility of a programming language without the complexity of traditional development tools. The programming of the control panel and the code are both done in GUIs which allow for flexibility in the code and the program.
The LEAN Payload Integration Process
NASA Technical Reports Server (NTRS)
Jordan, Lee P.; Young, Yancy; Rice, Amanda
2011-01-01
It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.
Burning Questions in Gravity-Dependent Combustion Science
NASA Technical Reports Server (NTRS)
Urban, David; Chiaramonte, Francis P.
2012-01-01
Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.
International Space Station (ISS) Risk Reduction Activities
NASA Technical Reports Server (NTRS)
Fodroci, Michael
2011-01-01
As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the ISS requirements and initial design were intended to provide the best practicable levels of safety, it is always possible to reduce risk -- given the determination and commitment to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS. While decades of work went into developing the ISS requirements, there are many things in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: (1) Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) (2) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Level 4 materials, emergency hardware and procedures) (3) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of nearly a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery.
Final Tier 2 Environmental Impact Statement for International Space Station
NASA Technical Reports Server (NTRS)
1996-01-01
The Final Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA!s participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.
Draft Tier 2 Environmental Impact Statement for International Space Station
NASA Technical Reports Server (NTRS)
1995-01-01
The Draft Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA's participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop a human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.
The Integrated Sounding System: Description and Preliminary Observations from TOGA COARE.
NASA Astrophysics Data System (ADS)
Parsons, David; Dabberdt, Walter; Cole, Harold; Hock, Terrence; Martin, Charles; Barrett, Anne-Leslie; Miller, Erik; Spowart, Michael; Howard, Michael; Ecklund, Warner; Carter, David; Gage, Kenneth; Wilson, John
1994-04-01
An Integrated Sounding System (ISS) that combines state-of- the-art remote and in situ sensors into a single transportable facility has been developed jointly by the National Center for Atmospheric Research (NCAR) and the Aeronomy laboratory of the National Oceanic and Atmospheric Administration (NOAA/AL). The instrumentation for each ISS includes a 915-MHz wind profiler, a Radio Acoustic Sounding System (RASS), an Omega-based NAVAID sounding system, and an enhanced surface meteorological station. The general philosophy behind the ISS is that the integration of various measurement systems overcomes each system's respective limitations while taking advantage of its positive attributes. The individual observing systems within the ISS provide high-level data products to a central workstation that manages and integrates these measurements. The ISS software package performs a wide range of functions: real-time data acquisition, database support, and graphical displays; data archival and communications; and operational and post time analysis. The first deployment of the ISS consists of six sites in the western tropical Pacific-four land-based deployments and two ship-based deployments. The sites serve the Coupled Ocean-Atmosphere Response Experiment (COARE) of the Tropical Ocean and Global Atmosphere (TOGA) program and TOGA's enhanced atmospheric monitoring effort. Examples of ISS data taken during this deployment are shown in order to demonstrate the capabilities of this new sounding system and to demonstrate the performance of these in situ and remote sensing instruments in a moist tropical environment. In particular, a strong convective outflow with a pronounced impact of the atmospheric boundary layer and heat fluxes from the ocean surface was examined with a shipboard ISS. If these strong outflows commonly occur, they may prove to be an important component of the surface energy budget of the western tropical Pacific.
Correlation of ISS Electric Potential Variations with Mission Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard
2014-01-01
Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs.
2016-07-20
ISS048e041836 (07/20/2016) --- NASA astronauts Kate Rubins (left) and Jeff Williams (right) prepare to grapple the SpaceX Dragon supply spacecraft from aboard the International Space Station. The nearly 5,000 pounds of supplies and equipment includes science supplies and hardware, including instruments to perform the first-ever DNA sequencing in space, and the first of two identical international docking adapters (IDA.) The IDAs will provide a means for commercial crew spacecraft to dock to the station in the near future as part of NASA’s Commercial Crew Program. Dragon is scheduled to depart the space station Aug. 29 when it will return critical science research back to Earth.
International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction
NASA Technical Reports Server (NTRS)
Perry, J. L.; von Jouanne, R. G.; Turner, E. H.
2003-01-01
The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
Interplanetary Transit Simulations Using the International Space Station
NASA Technical Reports Server (NTRS)
Charles, J. B.; Arya, Maneesh
2010-01-01
It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.
The Importance of the International Space Station for Life Sciences Research: Past and Future
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Evans, C. A.; Tate, Judy
2008-01-01
The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations, it hosted a few early science experiments months before the first international crew took up residence in November 2000. Since that time, science returns from the ISS have been growing at a steady pace. To date, early utilization of the U.S. Operating Segment of ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting U.S. and international partner research. This paper will summarize the life science accomplishments of early research aboard the ISS both applied human research for exploration, and research on the effects of microgravity on life. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities (both pressurized and external) will be tripled, with multiple scientific modules that support a wide variety of research racks and science and technology experiments conducted by all of the International Partners. A milestone was reached in February 2008 with the launch and commissioning of ESA s Columbus module and in March of 2008 with the first of three components of the Japanese Kibo laboratory. Although challenges lie ahead, the realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research disciplines engaged on ISS. As the ISS nears completion of assembly in 2010, we come to full international utilization of the facilities for research. Using the past as an indicator, we are now able to envision the multidisciplinary contributions to improving life on Earth that the ISS can make as a platform for life sciences research.
Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.
2000-01-01
This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2011-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Exercise Countermeasure Hardware Evolution on ISS: The First Decade.
Korth, Deborah W
2015-12-01
The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases, the exercise unit with the most operational history was the unit installed on the ISS.
ISS Utilization Potential for 2011-2020 and Beyond
NASA Astrophysics Data System (ADS)
Askew, R.; Chabrow, J.; Nakagawa, R.
The US concept for a permanent human presence in space as directed by President Ronald Reagan in 1984 was called Space Station Freedom. This was the precursor to the International Space Station (ISS) that now orbits the earth. The first element of the ISS, Zarya, was launched November 20, 1998. The launch of STS-133 provides the final component of the assembly, the Multi-Purpose Logistics Module (MPLM). During the assembly the ISS was utilized to the extent possible for the conduct of scientific research and technology development, and for the development of enhancements to the ISS capabilities. These activities have resulted in a significant database of lessons learned regarding operations, both of the ISS platform as well as in the conduct of research. For the coming decade utilization of the ISS will be impacted by how these lessons learned are used to improve operations. Access to the ISS and to its capabilities will determine the types of projects that can use the ISS. Perhaps the most critical limitation is the funds that must be invested by potential users of the ISS. This paper examines the elements that have been identified as impediments to utilization of the ISS by both basic researchers and by the private sector over the past decade and provides an assessment of which of these are likely to be satisfactorily altered and on what time scale.
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.
2016-12-01
Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning observations from LIS on ISS can be quickly delivered to science and applications users soon after routine operations are underway. Also real-time data, available for the first time with this mission, are being provided to interested users in partnership with NASA's Short Term Prediction Research and Transition (SPoRT) center, also located at the NSSTC.
Advances in Rodent Research Missions on the International Space Station
NASA Technical Reports Server (NTRS)
Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.
2016-01-01
A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for Biomedical Problems. The expression levels of select genes including albumin, catalase, GAPDH, HMGCoA Reductase, and IGF1 were determined using RNA isolated from the livers by qPCR and no significant differences by one factor ANOVA were found between flight and ground control groups. In addition, some of the liver samples were analyzed for transcriptomic, epigenomic and proteomic profiles; some of the data sets are now available to the scientific community through GeneLabs open science data website. A second long duration mission, Rodent Research-2 (RR-2) was completed on the ISS in 2015; 20 female C57BL6J mice were successfully maintained on the ISS for various durations, with the last group of 5 animals living on-orbit for 54 days. Furthermore, we continue to expand the ISSs capabilities by introducing new on-orbit technologies including blood collection and separation, bone densitometry scanning, muscle grip strength and anesthesia with recovery. In addition, series of ground-based verification testing to fly male mice and increase the total number of mice on-orbit from 20 to 40. Subsequent missions will provide the capability to return live mice from the ISS animals to evaluate recovery on Earth, further expanding operational and science capabilities of the RR project on the ISS.
The Role of Independent Assessment in the International Space Station Program
NASA Technical Reports Server (NTRS)
Strachan, Russell L.; Cook, David B.; Baker, Hugh A.
1999-01-01
This paper presents the role of Independent Assessment in the International Space Station (ISS) Program. Independent Assessment is responsible for identifying and specifying technical and programmatic risks that may impact development, launch, and on-orbit assembly and operations of the ISS. The various phases of the assessment process are identified and explained. This paper also outlines current and future participation by Independent Assessment in Human Exploration and Development of Space projects including the X-38 Space Plane, Mars mission scenarios, and applications of Nanotechnology. This paper describes how Independent Assessment helps the shuttle, ISS, and other programs to safely achieve mission goals now and into the next century.
NASA Technical Reports Server (NTRS)
Massa, G. D.; Wheeler, R. M.; Hummerick, M. E.; Morrow, R. C.; Mitchell, C. A.; Whitmire, A. M.; Ploutz-Snyder, R. J.; Douglas, G. L.
2016-01-01
The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light treatments and one fertilizer treatment to test on ISS. Our work will help define light colors, levels, and horticultural best practices to achieve high yields of safe, nutritious leafy greens and tomatoes to supplement a space diet of prepackaged food. Our final deliverable will be the development of growth protocols for these crops in a spaceflight vegetable production system. With this work, and potentially with other pending joint projects, we will continue the synergistic research to help close gaps in the human research roadmap, and enable humans to venture to Mars and beyond. This research was co-funded by the Human Research Program and Space Biology (MTL1075) in the ILSRA 2015 NRA call.
Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University
NASA Astrophysics Data System (ADS)
Clark, R. D.
2005-12-01
For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition, the B.S. in Integrated Earth Systems will serve those students who find excitement at the boundaries of these disciplines, and prepare them for careers in this emerging field. The ISS program will target high school students of the highest caliber who demonstrate strong aptitude in mathematics and the physical sciences, who will need a minimum amount of remedial work. These select students will be exposed to courses in Earth Systems: Cycles and Interactions, Geophysical Fluid Dynamics, Air-Sea Interaction, Boundary Layers and Turbulence, Climate Variability and Global Change, Atmosphere-Ocean Modeling, Solar-Terrestrial Interactions, Weather Systems Science, Earth Observing Systems, Remote Sensing and more, as part of the ISS curriculum. This paper will highlight the MU-DES programs and learning initiatives and expand and elaborate on the new program in ISS.
Generalized Separation of an Object Jettisoned from the ISS
NASA Technical Reports Server (NTRS)
Bacon, Jack; Menkin, Evgeny
2006-01-01
The International Space Station (ISS) Program faces unprecedented logistics challenges in both upmass and downmass. Some items employed on the ISS exterior present significant technical issues for a controlled de-orbit on either the shuttle or an expendable supply vehicle. Such manifest problems arise due to structural degradation, insufficient containment of hazardous pressures or contents, excessive size, or some combination of all of these factors. In addition, the mounting hardware and other flight service equipment to manifest the returned equipment must itself be launched, competing with other upmass. EVA techniques and equipment to successfully contain and secure such problematic equipment result in numerous significant risks to the spacewalking crews and cost and schedule risks to the program. The ISS Program office has therefore developed a policy that advises the jettison of the most problematic objects. Such jettisoned items join a small family of nearly co-planar orbital debris objects that threaten the ISS on several timescales, besides threatening all satellites with perigee below the ISS orbit and the general human population on Earth. This analysis addresses the governing physics and the ensuing risks when an object is jettisoned. It is shown that there are four time domains which must be considered, each with its own inherent problems, and that a ballistic solution is usually possible that satsfies all constraints in all domains.
An Instruction Support System for Competency-Based Programs.
ERIC Educational Resources Information Center
Singh, Jane M.; And Others
This report discusses the Pennsylvania State University Instruction Support System (ISS) designed to meet the needs of large classes for competency-based teacher education (CBTE) programs. The ISS seven-step hierarchical developmental procedure is reported to free the instructor for specialized instruction and evaluation by utilizing a…
International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.
1997-01-01
The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.
Report of the Cost Assessment and Validation Task Force on the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort. The Program size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap. A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule. The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program. The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required. Completion of ISS assembly is likely to be delayed from one to three years beyond December 2003.
Cost Assessment and Validation Task Force on the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort; The Program, size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap; A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule; The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program; The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program, growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required; and Completion of ISS assembly is likely to be delayed from, one to three years beyond December 2003.
Calcium II K Line as a Measure of Activity: Meshing Sac Peak and Solis Measurements
NASA Astrophysics Data System (ADS)
Urbach, Elana; Earley, J.; Keil, S.
2012-05-01
The Calcium II K line is an important indicator of solar and stellar activity. Disk integrated Ca K measurements have been taken at the Evans Solar Facility at Sacramento Peak Observatory since 1976. This instrument will be shut down by the end of the year, and the observations will be continued by the Solis Integrated Sunlight Spectrometer (ISS), which has been taking measurements since 2006. We attempt to regress the measurements from Sacramento Peak and ISS. In addition, we compare the Ca K measurements with disk averaged line of sight magnetic field measurements, which will help us predict the magnetic field of other stars. We also compare the measurements with Lyman α, allowing us to use Ca K as an extreme ultraviolet (EUV) proxy. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) [or Research Experiences for Teachers (RET)] site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU/RET Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.
The International Space Station as a Research Laboratory: A View to 2010 and Beyond
NASA Technical Reports Server (NTRS)
Uri, John J.; Sotomayor, Jorge L.
2007-01-01
Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent a threefold increase from the current research laboratory infrastructure on ISS. In addition, the increase in resident crew size will increase from three to six in 2009, will provide the long-term capacity for completing research on board ISS. Transportation to and from ISS for crew and cargo will be provided by a fleet of vehicles from the United States, Russia, ESA and Japan, including accommodations for thermally-conditioned cargo. The completed ISS will have robust research accommodations to support the multidisciplinary research objective of scientists worldwide.
20 CFR 628.520 - Individual service strategy.
Code of Federal Regulations, 2012 CFR
2012-04-01
... title II, parts A, B and C. (b) Definition. (1) Individual service strategy (ISS) means an individual..., Objective assessment. In developing the ISS, the participant shall be counseled regarding required loan... program, the ISS may include the components specified in paragraph (b)(1) of this section (sections 204(a...
20 CFR 628.520 - Individual service strategy.
Code of Federal Regulations, 2011 CFR
2011-04-01
... title II, parts A, B and C. (b) Definition. (1) Individual service strategy (ISS) means an individual..., Objective assessment. In developing the ISS, the participant shall be counseled regarding required loan... program, the ISS may include the components specified in paragraph (b)(1) of this section (sections 204(a...
NASA Technical Reports Server (NTRS)
Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)
2002-01-01
The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.
Solid Inflammability Boundary At Low-Speed (SIBAL)
NASA Technical Reports Server (NTRS)
T'ien, J.; Sacksteder, K.; Ferkul, P.; Pettegrew, R.; Street, K.; Kumar, A.; Tolejko, K.; Kleinhenz, J.; Piltch, N.
2003-01-01
This research program is concerned with the effect of low-speed flow on the spreading and extinction processes over solid fuels. The project has passed the Science Concept Review and the experiment is currently scheduled to be performed in the ISS Combustion Integrated Rack. We present an overview of recent and ongoing experimental and theoretical efforts.
Research Program Peer Review: Purposes, Principles, Practices, Protocols
2004-06-01
Statement 1994-95. Canberra: AGPS. Cook- Deegan , R.M. Merit Review for Federally Funded Science and Technology: A White Paper for the Council of the...18p. Craig -B, "SPE Peer-Review Critique", JOURNAL OF PETROLEUM TECHNOLOGY, 1994, Vol 46, Iss 7, pp 563-563 Cram-DL Stebbins-M Eom-HS Ratto-N
Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott
2013-01-01
WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.
Human Research Program Advanced Exercise Concepts (AEC) Overview
NASA Technical Reports Server (NTRS)
Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David
2015-01-01
Exercise countermeasures provide benefits that are crucial for successful human spaceflight, to mitigate the spaceflight physiological deconditioning which occurs during exposure to microgravity. The NASA Human Research Program (HRP) within the Human Exploration and Operations Mission Directorate (HEOMD) is managing next generation Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation to Technology Readiness Level (TRL) 7 (ground prototyping and flight demonstration) for all exploration mission profiles from Multi Purpose Crew Vehicle (MPCV) Exploration Missions (up to 21 day duration) to Mars Transit (up to 1000 day duration) missions. These validated and optimized exercise countermeasures systems will be provided to the ISS Program and MPCV Program for subsequent flight development and operations. The International Space Station (ISS) currently has three major pieces of operational exercise countermeasures hardware: the Advanced Resistive Exercise Device (ARED), the second-generation (T2) treadmill, and the cycle ergometer with vibration isolation system (CEVIS). This suite of exercise countermeasures hardware serves as a benchmark and is a vast improvement over previous generations of countermeasures hardware, providing both aerobic and resistive exercise for the crew. However, vehicle and resource constraints for future exploration missions beyond low Earth orbit will require that the exercise countermeasures hardware mass, volume, and power be minimized, while preserving the current ISS capabilities or even enhancing these exercise capabilities directed at mission specific physiological functional performance and medical standards requirements. Further, mission-specific considerations such as preservation of sensorimotor function, autonomous and adaptable operation, integration with medical data systems, rehabilitation, and in-flight monitoring and feedback are being developed for integration with the exercise countermeasures systems. Numerous technologies have been considered and evaluated against HRP-approved functional device requirements for these extreme mission profiles, and include wearable sensors, exoskeletons, flywheel, pneumatic, and closed-loop microprocessor controlled motor driven systems. Each technology has unique advantages and disadvantages. The Advanced Exercise Concepts project oversees development of candidate next generation exercise countermeasures hardware, performs trade studies of current and state of the art exercise technologies, manages and supports candidate systems physiological evaluations with human test subjects on the ground, in flight analogs and flight. The near term goal is evaluation of candidate systems in flight, culminating in an integrated candidate next generation exercise countermeasures suite on the ISS which coalesces research findings from HRP disciplines in the areas of exercise performance for muscle, bone, cardiovascular, sensorimotor, behavioral health, and nutrition for optimal benefit to the crew.
2012-09-19
CAPE CANAVERAL, Fla. -- NASA's Commercial Crew Program, or CCP, hosts a pre-proposal conference to inform prospective companies about the recently released request for contract proposals and updates to the certification requirements for crewed missions to the International Space Station, or ISS. The two-phase certification process, called Certification Products Contract, or CPC, will enable NASA to eventually purchase service missions to fly astronauts to and from the ISS. From left, Ed Mango, CCP's program manager Steve Janney, CPC contracting officer Maria Collura, CCP certification manager Tom Simon, CPC Evaluation Team chair Brent Jett, CCP deputy program manager and Kathy Lueders, manager of the ISS Transportation Integration Office. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett
2012-09-19
CAPE CANAVERAL, Fla. -- NASA's Commercial Crew Program, or CCP, hosts a pre-proposal conference to inform prospective companies about the recently released request for contract proposals and updates to the certification requirements for crewed missions to the International Space Station, or ISS. The two-phase certification process, called Certification Products Contract, or CPC, will enable NASA to eventually purchase service missions to fly astronauts to and from the ISS. From left, Ed Mango, CCP's program manager Steve Janney, CPC contracting officer Maria Collura, CCP certification manager Tom Simon, CPC Evaluation Team chair Brent Jett, CCP deputy program manager and Kathy Lueders, manager of the ISS Transportation Integration Office. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett
Long-Term International Space Station (ISS) Risk Reduction Activities
NASA Astrophysics Data System (ADS)
Fodroci, M. P.; Gafka, G. K.; Lutomski, M. G.; Maher, J. S.
2012-01-01
As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk - given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Hazard Level- 4 [THL] materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years to come.
Long-Term International Space Station (ISS) Risk Reduction Activities
NASA Technical Reports Server (NTRS)
Forroci, Michael P.; Gafka, George K.; Lutomski, Michael G.; Maher, Jacilyn S.
2011-01-01
As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity hazard level-4 materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards). Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years to come.
Portable Load Measurement Device for Use During ARED Exercise on ISS
NASA Technical Reports Server (NTRS)
Hanson, A.; Peters, B.; Caldwell, E.; Sinka, J.; Kreutzburg, G.; Ploutz-Snyder, L.
2014-01-01
The Advanced Resistive Exercise Device (ARED) (Fig.1) is unique countermeasure hardware available to crewmembers aboard the International Space Station (ISS) used for resistance exercise training to protect against bone and muscle loss during long duration space missions. ARED instrumentation system was designed to measure and record exercise load data, but: - Reliably accurate data has not been available due to a defective force platform. - No ARED data has been recorded since mid-2011 due to failures in the instrumentation power system. ARED load data supports on-going HRP funded research, and is available to extramural researchers through LSDA-Repository. Astronaut Strength, Conditioning, and Rehabilitation specialists (ASCRs) use ARED data to track training progress and advance exercise prescriptions. ARED load data is necessary to fulfill medical requirements. HRP directed task intends to reduce to program risk (HRP IRMA Risk 1735), and evaluate the XSENS ForceShoeTM as a means of obtaining ARED load data during exercise sessions. The XSENS ForceShoes"TM" will fly as a hardware demonstration to ISS in May 2014 (39S). Additional portable load monitoring devices (PLMDs) are under evaluation in the ExPC Lab. PLMDs are favored over platform redesign as they support future exploration needs.
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.
2016-01-01
On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.
NASA Technical Reports Server (NTRS)
Clements, Anna L.; Stinson, Richard G.; VanWie, Michael; Warren, Eric
2009-01-01
The second generation International Space Station (ISS) Total Organic Carbon Analyzer s (TOCA) function is to monitor concentrations of Total Organic Carbon (TOC) in ISS water samples. TOC is one measurement that provides a general indication of overall water quality by indicating the potential presence of hazardous chemicals. The data generated from the TOCA is used as a hazard control to assess the quality of the reclaimed and stored water supplies on-orbit and their suitability for crew consumption. This paper details the unique ISS Program requirements, the design of the ISS TOCA, and a brief description of the on-orbit concept-of-operations. The TOCA schematic will be discussed in detail along with specific information regarding key components. The ISS TOCA was designed as a non-toxic TOC analyzer that could be deployed in a flight ready package. This basic concept was developed through laboratory component level testing, two moderate fidelity integrated system breadboard prototypes, a flight-like full scale prototype, as well as lessons learned from the inadequacies of the first unit. The result: a new TOCA unit that is robust in design and includes special considerations to microgravity and the on-orbit ISS environment. TOCA meets the accuracy needs of the ISS Program with a 1,000 to 25,000 g/L range, accurate to within +/-25%.
An overview of NASA ISS human engineering and habitability: past, present, and future.
Fitts, D; Architecture, B
2000-09-01
The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.
High School Completion of In-School Suspension Students.
ERIC Educational Resources Information Center
Johnston, Joanne S.
1989-01-01
Examines the high school completion rate of students in the class of 1988 assigned to an inschool suspension (ISS) program at some time during their high school career. Clearly, ISS students are high risks for school completion, as shown by this study's less than 50 percent completion rate. Nonetheless, such programs are essential. (MLH)
Designing an Effective In-School Suspension Program to Change Student Behavior.
ERIC Educational Resources Information Center
Sheets, John
1996-01-01
All in-school suspension (ISS) models can be classified into punitive, problem-solving, academic, and individual models. The individual model is most reasonable, since it assumes that reasons for misbehavior vary from student to student. ISS programs can help modify student misbehavior, protect the overall learning environment by isolating…
International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment
NASA Technical Reports Server (NTRS)
Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark
2014-01-01
The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.
2001-01-01
ISS002-S-001 (January 2001) --- The International Space Station Expedition Two patch depicts the Space Station as it appears during the time the second crew will be on board. The Station flying over the Earth represents the overall reason for having a space station: to benefit the world through scientific research and international cooperation in space. The number 2 is for the second expedition and is enclosed in the Cyrillic MKS and Latin ISS which are the respective Russian and English abbreviations for the International Space Station. The United States and Russian flags show the nationalities of the crew indicating the joint nature of the program. When asked about the stars in the background, a crew spokesman said they "...represent the thousands of space workers throughout the ISS partnership who have contributed to the successful construction of our International Space Station." The insignia design for ISS flights is reserved for use by the astronauts and cosmonauts and for other official use as the NASA Administrator and NASA's international partners may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.
NASA Technical Reports Server (NTRS)
O'Callaghan, Fred
2004-01-01
The primary focus of the workshop was NASA's new concentration on sending crewed missions to the Moon by 2020, and then on to Mars and beyond. Several speakers, including JPL s Fred O Callaghan and NASA's Mark Lee, broached the problem that there is now a serious reduction of capability to perform experiments in the ISS, or to fly significant mass in microgravity by other means. By 2010, the shuttle fleet will be discontinued and Russian craft will provide the only access to the ISS. O Callaghan stated that the Fundamental Physics budget is being reduced by 70%. LTMPF and LCAP are slated for termination. However, ground-based experiments are continuing to be funded at present, and it will be possible to compete for $80-90 million in new money from the Human Research Initiative (HRI). The new program thrust is for exploration, not fundamental physics. Fundamental, we were told by Lee, does not ring well in Washington these days. Investigators were advised to consider how their work can benefit missions to the Moon and Mars. Work such as that regarding atomic clocks is looked upon with favor, for example, because it is considered important to navigation and planetary GPS. Mark Lee stressed that physicists must convey to NASA senior management that they are able and willing to contribute to the new exploration research programs. The new mentality must be we deliver products, not do research. This program needs to be able to say that it is doing at least 50% exploration-related research. JPL s Ulf Israelsson discussed the implications to OBPR, which will deliver methods and technology to assure human health and performance in extraterrestrial settings. The enterprise will provide advanced life-support systems and technology that are reliable, capable, simpler, less massive, smaller, and energy-efficient, and it may offer other necessary expertise in areas such as low-gravity behavior. Like Dr. Lee, he stated that the focus must be on products, not research. While there is not yet a formal direction, he said, LTMPF and PARCS ISS flight projects are slated to terminate in October 2004. All flight investigations are being returned to ground programs and phased out by the end of FY07. Physics ground programs are intact for now, but to survive we must shift about 50% of research to supporting exploration. Basic research programs in other disciplines are being cancelled. Product lines will support human health, safety and life-support, including countermeasures against radiation and other hazards, as well as advances in time-keeping, navigation and communications technologies. Israelsson said that the new Fundamental Physics for Exploration Roadmap points to how fundamental physics research can and does support exploration. JPL will use the roadmap to argue for support for fundamental physics research under several codes. Nicholas Bigelow of the University of Rochester encouraged attendees not to become discouraged, but rather to embrace the opportunities presented by NASA's new direction.
International Space Station ECLSS Technical Task Agreement Summary Report
NASA Technical Reports Server (NTRS)
Ray, C. D. (Compiler); Salyer, B. H. (Compiler)
1999-01-01
This Technical Memorandum provides a summary of current work accomplished under Technical Task Agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). Current activities include ECLSS component design and development, computer model development, subsystem/integrated system testing, life testing, and general test support provided to the ISS program. Under ECLSS design, MSFC was responsible for the six major ECLSS functions, specifications and standard, component design and development, and was the architectural control agent for the ISS ECLSS. MSFC was responsible for ECLSS analytical model development. In-house subsystem and system level analysis and testing were conducted in support of the design process, including testing air revitalization, water reclamation and management hardware, and certain nonregenerative systems. The activities described herein were approved in task agreements between MSFC and NASA Headquarters Space Station Program Management Office and their prime contractor for the ISS, Boeing. These MSFC activities are in line to the designing, development, testing, and flight of ECLSS equipment planned by Boeing. MSFC's unique capabilities for performing integrated systems testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs, are the basis for the TTA activities.
Integration of multiple research disciplines on the International Space Station
NASA Technical Reports Server (NTRS)
Penley, N. J.; Uri, J.; Sivils, T.; Bartoe, J. D.
2000-01-01
The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented. c 2000 Published by Elsevier Science Ltd. All rights reserved.
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1999-01-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1998-09-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.
2014-01-01
On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.
International space station wire program
NASA Technical Reports Server (NTRS)
May, Todd
1995-01-01
Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.
Behavioral Health Program Element
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.
2006-01-01
The project goal is to develop behavioral health prevention and maintenance system for continued crew health, safety, and performance for exploration missions. The basic scope includes a) Operationally-relevant research related to clinical cognitive and behavioral health of crewmembers; b) Ground-based studies using analog environments (Antarctic, NEEMO, simulations, and other testbeds; c) ISS studies (ISSMP) focusing on operational issues related to behavioral health outcomes and standards; d) Technology development activities for monitoring and diagnostic tools; and e) Cross-disciplinary research (e.g., human factors and habitability research, skeletal muscle, radiation).
Applications of the International Space Station Probabilistic Risk Assessment Model
NASA Technical Reports Server (NTRS)
Grant, Warren; Lutomski, Michael G.
2011-01-01
Recently the International Space Station (ISS) has incorporated more Probabilistic Risk Assessments (PRAs) in the decision making process for significant issues. Future PRAs will have major impact to ISS and future spacecraft development and operations. These PRAs will have their foundation in the current complete ISS PRA model and the current PRA trade studies that are being analyzed as requested by ISS Program stakeholders. ISS PRAs have recently helped in the decision making process for determining reliability requirements for future NASA spacecraft and commercial spacecraft, making crew rescue decisions, as well as making operational requirements for ISS orbital orientation, planning Extravehicular activities (EVAs) and robotic operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decision. This paper will discuss future analysis topics such as life extension, requirements of new commercial vehicles visiting ISS.
2017-03-07
You probably don’t know what you’ll be doing six months from today, but there’s a group at NASA’s Marshall Space Flight Center in Huntsville, Alabama, that’s making just such a plan for scientific research on the International Space Station. Learn how these men and women map out science activity for the crew in space to support the cutting-edge research now underway that’s benefitting life on Earth. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Human Factors in Training: Space Medical Proficiency Training
NASA Technical Reports Server (NTRS)
Byrne, Vicky E.; Barshi, I.; Arsintescu, L.; Connell, E.
2010-01-01
The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and the International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to the ISS, medical equipment will be located on the ISS, and carried into CEV in the event of an emergency. Flight surgeons (FS) on the ground in Mission Control will be expected to direct the crew medical officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. The space medical training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). This is a joint project consisting of human factors team from the Ames Research Center (ARC) with Immanuel Barshi as Principal Investigator and the Johnson Space Center (JSC). Human factors researchers at JSC have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground, and researchers at the Ames Research Center performed a literature review on medical errors. Work on medical training has been conducted in collaboration with the Medical Training Group at the Johnson Space Center (JSC) and with Wyle Laboratories that provides medical training to crew members, biomedical engineers (BMEs), and to flight surgeons under the Bioastronautics contract. One area of research building on activities from FY08, involved the feasibility of just-in-time (JIT) training techniques and concepts for real-time medical procedures. A second area of research involves FS performance support tools. Information needed by the FS during the ISS mission support, especially for an emergency situation (e.g., fire onboard ISS), may be located in many different places around the FS s console. A performance support tool prototype is being developed to address this issue by bringing all of the relevant information together in one place. The tool is designed to include procedures and other information needed by a FS during an emergency, as well as procedures and information to be used after the emergency is resolved. Several walkthroughs of the prototype with FSs have been completed within a mockup of an ISS FS console. Feedback on the current tool design as well as recommendations for existing ISS FS displays were captured. The tool could have different uses depending on the situation and the skill of the user. An experienced flight surgeon could use it during an emergency situation as a decision and performance support tool, whereas a new flight surgeon could use it as JITT, or part of his/her regular training. The work proposed for FY10 continues to build on this strong collaboration with the Space Medical Training Group and previous research.
Cozzoli, Daniele; Capocci, Mauro
2011-12-01
This paper focuses on the role played by Domenico Marotta, director of the ISS (Higher Institute of Health) for over twenty-five years, in the development of twentieth-century Italian biomedicine. We will show that Marotta aimed to create an integrated centre for research and production able to interact with private industry. To accomplish this, Marotta shifted the original mission of the ISS, from public health to scientific research. Yet Mussolini's policy turned most of the ISS resources towards controls and military tasks, opposing Marotta's aspiration. By contrast, in the post-war years Marotta was able to turn the ISS into the most important Italian biomedical research institution, where research and production fruitfully cohabited. Nobel laureates, such as Ernst Chain, and future Nobel laureates, such as Daniel Bovet, were hired. The ISS built up an integrated research and production centre for penicillin and antibiotics. In the 1960s, Marotta's vision was in accord with the new centre-left government. However, he pursued his goals by ruling the ISS autocratically and beyond any legal control. This eventually led to his downfall and prosecution. This also marked the decline of the ISS, intertwined with the weakness of the centre-left government, who failed to achieve structural reforms and couple the modernization of the country with the democratization of its scientific institutions.
Habitability and Human Factors Contributions to Human Space Flight
NASA Technical Reports Server (NTRS)
Sumaya, Jennifer Boyer
2011-01-01
This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.
NASA Technical Reports Server (NTRS)
Campana, Sharon E.; Melendez, David T.
2011-01-01
The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.
ISS Plasma Environment: Status of CCMC Products for ISS Mission Ops
NASA Technical Reports Server (NTRS)
Minow, Joseph
2010-01-01
ISS Program currently using FPMU Ne, Te in-situ measurements to support operations and anomaly investigations. Working to acquire alternative data sources if FPMU is not available. Work is progressing on CCMC tools for low Earth orbit ionosphere characterization. Validation against FPMU data required before model output can be used for ISS operational support. MSFC plans to continue comparing CTIP output during FPMU campaigns. Results to date have been useful in identifying ionospheric origins of high latitude charging environments.
Novel Advancements in Internet-Based Real Time Data Technologies
NASA Technical Reports Server (NTRS)
Myers, Gerry; Welch, Clara L. (Technical Monitor)
2002-01-01
AZ Technology has been working with MSFC Ground Systems Department to find ways to make it easier for remote experimenters (RPI's) to monitor their International Space Station (ISS) payloads in real-time from anywhere using standard/familiar devices. AZ Technology was awarded an SBIR Phase I grant to research the technologies behind and advancements of distributing live ISS data across the Internet. That research resulted in a product called "EZStream" which is in use on several ISS-related projects. Although the initial implementation is geared toward ISS, the architecture and lessons learned are applicable to other space-related programs. This paper presents the high-level architecture and components that make up EZStream. A combination of commercial-off-the-shelf (COTS) and custom components were used and their interaction will be discussed. The server is powered by Apache's Jakarta-Tomcat web server/servlet engine. User accounts are maintained in a My SQL database. Both Tomcat and MySQL are Open Source products. When used for ISS, EZStream pulls the live data directly from NASA's Telescience Resource Kit (TReK) API. TReK parses the ISS data stream into individual measurement parameters and performs on-the- fly engineering unit conversion and range checking before passing the data to EZStream for distribution. TReK is provided by NASA at no charge to ISS experimenters. By using a combination of well established Open Source, NASA-supplied. and AZ Technology-developed components, operations using EZStream are robust and economical. Security over the Internet is a major concern on most space programs. This paper describes how EZStream provides for secure connection to and transmission of space- related data over the public Internet. Display pages that show sensitive data can be placed under access control by EZStream. Users are required to login before being allowed to pull up those web pages. To enhance security, the EZStream client/server data transmissions can be encrypted to preclude interception. EZStream was developed to make use of a host of standard platforms and protocols. Each are discussed in detail in this paper. The I3ZStream server is written as Java Servlets. This allows different platforms (i.e. Windows, Unix, Linux . Mac) to host the server portion. The EZStream client component is written in two different flavors: JavaBean and ActiveX. The JavaBean component is used to develop Java Applet displays. The ActiveX component is used for developing ActiveX-based displays. Remote user devices will be covered including web browsers on PC#s and scaled-down displays for PDA's and smart cell phones. As mentioned. the interaction between EZStream (web/data server) and TReK (data source) will be covered as related to ISS. EZStream is being enhanced to receive and parse binary data stream directly. This makes EZStream beneficial to both the ISS International Partners and non-NASA applications (i.e. factory floor monitoring). The options for developing client-side display web pages will be addressed along with the development of tools to allow creation of display web pages by non-programmers.
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas
2013-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Anderson, Molly; Anderson, Molly; Adam, Niklas; Vega, Leticia; Modica, Catherine; Bodkin, Douglas
2012-01-01
Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
Semi-Autonomous Rodent Habitat for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.
2018-01-01
NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation.
Light Microscopy Module: International Space Station Premier Automated Microscope
NASA Technical Reports Server (NTRS)
Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John;
2016-01-01
The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.
2002-02-01
AiroCide Ti02, an anthrax-killing air scrubber manufactured by KES Science and Technology Inc., in Kernesaw, Georgia, looks like a square metal box when it is installed on an office wall. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station (ISS) has led to the invention of this device that annihilates anthrax-a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in the anthrax-killing invention is also being used inside WCSAR-built plant growth units on the ISS. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Bhuiyan, Ruqayah H.; Spencer, Lashelle; Wheeler, Ray; Romeyn, Matthew
2018-01-01
For extended space flight, reliable food supplies are a necessity. Most of the food products consumed by astronauts today are stored for flight via freeze drying. Fresh food is needed to supplement known national deficiencies in the stored food diet (Cooper et al.). This is so because stored foods can lose nutritional value. Fresh food is the answer to the nutritional demands of space flight. Kennedy Space Center's Utilization and Life Sciences Office (UB-A), under the Exploration Research and Technology Program (UB), conducts research on plant growth and development under International Space Station (ISS) conditions. UB-A analyzes the growth responses of leafy greens in microgravity and through the manipulation of environmental conditions (CO2 levels, light intensity, relative humidity, and water delivery). By manipulating growing conditions researchers can optimize food production using minimal/restricted resources. The New Crop Selection experiments are testing the suitability of leafy crops to ISS conditions. Results from this study showed that 'Dragoon' Lettuce and 'Red Russian' Kale have the largest fresh mass.
Lunar Station: The Next Logical Step in Space Development
NASA Technical Reports Server (NTRS)
Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.
2014-01-01
The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-- earth--orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos
2007-01-01
The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma. Vehicle size (L) and velocity (v), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during high latitude flight (>+/- 45deg) during each orbit. In addition, ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals species are largely excluded. ISS must fly in a very limited number of approved flight attitudes, so that exposure of a particular material or system to environmental factors depends upon: 1) location on ISS, 2) ISS flight configuration, 3) ISS flight attitude, and 4) variation of solar exposure (Beta angle), and hence thermal environment, with time. Finally, an induced ionizing radiation environment is produced by trapped radiation and solar/cosmic ray interactions with the relatively massive ISS structural shielding.
ISS Microgravity Research Payload Training Methodology
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Geveden, Rex (Technical Monitor)
2001-01-01
The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned will be addressed.
Multi-User Hardware Solutions to Combustion Science ISS Research
NASA Technical Reports Server (NTRS)
Otero, Angel M.
2001-01-01
In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time required to go from selection to space flight.
Recent NASA research accomplishments aboard the ISS
NASA Technical Reports Server (NTRS)
Pellis, Neal R.; North, Regina M.
2004-01-01
The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations. Published by Elsevier Ltd.
Amine Swingbed Payload Project Management
NASA Technical Reports Server (NTRS)
Hayley, Elizabeth; Curley, Su; Walsh, Mary
2011-01-01
The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the ORION Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the ORION vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6-person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload the swingbed unit itself launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open-loop ORION application as well as the closed-loop ISS application.
Amine Swingbed Payload Project Management
NASA Technical Reports Server (NTRS)
Walsch, Mary; Curley, Su
2013-01-01
The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.
2005-01-01
In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.
Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS
NASA Technical Reports Server (NTRS)
Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.
2001-01-01
At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.
Integrating MBSE into Ongoing Projects: Requirements Validation and Test Planning for the ISS SAFER
NASA Technical Reports Server (NTRS)
Anderson, Herbert A.; Williams, Antony; Pierce, Gregory
2016-01-01
The International Space Station (ISS) Simplified Aid for Extra Vehicular Activity (EVA) Rescue (SAFER) is the spacewalking astronaut's final safety measure against separating from the ISS and being unable to return safely. Since the late 1990s, the SAFER has been a standard element of the spacewalking astronaut's equipment. The ISS SAFER project was chartered to develop a new block of SAFER units using a highly similar design to the legacy SAFER (known as the USA SAFER). An on-orbit test module was also included in the project to enable periodic maintenance/propulsion system checkout on the ISS SAFER. On the ISS SAFER project, model-based systems engineering (MBSE) was not the initial systems engineering (SE) approach, given the volume of heritage systems engineering and integration (SE&I) products. The initial emphasis was ensuring traceability to ISS program standards as well as to legacy USA SAFER requirements. The requirements management capabilities of the Cradle systems engineering tool were to be utilized to that end. During development, however, MBSE approaches were applied selectively to address specific challenges in requirements validation and test and verification (T&V) planning, which provided measurable efficiencies to the project. From an MBSE perspective, ISS SAFER development presented a challenge and an opportunity. Addressing the challenge first, the project was tasked to use the original USA SAFER operational and design requirements baseline, with a number of additional ISS program requirements to address evolving certification expectations for systems operating on the ISS. Additionally, a need to redesign the ISS SAFER avionics architecture resulted in a set of changes to the design requirements baseline. Finally, the project added an entirely new functionality for on-orbit maintenance. After initial requirements integration, the system requirements count was approaching 1000, which represented a growth of 4x over the original USA SAFER system. This presented the challenge - How to confirm that this new set of requirements set would result in the creation of the desired capability.
NASA Human Research Program Behavioral Health and Performance Element (BHP)
NASA Technical Reports Server (NTRS)
Whitmire, Sandra; Faulk, Jeremy; Leveton, Lauren
2010-01-01
The goal of NASA BHP is to identify, characterize, and prevent or reduce behavioral health and performance risks associated with space travel, exploration, and return to terrestrial life. The NASA Behavioral Health and Performance Operations Group (BHP Ops) supports astronauts and their families before, during, and after a long-duration mission (LDM) on the ISS. BHP Ops provides ISS crews with services such as preflight training (e.g., psychological factors of LDM, psychological support, cross-cultural); preflight, in-flight, and postflight support services, including counseling for astronauts and their families; and psychological support such as regular care packages and a voice-over IP phone system between crew members and their families to facilitate real-time one-on-one communication.
NASA Technical Reports Server (NTRS)
Benavides, Jose
2017-01-01
SPHERES/Astrobee Working Group (SAWG) Quarterly meeting. Membership includes MIT, FIT, AFS, DARPA, CASIS, SJSU, and NASA (HQ, KSC, JSC, MSFC, and ARC)Face-to-Face, twice a year Purpose: Information sharing across the SPHERES community Program office shares National Lab Facility availability Status of resources (batteries, CO2 tanks, etc.), Overall Calendar (scheduled Test Sessions, up mass return), and Updates on new PD, Investigations, and ISS infrastructure. Provide the SPHERES community (PD, investigators, etc.) with up-to-date information to determine opportunities to use the NL Facility Discuss proposed changes updates to SPHERES Nat Lab which may be required to support a specific activity or research. Discuss specific support requests made to the ISS Office.
2017-03-09
iss050e056553 (03/09/2017) --- NASA astronaut Peggy Whitson unloads spaceflight hardware delivered on SpaceX CRS-10 that was built as part of the NASA High School Students United with NASA to Create Hardware (HUNCH) program. Students in the HUNCH program receive valuable experience creating goods for NASA from hardware to the culinary arts, while NASA receives the creativity of the High School students.
1999-08-03
SPD representative Steve Lambing shows the PentaPure water purification unit to some EAA visitors. The Microgravity Research and the Space Product Development Programs joined with the Johnson Space Center (JSC) for a first time ever ISS/Microgravity Research space-focused exhibit at Oshkosh AirVenture'99 from July 28-August 3, 1999. The Space Product Development (SPD) display included the STS-95 ASTROCULTURE training hardware used by John Glenn and his crewmates, a PentaPure water purfication system, and a Ford engine block.
Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)
NASA Technical Reports Server (NTRS)
Herring, Rodney; Tryggvason, Bjarni; Duval, Walter
1998-01-01
Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.
NASA Technical Reports Server (NTRS)
Campana, Sharon
2010-01-01
The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.
Sabatier Carbon Dioxide Reduction Assembly Development for Closed Loop Water Recovery
NASA Technical Reports Server (NTRS)
Smith, Frederick; Perry, Jay; Murdoch, Karen; Goldblatt, Loel
2004-01-01
The Sabatier Carbon Dioxide Reduction System (CRA) offers water recovery on a long duration space mission to reduce water resupply. Currently, NASA Johnson Space Center (JSC), NASA Marshall Space Flight Center (MSFC), Hamilton Sundstrand Space Systems International, Inc. (HSSSI), and Southwest Research Institute (SWRI) are working together to develop a Sabatier CRA for the International Space Station (ISS). This effort is being funded by the Office of Biological and Physical Research (Code U)/Advanced Life Support program which is administered by NASA JSC. The Sabatier CRA is the next step in closing the oxygen life support loop on future space missions. The Sabatier reaction combines the waste carbon dioxide (recovered from crew metabolism) with waste hydrogen (a byproduct of electrolysis to produce oxygen) to produce water and methane (CH4). On ISS, the methane would be vented overboard, however the methane can be utilized for propulsion during a planetary exploration mission. Based on a crew size of 7-equivalent people, the Sabatier CRA can produce as much a 2000 lb/year water. Use of the Sabatier CRA will significantly reduce the amount of water that needs to be resupplied to the ISS on a yearly basis, at a tremendous cost saving to the program. Additionally, by recycling this additional water, the Sabatier CRA enables additional launch capacity for science experiments to be brought up to the ISS. The NASA/Industry team noted above has been working to reduce technical risks associated with the Sabatier CRA system. To date the technical risks have been considerably reduced, bringing the Technology Readiness Level (TRL) from TRL 4 to TRL 5/6. In doing so, the team has developed the system schematic, system models, control scheme, produced engineering development unit (EDU) hardware, performed limited integration testing of the EDU's and verified system modeling through testing. Additionally, the system schematic has been evaluated for failure modes and hazards and had a successful technical review by the NASA Safety Board. The current focus is now related to development of the water/methane phase separator, liquid sensor and CO2 compressor piston seal life. The overall goal of the current effort is to bring the system up to a TRL6 by the end of GFY04. Although the Sabatier CRA is not currently baselined for use on the ISS, its benefits are significant enough such that volume within the Oxygen Generation System rack has been reserved for future installation. The value of the water the CRA recover will allow NASA the additional crew time and payload needed to pursue its mission of scientific research.
Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Marsell, Brandon (Editor); Schallhorn, Paul (Editor)
2017-01-01
Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment1, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.
Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment
NASA Technical Reports Server (NTRS)
Storey, Jed; Kirk, Daniel (Editor); Marsell, Brandon (Editor); Schallhorn, Paul (Editor)
2017-01-01
Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.
International Space Station: becoming a reality.
David, L
1999-07-01
An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.
Science on the International Space Station: Stepping Stones for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.
NASA Technical Reports Server (NTRS)
Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.
2000-01-01
NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2018-01-01
Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.
International Space Station: National Laboratory Education Concept Development Report
NASA Technical Reports Server (NTRS)
2006-01-01
The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.
Linn, S
One of the more often used measures of multiple injuries is the injury severity score (ISS). Determination of the ISS is based on the abbreviated injury scale (AIS). This paper suggests a new algorithm to sort the AISs for each case and calculate ISS. The program uses unsorted abbreviated injury scale (AIS) levels for each case and rearranges them in descending order. The first three sorted AISs representing the three most severe injuries of a person are then used to calculate injury severity score (ISS). This algorithm should be useful for analyses of clusters of injuries especially when more patients have multiple injuries.
ISS Crew Transportation and Services Requirements Document
NASA Technical Reports Server (NTRS)
Lueders, Kathryn L. (Compiler)
2015-01-01
Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).
Microbiological Lessons Learned from the Space Shuttle
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.
2011-01-01
After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.
SpaceX CRS-11 What's On Board Briefing
2017-05-31
NASA Television held a “What’s on Board” science mission briefing from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on SpaceX’s eleventh commercial resupply services mission, CRS-11. SpaceX’s Dragon spacecraft will carry almost 6,000 pounds of supplies and payloads including crucial materials to support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. CRS-11 will lift off atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Briefing participants were: -Kathryn Hambleton, NASA Communications -Camille Alleyne, Associate Program Scientist, ISS -Ken Shields, Director of Operations, CASIS/ISS National Lab -Keith Gendreau, Principle Investigator, NICER -Jason W. Mitchell, Project Manager, SEXTANT -Jeremy Banik, Principle Investigator, ROSA -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Miriam Sargusingh, Project Lead, CSELS -Dr. Chia Soo, Principle Investigator, Systemic Therapy of NELL-1 for Osteoporosis -Paul Galloway, Program Manager, MUSES
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.
2017-01-01
Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the animals easily. The Rodent Research team has also developed Live Animal Return (LAR) capability, which will be implemented during Rodent Research-5 mission for the first time. The animals will be transported from the Habitat to a Transporter, which will return on the Dragon capsule and splashes down in the Pacific Ocean. Once SpaceX retrieves the Dragon, all powered payloads will be transferred to a SeaVan and transferred to the Long Beach pier. The NASA team then receives the transporter and delivers to a PI-designated laboratory within 120 mile radius of Long Beach. This is a significant improvement allowing researchers to examine animals within 72 hrs. of reentry or to conduct recovery experiments. Together, the hardware improvements and experience that the Rodent Research team has gained working with principal investigators and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical objectives.
NASA Technical Reports Server (NTRS)
Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.
2013-01-01
Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.
Viewing ISS Data in Real Time via the Internet
NASA Technical Reports Server (NTRS)
Myers, Gerry; Chamberlain, Jim
2004-01-01
EZStream is a computer program that enables authorized users at diverse terrestrial locations to view, in real time, data generated by scientific payloads aboard the International Space Station (ISS). The only computation/communication resource needed for use of EZStream is a computer equipped with standard Web-browser software and a connection to the Internet. EZStream runs in conjunction with the TReK software, described in a prior NASA Tech Briefs article, that coordinates multiple streams of data for the ground communication system of the ISS. EZStream includes server components that interact with TReK within the ISS ground communication system and client components that reside in the users' remote computers. Once an authorized client has logged in, a server component of EZStream pulls the requested data from a TReK application-program interface and sends the data to the client. Future EZStream enhancements will include (1) extensions that enable the server to receive and process arbitrary data streams on its own and (2) a Web-based graphical-user-interface-building subprogram that enables a client who lacks programming expertise to create customized display Web pages.
NASA Technical Reports Server (NTRS)
Menkin, Evgeny; Juillerat, Robert
2015-01-01
With the International Space Station Program transition from assembly to utilization, focus has been placed on the optimization of essential resources. This includes resources both resupplied from the ground and also resources produced by the ISS. In an effort to improve the use of two of these, the ISS Engineering teams, led by the ISS Program Systems Engineering and Integration Office, undertook an effort to modify the techniques use to perform several key on-orbit events. The primary purposes of this endeavor was to make the ISS more efficient in the use of the Russian-supplied fuel for the propulsive attitude control system and also to minimize the impacts to available ISS power due to the positioning of the ISS solar arrays. Because the ISS solar arrays are sensitive to several factors that are present when propulsive attitude control is used, they must be operated in a manner to protect them from damage. This results in periods of time where the arrays must be positioned, rather than autonomously tracking the sun, resulting in negative impacts to power generated by the solar arrays and consumed by both the ISS core systems and payload customers. A reduction in the number and extent of the events each year that require the ISS to use propulsive attitude control simultaneously accomplishes both these goals. Each instance where the ISS solar arrays normal sun tracking mode must be interrupted represent a need for some level of powerdown of equipment. As the magnitude of payload power requirements increases, and the efficiency of the ISS solar arrays decreases, these powerdowns caused by array positioning, will likely become more significant and could begin to negatively impact the payload operations. Through efforts such as this, the total number of events each year that require positioning of the arrays to unfavorable positions for power generation, in order to protect them against other constraints, are reduced. Optimization of propulsive events and transitioning some of them to non-propulsive CMG control significantly reduces propellant usage on the ISS leading to the reduction of the propellant delivery requirement. This results in move available upmass that can be used for delivering critical dry cargo, additional water, air, crew supplies and science experiments.
International Space Station (ISS)
2000-09-08
This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.
GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues
NASA Technical Reports Server (NTRS)
Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid;
2016-01-01
NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.
Leadership and Cultural Challenges in Operating the International Space Station
NASA Technical Reports Server (NTRS)
Clement, J. L.; Ritsher, J. B.; Saylor, S. A.; Kanas, N.
2006-01-01
Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. ISS flight controllers have had to find ways to maintain effective team performance in this challenging new context. The goal of this study was to systematically identify and evaluate the major leadership and cultural challenges faces by ISS flight controllers, and to highlight the approaches that they have found most effective to surmount these challenges. We conducted a qualitative survey using a semi-structured interview. Subjects included 14 senior NASA flight controllers who were chosen on the basis of having had substantial experience working with international partners. Data were content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted some new analyses of data from a previous questionnaire study of Russian and American ISS mission control personnel. The interview data showed that respondents had substantial consensus on several leadership and cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Surprisingly few respondents offered strategies for addressing the challenge of working with team members whose native language is not American English. The questionnaire data showed that Americans think it is more important than Russians that mission control personnel speak the same dialect of one shared common language. Although specific to the ISS program, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future ISS flight controllers.
CDRA-4EU Testing to Assess Increased Number of ISS Crew
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
The International Space Station (ISS) program is investigating methods to increase carbon dioxide (CO2) removal on ISS in order to support an increased number of astronauts at a future date. The Carbon Dioxide Removal Assembly - Engineering Unit (CDRA-4EU) system at NASA Marshall Space Flight Center (MSFC) was tested at maximum fan settings to evaluate CO2 removal rate and power consumption at those settings.
Risk Management for the International Space Station
NASA Technical Reports Server (NTRS)
Sebastian, J.; Brezovic, Philip
2002-01-01
The International Space Station (ISS) is an extremely complex system, both technically and programmatically. The Space Station must support a wide range of payloads and missions. It must be launched in numerous launch packages and be safely assembled and operated in the harsh environment of space. It is being designed and manufactured by many organizations, including the prime contractor, Boeing, the NASA institutions, and international partners and their contractors. Finally, the ISS has multiple customers, (e.g., the Administration, Congress, users, public, international partners, etc.) with contrasting needs and constraints. It is the ISS Risk Management Office strategy to proactively and systematically manages risks to help ensure ISS Program success. ISS program follows integrated risk management process (both quantitative and qualitative) and is integrated into ISS project management. The process and tools are simple and seamless and permeate to the lowest levels (at a level where effective management can be realized) and follows the continuous risk management methodology. The risk process assesses continually what could go wrong (risks), determine which risks need to be managed, implement strategies to deal with those risks, and measure effectiveness of the implemented strategies. The process integrates all facets of risk including cost, schedule and technical aspects. Support analysis risk tools like PRA are used to support programatic decisions and assist in analyzing risks.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
Singh, Bhim S. (Editor)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).
Pettit works at the HRF workstation in Destiny during Expedition Six
2003-01-02
ISS006-E-13995 (2 January 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, performs the Human Research Facility (HRF) Ultrasound functional checkout in the Destiny laboratory on the International Space Station (ISS).
Overview of the Environmental Control and Life Support System (ECLSS) Testing At MSFC
NASA Technical Reports Server (NTRS)
Traweek, Mary S.; Tatara, James D.
1998-01-01
Previously, almost all water used by the crew during space flight has been transported from earth or generated in-flight as a by-product of fuel cells. Additionally, this water has been stored and used for relatively short periods. To achieve the United States' commitment to a permanent manned presence in space, more innovative techniques are demanded. Over 20,000 pounds of water and large quantities of air would have to be transported to the International Space Station (ISS) every 90 days with a corresponding amount of waste returned to earth, for an 8-person crew. This approach results in prohibitive logistics costs, and necessitates near complete recovery and recycling of water. The potential hazards associated with long-term reuse of reclaimed water and revitalized air resulted in the recognition that additional characterization of closed-loop systems and products is essential. Integrated physical/chemical systems have been designed, assembled, and operated to provide air and potable water meeting ISS quality specifications. The purpose of the Environmental Control and Life Support System (ECLSS) test program at NASA's Marshall Space Flight Center is to conduct research related to the performance of the ISS and its Environmental Control components. The ECLSS Test Program encompasses the Water Recovery Test (WRT), the Integrated Air Revitalization Test (IART), and Life Testing, which permits ECLSS design evaluation. These subsystems revitalize air and reclaim waste waters representative of those to be generated on-orbit. This paper provides an overview of MSFC's 1997 ECLSS testing. Specific tests include: the Stage 10 Water Recovery Test; the Contaminant Injection Test; the Performance Enhancement Test and Life Testing of the Four Bed Molecular Sieve; the Oxygen Generator Assembly Life Test; and the ISS Water Distribution Biofilm Life Test.
Application of IRTAM to Support ISS Program Safety
NASA Technical Reports Server (NTRS)
Hartman, William A.; Schmidl, William D.; Mikatarian, Ronald; Koontz, Steven; Galkin, Ivan
2017-01-01
The International Space Station (ISS) orbits near the F-peak of the ionosphere (approximately 400 km altitude). Generally, satellites orbiting at this altitude would have a floating potential (FP) of approximately -1 V due to the electron temperature (Te). However, the ISS has 8 large negatively grounded 160 V solar array wings (SAW) that collect a significant electron current from the ionosphere. This current drives the ISS FP much more negative during insolation and is highly dependent on the electron density (Ne). Also, due to the size of the ISS, magnetic inductance caused by the geomagnetic field produces a delta potential up to 40 V across the truss, possibly producing positive potentials. During Extravehicular Activity (EVA) the negative FP can lead to an arcing hazard when it exceeds -45.5 V, and the positive FP can produce a DC current high enough to stimulate the astronaut's muscles and also cause a hazard. Data collected from the Floating Potential Monitoring Unit (FPMU) have shown that the probability of either of these hazards occurring during times with quiet to moderately disturbed geomagnetic activity is low enough to no longer be considered a risk. However, a study of the ionosphere Ne during severe geomagnetic storm activity has shown that the Ne can be enhanced by a factor of 6 in the ISS orbit. As a result, the ISS Safety Review Panel (SRP) requires that ionospheric conditions be monitored using the FPMU in conjunction with the ISS Plasma Interaction Model (PIM) to determine if a severe geomagnetic storm could result in a plasma environment that could produce a hazard. A 'Real-Time' plasma hazard assessment process was developed to support ISS Program real-time decision making providing constraint relief information for EVAs planning and operations. This process incorporates 'real time' ionospheric conditions, ISS solar arrays' orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real time data that is presently provided by the FPMU including ISS floating potential, along with ionospheric Ne and Te, in order to determine the present environment. Once the present environment conditions are known to be either above, below, or near the current IRI values, the IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real time measurements from approximately 70 digisondes to produce foF2 and hmF2 global maps in 15 minute cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement (figure 1). IRTAM has been identified as a potential FPMU back-up system will be used as a backup for the FPMU to support the ISS Program following completion of an FPMU/IRTAM validation campaign.
Schiwon, Katarzyna; Arends, Karsten; Rogowski, Katja Marie; Fürch, Svea; Prescha, Katrin; Sakinc, Türkan; Van Houdt, Rob; Werner, Guido; Grohmann, Elisabeth
2013-04-01
The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.
Innovations for ISS Plug-In Plan (IPiP) Operations
NASA Technical Reports Server (NTRS)
Moore, Kevin D.
2013-01-01
Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.
VON and Its Use in NASA's International Space Station Science Operation
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Chamberlain, Jim
1999-01-01
This presentation will provide a brief overview of a International Space Station (ISS) remote user (scientist/experimenter) operation. Specifically, the presentation will show how Voice over IP (VoIP) is integrated into the ISS science payload operation and in the mission voice system. Included will be the details on how a scientist, using VON, will talk to the ISS onboard crew and ground based cadre from a scientist's home location (lab, office or garage) over tile public Internet and science nets. Benefit(s) to tile ISS Program (and taxpayer) and of VoIP versus other implementations also will be presented.
LAD-C: A large area debris collector on the ISS
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.
2006-01-01
The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.
NASA Biological Specimen Repository
NASA Technical Reports Server (NTRS)
Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.
2009-01-01
The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. A NBSR Advisory Board composed of representatives of all participating agencies will be established to evaluate each request by an investigator for use of the samples to ensure the request reflects the mission of the NBSR.
International Space Station Program Phase 3 Integrated Atmosphere Revitalization Subsystem Test
NASA Technical Reports Server (NTRS)
Perry, J. L.; Franks, G. D.; Knox, J. C.
1997-01-01
Testing of the International Space Station (ISS) U.S. Segment baseline configuration of the Atmosphere Revitalization Subsystem (ARS) by NASA's Marshall Space Flight Center (MSFC) was conducted as part of the Environmental Control and Life Support System (ECLSS) design and development program. This testing was designed to answer specific questions regarding the control and performance of the baseline ARS subassemblies in the ISS U.S. Segment configuration. These questions resulted from the continued maturation of the ISS ECLSS configuration and design requirement changes since 1992. The test used pressurized oxygen injection, a mass spectrometric major constituent analyzer, a Four-Bed Molecular Sieve Carbon Dioxide Removal Assembly, and a Trace Contaminant Control Subassembly to maintain the atmospheric composition in a sealed chamber at ISS specifications for 30 days. Human metabolic processes for a crew of four were simulated according to projected ISS mission time lines. The performance of a static feed water electrolysis Oxygen Generator Assembly was investigated during the test preparation phases; however, technical difficulties prevented its use during the integrated test. The Integrated ARS Test (IART) program built upon previous closed-door and open-door integrated testing conducted at MSFC between 1987 and 1992. It is the most advanced test of an integrated ARS conducted by NASA to demonstrate its end-to-end control and overall performance. IART test objectives, facility design, pretest analyses, test and control requirements, and test results are presented.
2017-10-31
Trent Smith, project manager in the ISS Exploration Research and Technology Program, displays the U.S. Patent plaque he received during a ceremony at the 2017 Innovation Expo at NASA's Kennedy Space Center in Florida. The purpose of the annual two-day expo is to help foster innovation and creativity among the Kennedy workforce. The event included several keynote speakers, training opportunities, an innovation showcase and the KSC Kickstart competition.
ERIC Educational Resources Information Center
Cooper, Rosie Nicole
2014-01-01
Excessive classroom disruption is prevalent among today's public high schools and is a deterrent to the academic and social achievements of students. Using Response to Intervention (RtI) to equip in-school suspension (ISS) programs with a research-based behavioral curriculum is one possible solution to efficiently and cost-effectively remediating…
The International Space Station: A National Science Laboratory
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2011-01-01
After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.
2010-02-03
STS132-S-001 (February 2010) --- The STS-132 mission will be the 32nd flight of the space shuttle Atlantis. The primary STS-132 mission objective is to deliver the Russian-made MRM-1 (Mini Research Module) to the International Space Station (ISS). Atlantis will also deliver a new communications antenna and a new set of batteries for one of the ISS solar arrays. The STS-132 mission patch features Atlantis flying off into the sunset as the end of the Space Shuttle Program approaches. However the sun is also heralding the promise of a new day as it rises for the first time on a new ISS module, the MRM-1, which is also named ?Rassvet,? the Russian word for dawn. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
2014-09-18
CAPE CANAVERAL, Fla. – Members of an ISS Earth Science: Tracking Ocean Winds Panel brief media representatives in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. From left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann
2014-09-18
CAPE CANAVERAL, Fla. – Media representatives ask questions of the ISS Earth Science: Tracking Ocean Winds Panel in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. On the dais from left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann
2014-09-18
CAPE CANAVERAL, Fla. – Members of an ISS Earth Science: Tracking Ocean Winds Panel brief media representatives in Kennedy Space Center’s Press Site auditorium in preparation for the launch of the SpaceX CRS-4 mission to resupply the International Space Station. From left are Steve Cole, NASA Public Affairs, Steve Volz, associate director for flight programs, Earth Science Division, Science Mission Directorate, NASA Headquarters, Ernesto Rodriquez, ISS RapidScat project scientist, NASA Jet Propulsion Laboratory or JPL, and Howard Eisen, ISS RapidScat project manager, JPL. The mission is the fourth of 12 SpaceX flights NASA contracted with the company to resupply the space station. It will be the fifth trip by a Dragon spacecraft to the orbiting laboratory. The spacecraft’s 2.5 tons of supplies, science experiments, and technology demonstrations include critical materials to support 255 science and research investigations that will occur during the station's Expeditions 41 and 42. Liftoff is targeted for an instantaneous window at 2:14 a.m. EDT. To learn more about the mission, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Jim Grossmann
2011-08-09
ISS033-S-001 (Dec. 2011) ---The Expedition 33 patch depicts the International Space Station (ISS) orbiting around the Earth, and into the future. The national flags of Japan, Russia, and the United States of America represent the crew of Expedition 33, which consists of six astronauts and cosmonauts from Japan, Russia and the United States. The five white stars represent the partners participating in the ISS Program - Canada, European countries, Japan, Russia and the United States. Expedition 33 will continue the work of the previous thirty-two expedition crews on board the multi-national laboratory in areas such as biology and biotechnology, earth and space science, educational activities, human research, physical and material sciences, and technology development and demonstration. The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced. Photo credit: NASA
International Space Station Data Collection for Disaster Response
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.
2015-01-01
Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Disaster Charter (IDC) response data in May 2012. The initial NASA ISS sensor systems responding to IDC activations included the ISS Agricultural Camera (ISSAC), mounted in the Window Observational Research Facility (WORF); the Crew Earth Observations (CEO) Facility, where the crew collects imagery using off-the-shelf handheld digital cameras; and the Hyperspectral Imager for the Coastal Ocean (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response in 2012 there have been 108 IDC activations; NASA sensor systems have collected data for thirty-two of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.
Design And Testing of The Floating Potential Probe For ISS
NASA Technical Reports Server (NTRS)
Hillard, G. Barry; Ferguson, Dale C.
2001-01-01
Flight 4A was an especially critical mission for the International Space Station (ISS). For the first time, the high voltage solar arrays generated significant amounts of power and long predicted environmental interactions (high negative floating potential and concomitant dielectric charging) became serious concerns. Furthermore, the same flight saw the Plasma Contacting Unit (PCU) deployed and put into operation to mitigate and control these effects. The ISS program office has recognized the critical need to verify, by direct measurement, that ISS does not charge to unacceptable levels. A Floating Potential Probe (FPP) was therefore deployed on ISS to measure ISS floating potential relative to the surrounding plasma and to measure relevant plasma parameters. The primary objective of FPP is to verify that ISS floating potential does not exceed the specified level of 40 volts with respect to the ambient. Since it is expected that in normal operations the PCU will maintain ISS within this specification, it is equivalent to say that the objective of FPP is to monitor the functionality of the PCU. In this paper, we report on the design and testing of the ISS FPP. In a separate paper, the operations and results obtained so far by the FPP will be presented.
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.
Organization and Management of the International Space Station (ISS) Multilateral Medical Operations
NASA Technical Reports Server (NTRS)
Duncan, J. M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.
2007-01-01
The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
NASA Utilization of the International Space Station and the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.
2006-01-01
In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.
NASA Utilization of the International Space Station and the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.
2007-01-01
In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.
NASA Utilization of the International Space Station and the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.
2006-01-01
In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.
ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks
NASA Technical Reports Server (NTRS)
Hall, Timothy A.
2011-01-01
In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow, archiving f data, and generating console logs. This technology called OCAMS (OCA (Orbital Communication System) Management System), is now considered TRL level 9 and is in daily use in the Mission Control Center in support of ISS operations. These solutions have not only allowed for improved efficiency on console; but since many of the previously manual data transfers are now automated, many of the human error prone steps have been removed, and the quality of the planning products has improved tremendously. This has also allowed our Planning Flight Controllers more time to focus on the abstract areas of the job, (like the complexities of planning a mission for 6 international crew members with a global planning team), instead of being burdened with the administrative tasks that took significant time each console shift to process. The resulting automation solutions have allowed the Operations and Planning organization to realize significant cost savings for the ISS program through 2020 and many of these solutions could be a viable
NASA Technical Reports Server (NTRS)
Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan
2011-01-01
Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
The International Space Station Research Opportunities and Accomplishments
NASA Technical Reports Server (NTRS)
Alleyne, Camille W.
2011-01-01
In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper
The FCF Fluids Integrated Rack: Microgravity Fluid Physics Experimentation on Board the ISS
NASA Technical Reports Server (NTRS)
Gati, Frank G.; Hill, Myron E.; SaintOnge, Tom (Technical Monitor)
2001-01-01
The Fluids Integrated Rack (FIR) is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The FIR will be one of the racks that will constitute the Fluids and Combustion Facility (FCF). The ISS will provide the FCF and therefore the FIR with the necessary resources, such as power and cooling, so that the FIR can carry out its primary mission of accommodating fluid physics science experiments. This paper discusses the mission, design, and the capabilities of the FIR in carrying out research on the ISS.
NASA Astrophysics Data System (ADS)
Bolman, J.
2015-12-01
Inter-Tribal Student Services (I.S.S.) was created as an Indian Self-Determination Organization to meet the every growing Tribal and under-represented minorities (URM) geosciences workforce needs. I.S.S. is one of only a few Indian Self-Determined Organizations in the U.S. with a distinct focused on buidling the Tribal and URM geosciences and natural resources workforces. In past three years, I.S.S has worked in partnership with U.S. colleges/universities, state/federal agencies (Bureau of Indian Affairs), private and International organizations and most importantly U.S. Tribal Nations to ensure emerging high school students, undergraduates, graduate students and post doctorates have the opportunities for training in supportive and unique environments, navigational mentoring, and broad professional development to build and practice the skills required for blue-collar, scientific, and managerial positions. I.S.S. has been highly successful in filling workforce opportunities within the broad range of geosciences positions. I.S.S. students are proficient in understanding and maneuvering the complex landscapes of interdisciplinary research, multidisciplinary multi-partner projects, traditional/western philosophies as well as being highly proficient in all areas of problem solving and communications. Research and on-site projects have heightened the educational experiences of all participants, in addition to addressing a perplexing geosciences challenge grounded in a Tribal environment. A number of the I.S.S. participants and students have found geosciences positions in Tribes, state/federal agencies, enterprize as well as International organizations. I.S.S. practices and has infused all research and projects with intergenerational teaching/learning, participation solution-focused initiatives, and holistic/multicultural mentoring. The presentation will highlight the vision, design, implementation, outcomes and future directions of I.S.S and participants.
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas
2003-01-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies
Assessment and Control of International Space Station Spacecraft Charging Risks
NASA Astrophysics Data System (ADS)
Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.
2003-12-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.
Space Technology to Device That Destroys Pathogens Such as Anthrax
NASA Technical Reports Server (NTRS)
2002-01-01
AiroCide Ti02, an anthrax-killing air scrubber manufactured by KES Science and Technology Inc., in Kernesaw, Georgia, looks like a square metal box when it is installed on an office wall. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station (ISS) has led to the invention of this device that annihilates anthrax-a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in the anthrax-killing invention is also being used inside WCSAR-built plant growth units on the ISS. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
1998-12-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
International Space Station Increment Operations Services
NASA Astrophysics Data System (ADS)
Michaelis, Horst; Sielaff, Christian
2002-01-01
The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the implementation to support the Columbus Flight 1E related increment and subsequent ISS increments. Special attention is paid to the implications caused by long term operations on hardware, software and operations personnel.
Science and Technology Research Directions for the International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.
ISS Expedition 42 Crew Profile, Version 2
2014-11-26
Narrated production with biographical information about ISS Expedition 42 crewmembers Barry "Butch" Wilmore, Alexander Samokutyaev, Elena Serova, Terry Virts, Anton Shkaplerov and Samantha Cristoforetti. The program covers the crewmember's career including childhood photographs, previous space missions and interview sound bites with the crewmembers.
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey A.; Shapiro, Jay; Lang, Thomas F.; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth;
2009-01-01
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.
NASA Technical Reports Server (NTRS)
Anderson, Brian L.
2001-01-01
The X-38 Project consists of a series of experimental vehicles designed to provide the technical "blueprint" for the International Space Station's (ISS) Crew Return Vehicle (CRV). There are three atmospheric vehicles and one space flight vehicle in the program. Each vehicle is designed as a technical stepping stone for the next vehicle, with each new vehicle being more complex and advanced than it's predecessor. The X-38 project began in 1995 at the Johnson Space Center (JSC) in Houston, Texas at the direction of the NASA administrator. From the beginning, the project has had the CRY design validation as its ultimate goal. The CRY has three basic missions that drive the design that must be proven during the course of the X-38 Project: a) Emergency return of an ill or injured crew member. b) Emergency return of an entire ISS crew due to the inability of ISS to sustain life c) Planned return of an entire ISS crew due to the inability to re-supply the ISS or return the crew. The X-38 project must provide the blueprint for a vehicle that provides the capability for human return from space for all three of these design missions.
International Space Station Bacteria Filter Element Service Life Evaluation
NASA Technical Reports Server (NTRS)
Perry, J. L.
2005-01-01
The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.
[Bone metabolism in human space flight and bed rest study].
Ohshima, Hiroshi; Mukai, Chiaki
2008-09-01
Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.
Tool for Ranking Research Options
NASA Technical Reports Server (NTRS)
Ortiz, James N.; Scott, Kelly; Smith, Harold
2005-01-01
Tool for Research Enhancement Decision Support (TREDS) is a computer program developed to assist managers in ranking options for research aboard the International Space Station (ISS). It could likely also be adapted to perform similar decision-support functions in industrial and academic settings. TREDS provides a ranking of the options, based on a quantifiable assessment of all the relevant programmatic decision factors of benefit, cost, and risk. The computation of the benefit for each option is based on a figure of merit (FOM) for ISS research capacity that incorporates both quantitative and qualitative inputs. Qualitative inputs are gathered and partly quantified by use of the time-tested analytical hierarchical process and used to set weighting factors in the FOM corresponding to priorities determined by the cognizant decision maker(s). Then by use of algorithms developed specifically for this application, TREDS adjusts the projected benefit for each option on the basis of levels of technical implementation, cost, and schedule risk. Based partly on Excel spreadsheets, TREDS provides screens for entering cost, benefit, and risk information. Drop-down boxes are provided for entry of qualitative information. TREDS produces graphical output in multiple formats that can be tailored by users.
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Shindo, David; Montgomery, Eliza
2013-01-01
The International Space Station (ISS) Program recognizes the risk of microbial contamination in their potable and non-potable water sources. The end of the Space Shuttle Program limited the ability to send up shock kits of biocides in the event of an outbreak. Currently, the United States Orbital Segment water system relies primarily on iodine to mitigate contamination concerns, which has been successful in remediating the small cases of contamination documented. However, a secondary method of disinfection is a necessary investment for future space flight. Over the past year, NASA Johnson Space Center has investigated the development of electrochemically generated systems for use on the ISS. These systems include: hydrogen peroxide, ozone, sodium hypochlorite, and peracetic acid. To use these biocides on deployed water systems, NASA must understand of the effect these biocides have on current ISS materials prior to proceeding forward with possible on-orbit applications. This paper will discuss the material testing that was conducted to assess the effects of the biocides on current ISS materials.
Physical and Chemical Aspects of Fire Suppression in Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Takahashi, F.; Linteris, G. T.; Katta, V. R.
2001-01-01
A fire, whether in a spacecraft or in occupied spaces on extraterrestrial bases, can lead to mission termination or loss of life. While the fire-safety record of US space missions has been excellent, the advent of longer duration missions to Mars, the moon, or aboard the International Space Station (ISS) increases the likelihood of fire events, with more limited mission termination options. The fire safety program of NASA's manned space flight program is based largely upon the principles of controlling the flammability of on-board materials and greatly eliminating sources of ignition. As a result, very little research has been conducted on fire suppression in the microgravity or reduced-gravity environment. The objectives of this study are: to obtain fundamental knowledge of physical and chemical processes of fire suppression, using gravity and oxygen concentration as independent variables to simulate various extraterrestrial environments, including spacecraft and surface bases in Mars and moon missions; to provide rigorous testing of analytical models, which include comprehensive descriptions of combustion and suppression chemistry; and to provide basic research results useful for technological advances in fire safety, including the development of new fire-extinguishing agents and approaches, in the microgravity environment associated with ISS and in the partial-gravity Martian and lunar environments.
Maximum Oxygen Uptake During and After Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, Stuart M. C.; McCleary. Frank A.; Platts, Steven H.
2010-01-01
Decreased maximum oxygen consumption (VO2max) during and after space flight may impair a crewmember s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO2max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO2max was maintained during flight, but the elevated exercise HR after flight indicated that VO2max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO2max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO2max has not been measured either during or after long-duration space flight. The purposes of the ISS VO2max experiment are (1) to measure VO2max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO 2max.
Habitability and Human Factors: Lessons Learned in Long Duration Space Flight
NASA Technical Reports Server (NTRS)
Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.
2006-01-01
This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07133 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition 6 is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07134 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
Solar Array Mast Imagery Discussion for ISIW
NASA Technical Reports Server (NTRS)
Kilgo, Gary
2017-01-01
SAW Mast inspection background: In 2012, NASA's Flight Safety Office requested the Micro Meteoroid and Orbital Debris (MMOD) office determine the probability of damage to the Solar Array Wing (SAW) mast based on the exposure over the life time of the ISS program. As part of the risk mitigation of the potential MMOD strikes. ISS Program office along with the Image Science and Analysis Group (ISAG) began developing methods for imaging the structural components of the Mast.
NASA Technical Reports Server (NTRS)
Kerstman, Eric
2011-01-01
International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.
NASA Technical Reports Server (NTRS)
Dalton, Penni; Cohen, Fred
2004-01-01
The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.
Aeronautics and Space Report of the President: Fiscal Year 2009 Activities
NASA Technical Reports Server (NTRS)
2009-01-01
In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.
2018-04-13
iss055e020319 (April 13, 2018) --- Flight Engineer Ricky Arnold processes of samples inside the Miniature Polymerase Chain Reaction (miniPCR) for the Genes In Space-5 experiment. The research gathered from Genes in Space-5 may be valuable in the development of procedures to maintain astronaut health and prevent an increased risk of cancer on deep space missions. The investigation also provides a deeper understanding of the human immune system, while giving student researchers a direct connection to the space program and offering hands-on educational experiences on Earth and promoting involvement in STEM fields.
Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.
2006-01-01
To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.
Space Station Cathode Design, Performance, and Operating Specifications
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James
1998-01-01
A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.
International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Raftery, Michael; Hoffman, Jeffrey
2011-01-01
The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris
2007-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Sheredy, William A.; Flores, Ginger
2008-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation, The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120, 28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion, reaction control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG and an overview of investigations planning to operate in the MSG. In addition, this paper will address possible changes to the MSG utilization process that will be brought about by the transition to ISS as a National Laboratory.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris
2007-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, plus or minus 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust' and Vacuum Resource 'Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to-the MSG facility to further enhance the resources provided to investigations.
Producing a Live HDTV Program from Space
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Fontanot, Carlos; Hames, Kevin
2007-01-01
By the year 2000, NASA had flown HDTV camcorders on three Space Shuttle missions: STS-95, STS-93 and STS-99. All three flights of these camcorders were accomplished with cooperation from the Japanese space agency (then known as NASDA and now known as JAXA). The cameras were large broadcast-standard cameras provided by NASDA and flight certified by both NASA and NASDA. The high-definition video shot during these missions was spectacular. Waiting for the return of the tapes to Earth emphasized the next logical step: finding a way to downlink the HDTV live from space. Both the Space Shuttle and the International Space Station (ISS) programs were interested in live HDTV from space, but neither had the resources to fully fund the technology. Technically, downlinking from the ISS was the most effective approach. Only when the Japanese broadcaster NHK and the Japanese space agency expressed interest in covering a Japanese astronaut's journey to the ISS did the project become possible. Together, JAXA and NHK offered equipment, technology, and funding toward the project. In return, NHK asked for a live HDTV downlink during one of its broadcast programs. NASA and the ISS Program sought a US partner to broadcast a live HDTV program and approached the Discovery Channel. The Discovery Channel had proposed a live HDTV project in response to NASA's previous call for offers. The Discovery Channel agreed to provide addItional resources. With the final partner in place, the project was under way. Engineers in the Avionics Systems Division at NASA's Johnson Space Center (JSC) had already studied the various options for downlinking HDTV from the ISS. They concluded that the easiest way was to compress the HDTV so that the resulting data stream would "look" like a payload data stream. The flight system would consist of a professional HDTV camcorder with live HD-SDI output, an HDTV MPEG-2 encoder, and a packetizer/protocol converter.
Commercial Platforms Allow Affordable Space Research
NASA Technical Reports Server (NTRS)
2013-01-01
At an altitude of about 240 miles, its orbital path carries it over 90 percent of the Earth s population. It circles the Earth in continuous free fall; its crew of six and one Robonaut pass the days, experiencing 16 sunrises and 16 sunsets every 24 hours, in microgravity, an environment in which everything from bodily functions to the physical behavior of materials changes drastically from what is common on the ground. Outside its shielded confines, temperatures cycle from one extreme to the other, radiation is rampant, and atomic oxygen corrodes everything it touches. A unique feat of engineering, the International Space Station (ISS) also represents the most remarkable platform for scientific research ever devised. In 2005, anticipating the space station s potential for NASA and non-NASA scientists alike, the NASA Authorization Act designated the US segment of the ISS as a national laboratory, instructing the Agency to "increase the utilization of the ISS by other Federal entities and the private sector." With the ISS set to maintain operations through at least 2020, the station offers an unprecedented long-term access to space conditions, enabling research not previously possible. "There will be new drug discoveries, new pharmaceuticals, a better understanding of how we affect the planet and how we can maintain it," says Marybeth Edeen, the ISS National Laboratory manager, based at Johnson Space Center. The ISS, she says, represents a major example of the government s role in making such advancements possible. "The government is key in that researchers cannot afford to build the kind of infrastructure that the government can provide. But we then have to make that infrastructure available at a reasonable cost." Enter Jeff Manber, who saw in the ISS National Lab an extraordinary opportunity to advance science, education, and business in ways never before seen.
International Space Station Execution Replanning Process: Trends and Implications
NASA Technical Reports Server (NTRS)
McCormick, Robet J.
2007-01-01
International Space Station is a joint venture. Because of this, ISS execution planning- planning within the week for the ISS requires coordination across multiple partner, and the associated processes and tools to allow this coordination to occur. These processes and tools are currently defined and are extensively used. This paper summarizes these processes, and documents the current data trends associated with these processes and tools, with a focus on the metrics provided from the ISS Planning Product Change Request (PPCR) tool. As NASA's Vision for Space Exploration and general Human spaceflight trends are implemented, the probability of joint venture long duration programs such as ISS, with varying levels of intergovernmental and/or corporate partnership, will increase. Therefore, the results of this PPCR analysis serve as current Lessons learned for the ISS and for further similar ventures.
Materials Science Experiments on the International Space Station
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
1999-01-01
The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch and integration costs. The MSRF facilities will include modular components, which can be exchanged to provide inserts specifically matched to the engineering requirements of the particular Principal Investigator. To defray costs and avoid duplication of engineering effort NASA is also pursuing the possibility of using facilities provided by international partners. By this means it is anticipated that all of the types of research outlined in the previous paragraph can be done on the ISS.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within the first few days of flight following a common developmental sequence, comprising the primary dark cycle activity of FLT mice. Circling participation by individual mice persisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment. Supported by the NASA Rodent Research Project, Space Biology Program, and Space Life Sciences Training Program.
Instructional Support Software System. Final Report.
ERIC Educational Resources Information Center
McDonnell Douglas Astronautics Co. - East, St. Louis, MO.
This report describes the development of the Instructional Support System (ISS), a large-scale, computer-based training system that supports both computer-assisted instruction and computer-managed instruction. Written in the Ada programming language, the ISS software package is designed to be machine independent. It is also grouped into functional…
2017-11-07
iss053e210425 (Nov. 7, 2017) --- Flight Engineer Joe Acaba holds a children's book that he is reading from as part of the Story Time From Space program. Astronauts read aloud from a STEM-related children's book while being videotaped and demonstrate simple science concepts and experiments aboard the International Space Station.
International Space Station (ISS) Anomalies Trending Study. Volume II; Appendices
NASA Technical Reports Server (NTRS)
Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.
2015-01-01
The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This document contains the Appendices to the Volume I report.
NASA Technical Reports Server (NTRS)
Hartley, Garen
2018-01-01
NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.
International Space Station (ISS) Anomalies Trending Study
NASA Technical Reports Server (NTRS)
Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.
2015-01-01
The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This report contains the outcome of the NESC Assessment.
International Space Station Requirement Verification for Commercial Visiting Vehicles
NASA Technical Reports Server (NTRS)
Garguilo, Dan
2017-01-01
The COTS program demonstrated NASA could rely on commercial providers for safe, reliable, and cost-effective cargo delivery to ISS. The ISS Program has developed a streamlined process to safely integrate commercial visiting vehicles and ensure requirements are met Levy a minimum requirement set (down from 1000s to 100s) focusing on the ISS interface and safety, reducing the level of NASA oversight/insight and burden on the commercial Partner. Partners provide a detailed verification and validation plan documenting how they will show they've met NASA requirements. NASA conducts process sampling to ensure that the established verification processes is being followed. NASA participates in joint verification events and analysis for requirements that require both parties verify. Verification compliance is approved by NASA and launch readiness certified at mission readiness reviews.
NASA Technical Reports Server (NTRS)
Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.
2011-01-01
Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.
Fatigue-Related Countermeasures for Long-Duration Exploration Missions
NASA Technical Reports Server (NTRS)
Whitmire, A.; Johnston, S.; Sipes, W.
2014-01-01
The NASA Human Research Program's (HRP) Behavioral Health and Performance Element (BHP) supports and conducts research to mitigate deleterious outcomes related to fatigue, sleep loss, circadian desynchronization, and work overload. Objective evidence indicates that within the context of the International Space Station (ISS), sleep is reduced and there is circadian misalignment. Despite chronic sleep loss and high workloads; however, astronauts successfully complete their missions. Contributing to their success is not only the tremendous skills and capabilities of each astronaut, but also the collaborative team efforts amongst the crew, between flight and ground crews, and through real-time care provided by medical personnel. It is anticipated that risks to human health and performance will increase in the context of exploration missions, where crewmembers will venture to deep space for extended durations and in small vehicles with limited communication with home. Hence, fatigue-related countermeasures are being developed and/or validated that include unobtrusive monitoring technologies to detect fatigue-related performance decrements, environmental countermeasures, and sleep education and training for flight and ground crews. Given that fatigue is an issue in current ISS missions, the BHP works collaboratively with Space Medicine operations to collect data in the operational environment, to validate fatigue-related countermeasures, and provide evidence-based mitigations. Our presentation will summarize fatigue-related operational research that is underway through NASA's BHP in partnership with its operational counterparts. Efforts include studies evaluating the effects of hypnotics, lighting protocols as countermeasures for circadian entrainment, and investigations involving education and training. This presentation will further identify, based on flight and terrestrial evidence, additional sleep and circadian countermeasures that may still be needed to support exploration missions. Lessons learned from transitioning research deliverables into ISS operations will also be discussed.
Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS
NASA Technical Reports Server (NTRS)
Motil, Brian; Urban, David
2012-01-01
From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.
Drop Tower and Aircraft Capabilities
NASA Technical Reports Server (NTRS)
Urban, David L.
2015-01-01
This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).
2017-08-21
Astronauts experience structural changes to their heart during long-duration spaceflight, but the biological basis of that is not clearly understood. Jonathon Baio, a doctoral student at Loma Linda University’s School of Medicine, details an investigation of cardiovascular stem cells that hopes to better understand their role in cardiac biology and tissue regeneration, which could advance ways to maintain cardiac health of astronauts during extended missions as well inform future treatments to reverse heart muscle loss upon return to Earth, and may help the medical community combat cardiovascular disease, one of the world’s leading causes of death. For more on space station science, please visit: Twitter: https://twitter.com/ISS_Research or @ISS_research Website: https://www.nasa.gov/mission_pages/station/research/index.html _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
SpaceX CRS-12 "What's on Board?" Science Briefing
2017-08-13
Ken Shields, director of Operations for Center for the Advancement of Science in Space/ISS National Lab, left, and Pete Hasbrook, associate program scientist for the International Space Station Program, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
2001-01-01
This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Astrophysics Data System (ADS)
Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.
2005-12-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Technical Reports Server (NTRS)
Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso
2005-01-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
Lee, Peter A; Sävendahl, Lars; Oliver, Isabelle; Tauber, Maithé; Blankenstein, Oliver; Ross, Judith; Snajderova, Marta; Rakov, Viatcheslav; Pedersen, Birgitte Tønnes; Christesen, Henrik Thybo
2012-07-12
Few studies have compared the response to growth hormone (GH) treatment between indications such as isolated growth hormone deficiency (IGHD), born small for gestational age (SGA), idiopathic short stature (ISS), and multiple pituitary hormone deficiency (MPHD). The aim of this analysis of data, collected from two large ongoing observational outcome studies, was to evaluate growth and insulin-like growth factor-I (IGF-I) response data for children of short stature with IGHD, MPHD, SGA, or ISS following two years of treatment with the recombinant GH product Norditropin® (Novo Nordisk A/S, Bagsværd, Denmark). Analysis of auxologic data from two ongoing prospective observational studies, NordiNet® International Outcomes Study (NordiNet® IOS) and NovoNet®/American Norditropin® Web-enabled Research (ANSWER) Program®. 4,582 children aged <18 years were included: IGHD, n = 3,298; SGA, n = 678; ISS, n = 334; and MPHD, n = 272. After two years' GH treatment, change in height standard deviation score (SDS) was +1.03 in SGA and +0.84 in ISS vs. +0.97 in IGHD (p = 0.047; p < 0.001 vs. IGHD, respectively). Height gain was comparable between IGHD and MPHD. In pre-pubertal children vs. total population, height SDS change after two years was: IGHD, +1.24 vs. +0.97; SGA, +1.17 vs. +1.03; ISS, +1.04 vs. +0.84; and MPHD, +1.16 vs. +0.99 (all p < 0.001). After two years' GH treatment, change in height SDS was greater in SGA and less in ISS, compared with IGHD; the discrepancy in responses may be due to the disease nature or confounders (i.e. age). Height SDS increase was greatest in pre-pubertal children, supporting early treatment initiation to optimize growth outcomes.
Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2
NASA Technical Reports Server (NTRS)
Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin
2018-01-01
Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew could effectively self-schedule. In parallel we have added in new features and functionality in the Playbook tool based off of our insights from crew self-scheduling in the NASA analogs. In particular this year we have added in the ability for the crew to add, edit, and remove their own activities in the Playbook tool, expanding the type of planning and re-planning possible in the tool and opening up the ability for more free form plan creation. The ability to group and manipulate groups of activities from the plan task list was also added, allowing crew members to add predefined sets of activities onto their mission timeline. In addition we also added a way for crew members to roll back changes in their plan, in order to allow an undo like capability. These features expand and complement the initial self-scheduling features added in year one with the goal of making crew autonomous planning more efficient. As part of this work we have also finished developing the first version of our Playbook Data Analysis Tool, a research tool built to interpret and analyze the unobtrusively collected data obtained during the NASA analog missions through Playbook. This data which includes user click interaction as well as plan change information, through the Playbook Data Analysis Tool, allows us to playback this information as if a video camera was mounted over the crewmember's tablet. While the primary purpose of this tool is to allow usability analysis of crew self-scheduling sessions used on the NASA analog, since the data collected is structured, the tool can automatically derive metrics that would be traditionally tedious to achieve without manual analysis of video playback. We will demonstrate and discuss the ability for future derived metrics to be added to the tool. In addition to the current data and results gathered in year two we will also discuss the preparation and goals of our International Space Station (ISS) onboard technology demonstration with Playbook. This technology demonstration will be preformed as part of the CAST payload starting in late 2016.
Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes
NASA Technical Reports Server (NTRS)
Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.
1997-01-01
The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.
NASA Technical Reports Server (NTRS)
Severance, Mark T.; Tate-Brown, Judy; McArthur, Cynthia L.
2010-01-01
The International Space Station (ISS) National Lab Education Project has been created as a part of the ISS National Lab effort mandated by the U.S. Congress The project seeks to expand ISS education of activities so that they reach a larger number of students with clear educational metrics of accomplishments. This paper provides an overview of several recent ISS educational payloads and activities. The expected outcomes of the project, consistent with those of the NASA Office of Education, are also described. NASA performs numerous education activities as part of its ISS program. These cover the gamut from formal to informal educational opportunities in grades Kindergarten to grade 12, Higher Education (undergraduate and graduate University) and informal educational venues (museums, science centers, exhibits). Projects within the portfolio consist of experiments performed onboard the ISS using onboard resources which require no upmass, payloads flown to ISS or integrated into ISS cargo vehicles, and ground based activities that follow or complement onboard activities. Examples include ground based control group experiments, flight or experiment following lesson plans, ground based activities involving direct interaction with ISS or ground based activities considering ISS resources in their solution set. These projects range from totally NASA funded to projects which partner with external entities. These external agencies can be: other federal, state or local government agencies, commercial entities, universities, professional organizations or non-profit organizations. This paper will describe the recent ISS education activities and discuss the approach, outcomes and metrics associated with the projects.
Stewart, Kenneth E; Cowan, Linda D; Thompson, David M
2011-09-01
The Abbreviated Injury Scale (AIS) recently underwent a major revision from AIS 98 to AIS 05. AIS injury codes form the basis of widely used injury severity scores such as the injury severity score (ISS). ISS thresholds are often used in trauma case definitions and ISS is widely used in injury research to adjust for injury severity. This study evaluated changes from AIS 98 to AIS 05, the changes' effect on ISS distributions, and presents an application of the results. Injury descriptions from medical records of 137 randomly selected patients in the Oklahoma Trauma Registry (OTR) were obtained. A single trained coder used AIS 98 and AIS 05 to code each injury. ISS values were calculated and grouped into 4 categories: 1-8, 9-14, 16-24, >24. Paired ISS was compared using Kappa statistics and tests of symmetry. We identified common injury diagnoses for which AIS severity changed between versions. Estimates of the proportion of patients changing ISS groups were applied to the entire OTR to assess the impact on reporting and on a model for reimbursement. OTR AIS 98 and manual AIS 98-based ISS values had a weighted Kappa of 0.71. OTR AIS 98 and manual AIS 05-based ISS values had a Kappa of 0.58. Manual AIS 98 and manual AIS 05 ISS had the highest Kappa of 0.81, however, though the scores differed by only 1 ISS category, there were 30 discordant pairs. The distribution of these discordant pairs was not symmetrical (Bowker's S=30; df=6; p<0.0001) with AIS 05-based ISS values consistently shifted to a lower ISS category. Reductions in AIS severity and ISS values using AIS 05 were common for extremity fractures and thorax injuries. The results suggest fewer patients would be reported to the OTR or be eligible for reimbursement. Changing from AIS 98 to AIS 05 injury coding resulted in systematic changes in AIS codes and ISS. Specific injuries and body regions were differentially affected. Trauma registries and injury researchers that use AIS based injury coding can use this information to evaluate the potential impact of changes in AIS 2005. Copyright © 2010 Elsevier Ltd. All rights reserved.
Growth of 48 built environment bacterial isolates on board the International Space Station (ISS)
Neches, Russell Y.; Lang, Jenna M.; Brown, Wendy E.; Severance, Mark; Cavalier, Darlene
2016-01-01
Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space. PMID:27019789
Microbial Existence in Controlled Habitats and Their Resistance to Space Conditions
Venkateswaran, Kasthuri; La Duc, Myron T.; Horneck, Gerda
2014-01-01
The National Research Council (NRC) has recently recognized the International Space Station (ISS) as uniquely suitable for furthering the study of microbial species in closed habitats. Answering the NRC’s call for the study, in particular, of uncommon microbial species in the ISS, and/or of those that have significantly increased or decreased in number, space microbiologists have begun capitalizing on the maturity, speed, and cost-effectiveness of molecular/genomic microbiological technologies to elucidate changes in microbial populations in the ISS and other closed habitats. Since investigators can only collect samples infrequently from the ISS itself due to logistical reasons, Earth analogs, such as spacecraft-assembly clean rooms, are used and extensively characterized for the presence of microbes. Microbiologists identify the predominant, problematic, and extremophilic microbial species in these closed habitats and use the ISS as a testbed to study their resistance to extreme extraterrestrial environmental conditions. Investigators monitor the microbes exposed to the real space conditions in order to track their genomic changes in response to the selective pressures present in outer space (external to the ISS) and the spaceflight (in the interior of the ISS). In this review, we discussed the presence of microbes in space research-related closed habitats and the resistance of some microbial species to the extreme environmental conditions of space. PMID:25130881
Microbial existence in controlled habitats and their resistance to space conditions.
Venkateswaran, Kasthuri; La Duc, Myron T; Horneck, Gerda
2014-09-17
The National Research Council (NRC) has recently recognized the International Space Station (ISS) as uniquely suitable for furthering the study of microbial species in closed habitats. Answering the NRC's call for the study, in particular, of uncommon microbial species in the ISS, and/or of those that have significantly increased or decreased in number, space microbiologists have begun capitalizing on the maturity, speed, and cost-effectiveness of molecular/genomic microbiological technologies to elucidate changes in microbial populations in the ISS and other closed habitats. Since investigators can only collect samples infrequently from the ISS itself due to logistical reasons, Earth analogs, such as spacecraft-assembly clean rooms, are used and extensively characterized for the presence of microbes. Microbiologists identify the predominant, problematic, and extremophilic microbial species in these closed habitats and use the ISS as a testbed to study their resistance to extreme extraterrestrial environmental conditions. Investigators monitor the microbes exposed to the real space conditions in order to track their genomic changes in response to the selective pressures present in outer space (external to the ISS) and the spaceflight (in the interior of the ISS). In this review, we discussed the presence of microbes in space research-related closed habitats and the resistance of some microbial species to the extreme environmental conditions of space.
Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).
Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A
2016-01-01
Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.
Commercial investments in Combustion research aboard ISS
NASA Astrophysics Data System (ADS)
Schowengerdt, F. D.
2000-01-01
The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .
ISS Utilization for Exploration-Class Missions
NASA Technical Reports Server (NTRS)
FIncke, R.; Davis-Street, J.; Korth, D.
2006-01-01
Exercise countermeasures are the most commonly utilized approach for maintaining the health and performance of astronauts during spaceflight missions. However, International Space Station (ISS) exercise countermeasure hardware reliability and prescriptions are not at a point of departure to support exploration-class missions. The JSC Exercise Countermeasures Project (ECP) plans to use ISS as a research and hardware evaluation platform to define and validate improved exercise hardware, prescriptions, and monitoring strategies to support crewmember operations on the Moon and Mars. The ECP will partner with JSC's Space Medicine Division to standardize elements of ISS exercise prescriptions to better understand their efficacy and to propose modified prescriptions for implementation that may be used in the crew exploration vehicle and/or lunar habitat. In addition, evaluations of the ISS treadmill harness will be conducted to define and improve fit and function, and assess the next generation medical monitoring devices such as the portable unit for metabolic analysis and the muscle atrophy research and exercise system for completion of periodic fitness evaluations during lunar and Mars travel. Finally, biomechanical data from ISS crew exercise sessions will be obtained to better understand loading and restraint systems, and identify the physiologic requirements during ISS extravehicular activities that may be analogous to extended excursions from the lunar habitat. It is essential to optimize exercise prescriptions, hardware, and monitoring strategies for exploration initiatives using ISS as a platform before the planned retirement of the Shuttle in 2010 and the declining NASA emphasis on ISS to maximize knowledge before embarking on travel to the Moon and Mars.
Software for Remote Monitoring of Space-Station Payloads
NASA Technical Reports Server (NTRS)
Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James
2003-01-01
Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.
Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems
NASA Technical Reports Server (NTRS)
Jackson, Dan
2016-01-01
The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgment, which introduces unwanted variability because each specialist has a different core of experience with comm link performance. Because the ISS utilizes two different frequency bands, dynamic structure can be occasionally translucent at one frequency while it can completely interdict service at the other frequency. The impact of articulating structure on the comm link can depend on its orientation at the time it impinges on the link. It can become easy for a human specialist to cross-associate experience at one frequency with experience at the other frequency. Additionally, the specialist's experience is incremental, occurring one nine-hour shift at a time. Only the IAM processor experiences the complete 24x7x365 communications link performance for both communications links but, it has no "learning capability." If the IAM processor could be endowed with a cognitive ability to remember past structure-induced comm link outages, based on its knowledge of the ISS position, attitude, communications gear, array joint angles and tracking accuracy, it could convey such experience to the human operator. It could also use its learned communications link behaviors to accurately convey the availability of future communications sessions. Further, the tool could remember how accurately or inaccurately it predicted availability and correct future predictions based on past performance. The IAM tool could learn frequency-specific impacts due to spacecraft structures and pass that information along as "experience." Such development would provide a single artificial intelligence processor that could provide two different experience bases. If it also "knew" the satellite service schedule, it could distinguish structure blockage from schedule or planet blockage and then quickly switch to another satellite. Alternatively, just as a human operator could judge, a cognizant comm system based on the IAM model could "know" that the blockage is not going to last very long and continue tracking a comm satellite, waiting for it to track away from structure. Ultimately, once this capability was fully developed and tested in the Mission Control Center, it could be transferred on-orbit to support development of operations concepts that include more advanced cognitive communications systems. Future applications of this capability are easily foreseen because even more dynamic satellite constellations with more nodes and greater capability are coming. Currently, the ISS fully employs a 300 million bit-per-second (Mbps) return link for harvesting payload science. In the coming eighteen months, it will step up to 600 Mbps. Already there is talk of a 1.2 billion bit-per-second (Gbps) upgrade for the ISS and laser comm links have already been tested from the ISS. Every data rate upgrade mandates more complicated and sensitive communications equipment which implies greater expertise invested in the human operator. Future on-orbit cognizant comm systems will be needed to meet greater performance demands aboard larger, far more complicated spacecraft. In the LEO environment, the old-style one-satellite-per-spacecraft operations concept will give way to a new concept of a single customer spacecraft simultaneously using multiple comm satellites. Much more highly-dynamic manned LEO missions with decades of crew members potentially increase the demand for communications link performance. A cognizant on-board communications system will meet advanced communications demands from future LEO missions and future planetary missions. The ISS has fledgling components of future exploration programs, both LEO and planetary. Further, the Flight Operations Directorate, through the IAM project, has already begun to develop a communications management system that attempts to solve advanced problems ideally represented by dynamic structure impacting scheduled satellite service. With an earnest project to integrate artificial intelligence into the IAM processor, the ISS Program could develop a cognizant communications system that could be adapted and transferred to future on-orbit avionics designs.
Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems
NASA Technical Reports Server (NTRS)
Jackson, Dan
2016-01-01
The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces unwanted variability because each specialist has a different core of experience with comm link performance. Because the ISS utilizes two different frequency bands, dynamic structure can be occasionally translucent at one frequency while it can completely interdict service at the other frequency. The impact of articulating structure on the comm link can depend on its orientation at the time it impinges on the link. It can become easy for a human specialist to cross-associate experience at one frequency with experience at the other frequency. Additionally, the specialist's experience is incremental, occurring one nine-hour shift at a time. Only the IAM processor experiences the complete 24x7x365 communications link performance for both communications links but, it has no "learning capability." If the IAM processor could be endowed with a cognitive ability to remember past structure-induced comm link outages, based on its knowledge of the ISS position, attitude, communications gear, array joint angles and tracking accuracy, it could convey such experience to the human operator. It could also use its learned communications link behaviors to accurately convey the availability of future communications sessions. Further, the tool could remember how accurately or inaccurately it predicted availability and correct future predictions based on past performance. The IAM tool could learn frequency-specific impacts due to spacecraft structures and pass that information along as "experience." Such development would provide a single artificial intelligence processor that could provide two different experience bases. If it also "knew" the satellite service schedule, it could distinguish structure blockage from schedule or planet blockage and then quickly switch to another satellite. Alternatively, just as a human operator could judge, a cognizant comm system based on the IAM model could "know" that the blockage is not going to last very long and continue tracking a comm satellite, waiting for it to track away from structure. Ultimately, once this capability was fully developed and tested in the Mission Control Center, it could be transferred on-orbit to support development of operations concepts that include more advanced cognitive communications systems. Future applications of this capability are easily foreseen because even more dynamic satellite constellations with more nodes and greater capability are coming. Currently, the ISS fully employs its high-data-rate return link for harvesting payload science. In the coming months, it will double that data rate and is forecast to fully utilize that capability. Already there is talk of an upgrade that quadruples the current data rate allocated to ISS payload science before the end of its mission and laser comm links have already been tested from the ISS. Every data rate upgrade mandates more complicated and sensitive communications equipment which implies greater expertise invested in the human operator. Future on-orbit cognizant comm systems will be needed to meet greater performance demands aboard larger, far more complicated spacecraft. In the LEO environment, the old-style one-satellite-per-spacecraft operations concept will give way to a new concept of a single customer spacecraft simultaneously using multiple comm satellites. Much more highly-dynamic manned LEO missions with decades of crew members potentially increase the demand for communications link performance. A cognizant on-board communications system will meet advanced communications demands from future LEO missions and future planetary missions. The ISS has fledgling components of future exploration programs, both LEO and planetary. Further, the Flight Operations Directorate, through the IAM project, has already begun to develop a communications management system that attempts to solve advanced problems ideally represented by dynamic structure impacting scheduled satellite service. With an earnest project to integrate artificial intelligence into the IAM processor, the ISS Program could develop a cognizant communications system that could be adapted and transferred to future on-orbit avionics designs.
ERIC Educational Resources Information Center
Ryu, Ju-Yeon; Horie, Kaoru; Shirai, Yasuhiro
2015-01-01
Although cross-linguistic research on second language tense-aspect acquisition has uncovered universal tendencies concerning the association between verbal semantics and tense-aspect markers, it is still unclear what mechanisms underlie this link. This study investigates the acquisition of two imperfective aspect markers ("-ko iss-" and…
NASA Technical Reports Server (NTRS)
Conley, Carolynn Lee; Bauer, Frank H.; Brown, Deborah A.; White, Rosalie
2002-01-01
Amateur Radio on the International Space Station (ARISS) represents the first educational outreach program that is flying on the International Space Station (ISS). The astronauts and cosmonauts will work hard on the International Space Station, but they plan to take some time off for educational activities with schools. The National Aeronautics and Space Administration s (NASA s) Education Division is a major supporter and sponsor of this student outreach activity on the ISS. This meets NASA s educational mission objective: To inspire the next generation of explorers.. .as only NASA can. The amateur radio community is helping to enrich the experience of those visiting and living on the station as well as the students on Earth. Through ARISS sponsored hardware and activities, students on Earth get a first-hand feel of what it is like to live and work in space. This paper will discuss the educational outreach accomplishments of ARISS, the school contact process, the ARISS international cooperation and volunteers, and ISS Ham radio plans for the future.
View of the Soyuz carrying the Taxi crew during undocking from the ISS
2001-10-31
ISS003-E-7129 (31 October 2001) --- A Soyuz spacecraft departs from the International Space Station (ISS) carrying the Soyuz taxi crew, Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev and French Flight Engineer Claudie Haignere, ending their eight-day stay on the station. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
View of the Soyuz carrying the Taxi crew during undocking from the ISS
2001-10-31
ISS003-E-7130 (31 October 2001) --- A Soyuz spacecraft departs from the International Space Station (ISS) carrying the Soyuz taxi crew, Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev and French Flight Engineer Claudie Haignere, ending their eight-day stay on the station. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
View of the Soyuz carrying the Taxi crew during undocking from the ISS
2001-10-31
ISS003-E-7127 (31 October 2001) --- Backdropped by the blackness of space, a Soyuz spacecraft departs from the International Space Station (ISS) carrying the Soyuz taxi crew, Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev and French Flight Engineer Claudie Haignere, ending their eight-day stay on the station. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.
2003-01-01
Longer duration missions to the moon, to Mars, and on the International Space Station (ISS) increase the likelihood of accidental fires. NASA's fire safety program for human-crewed space flight is based largely on removing ignition sources and controlling the flammability of the material on-board. There is ongoing research to improve the flammability characterization of materials in low gravity; however, very little research has been conducted on fire suppression in the low-gravity environment. Although the existing suppression systems aboard the Space Shuttle (halon 1301, CF3Br) and the ISS (CO2 or water-based form) may continue to be used, alternative effective agents or techniques are desirable for long-duration missions. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of analytical models, which include detailed combustion-suppression chemistry and radiation sub-models, so that the model can be used to interpret (and predict) the suppression behavior in low gravity; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.
Proceedings of the Twentieth International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard (Compiler)
2001-01-01
The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.
Light Microsopy Module, International Space Station Premier Automated Microscope
NASA Technical Reports Server (NTRS)
Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Brown, Daniel F.; O'Toole, Martin A.; Foster, William M.; Motil, Brian J.; Abbot-Hearn, Amber Ashley; Atherton, Arthur Johnson; Beltram, Alexander;
2015-01-01
The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him on the left), and (the other side, left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrel and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
Shi, Junxin; Shen, Jiabin; Caupp, Sarah; Wang, Angela; Nuss, Kathryn E; Kenney, Brian; Wheeler, Krista K; Lu, Bo; Xiang, Henry
2018-05-02
An accurate injury severity measurement is essential for the evaluation of pediatric trauma care and outcome research. The traditional Injury Severity Score (ISS) does not consider the differential risks of the Abbreviated Injury Scale (AIS) from different body regions nor is it pediatric specific. The objective of this study was to develop a weighted injury severity scoring (wISS) system for pediatric blunt trauma patients with better predictive power than ISS. Based on the association between mortality and AIS from each of the six ISS body regions, we generated different weights for the component AIS scores used in the calculation of ISS. The weights and wISS were generated using the National Trauma Data Bank (NTDB). The Nationwide Emergency Department Sample (NEDS) was used to validate our main results. Pediatric blunt trauma patients less than 16 years were included, and mortality was the outcome. Discrimination (areas under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, concordance) and calibration (Hosmer-Lemeshow statistic) were compared between the wISS and ISS. The areas under the receiver operating characteristic curves from the wISS and ISS are 0.88 vs. 0.86 in ISS=1-74 and 0.77 vs. 0.64 in ISS=25-74 (p<0.0001). The wISS showed higher specificity, positive predictive value, negative predictive value, and concordance when they were compared at similar levels of sensitivity. The wISS had better calibration (smaller Hosmer-Lemeshow statistic) than the ISS (11.6 versus 19.7 for ISS=1-74 and 10.9 versus 12.6 for ISS= 25-74). The wISS showed even better discrimination with the NEDS. By weighting the AIS from different body regions, the wISS had significantly better predictive power for mortality than the ISS, especially in critically injured children.Level of Evidence and study typeLevel IV Prognostic/Epidemiological.
Derakhshandeh, A; Zahraei Salehi, T; Tadjbakhsh, H; Karimi, V
2009-09-01
To identify, clone and sequence the iss (increased serum survival) gene from E. coli strain chi1378 isolated from Iranian poultry and to predict its protein product, Iss. The iss gene from E. coli strain chi1378 was amplified and cloned into the pTZ57R/T vector and sequenced. From the DNA sequence, the Iss predictive protein was evaluated using bioinformatics. Iss from strain chi1378 had 100% identity with other E. coli serotypes and isolates from different origins and also 98% identity with E. coli O157:H7 Iss protein. Phylogenetic analysis showed no significant different phylogenic groups among E. coli strains. The strong association of predicted Iss protein among different E. coli strains suggests that it could be a good antigen to control and detect avian pathogenic E. coli (APEC). Because the exact pathogenesis and the role of virulence factors are unknown, the Iss protein could be used as a target for vaccination in the future, but further research is required.
Higashibata, Akira; Higashitani, Atsushi; Adachi, Ryota; Kagawa, Hiroaki; Honda, Shuji; Honda, Yoko; Higashitani, Nahoko; Sasagawa, Yohei; Miyazawa, Yutaka; Szewczyk, Nathaniel J.; Conley, Catharine A.; Fujimoto, Nobuyoshi; Fukui, Keiji; Shimazu, Toru; Kuriyama, Kana; Ishioka, Noriaki
2008-01-01
The first International Caenorhabditis elegans Experiment (ICE-First) was carried out using a Russian Soyuz spacecraft from April 19-30, 2004. This experiment was a part of the program of the DELTA (Dutch Expedition for Life science Technology and Atmospheric research) mission, and the space agencies that participate in the International Space Station (ISS) program formed international research teams. A Japanese research team that conducted by Japan aerospace Exploration Agency (JAXA) investigated the following aspects of the organism: (1) whether meiotic chromosomal dynamics and apoptosis in the germ cells were normal under microgravity conditions, (2) the effect of the space flight on muscle cell development, and (3) the effect of the space flight on protein aggregation. In this article, we summarize the results of these biochemical and molecular biological analyses. PMID:19513185
Translational Cellular Research on the International Space Station
NASA Technical Reports Server (NTRS)
Love, John; Cooley, Vic
2016-01-01
The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a critical role in immune function loss during aging. In addition, Omics investigations with cells have synergistic applications ranging from the evaluation of pharmacological countermeasures to drug discovery. Thus, cell-based translational research onboard the ISS is bidirectionally bridging cutting-edge cellular and molecular approaches with space bioastronautics and human health methodologies on Earth.
International Space Station Lithium-Ion Main Battery Thermal Runaway Propagation Test
NASA Technical Reports Server (NTRS)
Dalton, Penni J.; North, Tim
2017-01-01
In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the aging Ni-H2 batteries on the primary Electric Power System (EPS). After the Boeing 787 Li-Ion battery fires, the NASA Engineering and Safety Center (NESC) Power Technical Discipline Team was tasked by ISS to investigate the possibility of Thermal Runaway Propagation (TRP) in all Li-Ion batteries used on the ISS. As part of that investigation, NESC funded a TRP test of an ISS EPS non-flight Li-Ion battery. The test was performed at NASA White Sands Test Facility in October 2016. This paper will discuss the work leading up to the test, the design of the test article, and the test results.
External Payload Interfaces on the International Space Station
NASA Astrophysics Data System (ADS)
Voels, S. A.; Eppler, D. B.; Park, B.
2000-12-01
The International Space Station (ISS) includes multiple payload locations that are external to the pressurized environment and that are suitable for astronomical and space science observations. These external or attached payload accommodation locations allow direct access to the space environment and fields of view that include the earth and/or space. NASA sponsored payloads will have access to several different types of standard external locations; the S3/P3 Truss Sites (with an EXPRESS Pallet interface), the Columbus Exposed Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). Payload accommodations at each of the standard locations named above will be described, as well as transport to and retrieval from the site. The Office of Space Science's ISS Research Program Office has an allocation equivalent to 25% of the external space and opportunities for proposing to use this allocation will be as Missions of Opportunity through the normal Explorer (UNEX, SMEX, MIDEX) Announcements of Opportunity.
Reduced-Gravity Experiments Conducted to Help Bioreactor Development
NASA Technical Reports Server (NTRS)
Niederhaus, Charles E.; Nahra, Henry K.; Kizito, John P.
2004-01-01
The NASA Glenn Research Center and the NASA Johnson Space Center are collaborating on fluid dynamic investigations for a future cell science bioreactor to fly on the International Space Station (ISS). Project Manager Steven Gonda from the Cellular Biotechnology Program at Johnson is leading the development of the Hydrodynamic Focusing Bioreactor--Space (HFB-S) for use on the ISS to study tissue growth in microgravity. Glenn is providing microgravity fluid physics expertise to help with the design and evaluation of the HFB-S. These bioreactors are used for three-dimensional tissue culture, which cannot be done in ground-based labs in normal gravity. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The bioreactor must provide a uniform distribution of oxygen and nutrients while minimizing the shear stresses on the tissue culture.
NASA Astrophysics Data System (ADS)
Charania, A.
2002-01-01
At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.
2018-03-12
iss055e001931 (Mar. 12, 2018) --- Dwarf wheat plants during routine cleaning in the Advanced Plant Habitat Facility, a facility to conduct plant bioscience research on the International Space Stations (ISS).
Nutrition Research: Basis for Station Requirements
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Rice, Barbara; Smith, Scott M.
2011-01-01
Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.
Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS
NASA Technical Reports Server (NTRS)
Urban, David L.; Singh, Bhim S.; Kohl, Fred J.
2007-01-01
Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.
NASA Astrophysics Data System (ADS)
Szabó, J.; Pálfalvi, J. K.
2012-12-01
The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.
17th International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.
Environmental "Omics" of International Space Station: Insights, Significance, and Consequences
NASA Astrophysics Data System (ADS)
Venkateswaran, Kasthuri
2016-07-01
The NASA Space Biology program funded two multi-year studies to catalogue International Space Station (ISS) environmental microbiome. The first Microbial Observatory (MO) experiment will generate a microbial census of the ISS surfaces and atmosphere using advanced molecular microbial community analysis "omics" techniques, supported by traditional culture-based methods and state-of-the art molecular techniques. The second MO experiment will measure presence of viral and select bacterial and fungal pathogens on ISS surfaces and correlate their presence on crew. The "omics" methodologies of the MO experiments will serve as the foundation for an extensive microbial census, offering significant insight into spaceflight-induced changes in the populations of beneficial and potentially harmful microbes. The safety of crewmembers and the maintenance of hardware are the primary goals for monitoring microorganisms in this closed habitat. The statistical analysis of the ISS microbiomes showed that three bacterial phyla dominated both in ISS and Earth cleanrooms, but varied in their abundances. While members of Actinobacteria were predominant on ISS, Proteobacteria dominated the Earth cleanrooms. Alpha diversity estimators indicated a significant drop in viable microbial diversity. To better characterize the shared community composition among samples, beta-diversity metrics analysis were conducted. At the bacterial species level characterization, the microbial community composition is strongly associated with sampling site. Results of the study indicate significant differences between ISS and Earth cleanroom microbiomes in terms of community structure and composition. Bacterial strains isolated from ISS surfaces were also tested for their resistance to nine antibiotics using conventional disc method and Vitek 2 system. Most of the Staphylococcus aureus strains were resistant to penicillin. Five strains were specifically resistant to erythromycin and the ermA gene was also detected. The nine-erythromycin sensitive S. aureus strains exhibited spontaneous mutation when rifampin was tested. Some of the S. aureus strains tolerated gentamycin and tobramycin but cefazolin, cefoxitin, ciprofloxacin and oxacillin inhibited the growth of the S. aureus. Whole genome sequencing (WGS) of 21 ISS strains, exhibiting resistance to various antibiotics, was carried out. The antibiotic resistant genes deduced from the WGS were compared with the resistomes generated directly from the gene pool of the environmental samples. Using a targeted amplification panel consisting of over 500 antimicrobial resistance genes, we were able to confirm the results of the phenotypic assays. Specifically, the presence of multiple β-lactamase genes was observed. The class A β-lactamase genes, tem-1 (ampicillin-resistance) and ctx-M-14 (cefotaxime conferring gene), were found in multiple sites of ISS. In addition, presence of mecA gene (penicillin clusters) was confirmed in several sampling locations from both ISS flights. Finally, the existence of the ermA gene (erythromycin) was established. These results suggest widespread and consistent distribution of multiple antibiotic resistance genes throughout the ISS. The resistome data generated via molecular methods will be extremely important in determining the microbial significance to the crew health and the ISS maintenance. These data sets will be placed in the NASA GeneLab bioinformatics environment - consisting of a database, computational tools, and improved methods - that would subsequently be made open to the scientific research community to encourage innovation.
Use of the International Space Station as an Exercise Physiology Lab
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2013-01-01
The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.
Hadfield installing UBNT Sensors in the U.S. Laboratory
2013-02-01
ISS034-E-038211 (1 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, installs Ultra-Sonic Background Noise Tests (UBNT) sensors behind a rack in the Destiny laboratory, using the International Space Station (ISS) as Testbed for Analog Research (ISTAR) procedures. These sensors detect high frequency noise levels generated by ISS hardware and equipment operating within Destiny.
2011-08-31
ISS028-E-035566 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.
2011-08-31
ISS028-E-035603 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.
2011-08-31
ISS028-E-035301 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.
MSRR Rack Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Reagan, Shawn
2017-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.
Cassidy, J Tristan; Phillips, Michael; Fatovich, Daniel; Duke, Janine; Edgar, Dale; Wood, Fiona
2014-08-01
There is limited research validating the injury severity score (ISS) in burns. We examined the concordance of ISS with burn mortality. We hypothesized that combining age and total body surface area (TBSA) burned to the ISS gives a more accurate mortality risk estimate. Data from the Royal Perth Hospital Trauma Registry and the Royal Perth Hospital Burns Minimum Data Set were linked. Area under the receiver operating characteristic curve (AUC) measured concordance of ISS with mortality. Using logistic regression models with death as the dependent variable we developed a burn-specific injury severity score (BISS). There were 1344 burns with 24 (1.8%) deaths, median TBSA 5% (IQR 2-10), and median age 36 years (IQR 23-50). The results show ISS is a good predictor of death for burns when ISS≤15 (OR 1.29, p=0.02), but not for ISS>15 (ISS 16-24: OR 1.09, p=0.81; ISS 25-49: OR 0.81, p=0.19). Comparing the AUCs adjusted for age, gender and cause, ISS of 84% (95% CI 82-85%) and BISS of 95% (95% CI 92-98%), demonstrated superior performance of BISS as a mortality predictor for burns. ISS is a poor predictor of death in severe burns. The BISS combines ISS with age and TBSA and performs significantly better than the ISS. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2009-01-01
The European Columbus and Japanese Kibo laboratories are now fully operational on the International Space Station (ISS), bringing decades of international planning to fruition. NASA is now completing launch and activation of major research facilities that will be housed in the Destiny U.S. Laboratory, Columbus, and Kibo. These facilities include major physical sciences capabilities for combustion, fluid physics, and materials science, as well as additional multipurpose and supporting infrastructure. Expansion of the laboratory space and expansion to a 6-person crew (planned for May 2009), is already leading to significant increases in research throughput even before assembly is completed. International research on the ISS includes exchanges of results, sharing of facilities, collaboration on experiments, and joint publication and communication of accomplishments. Significant and ongoing increases in research activity on ISS have occurred over the past year. Although research results lag behind on-orbit operations by 2-5 years, the surge of early research activities following Space Shuttle return to flight in 2005 is now producing an accompanying surge in scientific publications. Evidence of scientific productivity from early utilization opportunities combined with the current pace of research activity in orbit are both important parts of the evidence base for evaluating the potential future achievements of a complete and active ISS.
2016-04-05
ISS047e038968 (04/05/2016) --- ESA (European Space Agency) astronaut Tim Peake operates the Muscle Atrophy Research and Exercise System (MARES) equipment inside the Columbus module. MARES is an ESA system that will be used for research on musculoskeletal, biomechanical, and neuromuscular human physiology to better understand the effects of microgravity on the muscular system.
NASA Technical Reports Server (NTRS)
Calvert, John; Freas, George, II
2017-01-01
The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.
Integrated Project Management: A Case Study in Integrating Cost, Schedule, Technical, and Risk Areas
NASA Technical Reports Server (NTRS)
Smith, Greg
2004-01-01
This viewgraph presentation describes a case study as a model for integrated project management. The ISS Program Office (ISSPO) developed replacement fluid filtration cartridges in house for the International Space Station (ISS). The presentation includes a step-by-step procedure and organizational charts for how the fluid filtration problem was approached.
ERIC Educational Resources Information Center
Smith, Clinton
2010-01-01
Every day administrators and teachers issue increasing numbers of disciplinary referrals that document problematic behaviors in the classroom. When placed in in-school suspension (ISS) because of disciplinary reasons students lose valuable academic instruction time and their academic achievement is negatively impacted. ISS produces little, if any,…
ISS EarthKam: Taking Photos of the Earth from Space
ERIC Educational Resources Information Center
Haste, Turtle
2008-01-01
NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…
International Space Station (ISS)
2001-10-23
Carrying out a flight program for the French Space Agency (CNES) under a commerial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS) delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.
International Space Station (ISS)
2001-10-23
Carrying out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS), delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.
2011-01-01
The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing dependency on Earth-supplied logistics for future Constellation Program missions.
International Space Station as a Platform for Exploration Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Raftery, Michael; Woodcock, Gordon
2010-01-01
The International Space Station (ISS) has established a new model for the achievement of the most difficult engineering goals in space: international collaboration at the program level with competition at the level of technology. This strategic shift in management approach provides long term program stability while still allowing for the flexible evolution of technology needs and capabilities. Both commercial and government sponsored technology developments are well supported in this management model. ISS also provides a physical platform for development and demonstration of the systems needed for missions beyond low earth orbit. These new systems at the leading edge of technology require operational exercise in the unforgiving environment of space before they can be trusted for long duration missions. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. We will describe representative mission profiles showing how ISS can support exploration missions to the Moon, Mars, asteroids and other potential destinations. Example missions would include humans to lunar surface and return, and humans to Mars orbit as well as Mars surface and return. ISS benefits include: international access from all major launch sites; an assembly location with crew and tools that could help prepare departing expeditions that involve more than one launch; a parking place for reusable vehicles; and the potential to add a propellant depot.
NASA Technical Reports Server (NTRS)
Ott, C. Mark
2014-01-01
Spaceflight microbiology is composed of both operational and experimental components that complement each other in our understanding of microbial interactions and their responses in the microgravity of spaceflight. Operationally, efforts to mitigate microbiological risk to the crew and the spacecraft have historically focused on minimizing the number of detectable organisms, relying heavily on preventative measures, including appropriate vehicle design, crew quarantine prior to flight, and stringent microbial monitoring. Preflight monitoring targets have included the astronauts, spaceflight foods, potable water systems, the vehicle air and surfaces, and the cargo carried aboard the spacecraft. This approach has been very successful for earlier missions; however, the construction and long-term habitation of the International Space Station (ISS) has created the need for additional inflight monitoring of the environment and potable water systems using hardware designed for both in-flight microbial enumeration and sample collection and return to Earth. In addition to operational activities, the ISS is providing a research platform to advance our understanding of microbiomes in the built environment. Adding to the research possibilities of this system are multiple reports of unique changes in microbial gene expression and phenotypic responses, including virulence and biofilm formation, in response to spaceflight culture. The tremendous potential of the ISS research platform led the National Research Council to recommend that NASA utilize the ISS as a microbial observatory. Collectively, the findings from operational and research activities on the ISS are expected to both enable future space exploration and translate to basic and applied research on Earth.
Habitation Concepts for Human Missions Beyond Low-Earth-Orbit
NASA Technical Reports Server (NTRS)
Smitherman, David V.
2016-01-01
The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2011-01-01
As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment
ERIC Educational Resources Information Center
Rahynes, Leron M.
2015-01-01
This paper explored whether or not In School Suspensions (ISS) is effective in reducing student behavioral problems. Research was conducted with 6-8th grade students in a rural middle school in the upstate of South Carolina for the purposes of determining if ISS, in its current design a viable and effective method to reduce negative student…
2016-04-19
ISS047e066248 (04/19/2016) --- NASA astronaut and Expedition 47 Flight Engineer Jeff Williams works with the Wet Lab RNA SmartCycler on-board the International Space Station. Wetlab RNA SmartCycler is a research platform for conducting real-time quantitative gene expression analysis aboard the ISS. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space.
2012-06-23
ISS031-E-140701 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.
2012-06-23
ISS031-E-140699 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.
2011-08-30
ISS028-E-034978 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.
2011-08-30
ISS028-E-034993 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.
2011-08-30
ISS028-E-034980 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.
2011-08-30
ISS028-E-035002 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.
2011-08-30
ISS028-E-034984 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.
2011-08-30
ISS028-E-034992 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.
2011-08-31
ISS028-E-035617 (31 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.
View of the Soyuz carrying the Taxi crew during undocking from the ISS
2001-10-31
ISS003-E-7121 (31 October 2001) --- Backdropped by Earths horizon and the blackness of space, a Soyuz spacecraft undocks from the International Space Station (ISS) carrying the Soyuz taxi crew, Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev and French Flight Engineer Claudie Haignere, ending their eight-day stay on the station. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
The Soyuz Taxi crew pose with the ISS ship log in Node 1 during Expedition Three
2001-10-23
ISS003-E-7084 (23-31 October 2001) --- The Soyuz Taxi crewmembers, Flight Engineer Konstantin Kozeev (left), Commander Victor Afanasyev and French Flight Engineer Claudie Haignere add their names to the list of the International Space Station (ISS) visitors in the ships log in the Unity node. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS
NASA Technical Reports Server (NTRS)
Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.
2017-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.
ISS and TPD study of the adsorption and interaction of CO and H2 on polycrystalline Pt
NASA Technical Reports Server (NTRS)
Melendez, Orlando; Hoflund, Gar B.; Schryer, David R.
1990-01-01
The adsorption and interaction of CO and H2 on polycrystalline Pt has been studied using ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD). The ISS results indicate that the initial CO adsorption on Pt takes place very rapidly and saturates the Pt surface with coverage close to a monolayer. ISS also shows that the CO molecules adsorb at an angular orientation from the surface normal and perhaps parallel to the surface. A TPD spectrum obtained after coadsorbing C-12 O-16 and C-13 O-18 on Pt shows no isotopic mixing, which is indicative of molecular CO adsorption. TPD spectra obtained after coadsorbing H2 and CO on polycrystalline Pt provides evidence for the formation of a CO-H surface species.
International Space Station (ISS)
2006-07-09
The STS-117 crew patch symbolizes the continued construction of the International Space Station (ISS) and our ongoing human presence in space. The ISS is shown orbiting high above the Earth. Gold is used to highlight the portion of the ISS that will be installed by the STS-117 crew. It consists of the second starboard truss section, S3 and S4, and a set of solar arrays. The names of the STS-117 crew are located above and below the orbiting outpost. The two gold astronaut office symbols, emanating from the 117 at the bottom of the patch, represent the concerted efforts of the shuttle and station programs toward the completion of the station. The orbiter and unfurled banner of red, white, and blue represent our Nation and renewed patriotism as we continue to explore the universe.
A microbial survey of the International Space Station (ISS)
Lang, Jenna M.; Coil, David A.; Neches, Russell Y.; Brown, Wendy E.; Cavalier, Darlene; Severance, Mark; Hampton-Marcell, Jarrad T.; Gilbert, Jack A.
2017-01-01
Background Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the “buildings” in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Results Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. Conclusions While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036–4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain. PMID:29492330
A microbial survey of the International Space Station (ISS).
Lang, Jenna M; Coil, David A; Neches, Russell Y; Brown, Wendy E; Cavalier, Darlene; Severance, Mark; Hampton-Marcell, Jarrad T; Gilbert, Jack A; Eisen, Jonathan A
2017-01-01
Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the "buildings" in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036-4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain.
Extravehicular Activity Technology Development Status and Forecast
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Westheimer, David T.
2011-01-01
The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.
Human Factors in Training - Space Medicine Proficiency Training
NASA Technical Reports Server (NTRS)
Connell, Erin; Arsintescu, Lucia
2009-01-01
The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Work on medical training has been conducted in collaboration with the Medical Training Group at the Space Life Sciences Directorate and with Wyle Lab which provides medical training to crew members, Biomedical Engineers (BMEs), and to flight surgeons under the JSC Space Life Sciences Directorate s Bioastronautics contract. The space medical training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground, and researchers at the Ames Research Center performed a literature review on medical errors. The work proposed for FY10 continues to build on this strong collaboration with the Space Medical Training Group and previous research. This abstract focuses on two areas of work involving Performance Support Tools for Space Medical Operations. One area of research building on activities from FY08, involved the feasibility of just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1, preliminary feasibility data was gathered for two types of prototype display technologies: a hand-held PDA, and a Head Mounted Display (HMD). The PDA and HMD were compared while performing a simulated medical procedure using ISS flight-like medical equipment. Based on the outcome of Phase 1, including data on user preferences, further testing was completed using the PDA only. Phase 2 explored a wrist-mounted PDA, and compared it to a paper cue card. For each phase, time to complete procedures, errors, and user satisfaction ratings were captured.
Containerless Processing on ISS: Ground Support Program for EML
NASA Technical Reports Server (NTRS)
Diefenbach, Angelika; Schneider, Stephan; Willnecker, Rainer
2012-01-01
EML is an electromagnetic levitation facility planned for the ISS aiming at processing and investigating liquid metals or semiconductors by using electromagnetic levitation technique under microgravity with reduced electromagnetic fields and convection conditions. Its diagnostics and processing methods allow to measure thermophysical properties in the liquid state over an extended temperature range and to investigate solidification phenomena in undercooled melts. The EML project is a common effort of The European Space Agency (ESA) and the German Space Agency DLR. The Microgravity User Support Centre MUSC at Cologne, Germany, has been assigned the responsibility for EML operations. For the EML experiment preparation an extensive scientific ground support program is established at MUSC, providing scientific and technical services in the preparation, performance and evaluation of the experiments. Its final output is the transcription of the scientific goals and requirements into validated facility control parameters for the experiment execution onboard the ISS.
Qualitative Validation of the IMM Model for ISS and STS Programs
NASA Technical Reports Server (NTRS)
Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.
2016-01-01
To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.
Rodent Research on the International Space Station - A Look Forward
NASA Technical Reports Server (NTRS)
Kapusta, A. B.; Smithwick, M.; Wigley, C. L.
2014-01-01
Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and maintaining proficiency in these basic skills as part of the nominal astronaut training curriculum this allows the rodent research program to focus the mission specific crew training on scientific requirements of research and operations flow.
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
Biological and Physical Space Research Laboratory 2002 Science Review
NASA Technical Reports Server (NTRS)
Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)
2003-01-01
With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.
On-Orbit Propulsion System Performance of ISS Visiting Vehicles
NASA Technical Reports Server (NTRS)
Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor
2013-01-01
The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.
ERIC Educational Resources Information Center
Pierre, Ashley R.
2012-01-01
DeLone and McLean first introduced a review of information systems success (ISS) literature and proposed the information success model in 1992. The contribution of technology use and acceptance and its influence toward ISS is an area of information systems research that has received significant attention from both researchers and practitioners.…
ISERV Pathfinder. The ISS SERVIR Environmental Research and Visualization System
NASA Technical Reports Server (NTRS)
Howell, Burgess
2011-01-01
SERVIR integrates Earth observations (e.g., space imagery), predictive models, and in situ data to provide timely information products to support environmental decision makers. ISERV propoesed development -- ISERV-W: Internal Visible/Near-Infrared (VNIR), attached to ISS via Window Observational Research Facility (WORF), ISERV-E: External Visible/Broad-Infrared (V/IR) and ISERV-PM: External Passive Microwave.
2000-01-31
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
Phase 1 research program overview
NASA Technical Reports Server (NTRS)
Uri, J. J.; Lebedev, O. N.
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
Phase 1 research program overview.
Uri, J J; Lebedev, O N
2001-01-01
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.
2017-06-26
NASA didn’t miss a (heart)beat when the opportunity arose to study the cardiovascular systems of identical twin astronauts, one aboard the International Space Station and the other on Earth. Results from the Cardio Ox investigation, part of the research of the One Year Mission of astronaut Scott Kelly, may provide a better understanding of cardiovascular disease risk that astronauts encounter during and after long-duration spaceflight. Stuart Lee, the lead scientist for the Cardiovascular and Vision Laboratory at NASA’s Johnson Space Center, explains the importance of spaceflight weightlessness research on the cardiovascular system and how results could be used to create countermeasures, preventing potential health consequences for future space travelers as well as those of us on Earth. For more on ISS science, follow us on Twitter: @ISS_research or at https://twitter.com/ISS_Research or at: https://www.nasa.gov/mission_pages/station/research/index.html
Environmental Control and Life Support Integration Strategy for 6-Crew Operations Stephanie Duchesne
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.
2009-01-01
The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.
International Space Station Evolution Data Book. Volume 2; Evolution Concepts; Revised
NASA Technical Reports Server (NTRS)
Jorgensen, Catherine A. (Editor); Antol, Jeffrey (Technical Monitor)
2000-01-01
This report provides a focused and in-depth look at the opportunities and drivers for the enhancement and evolution of the International Space Station (ISS) during assembly and beyond the assembly complete stage. These enhancements would expand and improve the current baseline capabilities of the ISS and help to facilitate the commercialization of the ISS by the private sector. Volume 1 provides the consolidated overview of the ISS baseline systems; information on the current facilities available for pressurized and unpressurized payloads; and information on current plans for crew availability and utilization, resource timelines and margin summaries including power, thermal, and storage volumes; and an overview of the vehicle traffic model. Volume 2 includes discussions of advanced technologies being investigated for use on the ISS and potential commercial utilization activities being examined including proposed design reference missions (DRM's) and the technologies being assessed by the Pre-planned Program Improvement (P(sup 3) I) Working Group. This information is very high level and does not provide the relevant information necessary for detailed design efforts. This document is meant to educate readers on the ISS and to stimulate the generation of ideas for enhancement and utilization of the ISS, either by or for the government, academia, and commercial industry.
NASA Technical Reports Server (NTRS)
Moore, Kevin D.
2017-01-01
Trying to get your experiment aboard ISS? You likely will need power. Many enditem providers do. ISS Plug-In Plan (IPiP) supports power and data for science, Payloads (or Utilization), vehicle systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Yet limited resources and increasing requirements continue to influence decisions on deployment of ISS end items. Given the fluid launch schedule and the rapidly- increasing number of end item providers requiring power support, the focus of the Plug-In Plan has evolved from a simple FIFO recommendation to provide power to end item users, to anticipating future requirements by judicious development and delivery of support equipment (cables, power supplies, power strips, and alternating current (AC) power inverters), employing innovative deployment strategies, and collaborating on end item development. This paper describes the evolution of the ISS Program Office, Engineering Directorate, Flight Operations Directorate (FOD), International Partners and the end item provider relationship and how collaboration successfully leverages unique requirements with limited on- board equipment and resources, tools and processes which result in more agile integration, and describes the process designed for the new ISS end item provider to assure that their power requirements will be met.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.; Tressler, Chad H.
2010-01-01
The International Space Station (ISS) crew complement has increased in size from 3 to 6 crew members. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System (OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the t OS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station
The Best Workout on Earth, and in Space
NASA Technical Reports Server (NTRS)
2001-01-01
SpiraFlex(R) is a revolutionary new patented technology for storing and delivering mechanical power in industrial, consumer, and fitness equipment. NASA research facilities and funding helped to develop the "Resistance Exercise Device" (RED), powered by SpiraFlex. SpiraFlex duplicates the benefits of free-weights in a lightweight, portable, and safe system. The RED system is presently aboard the International Space Station (ISS) and is used by the crewmembers as a primary countermeasure against musculoskeletal degradation caused by microgravity. Using SpiraFlex technology, Schwinn Cycling & Fitness, Inc., of Boulder, Colorado, launched an international fitness program for health clubs and select retail distributors, called RiPP(TM) (Resistance Performance Program). RiPP is an exercise program that uses RiPP Pro machines, powered by SpiraFlex technology.
Education Payload Operation - Demonstrations
NASA Technical Reports Server (NTRS)
Keil, Matthew
2009-01-01
Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.
Haignere works in the Service Module during Expedition Three
2001-10-23
ISS003-E-6855 (23-31 October 2001) --- French Flight Engineer Claudie Haignere, works in the Zvezda Service Module on the International Space Station (ISS). Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
International Space Station (ISS)
2001-10-23
A Russian Soyuz spacecraft undocks from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.
International Space Station (ISS)
2001-10-23
A Russian Soyuz spacecraft departs from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.
Computational Model of Heat Transfer on the ISS
NASA Technical Reports Server (NTRS)
Torian, John G.; Rischar, Michael L.
2008-01-01
SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.
NASA Technical Reports Server (NTRS)
Thronson, Harley; Talay, Ted
2010-01-01
With NASA's commitment to the International Space Station (ISS) now all but certain for at least through the coming decade, serious consideration may be given to extended US in-space operations in the 2020s, when presumably the ISS will exceed its sell by date. Indeed, both ESA and Roscosmos, in addition to their unambiguous current commitment to ISS, have published early concept studies for extended post-ISS habitation (e.g., http://www.esa.int/esaHS/index.html, http://www.russianspaceweb.com/opsek.html and references therein). In the US, engineers and scientists have for a decade been working both within and outside NASA to assess one consistent candidate for long-term post-ISS habitation and operations, although interrupted by changing priorities for human space flight, Congressional direction, and constrained budgets. The evolving work of these groups is described here, which may have renewed relevance with the recent completion of a major review of the nation s human space flight program.
Materials Science Research Rack Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried
2013-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity.
Materials Science Research Rack Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Reagan, S. E.; Lehman, J. R.; Frazier, N. C.
2016-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity.
Materials Science Research Rack Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Reagan, Shawn; Frazier, Natalie; Lehman, John
2016-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity.
The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.
Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore
2012-01-01
The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.
The Mice Drawer System (MDS) Experiment and the Space Endurance Record-Breaking Mice
Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore
2012-01-01
The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28th, 2009. MDS returned to Earth on November 27th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages. PMID:22666312
NASA Technical Reports Server (NTRS)
Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael
2011-01-01
In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.
Miniature Wireless Sensors Size Up to Big Applications
NASA Technical Reports Server (NTRS)
2006-01-01
Like the environment of space, the undersea world is a hostile, alien place for humans to live. But far beneath the waves near Key Largo, Florida, an underwater laboratory called Aquarius provides a safe harbor for scientists to live and work for weeks at a time. Aquarius is the only undersea laboratory in the world. It is owned by the National Oceanic and Atmospheric Administration (NOAA), administered by NOAA s National Undersea Research Program, and operated by the National Undersea Research Center at the University of North Carolina at Wilmington. Aquarius was first deployed in underwater operations in 1988 and has since hosted more than 200 scientists representing more than 90 organizations from around the world. For NASA, Aquarius provides an environment that is analogous to the International Space Station (ISS) and the space shuttle. As part of its NASA Extreme Environment Mission Operations (NEEMO) program, the Agency sends personnel to live in the underwater laboratory for up to 2 weeks at a time, some of whom are crew members or "aquanauts" who are subjected to the same tasks and challenges underwater that they would face in space. In fact, many participants have found the deep-sea diving experience to be much akin to spacewalking. To maintain Aquarius, the ISS, and the space shuttle as safe, healthy living/research habitats for its personnel, while keeping costs in mind, NASA, in 1997, recruited the help of Conroe, Texas-based Invocon, Inc., to develop wireless sensor technology that monitors and measures various environmental and structural parameters inside these facilities.
International Space Station exhibit
NASA Technical Reports Server (NTRS)
2000-01-01
The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.
International Space Station (ISS)
2001-05-14
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Development of Reliable Life Support Systems
NASA Technical Reports Server (NTRS)
Carter, Layne
2017-01-01
The life support systems on the International Space Station (ISS) are the culmination of an extensive effort encompassing development, design, and test to provide the highest possible confidence in their operation on ISS. Many years of development testing are initially performed to identify the optimum technology and the optimum operational approach. The success of this development program depends on the accuracy of the system interfaces. The critical interfaces include the specific operational environment, the composition of the waste stream to be processed and the quality of the product. Once the development program is complete, a detailed system schematic is built based on the specific design requirements, followed by component procurement, assembly, and acceptance testing. A successful acceptance test again depends on accurately simulating the anticipated environment on ISS. The ISS Water Recovery System (WRS) provides an excellent example of where this process worked, as well as lessons learned that can be applied to the success of future missions. More importantly, ISS has provided a test bed to identify these design issues. Mechanical design issues have included an unreliable harmonic drive train in the Urine Processor's fluids pump, and seals in the Water Processor's Catalytic Reactor with insufficient life at the operational temperature. Systems issues have included elevated calcium in crew urine (due to microgravity effect) that resulted in precipitation at the desired water recovery rate, and the presence of an organosilicon compound (dimethylsilanediol) in the condensate that is not well removed by the water treatment process. Modifications to the WRS to address these issues are either complete (and now being evaluated on ISS) or are currently in work to insure the WRS has the required reliability before embarking on a mission to Mars.
2010-05-05
ISS025-S-001 (June 2010) --- The mission patch design for the 25th Expedition to the International Space Station (ISS) pays tribute to the rich history of innovation and bold engineering in the quest for knowledge, exploration and discovery in space. The patch highlights the symbolic passing of the torch to the ISS, as the vehicle that will carry us into the future of space exploration. The Space Shuttle Program emblem is the foundation of the patch and forms the Greek letter Omega?, paying tribute to the culmination of the Space Shuttle Program. The mission designation 25? and the Earth crescent, the orbiter is shown returning to Earth on its final journey, during the Expedition 25 mission. Above Earth and the breaking dawn, the ISS takes center-stage, completed and fully equipped to carry us beyond this new dawn to new voyages and discoveries. The orbit connecting the ISS and the Earth is drawn in the colors of the United States and Russian flags; paying tribute to the blended heritage of the crew. The two largest stars in the field represent the arrival and departure of the crews in separate Russian Soyuz vehicles. The six stars in the field represent the six crew members. The International Space Station abbreviation MKC? ? in English and Russian, respectively- flank the mission number designation, and the names of the crew members in their native languages border the ISS symbol. The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.
Optical Multi-Gas Monitor Technology Demonstration on the International Space Station
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.
2014-01-01
The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.
Extravehicular Activity (EVA) Technology Development Status and Forecast
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Westheimer, David T.
2010-01-01
Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast
NASA Technical Reports Server (NTRS)
Bach, David A.; Hasbrook, Peter V.; BBrand, Susan N.
2012-01-01
Following the failure of 44P on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the ISS ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment replanning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28S, the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority, with the Increment pairs 29 and 30, and 31 and 32 reaching the milestone of at least 35 hours per week average utilization.
NASA Technical Reports Server (NTRS)
Spivey, Reggie; Spearing, Scott; Jordan, Lee
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of the facility enhancements that will shortly be available for use by future investigators.
Novel Advancements in Internet-Based Real-Time Data Technologies
NASA Technical Reports Server (NTRS)
Myers, Gerry; Welch, Clara L. (Technical Monitor)
2002-01-01
AZ Technology has been working with NASA MSFC (Marshall Space Flight Center) to find ways to make it easier for remote experimenters (RPI's) to monitor their International Space Station (ISS) payloads in real-time from anywhere using standard/familiar devices. That effort resulted in a product called 'EZStream' which is in use on several ISS-related projects. Although the initial implementation is geared toward ISS, the architecture and lessons learned are applicable to other space-related programs. This paper begins with a brief history on why Internet-based real-time data is important and where EZStream or products like it fit in the flow of data from orbit to experimenter/researcher. A high-level architecture is then presented along with explanations of the components used. A combination of commercial-off-the-shelf (COTS), Open Source, and custom components are discussed. The use of standard protocols is shown along with some details on how data flows between server and client. Some examples are presented to illustrate how a system like EZStream can be used in real world applications and how care was taken to make the end-user experience as painless as possible. A system such as EZStream has potential in the commercial (non-ISS) arena and some possibilities are presented. During the development and fielding of EZStream, a lot was learned. Good and not so good decisions were made. Some of the major lessons learned will be shared. The development of EZStream is continuing and the future of EZStream will be discussed to shed some light over the technological horizon.
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.
2017-12-01
Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such as the oceans. Finally, being on ISS enables LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will explore the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs) when it is launched to ISS in 2018.
The International Space Station: New Capabilities for Disaster Response and Humanitarian Aid
NASA Technical Reports Server (NTRS)
Stefanov, William
2012-01-01
The International Space Station (ISS) has been acquiring Earth imagery since 2000, primarily in the form of astronaut photography using hand-held film and digital cameras. Recent additions of more sophisticated multispectral and hyperspectral sensor systems have expanded both the capabilities and relevance of the ISS to basic research, applied Earth science, and development of new sensor technologies. Funding opportunities established within NASA, the US National Laboratories and the international partner organizations have generated instrument proposals that will further enhance these capabilities. With both internal and external sensor location options, and the availability of both automated and human-tended operational environments, the ISS is a unique platform within the constellation of Earth-observing satellites currently in orbit. Current progress and challenges associated with development of ISS terrestrial remote sensing capabilities in the area of disaster response and support of relief efforts will be presented. The ISS orbit allows for imaging of the Earth's surface at varying times of day and night, providing opportunities for data collection over approximately 95% of the populated regions. These opportunities are distinct from--yet augment--the data collection windows for the majority of sensors on polar-orbiting satellites. In addition to this potential for "being in the right place at the right time" to collect critical information on an evolving disaster, the presence of a human crew also allows for immediate recognition of an event from orbit, notification of relevant organizations on the ground, and re-tasking of available remote sensing resources to support humanitarian response and relief efforts. Challenges to establishing an integrated response capability are both technical (coordination of sensor targeting and data collection, rapid downlink and posting of data to a central accessible hub, timely generation and distribution of relevant data products) and operational (notification and engagement of sensor support teams, international partner agency sanction of astronaut support activities). To better collaborate on common issues and strengthen applications, including using the data to support disaster response, we established an ISS Program Science Forum Working Group for Earth Observations comprised of representatives from the international partner agencies. This international forum welcomes input and support from relevant United Nations task groups regarding our disaster response and humanitarian aid to enable development of the ISS capabilities in this area for greatest value to the international community.
ERIC Educational Resources Information Center
Pierre, Joseph D.
2011-01-01
Information security systems (ISS) have been designed to protect assets from damages and from unauthorized access internally as well as externally. This research is promising similar protection from ISS methods that could prevent intoxicated individuals under the influence of alcohol from driving. However, previous research has shown significant…
Microgravity Investigation of Crew Reactions in 0-G (MICRO-G)
NASA Technical Reports Server (NTRS)
Newman, Dava; Coleman, Charles; Metaxas, Dimitri
2004-01-01
There is a need for a human factors, technology-based bioastronautics research effort to develop an integrated system that reduces risk and provides scientific knowledge of astronaut-induced loads and motions during long-duration missions on the International Space Station (ISS), which will lead to appropriate countermeasures. The primary objectives of the Microgravity Investigation of Crew Reactions in 0-G (MICRO-GI research effort are to quantify astronaut adaptation and movement as well as to model motor strategies for differing gravity environments. The overall goal of this research program is to improve astronaut performance and efficiency through the use of rigorous quantitative dynamic analysis, simulation and experimentation. The MICRO-G research effort provides a modular, kinetic and kinematic capability for the ISS. The collection and evaluation of kinematics (whole-body motion) and dynamics (reacting forces and torques) of astronauts within the ISS will allow for quantification of human motion and performance in weightlessness, gathering fundamental human factors information for design, scientific investigation in the field of dynamics and motor control, technological assessment of microgravity disturbances, and the design of miniaturized, real-time space systems. The proposed research effort builds on a strong foundation of successful microgravity experiments, namely, the EDLS (Enhanced Dynamics Load Sensors) flown aboard the Russian Mir space station (19961998) and the DLS (Dynamic Load Sensors) flown on Space Shuttle Mission STS-62. In addition, previously funded NASA ground-based research into sensor technology development and development of algorithms to produce three-dimensional (3-0) kinematics from video images have come to fruition and these efforts culminate in the proposed collaborative MICRO-G flight experiment. The required technology and hardware capitalize on previous sensor design, fabrication, and testing and can be flight qualified for a fraction of the cost of an initial spaceflight experiment. Four dynamic load sensors/restraints are envisioned for measurement of astronaut forces and torques. Two standard ISS video cameras record typical astronaut operations and prescribed IVA motions for 3-D kinematics. Forces and kinematics are combined for dynamic analysis of astronaut motion, exploiting the results of the detailed dynamic modeling effort for the quantitative verification of astronaut IVA performance, induced-loads, and adaptive control strategies for crewmember whole-body motion in microgravity. This comprehensive effort, provides an enhanced human factors approach based on physics-based modeling to identify adaptive performance during long-duration spaceflight, which is critically important for astronaut training as well as providing a spaceflight database to drive countermeasure design.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.;
2017-01-01
Mission: Fly a flight-spare LIS (Lightning Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., high inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based lightning observations as a remote sensing tool; LIS measures lightning (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and high detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.
Evaluation of Human Research Facility Ultrasound With the ISS Video System
NASA Technical Reports Server (NTRS)
Melton, Shannon; Sargsyan, Ashot
2003-01-01
Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.
New Mission to Measure Global Lightning from the International Space Station (ISS)
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.
2015-12-01
Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat Third Generation Lightning Imager (MTG LI). The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) exploring the connection between lightning and terrestrial gamma-ray flashes (TGFs).
International Polar Year Observations From the International Space Station
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Runco, Susan; Byrne, Gregory; Willis, Kim; Heydorn, James; Stefanov, William L.; Wilkinson, M. Justin; Trenchard, Michael
2006-01-01
Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.
Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials
NASA Astrophysics Data System (ADS)
Abou, Seraphin Chally; Saad, Maarouf
2013-09-01
In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.
International Space Station -- Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
2000-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
ERIC Educational Resources Information Center
Owens, Ian; And Others
1997-01-01
The primary aim of the training information specialists (TRAIN-ISS) program at the University of Sheffield's Department of Information Studies was to train information service specialists from the less favored regions of the European Union. Describes the course design; selection of participants; student assessment, support, and placement; program…
2014-02-25
ISS038-E-056422 (25 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. A blue and white part of Earth provides the backdrop for the scene.
Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights.
Kozlovskaya, Inessa B; Yarmanova, E N; Yegorov, A D; Stepantsov, V I; Fomina, E V; Tomilovaskaya, E S
2015-12-01
The system of countermeasures for the adverse effects of microgravity developed in the USSR supported the successful implementation of long-duration spaceflight (LDS) programs on the Salyut and Mir orbital stations and was subsequently adapted for flights on the International Space Station (ISS). From 2000 through 2010, crews completed 26 ISS flight increments ranging in duration from 140 to 216 d, with the participation of 27 Russian cosmonauts. These flights have made it possible to more precisely determine a crew-member's level of conditioning, better assess the advantages and disadvantages of training processes, and determine prospects for future developments.
Distant view of the Soyuz carrying the Taxi crew after undocking from the ISS
2001-10-31
ISS003-E-7131 (31 October 2001) --- Backdropped by Earths horizon and the blackness of space, this distant view shows a Soyuz spacecraft after undocking from the International Space Station (ISS) carrying the Soyuz taxi crew, Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev and French Flight Engineer Claudie Haignere, ending their eight-day stay on the station. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera.
The Soyuz Taxi crew wave through a Soyuz hatch during their visit to the ISS
2001-10-23
ISS003-E-7251 (23-31 October 2001) --- The Soyuz Taxi crewmembers wave from a Soyuz spacecraft docked to the International Space Station (ISS). Clockwise from the top are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev and French Flight Engineer Claudie Haignere. Afanasyev and Kozeev represent Rosaviakosmos, and Haignere represents ESA, carrying out a flight program for CNES, the French Space Agency, under a commercial contract with the Russian Aviation and Space Agency. This image was taken with a digital still camera by one of the Expedition Three crew from the nadir docking port on the station.