International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update
NASA Technical Reports Server (NTRS)
Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.;
2014-01-01
The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.
NASA Technical Reports Server (NTRS)
Parsons, Vickie S.
2009-01-01
A request to conduct a peer review of the International Space Station (ISS) proposal to use Bayesian methodology for updating Mean Time Between Failure (MTBF) for ISS Orbital Replaceable Units (ORU) was submitted to the NASA Engineering and Safety Center (NESC) on September 20, 2005. The results were requested by October 20, 2005 in order to be available during the process of reworking the current ISS flight manifest. The results are included in this report.
ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources
NASA Technical Reports Server (NTRS)
Meyer, Marit
2014-01-01
Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.
NASA Technical Reports Server (NTRS)
Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo
2016-01-01
This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.
Pseudo-updated constrained solution algorithm for nonlinear heat conduction
NASA Technical Reports Server (NTRS)
Tovichakchaikul, S.; Padovan, J.
1983-01-01
This paper develops efficiency and stability improvements in the incremental successive substitution (ISS) procedure commonly used to generate the solution to nonlinear heat conduction problems. This is achieved by employing the pseudo-update scheme of Broyden, Fletcher, Goldfarb and Shanno in conjunction with the constrained version of the ISS. The resulting algorithm retains the formulational simplicity associated with ISS schemes while incorporating the enhanced convergence properties of slope driven procedures as well as the stability of constrained approaches. To illustrate the enhanced operating characteristics of the new scheme, the results of several benchmark comparisons are presented.
Expedition 8 Crew Interview: Pedro Duque
NASA Technical Reports Server (NTRS)
2003-01-01
European Space Agency (ESA) astronaut Pedro Duque is interviewed in preparation for his flight to and eight day stay on the International Space Station (ISS) as part of the Cervantes mission. Duque arrived on the ISS with the Expedition 8 crew onboard a Soyuz TMA-3, the seventh Soyuz flight to the station. He departed from the ISS on a Soyuz TMA-2 with the Expedition 7 crew of the ISS. In the video, Duque answers questions on: the goals of his flight; his life and career path; the Columbus Module, which ESA will contribute to the ISS, the ride onboard a Soyuz, and the importance of the ISS.
The International Space Station Comparative Maintenance Analysis(CMAM)
2004-09-01
External Component • Entire ORU Database 2. Database Connectivity The CMAM ORU database consists of three tables: an ORU master parts list , an ISS...Flight table, and an ISS Subsystem table. The ORU master parts list and the ISS Flight table can be updated or modified from the CMAM user interface
Enhanced International Space Station Ku-Band Telemetry Service
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Welch, Steven J.; Bryan, Jason D.
2014-01-01
The International Space Station (ISS) is in an operational configuration. To fully utilize the ISS and take advantage of the modern protocols and updated Ku-band access, the Huntsville Operations Support Center (HOSC) has designed an approach to extend the Kuband forward link access for payload investigators to their on-orbit payloads. This dramatically increases the ground to ISS communications for those users. This access also enables the ISS flight controllers operating in the Payload Operations and Integration Center to have more direct control over the systems they are responsible for managing and operating. To extend the Ku-band forward link to the payload user community the development of a new command server is necessary. The HOSC subsystems were updated to process the Internet Protocol Encapsulated packets, enable users to use the service based on their approved services, and perform network address translation to insure that the packets are forwarded from the user to the correct payload repeating that process in reverse from ISS to the payload user. This paper presents the architecture, implementation, and lessons learned. This will include the integration of COTS hardware and software as well as how the device is incorporated into the operational mission of the ISS. Thus, this paper also discusses how this technology can be applicable to payload users of the ISS.
STS-111 Crew Interviews: Ken Cockrell, Commander
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Commander Ken Cockrell is seen during this preflight interview, answering questions about his inspiration in becoming an astronaut and provides an overview of the mission. He discusses the following topics: the docking of the Endeavour Orbiter to the International Space Station (ISS), the delivery of the Mobile Base System (MBS) to the ISS, the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the ISS), the planned extravehicular activities (EVAs), and the installation of the MBS onto the ISS. Cockrell provides a detailed description of the MBS and its significance for the ISS. He also describes prelaunch activities, mission training and international cooperation during the mission.
STS-102 Crew Interview/Jim Wetherbee
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 Commander Jim Wetherbee is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (ISS-07/5A1 (MPLM-1)), and spacewalks. Wetherbee discusses the upcoming transfer of the International Space Station's (ISS) crew Expedition 1 and Expedition 2 and the role of the Mir Space Station in the evolution and success of the ISS.
STS-102 Crew Interviews/Andy Thomas
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 Mission Specialist Andy Thomas is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (ISS-07/5A1 (MPLM-1)), and spacewalks. Thomas discusses the upcoming transfer of the International Space Station's (ISS) crew Expedition 1 and Expedition 2 and the role of the Mir Space Station in the evolution and success of the ISS.
STS-96 Crew Interview: Dan Barry
NASA Technical Reports Server (NTRS)
1999-01-01
Live footage of a preflight interview with Mission Specialist Daniel T. Barry is seen. The interview addresses many different questions including why Barry became an astronaut, and the events that led to his interest. Other interesting information that this one-on-one interview discusses is the logistics and supply mission, why it is important to send equipment to the International Space Station (ISS), and the Integrated Cargo Carrier (ICC). Barry mentions Discovery's anticipated docking with the ISS, his scheduled space walk with Tamara E. Jernigan, plans for the supply and equipment transfers, and his responsibility during this transfer. A fly-around maneuver to take pictures of the ISS, and the deployment of the Student Tracked Atmospheric Research Satellite for Heuristic International Networking Equipment (STARSHINE) are also discussed.
Abajas Bustillo, Rebeca; Leal Costa, César; Ortego Mate, María Del Carmen; Zonfrillo, Mark R; Seguí Gómez, María; Durá Ros, María Jesús
2018-02-01
To explore differences in severity classifications according to 2 versions of the Abbreviated Injury Scale (AIS): version 2005 (the 2008 update) and the earlier version 98. To determine whether possible differences might have an impact on identifying severe trauma patients. Descriptive study and cross-sectional analysis of a case series of patients admitted to two spanish hospitals with out-of-hospital injuries between February 2012 and February 2013. For each patient we calculated the Injury Severity Score (ISS), the New Injury Severity Score (NISS), and the AIS scores according to versions 98 and 2005. The sample included 699 cases. The mean Severity (SD) age of patients was 52.7 (29.2) years, and 388 (55.5%) were males. Version 98 of the AIS correlated more strongly with both the ISS (2.6%) and the NISS (2.9%). The 2008 update of the AIS (version 2005) classified fewer trauma patients than version 98 at the severity levels indicated by the ISS and NISS.
Modular space station mass properties
NASA Technical Reports Server (NTRS)
1972-01-01
An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.
STS-105 Crew Interview: Pat Forrester
NASA Technical Reports Server (NTRS)
2001-01-01
STS-105 Mission Specialist Pat Forrester is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Forrester discusses the importance of the ISS in the future of human spaceflight.
STS-105 Crew Interview: Rick Sturckow
NASA Technical Reports Server (NTRS)
2001-01-01
STS-105 Pilot Rick Sturckow is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Sturckow discusses the importance of the ISS in the future of human spaceflight.
STS-105 Crew Interview: Scott Horowitz
NASA Technical Reports Server (NTRS)
2001-01-01
STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.
STS-105 Crew Interview: Dan Barry
NASA Technical Reports Server (NTRS)
2001-01-01
STS-105 Mission Specialist Dan Barry is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Barry discusses the importance of the ISS in the future of human spaceflight.
2017-04-07
NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Space to Ground: A Fleet of CUBESATS: 05/19/2017
2017-05-18
NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Status: Crewmember Noise Exposures on the International Space Station
NASA Technical Reports Server (NTRS)
Limardo-Rodriguez, Jose G.; Allen, Christopher S.; Danielson, Richard W.
2015-01-01
The International Space Station (ISS) provides a unique environment where crewmembers from the US and our international partners work and live for as long as 6 to 12 consecutive months. During these long-durations ISS missions, noise exposures from onboard equipment are posing concerns for human factors and crewmember health risks, such as possible reductions in hearing sensitivity, disruptions of crew sleep, interference with speech intelligibility and voice communications, interference with crew task performance, and reduced alarm audibility. It is crucial to control acoustical noise aboard ISS to acceptable noise exposure levels during the work-time period, and to also provide a restful sleep environment during the sleep-time period. Acoustic dosimeter measurements, obtained when the crewmember wears the dosimeter for 24-hour periods, are conducted onboard ISS every 60 days and compared to ISS flight rules. NASA personnel then assess the acoustic environment to which the crewmembers are exposed, and provide recommendations for hearing protection device usage. The purpose of this paper is to provide an update on the status of ISS noise exposure monitoring and hearing conservation strategies, as well as to summarize assessments of acoustic dosimeter data collected since the Increment 36 mission (April 2013). A description of the updated noise level constraints flight rule, as well as the Noise Exposure Estimation Tool and the Noise Hazard Inventory implementation for predicting crew noise exposures and recommending to ISS crewmembers when hearing protection devices are required, will be described.
Expedition 3 Crew Interview: Frank Culbertson, Jr.
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 3 Commander Frank Culbertson is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Culbertson gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.
Expedition 3 Crew Interview: Mikhail Turin
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 3 Flight Engineer Mikhail Turin is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Turin gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.
Expedition 3 Crew Interview: Vladimir Dezhurov
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 3 Pilot Vladimir Dezhurov is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Dezhurov gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.
Expanded Benefits for Humanity from the International Space Station
NASA Technical Reports Server (NTRS)
Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore
2016-01-01
In 2012, the International Space Station (ISS) partnership published the updated International Space Station Benefits for Humanity, 2nd edition, a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, Innovative Technology, merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are examples of materials improvements that are being developed using data from ISS. The publication also expands the benefits of research results in human health, environmental change and disaster response and in education activities developed to capture student imaginations in support of science, technology, engineering and mathematics, or STEM, education internationally. Applications to human health of the knowledge gained on ISS continues to grow and improve healthcare technologies and our understanding of human physiology. Distinct benefits return to Earth from the only orbiting multi-disciplinary laboratory of its kind. The ISS is a stepping stone for future space exploration by providing findings that develop LEO and improve life on our planet.
Expanded benefits for humanity from the International Space Station
NASA Astrophysics Data System (ADS)
Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore
2016-09-01
In 2012, the International Space Station (ISS) (Fig. 1) partnership published the updated International Space Station Benefits for Humanity[1], a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, "Innovative Technology," merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are examples of materials improvements that are being developed using data from ISS. The publication also expands the benefits of research results in human health, environmental change and disaster response and in education activities developed to capture student imaginations in support of science, technology, engineering and mathematics, or STEM, education internationally. Applications to human health of the knowledge gained on ISS continue to grow and improve healthcare technologies and our understanding of human physiology. Distinct benefits return to Earth from the only orbiting multi-disciplinary laboratory of its kind. The ISS is a stepping stone for future space exploration by providing findings that develop LEO and improve life on our planet.
Marshburn updates software on the WHC UPA in the Node 3
2013-01-17
ISS034-E-031133 (17 Jan. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, updates software on the Waste and Hygiene Compartment?s Urine Processor Assembly in the Tranquility node of the International Space Station.
Marshburn updates software on the WHC UPA in the Node 3
2013-01-17
ISS034-E-031130 (17 Jan. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, updates software on the Waste and Hygiene Compartment?s Urine Processor Assembly in the Tranquility node of the International Space Station.
STS-111 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He discusses the following mission goals: the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the International Space Station (ISS)), the delivery of the payloads which includes the Mobile Remote Servicer Base System (MBS), and the planned extravehicular activities (EVAs) which include attaching the MBS to the ISS and repairing the station's robot arm. He describes in-flight procedures for launch, reentry and docking with the ISS. He ends with his thoughts on the role of international cooperation in building and maintaining ISS.
NASA Technical Reports Server (NTRS)
Butler, Doug; Bauman, David; Johnson-Throop, Kathy
2011-01-01
The Integrated Medical Model (IMM) Project has been developing a probabilistic risk assessment tool, the IMM, to help evaluate in-flight crew health needs and impacts to the mission due to medical events. This package is a follow-up to a data package provided in June 2009. The IMM currently represents 83 medical conditions and associated ISS resources required to mitigate medical events. IMM end state forecasts relevant to the ISS PRA model include evacuation (EVAC) and loss of crew life (LOCL). The current version of the IMM provides the basis for the operational version of IMM expected in the January 2011 timeframe. The objectives of this data package are: 1. To provide a preliminary understanding of medical risk data used to update the ISS PRA Model. The IMM has had limited validation and an initial characterization of maturity has been completed using NASA STD 7009 Standard for Models and Simulation. The IMM has been internally validated by IMM personnel but has not been validated by an independent body external to the IMM Project. 2. To support a continued dialogue between the ISS PRA and IMM teams. To ensure accurate data interpretation, and that IMM output format and content meets the needs of the ISS Risk Management Office and ISS PRA Model, periodic discussions are anticipated between the risk teams. 3. To help assess the differences between the current ISS PRA and IMM medical risk forecasts of EVAC and LOCL. Follow-on activities are anticipated based on the differences between the current ISS PRA medical risk data and the latest medical risk data produced by IMM.
ISS Expedition 42 / 43 Soyuz Rollout
2014-11-26
NASA TV (NTV) video file of ISS Expedition 42 / 43 Soyuz Spacecraft rollout on a train to the launch pad by the Baikonur Cosmodrome in Kazakhstan. Includes footage of the rollout, the rocket being raised to upright position and interviews with Astronaut Mike Fossum, ISS Assistant Director of Operations and Astronaut Sunita Williams.
NASA Technical Reports Server (NTRS)
Marshburn, Thomas; Whitmore, Mihriban; Ortiz, Rosie; Segal, Michele; Smart, Kieran; Hughes, Catherine
2003-01-01
Emergency medical capabilities aboard the ISS include a Crew Medical Officer (CMO) (not necessarily a physician), and back-up, resuscitation equipment, and a medical checklist. It is essential that CMOs have reliable, usable and informative medical protocols that can be carried out independently in flight. The study evaluates the existing ISS Medical Checklist layout against a checklist updated to reflect a human factors approach to structure and organization. Method: The ISS Medical checklist was divided into non-emergency and emergency sections, and re-organized based on alphabetical and a body systems approach. A desk-top evaluation examined the ability of subjects to navigate to specific medical problems identified as representative of likely non-emergency events. A second evaluation aims to focus on the emergency section of the Medical Checklist, based on the preliminary findings of the first. The final evaluation will use Astronaut CMOs as subjects comparing the original checklist against the updated layout in the task of caring for a "downed crewmember" using a Human Patient Simulator [Medical Education Technologies, Inc.]. Results: Initial results have demonstrated a clear improvement of the re-organized sections to determine the solution to the medical problems. There was no distinct advantage for either alternative, although subjects stated having a preference for the body systems approach. In the second evaluation, subjects will be asked to identify emergency medical conditions, with measures including correct diagnosis, time to completion and solution strategy. The third evaluation will compare the original and fully updated checklists in clinical situations. Conclusions: Initial findings indicate that the ISS Medical Checklist will benefit from a reorganization. The present structure of the checklist has evolved over recent years without systematic testing of crewmember ability to diagnose medical problems. The improvements are expected to enable ISS Crewmembers to more speedily and accurately respond to medical situations on the ISS.
NASA Technical Reports Server (NTRS)
Carter-Journet, Katrina; Clahoun, Jessica; Morrow, Jason; Duncan, Gary
2012-01-01
The National Aeronautics and Space Administration (NASA) originally designed the International Space Station (ISS) to operate until 2015, but have extended operations until at least 2020. As part of this very dynamic Program, there is an effort underway to simplify the certification of Commercial ]of ]the ]Shelf (COTS) hardware. This change in paradigm allows the ISS Program to take advantage of technologically savvy and commercially available hardware, such as the iPad. The iPad, a line of tablet computers designed and marketed by Apple Inc., was chosen to support this endeavor. The iPad is functional, portable, and could be easily accessed in an emergency situation. The iPad Electronic Flight Bag (EFB), currently approved for use in flight by the Federal Aviation Administration (FAA), is a fraction of the cost of a traditional Class 2 EFB. In addition, the iPad fs ability to use electronic aeronautical data in lieu of paper in route charts and approach plates can cut the annual cost of paper data in half for commercial airlines. ISS may be able to benefit from this type of trade since one of the most important factors considered is information management. Emergency procedures onboard the ISS are currently available to the crew in paper form. Updates to the emergency books can either be launched on an upcoming visiting vehicle such as a Russian Soyuz flight or printed using the onboard ISS printer. In both cases, it is costly to update hardcopy procedures. A new operations concept was proposed to allow for the use of a tablet system that would provide a flexible platform to support space station crew operations. The purpose of the system would be to provide the crew the ability to view and maintain operational data, such as emergency procedures while also allowing Mission Control Houston to update the procedures. The ISS Program is currently evaluating the safety risks associated with the use of iPads versus paper. Paper products can contribute to the flammability risk and require manual updates that take time away from research tasks. The ISS program has recently purchased three iPads for the astronauts and the certification has been approved. The crew is currently using the iPads onboard. The results of this analysis could be used to discern whether the iPad is a viable option for use in emergencies by assessing the risk posture through the development of a quantitative probabilistic risk assessment (PRA).
2017-07-17
In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
NASA Technical Reports Server (NTRS)
Minor, Robert
2002-01-01
Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.
Space to Ground: Who Doesn't Enjoy a Good View of Planet Earth?: 02/10/2017
2017-02-10
NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
An Evaluation of In-School Suspension Programs.
ERIC Educational Resources Information Center
Siskind, Theresa G.; And Others
Findings of a study that determined the effectiveness of the Berkeley County (South Carolina) in-school suspension (ISS) program are presented in this paper. Methodology involved personal interviews conducted with the ISS director and ISS teacher in 8 middle and 8 high schools in the county, a total of 16 principals and 16 teachers. Findings…
McKinnon, Adam D; Ozanne-Smith, Joan; Pope, Rodney
2009-05-01
Injury prevention guided by robust injury surveillance systems (ISS's) can effectively reduce military injury rates, but ISS's depend on human interaction. This study examined experiences and requirements of key users of the Australian Defence Force (ADF) ISS to determine whether the operation of the ISS was optimal, whether there were any shortcomings, and if so, how these shortcomings might be addressed. Semistructured interviews were conducted with 18 Australian Defence Department participants located throughout Australia. Grounded theory methods were used to analyze data by developing an understanding of processes and social phenomena related to injury surveillance systems within the military context. Interviews were recorded and professionally transcribed and information contained in the transcripts was analyzed using NVivo. Key themes relating to the components of an injury surveillance system were identified from the analysis. A range of processes and sociocultural factors influence the utility of military ISS's. These are discussed in detail and should be considered in the future design and operation of military ISS's to facilitate optimal outcomes for injury prevention.
ISS Expedition 42 Crew Profiles - Version 01
2014-11-14
Narrated program with biographical information about ISS Expedition 42 crewmembers Terry Virts, Samantha Cristoforetti and Anton Shjaplerov. The program covers the crewmember's career including childhood photographs; footage from previous missions; and interview sound bites.
Tohira, Hideo; Jacobs, Ian; Mountain, David; Gibson, Nick; Yeo, Allen
2011-01-01
The Abbreviated Injury Scale (AIS) was revised in 2005 and updated in 2008 (AIS 2008). We aimed to compare the outcome prediction performance of AIS-based injury severity scoring tools by using AIS 2008 and AIS 98. We used all major trauma patients hospitalized to the Royal Perth Hospital between 1994 and 2008. We selected five AIS-based injury severity scoring tools, including Injury Severity Score (ISS), New Injury Severity Score (NISS), modified Anatomic Profile (mAP), Trauma and Injury Severity Score (TRISS) and A Severity Characterization of Trauma (ASCOT). We selected survival after injury as a target outcome. We used the area under the Receiver Operating Characteristic curve (AUROC) as a performance measure. First, we compared the five tools using all cases whose records included all variables for the TRISS (complete dataset) using a 10-fold cross-validation. Second, we compared the ISS and NISS for AIS 98 and AIS 2008 using all subjects (whole dataset). We identified 1,269 and 4,174 cases for a complete dataset and a whole dataset, respectively. With the 10-fold cross-validation, there were no clear differences in the AUROCs between the AIS 98- and AIS 2008-based scores. With the second comparison, the AIS 98-based ISS performed significantly worse than the AIS 2008-based ISS (p<0.0001), while there was no significant difference between the AIS 98- and AIS 2008-based NISSs. Researchers should be aware of these findings when they select an injury severity scoring tool for their studies.
Expedition 8 Crew Interviews: C. Michael Foale - CDR
NASA Technical Reports Server (NTRS)
2003-01-01
C. Michael Foale, Commander of the Expedition 8 crew to the International Space Station (ISS), answers interview questions in this video. The questions cover: 1) The goals of the Expedition; 2) How his Mir experience prepared him for long-duration spaceflight; 3) The reaction the Columbia accident where he was training in Star City, Russia; 4) Why the rewards of spaceflight are worth the risks; 5) Why he wanted to become an astronaut; 6) His career path; 7) His influences; 8) His path of study; 9) His responsibilities on a mission; 10) What a Soyuz capsule is like; 11) What the oncoming and offgoing ISS crews will do together; 12) How the ISS science mission will be advanced during his stay; 13) Training and plans for extravehicular activity (EVA); 14) Return to Flight of Shuttle; 15) What is needed to make his mission a success; 16) The most valuable contribution of the ISS.
ISS Expedition 43 Soyuz Rollout
2015-04-06
NASA TV (NTV) video file of ISS Expedition 43 Soyuz rollout to launch pad. Includes footage of the rollout by train; Rocket hoisted into upright position; interview with Bob Behnken, Chief of Astronaut Office; Dr. John Charles, chief of the International Science Office of NASA's Human Research Program , Johnson Space Center; and family and friends speaking with and saying goodbye to ISS Expedition 43 - 46 One Year crewmember Scott Kelly .
NASA Technical Reports Server (NTRS)
Benavides, Jose
2017-01-01
SPHERES/Astrobee Working Group (SAWG) Quarterly meeting. Membership includes MIT, FIT, AFS, DARPA, CASIS, SJSU, and NASA (HQ, KSC, JSC, MSFC, and ARC)Face-to-Face, twice a year Purpose: Information sharing across the SPHERES community Program office shares National Lab Facility availability Status of resources (batteries, CO2 tanks, etc.), Overall Calendar (scheduled Test Sessions, up mass return), and Updates on new PD, Investigations, and ISS infrastructure. Provide the SPHERES community (PD, investigators, etc.) with up-to-date information to determine opportunities to use the NL Facility Discuss proposed changes updates to SPHERES Nat Lab which may be required to support a specific activity or research. Discuss specific support requests made to the ISS Office.
STS-113 Crew Interviews: Jim Wetherbee, Commander
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Commander Jim Wetherbee is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Wetherbee outlines his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what the importance of the primary payload (the P1 truss) will be. He also provides a detailed account of the three planned extravehicular activities (EVAs) and additional transfer duties. He ends by offering his thoughts on the success of the ISS as the second anniversary of continuous human occupation of the ISS approaches.
Onboard Short Term Plan Viewer
NASA Technical Reports Server (NTRS)
Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason
2011-01-01
Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.
ISS Expedition 42 Crew Profile, Version 2
2014-11-26
Narrated production with biographical information about ISS Expedition 42 crewmembers Barry "Butch" Wilmore, Alexander Samokutyaev, Elena Serova, Terry Virts, Anton Shkaplerov and Samantha Cristoforetti. The program covers the crewmember's career including childhood photographs, previous space missions and interview sound bites with the crewmembers.
Tohira, Hideo; Jacobs, Ian; Mountain, David; Gibson, Nick; Yeo, Allen
2011-01-01
The Abbreviated Injury Scale (AIS) was revised in 2005 and updated in 2008 (AIS 2008). We aimed to compare the outcome prediction performance of AIS-based injury severity scoring tools by using AIS 2008 and AIS 98. We used all major trauma patients hospitalized to the Royal Perth Hospital between 1994 and 2008. We selected five AIS-based injury severity scoring tools, including Injury Severity Score (ISS), New Injury Severity Score (NISS), modified Anatomic Profile (mAP), Trauma and Injury Severity Score (TRISS) and A Severity Characterization of Trauma (ASCOT). We selected survival after injury as a target outcome. We used the area under the Receiver Operating Characteristic curve (AUROC) as a performance measure. First, we compared the five tools using all cases whose records included all variables for the TRISS (complete dataset) using a 10-fold cross-validation. Second, we compared the ISS and NISS for AIS 98 and AIS 2008 using all subjects (whole dataset). We identified 1,269 and 4,174 cases for a complete dataset and a whole dataset, respectively. With the 10-fold cross-validation, there were no clear differences in the AUROCs between the AIS 98- and AIS 2008-based scores. With the second comparison, the AIS 98-based ISS performed significantly worse than the AIS 2008-based ISS (p<0.0001), while there was no significant difference between the AIS 98- and AIS 2008-based NISSs. Researchers should be aware of these findings when they select an injury severity scoring tool for their studies. PMID:22105401
Leadership and Cultural Challenges in Operating the International Space Station
NASA Technical Reports Server (NTRS)
Clement, J. L.; Ritsher, J. B.; Saylor, S. A.; Kanas, N.
2006-01-01
Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. ISS flight controllers have had to find ways to maintain effective team performance in this challenging new context. The goal of this study was to systematically identify and evaluate the major leadership and cultural challenges faces by ISS flight controllers, and to highlight the approaches that they have found most effective to surmount these challenges. We conducted a qualitative survey using a semi-structured interview. Subjects included 14 senior NASA flight controllers who were chosen on the basis of having had substantial experience working with international partners. Data were content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted some new analyses of data from a previous questionnaire study of Russian and American ISS mission control personnel. The interview data showed that respondents had substantial consensus on several leadership and cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Surprisingly few respondents offered strategies for addressing the challenge of working with team members whose native language is not American English. The questionnaire data showed that Americans think it is more important than Russians that mission control personnel speak the same dialect of one shared common language. Although specific to the ISS program, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future ISS flight controllers.
Expedition 8 Crew Interviews: Alexander Y. Kaleri - FE
NASA Technical Reports Server (NTRS)
2003-01-01
Russian cosmonaut Alexander Y. Kaleri, Flight Engineer on Expedition 8 to the International Space Station (ISS), answers interview questions on this video, either himself or with the help of an interpreter. The questions cover: 1) The goal of the expedition; 2) The place in history of Mir; 3) The reaction to the loss of Columbia in Houston; 4) Why the rewards of spaceflight are worth the risks; 5) Why he decided to become a cosmonaut; 6) His memory of Yuri Gagarin's first flight; 7) What happens on a Soyuz capsule during launch and flight; 8) Are Soyuz maneuvers automatic or manual; 8) How the ISS science mission will be advanced during his stay; 9) The responsibilities of a Flight Engineer onboard the ISS; 10) Extravehicular activity (EVA) plans at that time; 11) The Shuttle Return to Flight and his preference for a Shuttle or Soyuz landing; 12) Why the last Soyuz landing was too rough; 13) The most valueable contribution of the ISS program.
Visiting Vehicle Ground Trajectory Tool
NASA Technical Reports Server (NTRS)
Hamm, Dustin
2013-01-01
The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.
STS-105 Flight Day 5 Highlights
NASA Technical Reports Server (NTRS)
2001-01-01
On this fifth day of the STS-105 mission, the transfer of supplies from the Leonardo Multipurpose Logistics Module to the International Space Station (ISS) and the handover of control of the ISS from the Expedition 2 crew (Yuriy Usachev, Jim Voss, and Susan Helms) to the Expedition 3 crew (Frank Culbertson, Jr., Mikhail Turin, and Vladimir Dezhurov) continue. Commanders Usachev and Culbertson answer questions about the ISS in an on-orbit interview, and the Expedition 3 crewmembers give a video tour of their new sleeping quarters on the ISS. The north Pacific Ocean and the United States Pacific northwest are seen from space.
Extending the International Space Station Life and Operability
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Sparks, Ray N.; Wickline, Thomas W.; Zoller, David A.
2012-01-01
The International Space Station (ISS) is in an operational configuration with final assembly complete. To fully utilize ISS and extend the operational life, it became necessary to upgrade and extend the onboard systems with the Obsolescence Driven Avionics Redesign (ODAR) project. ODAR enabled a joint project between the Johnson Space Center (JSC) and Marshall Space Flight Center (MSFC) focused on upgrading the onboard payload and Ku-Band systems, expanding the voice and video capabilities, and including more modern protocols allowing unprecedented access for payload investigators to their on-orbit payloads. The MSFC Huntsville Operations Support Center (HOSC) was tasked with developing a high-rate enhanced Functionally Distributed Processor (eFDP) to handle 300Mbps Return Link data, double the legacy rate, and incorporate a Line Outage Recorder (LOR). The eFDP also provides a 25Mbps uplink transmission rate with a Space Link Extension (SLE) interface. HOSC also updated the Payload Data Services System (PDSS) to incorporate the latest Consultative Committee for Space Data Systems (CCSDS) protocols, most notably the use of the Internet Protocol (IP) Encapsulation, in addition to the legacy capabilities. The Central Command Processor was also updated to interact with the new onboard and ground capabilities of Mission Control Center -- Houston (MCC-H) for the uplink functionality. The architecture, implementation, and lessons learned, including integration and incorporation of Commercial Off The Shelf (COTS) hardware and software into the operational mission of the ISS, is described herein. The applicability of this new technology provides new benefits to ISS payload users and ensures better utilization of the ISS by the science community
STS-106 Expedition 2 Crew Interview: Jim Voss
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 2 (the second resident crew of the International Space Station) Flight Engineer Jim Voss is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the Space Shuttle mission and goals, including information on the spacewalks and transfer of Expedition crews, and discusses his upcoming stay on the International Space Station (ISS). Voss gives his thoughts on the international cooperation needed to successfully construct the ISS and some of the scientific experiments that will take place on the station.
Expedition 2 Crew Interview: Susan Helms
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 2 (the second resident crew of the International Space Station) Flight Engineer Susan Helms is seen being interviewed. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the Space Shuttle mission and goals, including information on the spacewalks and transfer of Expedition crews, and discusses her upcoming stay on the International Space Station (ISS). Helms gives her thoughts on the international cooperation needed to successfully construct the ISS and some of the scientific experiments that will take place on the station.
Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited
NASA Technical Reports Server (NTRS)
Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.
2010-01-01
Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.
2012-09-19
CAPE CANAVERAL, Fla. -- NASA's Commercial Crew Program, or CCP, hosts a pre-proposal conference to inform prospective companies about the recently released request for contract proposals and updates to the certification requirements for crewed missions to the International Space Station, or ISS. The two-phase certification process, called Certification Products Contract, or CPC, will enable NASA to eventually purchase service missions to fly astronauts to and from the ISS. From left, Ed Mango, CCP's program manager Steve Janney, CPC contracting officer Maria Collura, CCP certification manager Tom Simon, CPC Evaluation Team chair Brent Jett, CCP deputy program manager and Kathy Lueders, manager of the ISS Transportation Integration Office. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett
2012-09-19
CAPE CANAVERAL, Fla. -- NASA's Commercial Crew Program, or CCP, hosts a pre-proposal conference to inform prospective companies about the recently released request for contract proposals and updates to the certification requirements for crewed missions to the International Space Station, or ISS. The two-phase certification process, called Certification Products Contract, or CPC, will enable NASA to eventually purchase service missions to fly astronauts to and from the ISS. From left, Ed Mango, CCP's program manager Steve Janney, CPC contracting officer Maria Collura, CCP certification manager Tom Simon, CPC Evaluation Team chair Brent Jett, CCP deputy program manager and Kathy Lueders, manager of the ISS Transportation Integration Office. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett
STS-113 Crew Interviews: John Herrington, Mission Specialist 2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Mission Specialist 2 John Herrington is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path, as well as his thoughts on becoming the first Native American in space. He gives details on the mission's goals and significance, which include the transfer of the International Space Station's (ISS) Expedition 6 crew for the Expedition 5 crew, as well as the installation of the ISS's P-1 integrated truss structure. Herrington, who will participate in three EVAs (extravehicular activity), provides details on the installation of the truss structure. He also describes the process of crew transfer, which also involves the transfer of soft goods and scientific experiments, such as the MEMS (microelectromechanical systems)-based Picosatellite Inspector (MEPSI) which will be ejected from the shuttle shortly after it undocks from the ISS.
STS-112 Crew Interviews: Ashby
NASA Technical Reports Server (NTRS)
2002-01-01
STS-112 Mission Commander Jeffrey Ashby is seen during this preflight interview, answering questions about his inspiration in becoming an astronaut and his career path and provides an overview of the mission. Ashby outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S1 truss) and the importance that the S1 truss will have in the development of the International Space Station (ISS). Ashby discusses the delivery and installation of the S1 truss scheduled to be done in the planned EVAs in some detail. He touches on the use and operation of the Canadarm 2 robotic arm in this process and outlines what supplies will be exchanged with the resident crew of the ISS during transfer activities. He ends with his thoughts on the value of the ISS in fostering international cooperation.
STS-111 Crew Interviews: Phillippe Perrin, Mission Specialist 1
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Specialist 1 Phillippe Perrin is seen during this preflight interview, where he gives a quick overview of his mission before answering questions about his inspiration to become an astronaut and his career path. Perrin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes what the crew exchange will be like (transferring the Expedition 5 crew in place of the Expedition 4 crew on the International Space Station (ISS)) and the payloads (Mobile Base System (MBS) and the Leonardo Multi-Purpose Logistics Module). Perrin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the ISS. He also provides his thoughts about the significance of the mission to France and the value of the ISS.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Expedition 4 Crew Interviews: Carl Walz
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 4 Flight Engineer Carl Walz is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Walz ends with his thoughts on the short-term and long-term future of the International Space Station.
Expedition 4 Crew Interviews: Yury I. Onufrienko
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 4 Commander Yury Onufrienko is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Onufrienko ends with his thoughts on the short-term and long-term future of the International Space Station.
Expedition 4 Crew Interviews: Dan Bursch
NASA Technical Reports Server (NTRS)
2001-01-01
Expedition 4 Flight Engineer Dan Bursch is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Bursch ends with his thoughts on the short-term and long-term future of the International Space Station.
NASA Technical Reports Server (NTRS)
Clement, James L.; Ritsher, Jennifer Boyd; Saylor, Stephanie A.; Kanas, Nick
2006-01-01
The International Space Station (ISS) is operated by a multi-national, multi-organizational team that is dispersed across multiple locations, time zones, and work schedules. At NASA, both junior and senior mission control personnel have had to find ways to address the leadership challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to examine the major leadership challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount them. We pay particular attention to the approaches successfully employed by the senior personnel and to the training needs identified by the junior personnel. We also evaluate the extent to which responses are consistent across the junior and senior samples. Further, we compare the issues identified by our interview survey to those identified by a standardized questionnaire survey of mission control personnel and a contrasting group of space station crewmembers. We studied a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior ISS controllers. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted new analyses of data from a previous questionnaire study of 13 American astronauts, 17 Russian cosmonauts, and 150 U.S. and 36 Russian mission control personnel supporting the ISS or Mir space stations. The interview data showed that the survey respondents had substantial consensus on several leadership challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Interview data from the junior respondents will be presented for the first time at the meeting. The questionnaire data showed that the US mission control sample reported a level of support from their management that compared favorably to national norms. American mission control personnel and Russian crewmembers reported higher supervisor support than American crewmembers and Russian mission control personnel. We will present the specific issues underlying these findings and compare and contrast the results from the two datasets. Although specific to space station personnel, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future mission control personnel.
International Space Station Acoustics - A Status Report
NASA Technical Reports Server (NTRS)
Allen, Christopher S.; Denham, Samuel A.
2011-01-01
It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.
Space-to-Ground: Upgrading the Outpost:03/30/2018
2018-03-29
ISS crewmembers wrapped up a spacewalk and are now getting ready for a new delivery of science and research. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
International Research Results and Accomplishments From the International Space Station
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will continue to contribute to the science literature in a way that helps to formulate new hypotheses and conclusions that will enable science advancements across a wide range of scientific disciplines both in space and on Earth.
2012-06-27
ISS031-E-146306 (27 June 2012) --- An Expedition 31 crew member aboard the International Space Station, flying approximately 240 miles (386 kilometers) above Earth, captured this view of the Fontenelle fire on June 27, 2012. The fire, burning in Wyoming 18 miles (29 kilometers) west of Big Piney, was discovered on June 24. [Editor?s update --- By the morning of June 28, the fire had burned 25,000 acres (101 square kilometers). By July 6, the area burned had more than doubled to 57,324 acres (232 square kilometers), and the fire was 25 percent contained].
STS-112 Crew Interviews - Magnus
NASA Technical Reports Server (NTRS)
2002-01-01
STS-112 Mission Specialist 2 Sandra H. Magnus is seen during a prelaunch interview. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the mission's goals, the most significant of which will be the installation of the S-1 truss structure on the International Space Station (ISS). The installation, one in a series of truss extending missions, will be complicated and will require the use of the robotic arm as well as extravehicular activity (EVA) by astronauts. Magnus also describes her function in the performance of transfer operations. Brief descriptions are given of experiments on board the ISS as well as on board the Shuttle.
Space-to-Ground: Rocket and Groot: 01/12/2018
2018-01-11
The SpaceX Dragon will depart the station...it's always growing season on ISS...and "Rocket and Groot" powers a student challenge! NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
Expedition 43 Crew Final Exams in Russia
2015-03-13
NASA Video File of ISS Expedition 43 final exams in Russia on March 5, 2015 with crewmembers Scott Kelly, Gennady Padalka, and Mikhail Kornienko; and backup crew Jeff Williams, Sergei Volkov and Alexei Ovchinin. Includes footage of final qualification training at the Gagarin Cosmonaut Training Center (GCTC); interview with Emily Nelson, ISS Expedition 46 Lead Flight Director; and scenes from the qualification training.
NASA Technical Reports Server (NTRS)
Bach, David A.; Hasbrook, Peter V.; BBrand, Susan N.
2012-01-01
Following the failure of 44P on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the ISS ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment replanning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28S, the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority, with the Increment pairs 29 and 30, and 31 and 32 reaching the milestone of at least 35 hours per week average utilization.
Reiter conducts EVA tool config in Node 1 / Unity module
2006-11-16
ISS014-E-08055 (16 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, takes inventory of hardware during an Information Management System (IMS) update in the Unity node of the International Space Station.
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Lammers, Michael L.
2004-01-01
The Global Positioning System Subsystem (GPS) for International Space Station (ISS) was activated April 12,2002 following the installation of the SO truss segment that included the GPS antennas on Shuttle mission STS-110. The ISS GPS receiver became the primary source for position, velocity, and attitude information for ISS two days after activation. The GPS receiver also provides a time reference for manual control of ISS time, and will be used for automatic time updates after problems are resolved with the output from the receiver. After two years of on-orbit experience, the GPS continues to be used as the primary navigation source for ISS; however, enough problems have surfaced that the firmware in the GPS attitude code has had to be totally rewritten and new algorithms developed, the firmware that processed the time output from the GPS receiver had to be rewritten, while the GPS navigation code has had minor revisions. The factors contributing to the delivery of a GPS receiver for use on ISS that requires extensive operator intervention to function are discussed. Observations from two years worth of GPS solutions will also be discussed. The technical solutions to the anomalous GPS receiver behavior will be discussed.
STS-114 Crew Interview: James M. Kelly, PLT
NASA Technical Reports Server (NTRS)
2003-01-01
Pilot James M. Kelly, Lieutenant Colonel USAF, is shown during a prelaunch interview. He expresses the major goals of the mission which are to replace the Expedition Six crew of the International Space Station (ISS), install the Raffello Multi-Purpose Logistics Module, deliver the External Stowage Platform to the ISS, and replace the Control Moment Gyroscope (CMG). The major task that he has is to be the backup pilot for Commander Eileen Collins. He talks about the three new research racks brought up to the International Space Station inside the U.S. Destiny Laboratory along with the Window Observational Research Facility (WORF), Human Research Facility 2 (HRF-2), and a Minus Eighty Degree Laboratory Freezer (MELF-1). Kelly also explains how he uses the ISS' Robotic arm to lift the MPLM out of Atlantis' payload bay and attach it to the Unity node to unload hardware, supplies and maintenance items. This will be his second trip to the International Space Station.
Space station astronauts discuss life in space during AGU interview
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-07-01
Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”
STS-108 Crew Interviews: Mark Kelly
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Pilot Mark Kelly is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Kelly ends with his thoughts on the short-term and long-term future of the International Space Station.
STS-108 Crew Interviews: Linda Godwin
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Linda Godwin is seen during a prelaunch interview. She answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. She gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), her role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how she will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Godwin ends with her thoughts on the short-term and long-term future of the International Space Station.
STS-108 Crew Interviews: Dom Gorie
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Commander Dom Gorie is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Gorie ends with his thoughts on the short-term and long-term future of the International Space Station.
STS-108 Crew Interviews: Dan Tani
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Dan Tani is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Tani ends with his thoughts on the short-term and long-term future of the International Space Station.
Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.
2010-01-01
OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.
Aeromedical Disposition and Waiver Consideration for ISS Crewmembers
NASA Technical Reports Server (NTRS)
Taddeo, Terrance
2012-01-01
Aeromedical certification of astronauts and cosmonauts traveling to the International Space Station is a multi?-tiered process that involv es standards agreed to by the partner agencies, and participation by the individual agency aeromedical boards and a multilateral space medi cine board. Medical standards are updated continually by a multilater al working group. The boards operate by consensus and strive to achie ve effective decision making through experience, medical judgment, medical evidence and risk modeling. The aim of the certification process is to minimize the risk to the ISS program of loss of mission object ives due to human health issues.
NASA Technical Reports Server (NTRS)
Bach, David A.; Brand, Susan N.; Hasbrook, Peter V.
2013-01-01
Following the failure of 44 Progress (44P) on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the International Space Station (ISS) ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment re-planning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28 Soyuz (28S), the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority; both Increment pairs 29 and 30, and Increment 31 and 32 reaching the milestone of at least 35 hours per week average utilization.
NASA Astrophysics Data System (ADS)
Bach, David A.; Brand, Susan N.; Hasbrook, Peter V.
2013-09-01
Following the failure of 44 Progress (44P) on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the International Space Station (ISS) ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed.Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment re-planning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS.After the successful launches and dockings of both 45P and 28 Soyuz (28S), the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority; both Increment pairs 29 and 30, and Increment 31 and 32 reaching the milestone of at least 35 hours per week average utilization.
Robonaut 2 on the International Space Station: Status Update and Preparations for IVA Mobility
NASA Technical Reports Server (NTRS)
Ahlstrom, Thomas D.; Diftler, Myron E.; Berka, Reginald B.; Badger, Julia M.; Yayathi, Sandeep; Curtis, Andrew W.; Joyce, Charles A.
2013-01-01
Robotics engineers, ground controllers and International Space Station (ISS) crew have been running successful experiments using Robonaut 2 (R2) on-board the ISS for more than a year. This humanoid upper body robot continues to expand its list of achievements and its capabilities to safely demonstrate maintenance and servicing tasks while working alongside human crewmembers. The next phase of the ISS R2 project will transition from a stationary Intra Vehicular Activity (IVA) upper body using a power/data umbilical, to an IVA mobile system with legs for repositioning, a battery backpack power supply, and wireless communications. These upgrades will enable the R2 team to evaluate hardware performance and to develop additional control algorithms and control verification techniques with R2 inside the ISS in preparation for the Extra Vehicular Activity (EVA) phase of R2 operations. As R2 becomes more capable in assisting with maintenance tasks, with minimal supervision, including repositioning itself to different work sites, the ISS crew will be burdened with fewer maintenance chores, leaving them more time to conduct other activities. R2's developers at the Johnson Space Center (JSC) are preparing the R2 IVA mobility hardware and software upgrades for delivery to the ISS in late 2013. This paper summarizes R2 ISS achievements to date, briefly describes the R2 IVA mobility upgrades, and discusses the R2 IVA mobility objectives and plans.
Psychological Selection of NASA Astronauts for International Space Station Missions
NASA Technical Reports Server (NTRS)
Galarza, Laura
1999-01-01
During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.
LITES and GROUP-C Mission Update: Ionosphere and Thermosphere Sensing from the ISS
NASA Astrophysics Data System (ADS)
Stephan, A. W.; Budzien, S. A.; Chakrabarti, S.; Hysell, D. L.; Powell, S. P.; Finn, S. C.; Cook, T.; Bishop, R. L.
2016-12-01
The Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiments are scheduled for launch to the International Space Station (ISS) in November 2016 as part of the Space Test Program Houston #5 payload (STP-H5). The two experiments provide technical development and risk-reduction for future space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. The combined instrument suite of these experiments offers a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor and tomographic approaches. LITES is an imaging spectrograph that spans 60-140 nm and continuously acquires limb profiles of the ionosphere and thermosphere from 150-350 km altitude. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients and an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements. High-cadence limb images and nadir photometry from GROUP-C/LITES are combined to tomographically reconstruct high-fidelity two-dimensional volume emission rates within the ISS orbital plane. The GPS occultation receiver provides independent measurements to calibrate and validate advanced daytime ionospheric algorithms and nighttime tomography. The vantage from the ISS on the lower portion of the thermosphere and ionosphere will yield measurements complementary to the NASA GOLD and ICON missions which are expected to fly during the STP-H5 mission. We present a mission status update and available early orbit observations, and the opportunities for using these new data to help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere system that have important implications for operational systems.
Space-to-Ground: A Stunning Launch: 08/04/2017
2017-08-03
Three new crew members are on the ISS, several crew members jumped into research mode, and with a new crew onboard, it's time to follow their mission on social media. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
jsc2017m000462_Space-to-Ground_186_170727
2017-07-27
Three new crew members are scheduled to launch to the ISS. The crew worked on the Capillary Structures Experiment. And what do astronauts do when they're not working? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
STS-110 Crew Interview: Mike Bloomfield
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Commander Mike Bloomfield is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Bloomfield outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Bloomfield discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interviews: Lee Morin
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Lee Morin is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Morin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Morin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interview: Rex Walheim
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Rex Walheim is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Walheim outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Walheim discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interviews: Ellen Ochoa
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Ellen Ochoa is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Ochoa outlines her role in the mission in general, and specifically her use of the robotic arm during the extravehicular activities (EVAs). She describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Ochoa discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). She ends with thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interview: Jerry Ross
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Jerry Ross is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Ross outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Ross discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-113 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lockhart outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the primary mission payload (the P1 truss) and the crew transfer activities (Expedition 6 crew will replace the Expedition 5 Crew). Lockhart discusses the planned EVAs in detail and mentions what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts about the importance of the ISS as the second anniversary of continuous human occupation of the space station approaches.
Expedition 5 Crew Interviews: Peggy Whitson
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 5 Flight Engineer Peggy Whitson is seen during a prelaunch interview. She gives details on the mission's goals and significance, her role in the mission, what her responsibilities will be, what the crew activities will be like (docking and undocking of two Progress unpiloted supply vehicles, normal space station maintenance tasks, conducting science experiments, installing the CETA (Crew and Equipment Translation) cart, and supporting the installation of the International Truss Structure S1 segment), the day-to-day life on an extended stay mission, the experiments she will be conducting on board, and what the S1 truss will mean to the International Space Station (ISS). Whitson ends with her thoughts on the short-term and long-term future of the ISS.
STS-110 Crew Interview: Stephen Frick
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Pilot Stephen Frick is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Frick outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Frick discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
STS-110 Crew Interviews: Steve Smith
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Steve Smith is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Smith outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Smith discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka;
2013-01-01
Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million teachers located in 49 countries have participated in some aspect of ISS educational activities. These activities include student-developed investigations, education competitions, and classroom versions of ISS investigations, participating in ISS investigator experiments, ISS hardware development, educational demonstrations, and cultural activities. Through the many inquiry-based educational activities, students and teachers are encouraged to participate in the ISS program thus motivating the next generation of students to pursue careers in STEM.
NASA Astrophysics Data System (ADS)
Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore
2014-10-01
Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million teachers located in 49 countries have participated in some aspect of ISS educational activities. These activities include student-developed investigations, education competitions and classroom versions of ISS investigations, participating in ISS investigator experiments, ISS hardware development, educational demonstrations and cultural activities. Through the many inquiry-based educational activities, students and teachers are encouraged to participate in the ISS program thus motivating the next generation of students to pursue careers in STEM.
STS-114 Flight Day 6 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.
NASA Technical Reports Server (NTRS)
Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. Examples of the highest pro le publications to date from each discipline will also be presented. As ISS research activities and operations continue, scientific data derived from earlier experiments will continuously be re-examined, refined, and assembled with new data and findings, including data from other fields never considered. New results will be produced, allowing breakthroughs in new areas of research and innovative solutions to problems on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will continue to contribute to the science literature in a way that helps to formulate new hypotheses and conclusions that will enable science advancements across a wide range of scientific disciplines both in space and on Earth.
Final Tier 2 Environmental Impact Statement for International Space Station
NASA Technical Reports Server (NTRS)
1996-01-01
The Final Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA!s participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.
Draft Tier 2 Environmental Impact Statement for International Space Station
NASA Technical Reports Server (NTRS)
1995-01-01
The Draft Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA's participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop a human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.
Jorge, Alexander A L; Funari, Mariana Fa; Nishi, Mirian Y; Mendonca, Berenice B
2010-12-01
Heterozygous SHOX defects are observed in about 50 to 90% of patients with Leri-Weill dyschondrosteosis (LWD), a common dominant inherited skeletal dysplasia; and in 2 to 15% of children with idiopathic short stature (ISS), indicating that SHOX defects are the most important monogenetic cause of short stature. In addition, children selected by disproportionate idiopathic short stature had a higher frequency of SHOX mutations (22%). A careful clinical evaluation of family members with short stature is recommended since it usually revealed LWD patients in families first classified as having ISS or familial short stature. SHOX-molecular analysis is indicated in families with LWD and ISS children with disproportionate short stature. Treatment with recombinant human growth hormone is considered an accepted approach to treat short stature associated with isolated SHOX defect. Here we review clinical, molecular and therapeutic aspects of SHOX haploinsufficiency.
Ground Operations of the ISS GNC Babb-Mueller Atmospheric Density Model
NASA Technical Reports Server (NTRS)
Brogan, Jonathan
2002-01-01
The ISS GNC system was updated recently with a new software release that provides onboard state determination capability. Prior to this release, only the Russian segment maintained and propagated the onboard state, which was periodically updated through Russian ground tracking. The new software gives the US segment the capability for maintaining the onboard state, and includes new GPS and state vector propagation capabilities. Part of this software package is an atmospheric density model based on the Babb-Mueller algorithm. Babb-Mueller efficiently mimics a full analytical density model, such as the Jacchia model. While lacchia is very robust and is used in the Mission Control Center, it is too computationally intensive for use onboard. Thus, Babb-Mueller was chosen as an alternative. The onboard model depends on a set of calibration coefficients that produce a curve fit to the lacchia model. The ISS GNC system only maintains one set of coefficients onboard, so a new set must be uplinked by controllers when the atmospheric conditions change. The onboard density model provides a real-time density value, which is used to calculate the drag experienced by the ISS. This drag value is then incorporated into the onboard propagation of the state vector. The propagation of the state vector, and therefore operation of the BabbMueller algorithm, will be most critical when GPS updates and secondary state vector sources fail. When GPS is active, the onboard state vector will be updated every ten seconds, so the propagation error is irrelevant. When GPS is inactive, the state vector must be updated at least every 24 hours, based on current protocol. Therefore, the Babb-Mueller coefficients must be accurate enough to fulfill the state vector accuracy requirements for at least one day. A ground operations concept was needed in order to manage both the on board Babb-Mueller density model and the onboard state quality. The Babb-Mueller coefficients can be determined operationally in two ways. The first method is to calibrate the coefficients in real-time, where a set of custom coefficients is generated for the real-time atmospheric conditions. The second approach is to generate pre-canned sets of coefficients that encompass the expected atmospheric conditions over the lifetime of the vehicle. These predetermined sets are known as occurrences. Even though a particular occurrence will not match the true atmospheric conditions, the error will be constrained by limiting the breadth of each occurrence. Both methods were investigated and the advantages and disadvantages of each were considered. The choice between these implementations was a trade-off between the additional accuracy of the real-time calibration and the simpler development for the approach using occurrences. The operations concept for the frequency of updates was also explored, and depends on the deviation in solar flux that still achieves the necessary accuracy of the coefficients. This was determined based on historical solar flux trends. This analysis resulted in an accurate and reliable implementation of the Babb-Mueller coefficients and how flight controllers use them during realtime operations.
Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies
NASA Technical Reports Server (NTRS)
Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.
2016-01-01
The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture to where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publicatoin5, in 2006 development was started to baseline Extra- Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency EVA preparation team structure, approach, goals, and the resources allocated to its work after the 2010 events. Finally, the authors will overview the implementation of these updates in addressing failures onboard the ISS in 2012, 2013, and 2014. The successful use of the updated approaches, and the application of the approaches to other spacewalks, will demonstrate the effectiveness of this additional work and make a case for putting significant time and resources into pre-failure planning and analysis for critical hardware items on human-tended spacecraft.
Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies
NASA Technical Reports Server (NTRS)
Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.
2016-01-01
The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publication, in 2006 development was started to baseline Extra-Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency EVA preparation team structure, approach, goals, and the resources allocated to its work after the 2010 events. Finally, the authors will overview the implementation of these updates in addressing failures onboard the ISS in 2012, 2013, and 2014. The successful use of the updated approaches, and the application of the approaches to other spacewalks, will demonstrate the effectiveness of this additional work and make a case for putting significant time and resources into pre-failure planning and analysis for critical hardware items on human-tended spacecraft.
STS-98 Crew Interview: Tom Jones
NASA Technical Reports Server (NTRS)
2001-01-01
The STS-98 Mission Specialist Tom Jones is seen being interviewed. He answers questions about his inspiration to become an astronaut, his career path, and his training. He gives details on the mission's goals and significance, and the payload and hardware it brings to the International Space Station (ISS). Mr. Jones discusses his role in the mission's spacewalks and activities.
STS-113 Crew Interviews: Michael Lopez-Alegria, Mission Specialist 1
NASA Technical Reports Server (NTRS)
2002-01-01
STS-113 Mission Specialist 1 Michael Lopez-Alegria is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lopez-Alegria outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (P1 truss) and the crew transfer activities (the crew of Expedition Six is replacing the crew of Expedition Five on the International Space Station (ISS)). Lopez-Alegria discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew. He ends with his thoughts on the importance of the ISS as the second anniversary of human occupation of the Space Station approaches.
Kennedy Space Center Director Update
2014-03-06
CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with Trent Smith, program manager, and Tammy Belk, a program specialist, at the ISS Ground Processing and Research Office display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
2003-03-01
Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under
Adaptive System Modeling for Spacecraft Simulation
NASA Technical Reports Server (NTRS)
Thomas, Justin
2011-01-01
This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).
NASA Technical Reports Server (NTRS)
Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.
2011-01-01
This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.
International Space Station Noise Constraints Flight Rule Process
NASA Technical Reports Server (NTRS)
Limardo, Jose G.; Allen, Christopher S.; Danielson, Richard W.
2014-01-01
Crewmembers onboard the International Space Station (ISS) live in a unique workplace environment for as long as 6 -12 months. During these long-duration ISS missions, noise exposures from onboard equipment are posing concerns for human factors and crewmember health risks, such as possible reductions in hearing sensitivity, disruptions of crew sleep, interference with speech intelligibility and voice communications, interference with crew task performance, and reduced alarm audibility. The purpose of this poster is to describe how a recently-updated noise constraints flight rule is being used to implement a NASA-created Noise Exposure Estimation Tool and Noise Hazard Inventory to predict crew noise exposures and recommend when hearing protection devices are needed.
Robonaut 2 - Building a Robot on the International Space Station
NASA Technical Reports Server (NTRS)
Diftler, Myron; Badger, Julia; Joyce, Charles; Potter, Elliott; Pike, Leah
2015-01-01
In 2010, the Robonaut Project embarked on a multi-phase mission to perform technology demonstrations on-board the International Space Station (ISS), showcasing state of the art robotics technologies through the use of Robonaut 2 (R2). This phased approach implements a strategy that allows for the use of ISS as a test bed during early development to both demonstrate capability and test technology while still making advancements in the earth based laboratories for future testing and operations in space. While R2 was performing experimental trials onboard the ISS during the first phase, engineers were actively designing for Phase 2, Intra-Vehicular Activity (IVA) Mobility, that utilizes a set of zero-g climbing legs outfitted with grippers to grasp handrails and seat tracks. In addition to affixing the new climbing legs to the existing R2 torso, it became clear that upgrades to the torso to both physically accommodate the climbing legs and to expand processing power and capabilities of the robot were required. In addition to these upgrades, a new safety architecture was also implemented in order to account for the expanded capabilities of the robot. The IVA climbing legs not only needed to attach structurally to the R2 torso on ISS, but also required power and data connections that did not exist in the upper body. The climbing legs were outfitted with a blind mate adapter and coarse alignment guides for easy installation, but the upper body required extensive rewiring to accommodate the power and data connections. This was achieved by mounting a custom adapter plate to the torso and routing the additional wiring through the waist joint to connect to the new set of processors. In addition to the power and data channels, the integrated unit also required updated electronics boards, additional sensors and updated processors to accommodate a new operating system, software platform, and custom control system. In order to perform the unprecedented task of building a robot in space, extensive practice sessions and meticulous procedures were required. Since crew training time is at a premium, the R2 team took a skills-based training approach to ensure the astronauts were proficient with a basic skill set while refining the detailed procedures over several practice sessions and simulations. In addition to the crew activities, meticulous ground procedures were required in order to upgrade firmware on the upper body motor drivers. The new firmware for the IVA mobility unit needed to be deployed using the old software system. This also provided an opportunity to upgrade the upper body joints with new software and allowed for limited insight into the success of the updates. Complete verification that the updated firmware was successfully loaded was not confirmed until the rewiring of the upper body torso was complete.
Skaga, Nils O; Eken, Torsten; Hestnes, Morten; Jones, J Mary; Steen, Petter A
2007-01-01
Although several changes were implemented in the 1998 update of the abbreviated injury scale (AIS 98) versus the previous AIS 90, both are still used worldwide for coding of anatomic injury in trauma. This could possibly invalidate comparisons between systems using different AIS versions. Our aim was to evaluate whether the use of different coding dictionaries affected estimation of Injury Severity Score (ISS), New Injury Severity Score (NISS) and probability of survival (Ps) according to TRISS in a hospital-based trauma registry. In a prospective study including 1654 patients from Ulleval University Hospital, a Norwegian trauma referral centre, patients were coded according to both AIS 98 and AIS 90. Agreement between the classifications of ISS, NISS and Ps according to TRISS methodology was estimated using intraclass correlation coefficients (ICC) with 95% CI. ISS changed for 378 of 1654 patients analysed (22.9%). One hundred and forty seven (8.9%) were coded differently due to different injury descriptions and 369 patients (22.3%) had a change in ISS value in one or more regions due to the different scoring algorithm for skin injuries introduced in AIS 98. This gave a minimal change in mean ISS (14.74 versus 14.54). An ICC value of 0.997 (95% CI 0.9968-0.9974) for ISS indicates excellent agreement between the scoring systems. There were no significant changes in NISS and Ps. There was excellent agreement for the overall population between ISS, NISS and Ps values obtained using AIS 90 and AIS 98 for injury coding. Injury descriptions for hypothermia were re-introduced in the recently published AIS 2005. We support this change as coding differences due to hypothermia were encountered in 4.3% of patients in the present study.
International Space Station Acoustics - A Status Report
NASA Technical Reports Server (NTRS)
Allen, Christopher S.
2015-01-01
It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.
Expedition 6 Crew Interviews: Ken Bowersox CDR
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 Commander Ken Bowersox is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be as commander, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what day-to-day life on an extended stay mission is like. Bowersox also discusses in some detail the planned extravehicular activities (EVAs), the anticipated use of the robot arms in installing the P1 truss and the on-going science experiments which will be conducted by the Expedition 6 crew. He touches on challenges posed by a late change in the crew roster. Bowersox ends with his thoughts on the value on the ISS in fostering international cooperation.
STS-114 Crew Interview: Soichi Noguchi
NASA Technical Reports Server (NTRS)
2003-01-01
Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.
NASA Technical Reports Server (NTRS)
Newswander, Daniel; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.
2014-01-01
The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, was introduced last August (2013) during Technical Session V: From Earth to Orbit of the 27th Annual AIAA/USU Conference on Small Satellites. Cyclops is a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense (DoD) Space Test Program (STP) communities to develop a dedicated 50-100 kg class ISS small satellite deployment system. This paper will address the progress of Cyclops through its fabrication, assembly, flight certification, and on-orbit demonstration phases. It will also go into more detail regarding its anatomy, its satellite deployment concept of operations, and its satellite interfaces and requirements. Cyclops is manifested to fly on Space-X 4 which is currently scheduled in July 2014 with its initial satellite deployment demonstration of DoD STP's SpinSat and UT/TAMU's Lonestar satellites being late summer or fall of 2014.
Enabling Exploration Through Docking Standards
NASA Technical Reports Server (NTRS)
Hatfield, Caris A.
2012-01-01
Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.
Update on International Space Station Nickel-Hydrogen Battery On-Orbit Performance
NASA Technical Reports Server (NTRS)
Dalton, Penni; Cohen, Fred
2003-01-01
International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35% depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells, to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after two and a half years of cycling.
Outcome after severe multiple trauma: a retrospective analysis
2013-01-01
Background Aim of this study was to evaluate prognosis of severely injured patients. Methods All severely injured patients with an Injury Severity Score (ISS) ≥ 50 were identified in a 6-year-period between 2000 and 2005 in German Level 1 Trauma Center Murnau. Data was evaluated from German Trauma Registry and Polytrauma Outcome Chart of the German Society for Trauma Surgery and a personal interview to assess working ability and disability and are presented as average. Results 88 out of 1435 evaluated patients after severe polytrauma demonstrated an ISS ≥ 50 (6.5%), among them 23% women and 77% men. 66 patients (75%) had an ISS of 50-60, 14 (16%) 61-70, and 8 (9%) ≥ 70. In 27% of patients trauma was caused by motor bike accidents. 3.6 body regions were involved. Patients had to be operated 5.3 times and were treated 23 days in the ICU and stayed 73 days in hospital. Mortality rate was 36% and rate of multi-organ failure 28%. 15% of patients demonstrated severe senso-motoric dysfunction as well as residues of severe head injury. 25% recovered well or at least moderately. 29 out of 56 survivors answered the POLO-chart. A personal interview was performed with 13 patients. The state of health was at least moderate in 72% of patients. In 48% interpersonal problems and in 41% severe pain was observed. In 57% of patients problems with working ability regarding duration, as well as quantitative and qualitative performance were observed. Symptoms of post-traumatic stress disorder were found in 41%. The more distal the lesions were located (foot/ankle) the more functional disability affected daily life. In only 15%, working ability was not impaired. 8 out of 13 interviewed patients demonstrated complete work disability. Conclusions Even severely injured patients after multiple trauma have a good prognosis. The ISS is an established tool to assess severity and prognosis of trauma, whereas prediction of clinical outcome cannot be deducted from this score. PMID:23675931
STS-106 Crew Activity Report/Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
On this eighth day of the STS-106 Atlantis mission, the flight crew, Commander Terrence W. Wilcutt, Pilot Scott T. Altman, and Mission Specialists Daniel C. Burbank, Edward T. Lu, Richard A. Mastracchio, Yuri Ivanovich Malenchenko, and Boris V. Morukov move into the second half of preparing the International Space Station (ISS) for its first resident crew. Lu and Malenchenko are seen installing the power converters in the Zvezda module and components of the primary oxygen generation system. Mastracchio and Wilcutt moves supplies and logistics from the payload of Atlantis to the ISS. Wilcutt and Altman participate in several interviews and the crew wishes the Olympiads in Sydney good luck in their endeavors. Scenes also include external views of the ISS and images of Earth, including Sydney, Australia.
STS-101: Crew Interview / Yuri Vladimirovich Usachev
NASA Technical Reports Server (NTRS)
2000-01-01
Live footage of a preflight interview with Mission Specialist Yuri Vladimirovich Usachev is seen. The interview addresses many different questions including why Usachev became a cosmonaut, the individuals who influenced him, and the events that led to his interest. Other interesting information that this one-on-one interview discusses is his reaction and integration into the STS-101 crew. Usachev also mentions the scheduled space-walk of James S. Voss and Jeffrey N. Williams, his feeling once he steps into the International Space Station (ISS), the repairs of equipment, his handling of the hand held laser, and the change of the batteries.
Document handover of ISS Flight Control room to new Flight Control Room in old MCC
2006-10-06
JSC2006-E-43860 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.
The impact of the AIS 2005 revision on injury severity scores and clinical outcome measures.
Salottolo, Kristin; Settell, April; Uribe, Phyllis; Akin, Shelley; Slone, Denetta Sue; O'Neal, Erika; Mains, Charles; Bar-Or, David
2009-09-01
The abbreviated injury scale (AIS) was updated in 2005 from the AIS 1998 version. The purpose of this study is to describe the effects of this change on injury severity scoring and outcome measures. Analyses were performed on all trauma patients consecutively admitted over a 6-month period at two geographically separate Level I trauma centers. Injuries were manually double-coded according to the AIS 05 and the AIS 98. Changes in AIS, ISS, and new ISS (NISS) were analysed using paired t-tests. Apparent differences in outcome by ISS strata (<16, 16-24, >24) were compared for AIS 05 versus AIS 98 using the Wald-type statistic. Lastly, the percent of patients with a change in ISS strata are reported. There were 2250 patients included in the study. Nearly half (46.4%) of AIS codes changed, resulting in a different AIS score for 18.9% of all codes. The mean ISS was significantly lower using the AIS 05 (11.7) versus the AIS 98 (13.3, p<0.001). Similarly, the mean NISS was significantly lower (16.3 versus 18.7, p<0.001). In the ISS strata 16-24 an apparent increase in mortality, length of stay, and percent of patients not discharged home was observed for the AIS 05 versus AIS 98. Changes in outcome measures for this stratum were as follows (AIS 98 versus AIS 05): mortality, 4.3% versus 7.7% (p=0.002); hospital length of stay, 5.2 days versus 7.3 days (p<0.001); percent of patients not discharged home, 39.2% versus 49.3% (p<0.001). Finally, there was a 20.5% reduction in patients with an ISS>or=16 and a 26.2% reduction in patients with an ISS>or=25 using the AIS 05. The AIS revision had a significant impact on overall injury severity measures, clinical outcome measures, and percent of patients in each ISS strata. Therefore, the AIS revision affects the ability to directly compare data generated using AIS 05 and AIS 98 which has implications in trauma research, reimbursement and ACS accreditation.
NASA Technical Reports Server (NTRS)
Clement, James L.; Boyd, J. E.; Saylor, S.; Kanas, N.
2007-01-01
NASA flight controllers have always worked in a very demanding environment, but the International Space Station (ISS) poses even more challenges than prior missions. A recent NASA/Ames survey by Parke and Orasanu of NASA/Johnson flight controllers uncovered concerns about communications problems between American personnel and their international counterparts. To better understand these problems, we interviewed 14 senior and 12 junior ISS flight controllers at NASA/Johnson about leadership and cultural challenges they face and strategies for addressing these challenges. The qualitative interview data were coded and tabulated. Here we present quantitative analyses testing for differences between junior and senior controllers. Based on nonparametric statistical tests comparing responses across groups, the senior controllers were significantly more aware of the impact of working in dispersed teams, the context of constant change, and the upcoming multilateral challenges, while junior controllers were more aware of language and cultural issues. We consider our findings in light of other studies of controllers and other known differences between senior and junior controllers. For example, the fact that senior controllers had their formative early experience controlling pre-ISS short-duration Shuttle missions seems to have both positive and negative aspects, which are supported by our data. Our findings may also reflect gender differences, but we cannot unconfound this effect in our data because all the senior respondents were males. Many of the junior-senior differences are not only due to elapsed time on the job, but also due to a cohort effect. The findings of this study should be used for training curricula tailored differently for junior and senior controllers.
Communication Delays Impact Behavior and Performance Aboard the International Space Station.
Kintz, Natalie M; Palinkas, Lawrence A
Long-duration space explorations will involve significant communication delays that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study examined the feasibility and acceptability of utilizing the International Space Station (ISS) as a research platform to assess the impacts of communication delays on individual and team behavior and performance. For this study, 3 ISS crewmembers and 18 mission support personnel performed 10 tasks identified by subject matter experts as meeting study criteria, 6 tasks without a delay in communication and 4 tasks with a 50-s one-way delay. Assessments of individual and team performance and behavior were obtained after each task. The completion rate of posttask assessments and postmission interviews with astronauts were used to assess feasibility and acceptability. Posttask assessments were completed in 100% of the instances where a crewmember was assigned to a task and in 83% where mission support personnel were involved. Qualitative analysis of postmission interviews found the study to be important and acceptable to the three astronauts. However, they also reported the study was limited in the number and type of tasks included, limitations in survey questions, and preference for open-ended to scaled items. Although the ISS is considered a high fidelity analog for long-duration space missions, future studies of communication delays on the ISS must take into considerations the constraints imposed by mission operations and subject preferences and priorities. Kintz KM, Palinkas LA. Communication delays impact behavior and performance aboard the International Space Station. Aerosp Med Hum Perform. 2017; 87(11):940-946.
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.
2012-01-01
Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.
STS-112 Flight Day 10 Highlights
NASA Astrophysics Data System (ADS)
2002-10-01
On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.
STS-112 Flight Day 10 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.
International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update
NASA Technical Reports Server (NTRS)
Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.;
2014-01-01
The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the space environment forecast input to the ISS charging model indicates floating potentials (FP) within specified limits. These recommendations were based on the persistence of conditions in the space environment due to the current low solar cycle and belief in the accuracy and completeness of the ISS charging model. Subsequently, a Noncompliance Report (NCR), ISS-NCR-232G, Lack of Two-fault Tolerance to EVA Crew Shock in the Low Earth Orbit Plasma Environment, was signed in September 2013 specifying new guidelines for the use of shock hazard controls based on a forecast of the space environment from ISS plasma measurements taken prior to the EVA [ISS-EVA-312-AC, 2012]. This NESC assessment re-evaluates EVA charging hazards through a process that is based on over 14 years of ISS operations, charging measurements, laboratory tests, EMU studies and modifications, and safety reports. The assessment seeks an objective review of the plasma charging hazards associated with EVA operations to determine if any of the present hazard controls can safely change the PCU utilization plan to allow more flexibility in ISS operations during EVA preparation and execution.
Cognitive Assessment During Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Seaton, Kimberly; Kane, R. L.; Sipes, Walter
2010-01-01
The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.
STS-100 Crew Interview: Jeff Ashby
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Pilot Jeff Ashby is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Ashby then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Kent Rominger
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Commander Kent Rominger is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Rominger then discusses his views about space exploration as it becomes an international collaboration.
2013-07-11
ISS036-E-017957 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan in the Pacific Ocean. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
2013-07-11
ISS036-E-017952 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan in the Pacific Ocean. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
NASA Technical Reports Server (NTRS)
Villarreal, Jennifer
2014-01-01
The Visual Impairment/Intracranial Pressure (VIIP) Research and Clinical Advisory Panel convened on December 1, 2014 at the ISS Conference Facility in Houston. The panel members were provided updates to the current clinical cases and treatment plans along with the latest research activities (http://humanresearchroadmap.nasa.gov/Risks/?i=105) and preliminary study results. The following is a summary of this meeting.
Document handover of ISS Flight Control room to new Flight Control Room in old MCC
2006-10-06
JSC2006-E-43863 (6 Oct. 2006)--- International Space Station flight controllers have this area as their new home with increased technical capabilities, more workspace and a long, distinguished history. The newly updated facility is just down the hall from its predecessor at NASA's Johnson Space Center, Houston. This view is toward the rear of the "new" room. Known as Flight Control Room 1, it was first used to control a space flight 38 years ago, the mission of Apollo 7 launched Oct. 11, 1968. It was one of two control rooms for NASA's manned missions. The room it replaces in its new ISS role, designated the Blue Flight Control Room, had been in operation since the first station component was launched in 1998.
Improvements in Modeling Thruster Plume Erosion Damage to Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Soares, Carlos; Olsen, Randy; Steagall, Courtney; Huang, Alvin; Mikatarian, Ron; Myers, Brandon; Koontz, Steven; Worthy, Erica
2015-01-01
Spacecraft bipropellant thrusters impact spacecraft surfaces with high speed droplets of unburned and partially burned propellant. These impacts can produce erosion damage to optically sensitive hardware and systems (e.g., windows, camera lenses, solar cells and protective coatings). On the International Space Station (ISS), operational constraints are levied on the position and orientation of the solar arrays to mitigate erosion effects during thruster operations. In 2007, the ISS Program requested evaluation of erosion constraint relief to alleviate operational impacts due to an impaired Solar Alpha Rotary Joint (SARJ). Boeing Space Environments initiated an activity to identify and remove sources of conservatism in the plume induced erosion model to support an expanded range of acceptable solar array positions ? The original plume erosion model over-predicted plume erosion and was adjusted to better correlate with flight experiment results. This paper discusses findings from flight experiments and the methodology employed in modifying the original plume erosion model for better correlation of predictions with flight experiment data. The updated model has been successful employed in reducing conservatism and allowing for enhanced flexibility in ISS solar array operations.
STS-114 Flight Day 10 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
On Flight Day 10 of the STS-114 mission the International Space Station (ISS) is seen in low lighting while the Space Station Remote Manipulator System (SSRMS), also known as Canadarm 2 grapples the Raffaello Multipurpose Logistics Module (MPLM) in preparation for its undocking the following day. Members of the shuttle crew (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS read statements in English and Russian in a ceremony for astronauts who gave their lives. Interview segments include one of Collins, Robinson, and Camarda, wearing red shirts to commemorate the STS-107 Columbia crew, and one of Collins and Noguchi on board the ISS, which features voice over from an interpreter translating questions from the Japanese prime minister. The video also features a segment showing gap fillers on board Discovery after being removed from underneath the orbiter, and another segment which explains an experimental plug for future shuttle repairs being tested onboard the mid deck.
Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.
2013-01-01
This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958
ERIC Educational Resources Information Center
Riley, Jacqueline
2015-01-01
This study seeks to explore the cognitive processes involved as bilinguals wrote English and Spanish Facebook status updates. Three phases of data collection were employed: individual interviews, examination of participants' Facebook status updates and a group interview. The findings suggested that regardless of the language in which participants…
STS-100 Crew Interview: John Phillips
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist John Phillips is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Phillips then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Umberto Guidoni
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Umberto Guidoni is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Guidoni then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Chris Hadfield
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Chris Hadfield is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Hadfield then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Yuri Lonchakov
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Yuri Lonchakov is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Lonchakov then discusses his views about space exploration as it becomes an international collaboration.
STS-100 Crew Interview: Scott Parazynski
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 Mission Specialist Scott Parazynski is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Parazynski then discusses his views about space exploration as it becomes an international collaboration.
Expedition 5 Crew Interviews: Valery Korzun, Commander
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 5 Commander Valery Kozun is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission and what his responsibilities will be as commander, what the crew exchange will be like (the Expedition 5 crew will replace the Expedition 4 crew on the International Space Station (ISS)), the daily life on an extended stay mission, the loading operations that will take place, the experiments he will be conducting on board, and the planned extravehicular activities (EVAs) scheduled for the mission. Kozun discusses the EVAs in greater detail and explains the significance of the Mobile Base System and the Crew Equipment Translation Aid (CETA) cart for the ISS. He also explains at some length the science experiments which will be conducted on board by the Expedition 5 crew members. Korzun also touches on how his previous space experience on Mir (including dealing with a very serious fire) will benefit the Expedition 5 mission.
The Space Debris Environment for the ISS Orbit
NASA Technical Reports Server (NTRS)
Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don
2001-01-01
With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.
STS-111 Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.
STS-111 Flight Day 8 Highlights
NASA Astrophysics Data System (ADS)
2002-06-01
On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.
Development of the Space Debris Sensor (SDS)
NASA Technical Reports Server (NTRS)
Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.
2017-01-01
The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.
Development of the Space Debris Sensor
NASA Technical Reports Server (NTRS)
Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.
2017-01-01
The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2017. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured by the NASA Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 micron to 500 micron in size. This paper describes the SDS features and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.
STS-104 Crew Interview: Steve Lindsey
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Commander Steve Lindsey is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Lindsey describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Mike Gernhardt
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Mike Gernhardt is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Gernhardt describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Janet Kavandi
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Janet Kavandi is seen being interviewed. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Kavandi describes her role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Jim Reilly
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Jim Reilly is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Reilly describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Charlie Hobaugh
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Pilot Charlie Hobaugh is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Hobaugh describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
2013-07-11
ISS036-E-017943 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan The city of Guangzhou can be seen along the coast. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
SLS INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE ARRIVAL
2016-06-19
SLS INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE ARRIVES AT WEST DOCK ON SHIELDS ROAD AND IS OFF LOADED FROM BARGEUAH ENGINEERING STUDENT ROBERT HILLAN TALKS TO SPACE STATION CREW MEMBERS ABOUT HIS WINNING 3-D PRINTED TOOL DESIGNED FOR USE ON ISS, AND IS INTERVIEWED BY LOCAL MEDIA
Preparation of the NASA Air Quality Monitor for a U.S. Navy Submarine Sea Trial
NASA Technical Reports Server (NTRS)
Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Smith, Matthew J.; O'Connor, Sara Jane; Mudgett, Paul D.
2017-01-01
For the past 4 years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Onboard the ISS are two AQMs with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The US Navy is looking to update its submarine air monitoring suite of instruments and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which measures major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial preparation and the analysis of most recent ISS data. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but this is sufficient for NASA purposes and to detect the compounds of interest to the US Navy for this trial. The data from the sea trial will be compared to data from archival samples collected before, during, and after the trial period. This paper will start with a brief history of past collaborations between NASA and the U.S. and U.K. navies for trials of air monitoring equipment. An overview of the AQM technology and protocols for the submarine trial will be presented. The majority of the presentation will focus on the AQM preparation and a summary of available data from the trial.
Improved Atlases of Mimas and Enceladus derived from Cassini-ISS images
NASA Astrophysics Data System (ADS)
Roatsch, T.; Kersten, E.; Matz, K. D.; Bland, M. T.; Becker, T. L.; Patterson, G. W.
2017-12-01
The Cassini Imaging Science Subsystem (ISS) took a couple of high-resolution images of the Icy satellites Mimas and Enceladus during the last few years of the Cassini mission. Both satellites were captured over a period of non-targeted flybys: Mimas in 2016 and 2017 in orbits 230, 249, and 259 and Enceladus in 2015 and 2016 in orbits 224, 228, and 250. We used the new Mimas images to improve the existing semi-controlled mosaic of Mimas. A new controlled Enceladus mosaic was published recently [1] and was now updated using the latest Enceladus images. Both new mosaics are the baseline for improved atlases of Mimas in 3 tiles with a scale of 1:1,000,000 and Enceladus in 15 tiles with a scale of 1:500,000. The nomenclature for both satellites was proposed by the Cassini-ISS team and approved by the IAU and was not changed here. Examples of the improved atlases will be shown in this presentation. Reference: [1] Bland, M.T. et. al., A new Enceladus base map and global control network in support of geological mapping, 46th Lunar and Planetary Science Conference (2015) , abstract 2303.
US Navy Submarine Sea Trial of the NASA Air Quality Monitor
NASA Technical Reports Server (NTRS)
Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.
2017-01-01
For the past four years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses air as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine air monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the sea trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent closed environments. In U.K. submarine trials in the early 2000s, the submarine and ISS atmospheres were found to be remarkably similar.
ISS Expedition E53-54 Soyuz MS-06 Rollout to the Launch Pad
2017-09-10
At the Baikonur Cosmodrome in Kazakhstan, the Soyuz MS-06 spacecraft and its Soyuz booster were transported from the Integration Facility to the launch pad on a railcar Sept. 10 for final preparations before launch Sept. 13 to the International Space Station. The Soyuz MS-06 will carry Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA to the orbital complex for a five-and-a-half month mission. Also included are interviews at the launch pad with Joe Montalbano, Deputy ISS Program Manager and Sean Fuller, Director of Human Spaceflight Programs in Russia following the rocket's rollout.
Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds
NASA Technical Reports Server (NTRS)
Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark
2014-01-01
The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.
Martin-Brennan, Cindy; Joshi, Jitendra
2003-12-01
Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.
Crew Transportation System Design Reference Missions
NASA Technical Reports Server (NTRS)
Mango, Edward J.
2015-01-01
Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.
NASA Technical Reports Server (NTRS)
Marsh, Angela L.; Dudley, Stephanie R. B.
2014-01-01
With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of the project included executing over 450 crew-hours of ISS real-time payload operations including a major onboard communications upgrade, SpaceX un-berth, a Soyuz launch, roll-out of ISS live video and interviews from the POIC, annual BCC certification and hurricane season, and ISS simulations and testing. Continuous ISS payload operations were possible during the PCA facility modifications with the reconfiguration of four control rooms and standup of two temporary control areas. Another major restriction to the project was an ongoing facility upgrade that included a NASA Headquarters mandated replacement of all electrical and mechanical systems and replacement of an external generator. These upgrades required a facility power outage during the PCA upgrades. The project also encompassed console layout designs and ordering, amenities selections and ordering, excessing of old equipment, moves, disposal of old IT equipment, camera installations, facility tour re-schedules, and contract justifications. These were just some of the tasks needed for a successful project.
Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis
NASA Technical Reports Server (NTRS)
Barrett, J. D.; Holland, A. W.; Vessey, W. B.
2015-01-01
Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and potential future missions.
The OCO-3 Mission : Updated Overview of Science Objectives and Status
NASA Astrophysics Data System (ADS)
Eldering, A.; Bennett, M. W.; Basilio, R. R.
2016-12-01
The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives as well as updated simulations to predict quality of OCO-3 science data products. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot maps of 100km by 100km could be gathered in the Amazon or key agricultural regions. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis.
FE Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013708 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013710 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013714 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013712 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Radio Frequency Identification for Space Habitat Inventory and Stowage Allocation Management
NASA Technical Reports Server (NTRS)
Wagner, Carole Y.
2015-01-01
To date, the most extensive space-based inventory management operation has been the International Space Station (ISS). Approximately 20,000 items are tracked with the Inventory Management System (IMS) software application that requires both flight and ground crews to update the database daily. This audit process is manually intensive and laborious, requiring the crew to open cargo transfer bags (CTBs), then Ziplock bags therein, to retrieve individual items. This inventory process contributes greatly to the time allocated for general crew tasks.
NASA Interactive Forms Type Interface - NIFTI
NASA Technical Reports Server (NTRS)
Jain, Bobby; Morris, Bill
2005-01-01
A flexible database query, update, modify, and delete tool was developed that provides an easy interface to Oracle forms. This tool - the NASA interactive forms type interface, or NIFTI - features on-the- fly forms creation, forms sharing among users, the capability to query the database from user-entered criteria on forms, traversal of query results, an ability to generate tab-delimited reports, viewing and downloading of reports to the user s workstation, and a hypertext-based help system. NIFTI is a very powerful ad hoc query tool that was developed using C++, X-Windows by a Motif application framework. A unique tool, NIFTI s capabilities appear in no other known commercial-off-the- shelf (COTS) tool, because NIFTI, which can be launched from the user s desktop, is a simple yet very powerful tool with a highly intuitive, easy-to-use graphical user interface (GUI) that will expedite the creation of database query/update forms. NIFTI, therefore, can be used in NASA s International Space Station (ISS) as well as within government and industry - indeed by all users of the widely disseminated Oracle base. And it will provide significant cost savings in the areas of user training and scalability while advancing the art over current COTS browsers. No COTS browser performs all the functions NIFTI does, and NIFTI is easier to use. NIFTI s cost savings are very significant considering the very large database with which it is used and the large user community with varying data requirements it will support. Its ease of use means that personnel unfamiliar with databases (e.g., managers, supervisors, clerks, and others) can develop their own personal reports. For NASA, a tool such as NIFTI was needed to query, update, modify, and make deletions within the ISS vehicle master database (VMDB), a repository of engineering data that includes an indentured parts list and associated resource data (power, thermal, volume, weight, and the like). Since the VMDB is used both as a collection point for data and as a common repository for engineering, integration, and operations teams, a tool such as NIFTI had to be designed that could expedite the creation of database query/update forms which could then be shared among users.
NASA Technical Reports Server (NTRS)
Dudley, Stephanie R. B.; Marsh, Angela L.
2014-01-01
With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of the project included executing over 450 crew-hours of ISS real-time payload operations including a major onboard communications upgrade, SpaceX un-berth, a Soyuz launch, roll-out of ISS live video and interviews from the POIC, annual BCC certification and hurricane season, and ISS simulations and testing. Continuous ISS payload operations were possible during the PCA facility modifications with the reconfiguration of four control rooms and standup of two temporary control areas. Another major restriction to the project was an ongoing facility upgrade that included a NASA Headquarters mandated replacement of all electrical and mechanical systems and replacement of an external generator. These upgrades required a facility power outage during the PCA upgrades. The project also encompassed console layout designs and ordering, amenities selections and ordering, excessing of old equipment, moves, disposal of old IT equipment, camera installations, facility tour re-schedules, and contract justifications. These were just some of the tasks needed for a successful project. This paper describes the logistics and lessons learned in upgrading a control center capability in the middle of complex real-time operations. Combining the efficiencies of controller interaction and new technology infusion were prime drivers for this upgrade to handle the increased utilization of science research on ISS. The success of this project could not jeopardize the current operations while these facility upgrades occurred.
Social knowledge and the construction of drinking water preference.
Soares, Ana Carolina Cordeiro; Carmo, Rose Ferraz; Bevilacqua, Paula Dias
2017-10-01
The analytical categories of Health Surveillance territorialization and daily life guided the design of this study, which aimed to understand from the methodological framework of qualitative research the factors involved in the use of individual supply solutions (ISS) as drinking water sources. We conducted semi-structured interviews with residents of 22 households set at a municipality in the Zona da Mata Mineira. Statements were fully transcribed, processed through content analysis and interpreted based on the psychosocial theory of social representations. It was possible to apprehend the social and affective components of social representations. The social component characterized by the representation of water from IWSS ISS water as clean and of good quality seemed to drive or justify the "resistance" of individuals to use water from public supply. The affective component referred to the use of IWSS water from ISS as a return to and protection of individuals' origins, a way to strengthen respondents' identity. The results pointed out that people's perceptions and demands might guide actions aimed to stimulate trust in the use of public system water and the choice of this source of supply, contributing to health protection.
"Art, Imagination, Storytelling": An Interview with Karl Kroeber
ERIC Educational Resources Information Center
Mallick, Michael
2012-01-01
This article presents an interview with Karl Kroeber that was originally published in "English Department Updates" (Fall 2009), a semiannual alumni newsletter of the Columbia University Department of English & Comparative Literature. In this interview, Kroeber, who taught at Columbia for 57 years, discusses the range of courses he…
CO2 on the International Space Station: An Operations Update
NASA Technical Reports Server (NTRS)
Law, Jennifer; Alexander, David
2016-01-01
PROBLEM STATEMENT: We describe CO2 symptoms that have been reported recently by crewmembers on the International Space Station and our continuing efforts to control CO2 to lower levels than historically accepted. BACKGROUND: Throughout the International Space Station (ISS) program, anecdotal reports have suggested that crewmembers develop CO2-related symptoms at lower CO2 levels than would be expected terrestrially. Since 2010, operational limits have controlled the 24-hour average CO2 to 4.0 mm Hg, or below as driven by crew symptomatology. In recent years, largely due to increasing awareness by crew and ground team, there have been increased reports of crew symptoms. The aim of this presentation is to discuss recent observations and operational impacts to lower CO2 levels on the ISS. CASE PRESENTATION: Crewmembers are routinely asked about CO2 symptoms in their weekly private medical conferences with their crew surgeons. In recent ISS expeditions, crewmembers have noted symptoms attributable to CO2 starting at 2.3 mmHg. Between 2.3 - 2.7 mm Hg, fatigue and full-headedness have been reported. Between 2.7 - 3.0 mm Hg, there have been self-reports of procedure missed steps or procedures going long. Above 3.0 - 3.4 mm Hg, headaches have been reported. A wide range of inter- and intra-individual variability in sensitivity to CO2 have been noted. OPERATIONAL / CLINICAL RELEVANCE: These preliminary data provide semi-quantitative ranges that have been used to inform a new operational limit of 3.0 mmHg as a compromise between systems capabilities and the recognition that there are human health and performance impacts at recent ISS CO2 levels. Current evidence would suggest that an operational limit between 0.5 and 2.0 mm Hg may maintain health and performance. Future work is needed to establish long-term ISS and future vehicle operational limits.
Earth Observations taken by the Expedition 10 crew
2004-12-03
ISS010-E-09287 (3 December 2004) --- Howland Island, Oceania is featured in this digital image photographed by an Expedition 10 crewmember on the International Space Station (ISS). Howland Island is a United States possession located in the north Pacific between Australia and the Hawaiian Islands. Prior to 1890, organic nitrate (guano) was mined from the island by both the United States and the British. This tiny island is currently part of the US National Wildlife Refuge system, and provides nesting areas and forage for a variety of birds and marine wildlife. The island is composed of coral fragments and is surrounded by an active fringing reef. White breakers encircling the island indicate the position of the reef. Astronauts aboard the Space Station photograph numerous reefs around the world as part of a global mapping and monitoring program. High-resolution images such as this one are used to update geographic maps of reefs and islands, assess the health of reef ecosystems, and calculate bathymetry of the surrounding ocean bottom.
Water Recovery System Design to Accommodate Dormant Periods for Manned Missions
NASA Technical Reports Server (NTRS)
Tabb, David; Carter, Layne
2015-01-01
Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.
ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update
NASA Technical Reports Server (NTRS)
Morrison, Russell H.; Holt, Mike
2006-01-01
The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.
STS-114 Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
The major activities of Day 8 for the STS-114 crew of the Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) are a press conference and a conversation with President Bush. The two crews are interviewed by American, Japanese, and Russian media. Discovery crew members on the shuttle's mid-deck review paperwork regarding the impending extravehicular activity (EVA) to remove gap fillers from underneath the orbiter, and the Space Station Remote Manipulator System grapples the External Stowage Platform-2 in the Shuttle's payload bay. Finally, Mission control grants the shuttle crew some time off.
Is EPL a global journal? No, more!
NASA Astrophysics Data System (ADS)
Schreiber Editor-in-Chief, Michael
2011-12-01
With this issue EPL has explored and crossed a frontier, leaving the confines of the globe. How? By publishing what is, I believe, the first manuscript ever submitted from beyond the globe, namely from the international space station ISS. In May 2011 EPL celebrated its 25th anniversary with a scientific symposium on "Frontiers in Physics" at the Bavarian Academy of Sciences and Humanities in Munich where H. Thomas gave an overview over the excellent research at the ISS. This had prompted me to suggest in an interview which I gave in the evening of the same day to Physics World that—although being European based—EPL is indeed a truly global journal but would certainly also accept manuscripts from beyond the globe. And now I have been taken at my words.
Making a structured psychiatric diagnostic interview faithful to the nomenclature.
Robins, Lee N; Cottler, Linda B
2004-10-15
Psychiatric diagnostic interviews to be used in epidemiologic studies by lay interviewers have, since the 1970s, attempted to operationalize existing psychiatric nomenclatures. How to maximize the chances that they do so successfully has not previously been spelled out. In this article, the authors discuss strategies for each of the seven steps involved in writing, updating, or modifying a diagnostic interview and its supporting materials: 1) writing questions that match the nomenclature's criteria, 2) checking that respondents will be willing and able to answer the questions, 3) choosing a format acceptable to interviewers that maximizes accurate answering and recording of answers, 4) constructing a data entry and cleaning program that highlights errors to be corrected, 5) creating a diagnostic scoring program that matches the nomenclature's algorithms, 6) developing an interviewer training program that maximizes reliability, and 7) computerizing the interview. For each step, the authors discuss how to identify errors, correct them, and validate the revisions. Although operationalization will never be perfect because of ambiguities in the nomenclature, specifying methods for minimizing divergence from the nomenclature is timely as users modify existing interviews and look forward to updating interviews based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and the International Classification of Diseases, Eleventh Revision.
Risk Assessment Update: Russian Segment
NASA Technical Reports Server (NTRS)
Christiansen, Eric; Lear, Dana; Hyde, James; Bjorkman, Michael; Hoffman, Kevin
2012-01-01
BUMPER-II version 1.95j source code was provided to RSC-E- and Khrunichev at January 2012 MMOD TIM in Moscow. MEMCxP and ORDEM 3.0 environments implemented as external data files. NASA provided a sample ORDEM 3.0 g."key" & "daf" environment file set for demonstration and benchmarking BUMPER -II v1.95j installation at the Jan-12 TIM. ORDEM 3.0 has been completed and is currently in beta testing. NASA will provide a preliminary set of ORDEM 3.0 ".key" & ".daf" environment files for the years 2012 through 2028. Bumper output files produced using the new ORDEM 3.0 data files are intended for internal use only, not for requirements verification. Output files will contain these words ORDEM FILE DESCRIPTION = PRELIMINARY VERSION: not for production. The projectile density term in many BUMPER-II ballistic limit equations will need to be updated. Cube demo scripts and output files delivered at the Jan-12 TIM have been updated for the new ORDEM 3.0 data files. Risk assessment results based on ORDEM 3.0 and MEM will be presented for the Russian Segment (RS) of ISS.
Flight Rules Critical Readiness Review
NASA Technical Reports Server (NTRS)
Kim, E.; Knudsen, F.; Rice, S.
2010-01-01
The increment 23/24 Critical Readiness Review (CRR) flight rules are presented. The topics include: 1) B13-152 Acoustic Constraints; 2) B13-113 IFM/Corrective Action Prioritization Due to Loss of Exercise Capability; 3) B13-116 Constraints on Treadmill VIS Failure; 4) B13-201 Medical Management of ISS Fire/Smoke Response; 5) ARED and T2 Exercise constraints Flight rules (flight and stage specific); 6) FYI: B14 FR to be updated with requirement to sample crew sleep locations prior to receiving a "recommendation" from SRAG on where to sleep.
NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update
NASA Technical Reports Server (NTRS)
Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank
2017-01-01
The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.
Medical Support for ISS Crewmember Training in Star City, Russia
NASA Technical Reports Server (NTRS)
Chough, Natacha; Pattarini, James; Cole, Richard; Patlach, Robert; Menon, Anil
2017-01-01
Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.
ISS Expedition 42 / 43 Soyuz Spacecraft and Crew Preparations for Launch
2014-11-26
NASA TV (NTV) video file of crewmembers Terry Virts, Anton Shkaplerov (Roskosmos) and Samantha Cristoforetti (ESA) during final fit check of the Soyuz TMA 15M spacedraft at the Integration Facility, Baikonurk, Kazakhstan. Includes footage of the crew climbing into the Soyuz spacecraft, interviews, visit to museum where the crew sign posters and a flag; flag raising ceremony; and visit to mating facility.
Evolution of International Space Station Program Safety Review Processes and Tools
NASA Technical Reports Server (NTRS)
Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.
2013-01-01
The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on the new ISS hazard system utilized focused user research and iterative design methods employed by the Human Computer Interaction Group at NASA Ames Research Center. Particularly, the approach emphasized the reduction of workload associated with document and data management activities so more resources can be allocated to the operational use of data in problem solving, safety analysis, and recurrence control. The methods and techniques used to understand existing processes and systems, to recognize opportunities for improvement, and to design and review improvements are described with the intent that similar techniques can be employed elsewhere in safety operations. A second goal of this paper is to provide and overview of the web-based data system implemented by ISS. The software selected for the ISS hazard systemMission Assurance System (MAS)is a NASA-customized vairant of the open source software project Bugzilla. The origin and history of MAS as a NASA software project and the rationale for (and advantages of) using open-source software are documented elsewhere (Green, et al., 2009).
STS-112 Crew Interviews - Wolf
NASA Technical Reports Server (NTRS)
2002-01-01
STS-112 Mission Specialist David Wolf is seen during this preflight interview, where he first answers questions on his career path and role models. Other questions cover mission goals, ISS (International Space Station) Expedition 5 spacecrew, crew training, the S1 Truss and its radiators, the MBS (Mobile Base Structure), his experience onboard Mir, and his EVAs (extravehicular activities) on the coming mission. The EVAs are the subject of several questions. Wolf discusses his crew members, and elsewhere discusses Pilot Pamela Melroy's role as an IV crew member during EVAs. In addition, Wolf answers questions on transfer operations, the SHIMMER experiment, and his thoughts on multinational crews and crew bonding.
Resource Tracking Model Updates and Trade Studies
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Stambaugh, Imelda; Moore, Michael
2016-01-01
The Resource tracking model has been updated to capture system manager and project manager inputs. Both the Trick/GUNNS RTM simulator and the RTM mass balance spreadsheet have been revised to address inputs from system managers and to refine the way mass balance is illustrated. The revisions to the RTM included addition of a Plasma Pyrolysis Assembly (PPA) to recover hydrogen from Sabatier reactor methane which was vented in the prior version of the RTM. The effect of the PPA on the overall balance of resources in an exploration vehicle is illustrated in the increased recycle of vehicle oxygen. Additionally simulation of EVAs conducted from the exploration module was added. Since the focus of the exploration module is to provide a habitat during deep space operations the EVA simulation approach to EVA is based on ISS EVA protocol and processes. Case studies have been run to show the relative effect of performance changes on vehicle resources.
Open-access programs for injury categorization using ICD-9 or ICD-10.
Clark, David E; Black, Adam W; Skavdahl, David H; Hallagan, Lee D
2018-04-09
The article introduces Programs for Injury Categorization, using the International Classification of Diseases (ICD) and R statistical software (ICDPIC-R). Starting with ICD-8, methods have been described to map injury diagnosis codes to severity scores, especially the Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS). ICDPIC was originally developed for this purpose using Stata, and ICDPIC-R is an open-access update that accepts both ICD-9 and ICD-10 codes. Data were obtained from the National Trauma Data Bank (NTDB), Admission Year 2015. ICDPIC-R derives CDC injury mechanism categories and an approximate ISS ("RISS") from either ICD-9 or ICD-10 codes. For ICD-9-coded cases, RISS is derived similar to the Stata package (with some improvements reflecting user feedback). For ICD-10-coded cases, RISS may be calculated in several ways: The "GEM" methods convert ICD-10 to ICD-9 (using General Equivalence Mapping tables from CMS) and then calculate ISS with options similar to the Stata package; a "ROCmax" method calculates RISS directly from ICD-10 codes, based on diagnosis-specific mortality in the NTDB, maximizing the C-statistic for predicting NTDB mortality while attempting to minimize the difference between RISS and ISS submitted by NTDB registrars (ISSAIS). Findings were validated using data from the National Inpatient Survey (NIS, 2015). NTDB contained 917,865 cases, of which 86,878 had valid ICD-10 injury codes. For a random 100,000 ICD-9-coded cases in NTDB, RISS using the GEM methods was nearly identical to ISS calculated by the Stata version, which has been previously validated. For ICD-10-coded cases in NTDB, categorized ISS using any version of RISS was similar to ISSAIS; for both NTDB and NIS cases, increasing ISS was associated with increasing mortality. Prediction of NTDB mortality was associated with C-statistics of 0.81 for ISSAIS, 0.75 for RISS using the GEM methods, and 0.85 for RISS using the ROCmax method; prediction of NIS mortality was associated with C-statistics of 0.75-0.76 for RISS using the GEM methods, and 0.78 for RISS using the ROCmax method. Instructions are provided for accessing ICDPIC-R at no cost. The ideal methods of injury categorization and injury severity scoring involve trained personnel with access to injured persons or their medical records. ICDPIC-R may be a useful substitute when this ideal cannot be obtained.
Bone Metabolism on ISS Missions
NASA Technical Reports Server (NTRS)
Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.
2014-01-01
Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those that existed before space flight. Studies to assess bone strength after flight are underway at NASA, to better understand the results of bone remodeling. Studies are also underway to evaluate optimized exercise protocols and nutritional countermeasures. Regardless, there is clear evidence of progress being made to protect bone during spaceflight.
NASA Technical Reports Server (NTRS)
Wieland, Paul; Holt, Mike; Roman, Monsi; Cole, Harold; Daugherty, Steve
2003-01-01
Operation of the Internal Thermal Control System (ITCS) Cold Plate/Fluid-Stability Test Facility commenced on September 5, 2000. The facility was intended to provide advance indication of potential problems on board the International Space Station (ISS) and was designed: 1) To be materially similar to the flight ITCS. 2) To allow for monitoring during operation. 3) To run continuously for three years. During the first two years of operation the conditions of the coolant and components were remarkably stable. During this same period of time, the conditions of the ISS ITCS significantly diverged from the desired state. Due to this divergence, the test facility has not been providing information useful for predicting the flight ITCS condition. Results of the first two years are compared with flight conditions over the same time period, showing the similarities and divergences. To address the divergences, the test facility was modified incrementally to more closely match the flight conditions, and to gain insight into the reasons for the divergence. Results of these incremental changes are discussed and provide insight into the development of the conditions on orbit.
NASA Astrophysics Data System (ADS)
Szabó, J.; Pálfalvi, J. K.
2012-12-01
The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.
NASA Technical Reports Server (NTRS)
Gentry, Gregory J.; Reysa, Richard P.; Williams, Dave E.
2004-01-01
The International Space Station continues to build up its life support equipment capability. Several ECLS equipment failures have occurred since Lab activation in February 2001. Major problems occurring between February 2001 and February 2002 were discussed in other works. Major problems occurring between February 2002 and February 2003 are discussed in this paper, as are updates from previously ongoing unresolved problems. This paper addresses failures, and root cause, with particular emphasis on likely micro-gravity causes. Impact to overall station operations and proposed and accomplished fixes will also be discussed.
Orion rolled out and mated on This Week @NASA - November 14, 2014
2014-11-14
In preparation for its first spaceflight test next month, NASA’s Orion spacecraft was transported from Kennedy Space Center’s Launch Abort System Facility to Space Launch Complex 37 at nearby Cape Canaveral Air Force Station on November 11, arriving at the launch pad early Nov. 12. NASA’s new deep space exploration capsule then was attached to the top of the Delta IV Heavy rocket that will carry it to space for the Dec. 4 test. Also, ISS crew returns safely, Earth Science research to continue with developing nations, Rosetta update, Rocks and Robots and more!
Health Coaching: An Update on the National Consortium for Credentialing of Health & Wellness Coaches
2015-01-01
In September 2014, Global Advances in Health and Medicine editor Michele Mittelman, RN, MPH, interviewed four of the leaders in health and wellness coaching about trends in coaching and the progress of the National Consortium for Credentialing of Health & Wellness Coaches. Following are the transcripts of those interviews. Additionally, videos of the interviews are available at www.gahmj.com. PMID:25694854
Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John
2012-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".
Use, Updating and Integration of ICT in Higher Education: Linking Purpose, People and Pedagogy
ERIC Educational Resources Information Center
Stensaker, Bjorn; Maassen, Peter; Borgan, Monika; Oftebro, Mette; Karseth, Berit
2007-01-01
In this article the use, updating and integration of Information and Communication Technology (ICT) for teaching and learning purposes is discussed. Based on an empirical study using interviews and document analysis of the implementation of ICT in five Norwegian universities and colleges, the article analyse a number of factors that are of…
A modern analysis of a historical pediatric disaster: the 1927 Bath school bombing.
Kim, David; Mosher, Benjamin D; Morrison, Chet A; Parker-Lee, Carol; Opreanu, Razvan C; Stevens, Penny; Moore, Sarah; Kepros, John P
2010-10-01
Children have unique anatomy and physiology that may necessitate a unique approach to a pediatric surge. An analysis of the Bath school bombings of 1927, the largest pediatric terrorist disaster in U.S. history, provides an opportunity to gain perspective on pediatric patterns of injury and future disaster preparedness. Eighty-nine contemporary newspaper accounts, the official coroner's inquest, interviews, online resources, and the Michigan state archives of the disaster were reviewed with respect to the demographics, pattern of injury, gender, age, duration of hospitalization, relative distance of each classroom from the blast, and severity of injuries sustained using the Injury Severity Scale (ISS). Eighty-seven children and three teachers were unable to safely evacuate the building; 36 children (41%) were dead on-site, 40 sustained mild injuries (76.9%), nine sustained moderate injuries (17.3%), and one sustained serious injuries (1.9%). Mean ISS scores decreased with increasing relative distance of each classroom from the primary blast, while the classrooms involved in structural collapse had the highest initial mortality and ISS score. Patterns of injury sustained imply a predominance of crush and penetrating trauma. Mean ISS scores and initial mortality by classroom were a function of proximity to the blast and structural collapse. The pattern of injury closely approximates those of other pediatric disasters such as Columbine, Oklahoma City, and 911. The absence of severe abdominal trauma and one reported hospital mortality may reflect an initial under-triage of patients, possibly due to the medical technology of the times. Copyright © 2010 Elsevier Inc. All rights reserved.
Development and validation of an Infertility Stigma Scale for Chinese women.
Fu, Bing; Qin, Nan; Cheng, Li; Tang, Guanxiu; Cao, Yi; Yan, Chunli; Huang, Xin; Yan, Pingping; Zhu, Shujuan; Lei, Jun
2015-07-01
To develop and validate a scale of stigma for infertile Chinese women. Infertile women admitted to the Xiangya Hospital, the Second Xiangya Hospital, and the Third Xiangya Hospital of Central South University for treatment were approached to participate in this study. The Infertility Stigma Scale (ISS) development involved: [1] item generation based on literature, interview (experts/patients: N=5/N=20) and related scale; [2] pre-test questionnaire formation with both experts' ratings (N=9) and infertile women's feedbacks (N=30); [3] the component structure assessed by principal components analysis with varimax rotation (N=334); [4] convergent validity assessed with Social Support Rating scale, Self-Esteem scale, Family APGAR Index (N=334); and [5] reliability identified by internal consistency Cronbach's α (N=334), split-half reliability (N=334), test-retest reliability (N=20). This study yielded a 27-item ISS with 4 factors (self-devaluation, social withdrawal, public stigma, and family stigma). Exploratory factor analysis indicated that these 4 factors accounted for 58.17% of total variances. The Cronbach's α, split-half coefficient and test-retest correlation coefficient for the whole scale was 0.94, 0.90, and 0.91, respectively. The associations of the ISS with other measures suggested good convergent validity. The Content Validity Index (CVI) was 0.92. The ISS appears to be a reliable and valid measure to assess levels of stigma experienced by infertile Chinese women. It may be a useful tool to help identify infertile women at greater risks of distress. Copyright © 2014 Elsevier Inc. All rights reserved.
Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee
2015-01-01
The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload onto an ISS Express Logistics Carrier, mission operations, and communications. Total and Spectral solar irradiance data products will be produced, calibrated, and made publically available through the Goddard Earth Science Data and Information Services Center (GES DISC).The NASA GSFC TSIS project at GSFC is responsible for project management, system engineering, safety and mission assurance, and engineering oversight for the TSIS payload. The TSIS project has contracted with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS, support for ISS integration, science operations of the TSIS instrument, data processing, data evaluation and delivery to the GES DISC. TSIS will be delivered to Kennedy Space Center for integration in 2017, with launch and installation onto ISS planned for late 2017-early 2018. After a 90-day check-out period, NASA plans five years of TSIS operations.
Changes in Exercise Data Management
NASA Technical Reports Server (NTRS)
Buxton, R. E.; Kalogera, K. L.; Hanson, A. M.
2018-01-01
The suite of exercise hardware aboard the International Space Station (ISS) generates an immense amount of data. The data collected from the treadmill, cycle ergometer, and resistance strength training hardware are basic exercise parameters (time, heart rate, speed, load, etc.). The raw data are post processed in the laboratory and more detailed parameters are calculated from each exercise data file. Updates have recently been made to how this valuable data are stored, adding an additional level of data security, increasing data accessibility, and resulting in overall increased efficiency of medical report delivery. Questions regarding exercise performance or how exercise may influence other variables of crew health frequently arise within the crew health care community. Inquiries over the health of the exercise hardware often need quick analysis and response to ensure the exercise system is operable on a continuous basis. Consolidating all of the exercise system data in a single repository enables a quick response to both the medical and engineering communities. A SQL server database is currently in use, and provides a secure location for all of the exercise data starting at ISS Expedition 1 - current day. The database has been structured to update derived metrics automatically, making analysis and reporting available within minutes of dropping the inflight data it into the database. Commercial tools were evaluated to help aggregate and visualize data from the SQL database. The Tableau software provides manageable interface, which has improved the laboratory's output time of crew reports by 67%. Expansion of the SQL database to be inclusive of additional medical requirement metrics, addition of 'app-like' tools for mobile visualization, and collaborative use (e.g. operational support teams, research groups, and International Partners) of the data system is currently being explored.
The tidally-modulated plume of Enceladus: an update
NASA Astrophysics Data System (ADS)
Nimmo, F.; Porco, C.; Mitchell, C. J.; Van Hoolst, T.; Hedman, M. M.
2016-12-01
The brightness of the ice grain plume of Enceladus is observed to vary on a diurnal timescale [1,2], consistent with predictions that the plume's mass is modulated by normal tidal stresses, which open and close cracks that reach the ocean [3]. Here we extend our previous analysis [2] to a larger set of ISS plume observations, including images taken since 2010, extending the temporal baseline by more than a factor of two. The observations were reduced using the same approach as in [2]. Fits were performed as in [2] but now include two different assumptions of how plume brightness responds to stresses [4] plus an updated calculation of the effects of long-period librations [5]. An apparent phase lag of 30-60 degrees between the modelled and observed response is robustly present, irrespective of the data set and assumptions used. This phase lag may be the result of the viscosity structure of the ice shell [2,4], an eruptive delay caused by the hydrodynamics within tidally-pumped cracks [6], or other as yet unknown processes. An earlier suggestion [2], that the phase lag is caused by the additional stresses arising from an 0.8 degree 1:1 physical libration in the moon's ice shell, can be rejected now that this libration has been measured with an amplitude of 0.12 degrees [7]. We also find in ISS images a secular decrease in plume brightness over the ten years of Cassini observations; this decrease may be due to long-period (forced) librations of Enceladus. [1] Hedman et al., Nature 2013 [2] Nimmo et al., Astron. J. 2014 [3] Hurford et al., Nature 2007 [4] Behounkova et al., Nature Geosci. 2015 [5] Yseboodt & Van Hoolst, Fall AGU, 2015 [6] Kite & Rubin, PNAS 2016 [7] Thomas et al., Icarus 2016
The Process of the Development of an Operator
NASA Technical Reports Server (NTRS)
Banks, Terrence
2010-01-01
On the job training is where new employees called operators can start gaining knowledge on what they will be working on during their time in JSC. In these lessons I learned different things that are important ranging from thermal systems to electrical systems. While doing OJT classes the student will learn how to use a portable computer system which has displays that I also helped edit and clean up. The way you can also learn is by reading system briefs which describes the different systems. Due to the fact of a possible change in the ISS I updated a systems brief so that it can be relevant to what is actually on the space station. I was given a task that will help develop my skills and make myself better prepared for my future in the work field. The project that I worked on had me pulling real time data from the International Space Station. The Data I obtained from the space station will be correlated to battery performance. The group I will be working which is called REBA and we will take the telemetry and evaluate the data. I will be working with my mentor Ben Chislom and co-op Tyler along with the Pro team. They then will put this data into a graph so that they can get the discrepancies and find a way to improve the battery performance. The first weeks I read familiarization books that informed me how the ISS works, how it was built, and the systems that are used to keep the station working. This project is going to benefit NASA by finding out how electricity is being used on the ISS and enabling us to see how it can be used more efficiently. This way we can operate the ISS without wasting power. While conducting research that goes on inside the space station knowing all electricity is being used efficiently.
Building on the Past - Looking to the Future. Part 2; A Focus on Expanding Horizons
NASA Technical Reports Server (NTRS)
Guidry, Richard W.; Nash, Sally K.; Rehm, Raymond B.; Wolf, Scott L.; Wong, Teresa K.
2010-01-01
The history of space endeavors stretches far from Robert Goddard s initial flights and will certainly extend far beyond the construction of the International Space Station. As society grows in knowledge of and familiarity with space, the focus of maintaining the safety of the crews and the habitability of the vehicles will be of the utmost importance to the National Aeronautics and Space Administration (NASA) community. Through the years, Payload Safety has developed not only as a Panel, but also as part of the NASA community, striving to enhance the efficiency and understanding of how business should be conducted as more International Partners become involved. The recent accomplishments of the first docking of the Japan Aerospace Exploration Agency (JAXA) HII Transfer Vehicle (HTV 1) and completion of the Japanese Experiment Module (JEM) or KIBO and the Russian MRM2 to the International Space Station (ISS) mark significant steps for the future of ISS. 2010 will mark the final flights of the Shuttle and the completion of ISS assembly. Future delivery of humans and hardware will rely on the Russian Progress and Soyuz, the Japanese HII Transfer Vehicle (HTV), the European Automated Transfer Vehicle (ATV) and US "Commercial Off-The-Shelf" (COTS) and Constellation vehicles. The International Partners (IPs) will have more capability in delivery as well as responsibility for review of hardware they deliver to assure safe operation. This is the second in a series of papers and presentations in what is hoped to be an annual update that illustrates challenges and lessons learned in the areas of communication (how hazard reports can be misunderstood), safety requirements (transitioning from Shuttle-centric to ISS-centric), and processes (review of hardware by RSC-E and Franchised ESA and JAXA PSRP) which have been vital in conducting the business of the Payload Safety Review Panel (PSRP). This year will focus on the items annotated above.
The OCO-3 Mission: Science Objectives and Instrument Performance
NASA Astrophysics Data System (ADS)
Eldering, A.; Basilio, R. R.; Bennett, M. W.
2017-12-01
The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing will also be discussed.
STS-93 Crew Interview: Michel Tognini
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA Johnson Space Center (JSC) video release presents a one-on-one interview with Mission Specialist 3, Michel Tognini (Col., French Air Force and Centre Nacional Etudes Spatiales (CNES) Astronaut). Subjects discussed include early influences that made Michel want to be a pilot and astronaut, his experience as a French military pilot and his flying history. Also discussed were French participation in building the International Space Station (ISS), the STS-93 primary mission objective, X-ray observation using the Advanced X-ray Astrophysics Facility (AXAF), and failure scenarios associated with AXAF deployment. The STS-93 mission objective was to deploy the Advanced X-ray Astrophysics Facility (AXAF), later renamed the Chandra X-Ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar.
Singer, Susanne; Araújo, Cláudia; Arraras, Juan Ignacio; Baumann, Ingo; Boehm, Andreas; Brokstad Herlofson, Bente; Castro Silva, Joaquim; Chie, Wei-Chu; Fisher, Sheila; Guntinas-Lichius, Orlando; Hammerlid, Eva; Irarrázaval, María Elisa; Jensen Hjermstad, Marianne; Jensen, Kenneth; Kiyota, Naomi; Licitra, Lisa; Nicolatou-Galitis, Ourania; Pinto, Monica; Santos, Marcos; Schmalz, Claudia; Sherman, Allen C; Tomaszewska, Iwona M; Verdonck de Leeuw, Irma; Yarom, Noam; Zotti, Paola; Hofmeister, Dirk
2015-09-01
The objective of this study was to pilot test an updated version of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Head and Neck Module (EORTC QLQ-H&N60). Patients with head and neck cancer were asked to complete a list of 60 head and neck cancer-specific items comprising the updated EORTC head and neck module and the core questionnaire EORTC QLQ-C30. Debriefing interviews were conducted to identify any irrelevant items and confusing or upsetting wording. Interviews were performed with 330 patients from 17 countries, representing different head and neck cancer sites and treatments. Forty-one of the 60 items were retained according to the predefined EORTC criteria for module development, for another 2 items the wording was refined, and 17 items were removed. The preliminary EORTC QLQ-H&N43 can now be used in academic research. Psychometrics will be tested in a larger field study. © 2014 Wiley Periodicals, Inc.
New crew launches to ISS on This Week @NASA - November 28, 2014
2014-11-28
NASA’s Terry Virts and Expedition 42/43 crewmates, Anton Shkaplerov of the Russian Federal Space Agency and the European Space Agency’s Samantha Cristoforetti, launched Nov. 23 at 4:01 p.m. Eastern Standard Time, from Baikonur, Kazakhstan. Almost six hours later, their Soyuz spacecraft docked to the International Space Station – where they joined Expedition 42 Commander Barry Wilmore of NASA, and Flight Engineers Alexander Samokutyaev and Elena Serova of Roscosmos – returning the station crew to its full complement of six people. Also, First 3-D printed object in space, Orion flight test update, New airborne Earth Science missions and Happy Thanksgiving from space!
Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT
NASA Technical Reports Server (NTRS)
Jain, Bobby; Morris, Jill; Sharpe, Kelly
2004-01-01
Johnson Space Center's (JSC's) indentured parts list (IPL) maintenance and parts assembly capture tool (IMPACT) is an easy-to-use graphical interface for viewing and maintaining the complex assembly hierarchies of large databases. IMPACT, already in use at JSC to support the International Space Station (ISS), queries, updates, modifies, and views data in IPL and associated resource data, functions that it can also perform, with modification, for any large commercial database. By enabling its users to efficiently view and manipulate IPL hierarchical data, IMPACT performs a function unlike that of any other tool. Through IMPACT, users will achieve results quickly, efficiently, and cost effectively.
NASA Technical Reports Server (NTRS)
Liddle, Donn
2017-01-01
When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the real clearance between the ammonia lines and expected position of the thruster bell using existing on-orbit imagery. Imagery of the area of interest, taken several years earlier from the Space Shuttle during a fly-around of the ISS, was found and used to set a stereo pair. Space Vision System Targets and Handrail bolts measured in the ISS analytical coordinate system (ISSACS) prior to launch, were used to obtain an absolute orientation so all photogrammetric measurement's would be in the ISSACS coordinate system. Coordinates for the design location of the edges of the thruster bell, when the cargo vehicle was fully berthed to the ISS, were displayed in 3-D relative to the as-installed ammonia lines. This immediately revealed a positive clearance, which was later quantified to be a minimum of 10" +/0.5". The analysis was completed over a single weekend by a single analyst. Using updated imagery, acquired from the station's robotic arm, a complete as-installed model of the coolant lines was generated from stereo photography and replaced the design model in the master ISS CAD database.
Cultural Challenges Faced by American Mission Control Personnel Working with International Partners
NASA Technical Reports Server (NTRS)
Clement, J. L.; Ritsher, J. B.
2006-01-01
Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. Both junior and senior mission control personnel have had to find ways to address the cultural challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to identify and evaluate the major cultural challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount these challenges. We pay particular attention to the approaches successfully employed by the senior personnel and the training needs identified by the junior personnel. We also evaluate the extent to which the identified approaches and needs are consistent across the two samples. METHODS: Participants included a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers. All participants were mission operations specialists chosen on the basis of having worked extensively with international partners. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. RESULTS: The senior respondents had substantial consensus on several cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Data from the junior respondents will be presented for the first time at the meeting. DISCUSSION: Although specific to American ISS personnel, our results are consistent with recent management, cultural, and aerospace research on other populations. We aim to use our results to improve training for current and future mission control personnel working in international or multicultural mission operations teams.
ERIC Educational Resources Information Center
Hicks, Doin E., Ed.; And Others
1981-01-01
The special issue contains articles which focus on the opportunities for deaf high school graduates who want to go on to postsecondary education. Following an introduction by C. Williams is an interview with Gallaudet College's former Director of Admissions titled "Screening In--The Admissions Policy at Gallaudet College. An Interview with Bernard…
Updates and Overview of Spaceflight Medical Support in Russia and Kazakhstan
NASA Technical Reports Server (NTRS)
Chough, Natacha; Pattarini, James; Cole, Richard; Patlach, Robert; Menon, Anil
2017-01-01
This panel presents recent updates to and a comprehensive overview of the operational medical support provided to ISS crewmembers in Star City, Russia and Kazakhstan as part of UTMB/KBRwyle's Human Health & Performance contract. With the current Soyuz training flow, physician support is required for nominal training evolutions involving pressure changes or other potential physical risks detailed in this presentation. In addition, full-time physician presence in Star City helps to address the disparity in access to health care in these relatively remote practice areas, while also developing and maintaining relationships with host nation resources. A unique part of standard training in Russia also involves survival training in both winter and water environments; logistic details and medical impacts of each of these training scenarios will be discussed. Following support of a successful training flow, UTMB/KBRwyle's Star City Medical Support Group (SCMSG) is also responsible for configuring medical packs in support of Soyuz launches and landings; we will present the rationale for current pack contents within the context of specific operational needs. With respect to contingency events, the group will describe their preparedness to respond appropriately by activating both local and global resources as necessary, detailing a specialized subset of the group who continually work and update these assets, given changes in international infrastructure and other impacts.
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom
2013-01-01
The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure
Evaluation of the Air Quality Monitor's Performance on the International Space Station
NASA Technical Reports Server (NTRS)
Limero, Thomas; Reese, Eric; Ballard, Ken; Durham, Tamara
2010-01-01
The Air Quality Monitor (AQM) was flown to the International Space Station (ISS) as an experiment to evaluate its potential to replace the aging Volatile Organic Analyzer (VOA), which ceased operations in August 2009. The AQM (Figure 1) is a small gas chromatography/differential mobility spectrometer (GC/DMS) manufactured by Sionex. Data was presented at last year s ISIMS conference that detailed the preparation of the AQM for flight, including instrument calibration. Furthermore, initial AQM data was compared to VOA results from simultaneous runs of the two instruments. Although comparison with VOA data provided a measure of confidence in the AQM performance, it is the comparison with results from simultaneously acquired air samples (grab sample containers-GSCs) that will define the success (or failure) of the AQM performance. This paper will update the progress in the AQM investigation by comparing AQM data to results from the analyses of GSC samples, returned from ISS. Additionally, a couple of example will illustrate the AQM s ability to detect disruptions in the spacecraft s air quality. Discussion will also focus upon a few unexpected issues that have arisen and how these will be a addressed in the final operational unit now being built.
NASA Technical Reports Server (NTRS)
Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.
2000-01-01
NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.
Robonaut 2 - Preparing for Intra-Vehicular Mobility on the International Space Station
NASA Technical Reports Server (NTRS)
Badger, Julia; Diftler, Myron; Hulse, Aaron; Taylor, Ross
2013-01-01
Robonaut 2 (R2) has been undergoing experimental trials on board the International Space Station (ISS) for more than a year. This upper-body anthropomorphic robotic system shown in Figure 1 has been making steady progress after completing its initial checkout. R2 demonstrated free space motion, physically interacted with its human crew mates, manipulated interfaces on its task board and has even used its first tool. This steady growth in capability will lead R2 to its next watershed milestone. Developers are currently testing prototype robotic climbing appendages and a battery backpack in preparation of sending flight versions of both subsystems to the ISS in late 2013. Upon integration of its new components, R2 will be able to go mobile inside the space station with a twofold agenda. First, R2 will learn to maneuver in microgravity in the best possible laboratory for such a task. Second, it will start providing early payback to the ISS program by helping with intra-vehicular (IVA) maintenance tasks. The experience gained inside the ISS will be invaluable in reducing risk when R2 moves to its next stage and is deployed as an extra-vehicular (EVA) tool. Even on its current fixed base stanchion, R2 has already shown its capability of performing several maintenance tasks on the ISS. It has measured the air flow through one of the stations vents and provided previously unavailable real time flow data to ground operators. R2 has cleaned its first handrail, exciting some crew members that perhaps Saturday morning housekeeping on the station may someday become a task they can hand off to their robotic colleague. Other tasks, including using radio frequency identification (RFID) tools for inventory tasks or vacuuming air filters, have also been suggested and will be explored. Once mobile, R2 will take on these tasks and more to free up crew time for more important science and exploration pursuits. In addition to task exploration, research and testing is happening on orbit to prepare for R2 mobility operations. The current vision system in R2 s head is being used to identify and localize IVA handrails throughout the US Lab and ground control software is being updated and integrated in advance of supporting mobility operations.
2004-10-24
JSC2004-E-47551 (24 October 2004) --- Astronaut Edward M. (Mike) Fincke, NASA International Space Station (ISS) science officer and flight engineer, is interviewed for the video phone by astronaut Peggy Whitson, Expedition 5 flight engineer, after the successful landing in the Soyuz spacecraft with fellow crew members cosmonaut Gennady I. Padalka, Russias Federal Space Agency Expedition 9 commander, and Russian Space Forces cosmonaut Yuri Shargin. The crew landed approximately 85 kilometers northeast of Arkalyk in northern Kazakhstan on October 24, 2004. Photo Credit: "NASA/Bill Ingalls"
2010-12-01
The Journal of Consumer Marketing, Vol. 12, Iss 3, 4 -22. Yang, D. (2007) What Happens If Facebook Thinks You’re Not Real? Retrieved on January 10...48 Appendix C – Instrument 3 -List of Semi-Structured Interview questions .......................49 Appendix D – Instrument 4 - Instructions for...Internet users have watched a 4 video online. This same report showed that 85% of young broadband users have watched an online video, and 62
Assessment of the severity of injuries to hands by powered wood splitters.
Lindqvist, Aron; Berglund, Maria; von Kieseritzky, Johanna; Nilsson, Olle
2010-11-01
Our aim was to rate the severity of injuries to hands by powered wood splitters. The patients were identified from a computerised registry, and the cause of injury was confirmed by written questionnaire and structured telephone interview. Information about the anatomy of the injury was gathered from patients' records and radiographs. Severity of injury was rated according to the Hand Injury Severity Scoring System (HISS system) and the Injury Severity Score (ISS). The reliability of HISS rating was tested. The mean Hand Injury Severity Score (HISS) was 63 and the mean ISS was 3.7. Twenty-five (19%) of patients had minor, 41 (31%) had moderate, 30 (23%) had severe, and 35 (27 %) had major injuries when scored by the HISS system. Children's injuries were more severe than those of adults. There was no difference in severity between injuries made by wedge and screw splitters. It is not possible to avoid serious hand injuries from powered wood splitters completely by prohibiting one of the two main types of splitter.
STS-111 Flight Day 2 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On Flight Day 2 of STS-111, the crew of Endeavour (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist) and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer), having successfully entered orbit around the Earth, begin to maneuver towards the International Space Station (ISS), where the Expedition 5 crew will replace the Expedition 4 crew. Live video is shown of the Earth from several vantage points aboard the Shuttle. The center-line camera, which will allow Shuttle pilots to align the docking apparatus with that on the ISS, provides footage of the Earth. Chang-Diaz participates in an interview, in Spanish, conducted from the ground via radio communications, with Cockrell also appearing. Footage of the Earth includes: Daytime video of the Eastern United States with some cloud cover as Endeavour passes over the Florida panhandle, Georgia, and the Carolinas; Daytime video of Lake Michigan unobscured by cloud cover; Nighttime low-light camera video of Madrid, Spain.
Complex collaborative problem-solving processes in mission control.
Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo
2014-04-01
NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.
USA Space Debris Environment, Operations, and Research Updates
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2018-01-01
Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS
New Crew Journeys to the Space Station on This Week @NASA – October 21, 2016
2016-10-21
On Oct. 19, NASA astronaut Shane Kimbrough and his Expedition 49-50 crewmates, Sergey Ryzhikov and Andrey Borisenko, of the Russian Space Agency Roscosmos, launched aboard a Soyuz spacecraft to the International Space Station from the Baikonur Cosmodrome in Kazakhstan. Two days later, when the trio arrived at the orbiting laboratory, they were welcomed aboard by station Commander Anatoly Ivanishin of Roscosmos, Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency – bringing the space station back to its full complement of six crew members. Also, ISS Cargo Mission Launches from Wallops, Juno Mission and Science Update, and Drone Air Traffic Management Test!
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
NASA Technical Reports Server (NTRS)
Aruljothi, Arunvenkatesh
2016-01-01
The Space Exploration Division of the Safety and Mission Assurances Directorate is responsible for reducing the risk to Human Space Flight Programs by providing system safety, reliability, and risk analysis. The Risk & Reliability Analysis branch plays a part in this by utilizing Probabilistic Risk Assessment (PRA) and Reliability and Maintainability (R&M) tools to identify possible types of failure and effective solutions. A continuous effort of this branch is MaRS, or Mass and Reliability System, a tool that was the focus of this internship. Future long duration space missions will have to find a balance between the mass and reliability of their spare parts. They will be unable take spares of everything and will have to determine what is most likely to require maintenance and spares. Currently there is no database that combines mass and reliability data of low level space-grade components. MaRS aims to be the first database to do this. The data in MaRS will be based on the hardware flown on the International Space Stations (ISS). The components on the ISS have a long history and are well documented, making them the perfect source. Currently, MaRS is a functioning excel workbook database; the backend is complete and only requires optimization. MaRS has been populated with all the assemblies and their components that are used on the ISS; the failures of these components are updated regularly. This project was a continuation on the efforts of previous intern groups. Once complete, R&M engineers working on future space flight missions will be able to quickly access failure and mass data on assemblies and components, allowing them to make important decisions and tradeoffs.
Reconditioning of Batteries on the International Space Station
NASA Technical Reports Server (NTRS)
Hajela, Gyan; Cohen, Fred; Dalton, Penni
2004-01-01
Primary source of electric power for the International Space Station (ISS) is the photovoltaic module (PVM). At assembly complete stage, the ISS will be served by 4 PVMs. Each PVM contains two independent power channels such that one failure will result in loss of only one power channel. During early stages of assembly, the ISS is served by only one PVM designated as P6. Solar arrays are used to convert solar flux into electrical power. Nickel hydrogen batteries are used to store electrical power for use during periods when the solar input is not adequate to support channel loads. Batteries are operated per established procedures that ensure that they are maintained within specified temperature limits, charge current is controlled to conform to a specified charge profile, and battery voltages are maintained within specified limits. Both power channels on the PVM P6 have been operating flawlessly since December 2000 with 100 percent power availability. All components, including batteries, are monitored regularly to ensure that they are operating within specified limits and to trend their wear out and age effects. The paper briefly describes the battery trend data. Batteries have started to show some effects of aging and a battery reconditioning procedure is being evaluated at this time. Reconditioning is expected to reduce cell voltage divergence and provide data that can be used to update the state of charge (SOC) computation in the software to account for battery age. During reconditioning, each battery, one at a time, will be discharged per a specified procedure and then returned to a full state of charge. The paper describes the reconditioning procedure and the expected benefits. The reconditioning procedures have been thoroughly coordinated by all affected technical teams and approved by all required boards. The reconditioning is tentatively scheduled for September 2004.
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Reddell, Brandon; Bahadori, Amir; Norman, Ryan B.; Badavi, Francis F.
2013-07-01
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar-O'Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.
NASA Technical Reports Server (NTRS)
Williams, David E.; Spector, Lawrence N.
2009-01-01
Node 1 (Unity) flew to International Space Station (ISS) on Flight 2A. Node 1 was the first module of the United States On-Orbit Segment (USOS) launched to ISS. The Node 1 ISS Environmental Control and Life Support (ECLS) design featured limited ECLS capability. The main purpose of Node 1 was to provide internal storage by providing four stowage rack locations within the module and to allow docking of multiple modules and a truss segment to it. The ECLS subsystems inside Node 1 were routed through the element prior to launch to allow for easy integration of the attached future elements, particularly the Habitation Module which was planned to be located at the nadir docking port of Node 1. After Node 1 was on-orbit, the Program decided not to launch the Habitation Module and instead, to replace it with Node 3 (Tranquility). In 2007, the Program became concerned with a potential Russian docking port approach issue for the Russian FGB nadir docking port after Node 3 is attached to Node 1. To solve this concern the Program decided to relocate Node 3 from Node 1 nadir to Node 1 port. To support the movement of Node 3 the Program decided to build a modification kit for Node 1, an on-orbit feedthrough leak test device, and new vestibule jumpers to support the ECLS part of the relocation. This paper provides a design overview of the modification kit, a summary of the Node 1 ECLS re-verification to support the Node 3 relocation from Node 1 nadir to Node 1 port, and a status of the ECLS modification kit installation into Node 1.
US Navy Submarine Sea Trial of NASA developed Multi-Gas Monitor
NASA Technical Reports Server (NTRS)
Mudgett, Paul D.; Manney, Joshua A.; Pilgrim, Jeffrey S.
2017-01-01
During a successful 2 year technology demonstration of the tunable diode laser spectroscopy (TDLS) based Multi-Gas Monitor (MGM) on the International Space Station (ISS), we began discussing with the US Navy the possibility of conducting a sea trial of an MGM on a submarine. The sea trial would also include a gas chromatography/differential mobility spectrometer based Air Quality Monitor (AQM), which is used operationally on ISS for select volatile organic compounds. AQM results will be the subject of a separate paper. The Navy’s interest in testing NASA equipment is in a planned update to the environmental monitoring equipment used aboard submarines. NASA’s goal is studying submarines as closed environment analogs to spacecraft. MGM’s core technology was developed by Vista Photonics Inc using Small Business Innovation Research (SBIR) grants and expanded for various applications using NASA program funding. The MGM measures oxygen, carbon dioxide, ammonia and water vapor in ambient air, displays concentrations with temperature and pressure, and stores 30 second moving averages. The sea trial involves colocating the instrument with the Central Air Monitor (CAM) and connecting it to rack power prior to departure, and letting it run during the entire sea trial of a few months duration. All data stored is inside MGM, with no connection to the vessel data bus. Crew intervention is limited to checking MGM periodically to see that it is working and power cycling if the display is OFF. After the trial is over, the unit with its data will be retrieved. Post sea trial calibration check and data analysis are planned and results will be compared with both CAM data and results from MGM’s ISS technology demonstration.
NASA Technical Reports Server (NTRS)
Williams, David E.; Spector Lawrence N.
2010-01-01
Node 1 (Unity) flew to International Space Station (ISS) on Flight 2A. Node 1 was the first module of the United States On-Orbit Segment (USOS) launched to ISS. The Node 1 ISS Environmental Control and Life Support (ECLS) design featured limited ECLS capability. The main purpose of Node 1 was to provide internal storage by providing four stowage rack locations within the module and to allow docking of multiple modules and a truss segment to it. The ECLS subsystems inside Node 1 were routed through the element prior to launch to allow for easy integration of the attached future elements, particularly the Habitation Module which was planned to be located at the nadir docking port of Node 1. After Node I was on-orbit, the Program decided not to launch the Habitation Module and instead, to replace it with Node 3 (Tranquility). In 2007, the Program became concerned with a potential Russian docking port approach issue for the Russian FGB nadir docking port after Node 3 is attached to Node 1. To solve this concern the Program decided to relocate Node 3 from Node I nadir to Node 1 port. To support the movement of Node 3 the Program decided to build a modification kit for Node 1, an on-orbit feedthrough leak test device, and new vestibule jumpers to support the ECLS part of the relocation. This paper provides a design overview of the modification kit for Node 1, a summary of the Node 1 ECLS re-verification to support the Node 3 relocation from Node 1 nadir to Node 1 port, and a status of the ECLS modification kit installation into Node 1.
The I4 Online Query Tool for Earth Observations Data
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Vanderbloemen, Lisa A.; Lawrence, Samuel J.
2015-01-01
The NASA Earth Observation System Data and Information System (EOSDIS) delivers an average of 22 terabytes per day of data collected by orbital and airborne sensor systems to end users through an integrated online search environment (the Reverb/ECHO system). Earth observations data collected by sensors on the International Space Station (ISS) are not currently included in the EOSDIS system, and are only accessible through various individual online locations. This increases the effort required by end users to query multiple datasets, and limits the opportunity for data discovery and innovations in analysis. The Earth Science and Remote Sensing Unit of the Exploration Integration and Science Directorate at NASA Johnson Space Center has collaborated with the School of Earth and Space Exploration at Arizona State University (ASU) to develop the ISS Instrument Integration Implementation (I4) data query tool to provide end users a clean, simple online interface for querying both current and historical ISS Earth Observations data. The I4 interface is based on the Lunaserv and Lunaserv Global Explorer (LGE) open-source software packages developed at ASU for query of lunar datasets. In order to avoid mirroring existing databases - and the need to continually sync/update those mirrors - our design philosophy is for the I4 tool to be a pure query engine only. Once an end user identifies a specific scene or scenes of interest, I4 transparently takes the user to the appropriate online location to download the data. The tool consists of two public-facing web interfaces. The Map Tool provides a graphic geobrowser environment where the end user can navigate to an area of interest and select single or multiple datasets to query. The Map Tool displays active image footprints for the selected datasets (Figure 1). Selecting a footprint will open a pop-up window that includes a browse image and a link to available image metadata, along with a link to the online location to order or download the actual data. Search results are either delivered in the form of browse images linked to the appropriate online database, similar to the Map Tool, or they may be transferred within the I4 environment for display as footprints in the Map Tool. Datasets searchable through I4 (http://eol.jsc.nasa.gov/I4_tool) currently include: Crew Earth Observations (CEO) cataloged and uncataloged handheld astronaut photography; Sally Ride EarthKAM; Hyperspectral Imager for the Coastal Ocean (HICO); and the ISS SERVIR Environmental Research and Visualization System (ISERV). The ISS is a unique platform in that it will have multiple users over its lifetime, and that no single remote sensing system has a permanent internal or external berth. The open source I4 tool is designed to enable straightforward addition of new datasets as they become available such as ISS-RapidSCAT, Cloud Aerosol Transport System (CATS), and the High Definition Earth Viewing (HDEV) system. Data from other sensor systems, such as those operated by the ISS International Partners or under the auspices of the US National Laboratory program, can also be added to I4 provided sufficient access to enable searching of data or metadata is available. Commercial providers of remotely sensed data from the ISS may be particularly interested in I4 as an additional means of directing potential customers and clients to their products.
Catalyzed D-D stellarator reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, John; Spong, Donald A.
The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less
Catalyzed D-D stellarator reactor
Sheffield, John; Spong, Donald A.
2016-05-12
The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less
ERIC Educational Resources Information Center
Milshtein, Amy
2003-01-01
Foreign students and visiting scholars are facing delays as, in the wake of the September 11th attacks, new requirements for visa interviews for every applicant are slowing down the process. Many students and visiting scholars are at risk of missing the start of the school year. Some school groups are petitioning the U.S. State Department for…
Lefering, Rolf; Huber-Wagner, Stefan; Nienaber, Ulrike; Maegele, Marc; Bouillon, Bertil
2014-09-05
The TraumaRegister DGU™ (TR-DGU) has used the Revised Injury Severity Classification (RISC) score for outcome adjustment since 2003. In recent years, however, the observed mortality rate has fallen to about 2% below the prognosis, and it was felt that further prognostic factors, like pupil size and reaction, should be included as well. Finally, an increasing number of cases did not receive a RISC prognosis due to the missing values. Therefore, there was a need for an updated model for risk of death prediction in severely injured patients to be developed and validated using the most recent data. The TR-DGU has been collecting data from severely injured patients since 1993. All injuries are coded according to the Abbreviated Injury Scale (AIS, version 2008). Severely injured patients from Europe (ISS ≥ 4) documented between 2010 and 2011 were selected for developing the new score (n = 30,866), and 21,918 patients from 2012 were used for validation. Age and injury codes were required, and transferred patients were excluded. Logistic regression analysis was applied with hospital mortality as the dependent variable. Results were evaluated in terms of discrimination (area under the receiver operating characteristic curve, AUC), precision (observed versus predicted mortality), and calibration (Hosmer-Lemeshow goodness-of-fit statistic). The mean age of the development population was 47.3 years; 71.6% were males, and the average ISS was 19.3 points. Hospital mortality rate was 11.5% in this group. The new RISC II model consists of the following predictors: worst and second-worst injury (AIS severity level), head injury, age, sex, pupil reactivity and size, pre-injury health status, blood pressure, acidosis (base deficit), coagulation, haemoglobin, and cardiopulmonary resuscitation. Missing values are included as a separate category for every variable. In the development and the validation dataset, the new RISC II outperformed the original RISC score, for example AUC in the development dataset 0.953 versus 0.939. The updated RISC II prognostic score has several advantages over the previous RISC model. Discrimination, precision and calibration are improved, and patients with partial missing values could now be included. Results were confirmed in a validation dataset.
Expedition 21 Crew Members participate in PAO Interview in the Node 2
2009-10-12
ISS021-E-016897 (12 Oct. 2009) --- Russian cosmonauts Roman Romanenko (left) and Maxim Suraev, both Expedition 21 flight engineers, participate in a PAO/TV downlink event from the Harmony node of the International Space Station. During the event, the crew members sent greetings to AK-47 Chief Designer M. T. Kalashnikov on his 90th birthday and to the participants of the Tenth Youth Tsiolkovsky Readings; along with a greeting to the 17th Annual International Space Olympiad for School Children, hosted by the City of Korolev.
Expedition 21 Crew Members participate in PAO Interview in the Node 2
2009-10-12
ISS021-E-016899 (12 Oct. 2009) --- Russian cosmonauts Roman Romanenko (left) and Maxim Suraev, both Expedition 21 flight engineers, participate in a PAO/TV downlink event from the Harmony node of the International Space Station. During the event, the crew members sent greetings to AK-47 Chief Designer M. T. Kalashnikov on his 90th birthday and to the participants of the Tenth Youth Tsiolkovsky Readings; along with a greeting to the 17th Annual International Space Olympiad for School Children, hosted by the City of Korolev.
NASA Technical Reports Server (NTRS)
Tarver, William
2017-01-01
INTRODUCTION: NASA's Space Medicine community knowledge regarding the "Vision Impairment Intracranial Pressure", or VIIP.has been evolving over time.. Various measures of occupational health related to this condition had to be determined and then plans/processes put into place. The most robust of these processes were inititated in 2010. This presentation will provide a clinic update of the astronaut occupational health data related to VIIP. METHODS: NASA and its international partners require its astronauts to undergo routine health measures deemed important to monitoring VIIP. The concern is that the spaceflight environment aboard ISS could cause some astronauts to have physiologic changes detrimental to either ongoing mission operations or long-term health related to the ocular system and possibly the CNS. Specific medical tests include but are not limited to brain/orbit MRI (NASA unique protocol), OCT, fundoscopy and ocular ultrasound. Measures are taken prior to spaceflight, in-flight and post-flight. Measures to be reported include incidence of disc edema, globe flattening, choroidal folds, ONSD and change in refractive error. RESULTS: 73 ISS astronauts have been evaluated at least partially for VIIP related measures. Of these individuals, approximately 1 in 7 have experienced disc edema. The prevalence of the other findings is more complicated as the medical testing has changed over time. Overall, 26 separate individuals have experienced at least one of the findings NASA has associated with VIIP Another confounding factor is most of the astronauts have prior spaceflight experience at the time of the "pre-flight" testing. DISCUSSION: In 2010 NASA and its US operating segment (USOS) partners (CSA, ESA and JAXA) began routine occupational monitoring and data collection for most VIIP related changes. Interpretation of that data is extremely challenging for several reasons. For example, the determination of disc edema is the most complete finding as we have had highly qualified optometrists routinely and competently performing post-flight funduscopic exams for the entirety of the ISS program. Yet in 2013 NASA added OCT to our in-flight suite of eye exams. Shortly after routine screening with the OCT, a new term appeared within VIIP vernacular - "subclinical disc edema". OCT has much greater ability to measure change within the retina and provides significantly more data to analyze, understand and communicate out. Communicating VIIP data clearly adds even more challenge. Historically we've reported data per eye and not necessarily per person. This has led to difficulty in understanding how many individuals have experienced "VIIP" within the aerospace medicine community. The presenter will attempt to provide clear and concise communication of VIIP findings.
The ISS Sensitizing Agents Data Bank (BDS).
Brunetto, Barbara; Binetti, Roberto; Ceccarelli, Federica; Costamagna, Francesca Marina; D'Angiolini, Antonella; Fabri, Alessandra; Ferri, Maurizio; Marcello, Ida; Riva, Giovanni; Roazzi, Paolo; Trucchi, Daniela; Tinghino, Raffaella
2008-01-01
The Istituto Superiore Sanità has developed a data bank on sensitizing substances (Banca Dati Sensibilizzanti, BDS), available on website (www.iss.it/bdse/), sharing complete, controlled and updated information coming from different sources, such as scientific publications, international agencies and governmental or non governmental organizations. It is worthwhile that the main objective of the BDS is not the classification of sensitizing or potentially sensitizing agents within specific risk classes, but it is essentially to provide concise and non confidential information related to this endpoint. At present, the BDS includes: all the substances officially classified by European Union, (Annex I to Directive 67/548/EEC), some substances listed in I (Directive 67/548/EEC) for endpoints different than "sensitization" but indicated as sensitizers by other relevant institutions, all the substances indicated as sensitizers by relevant agencies or institutions (ACGIH, DFG), some substances indicted as sensitizers by industry and other non-governmental organizations (ETAD and HERA), all the substances regarded as "potentially sensitizing dyes" by the Commission of the European Community for the award of the eco-label to textile products, some substances for which, even in the absence of any categorization by Union, ACGIH or DFG, it is not possible to exclude a sensitizing potential on the basis of reliable documents.
Le, Tuan D; Orman, Jean A; Stockinger, Zsolt T; Spott, Mary Ann; West, Susan A; Mann-Salinas, Elizabeth A; Chung, Kevin K; Gross, Kirby R
2016-07-01
The Military Injury Severity Score (mISS) was developed to better predict mortality in complex combat injuries but has yet to be validated. US combat trauma data from Afghanistan and Iraq from January 1, 2003, to December 31, 2014, from the US Department of Defense Trauma Registry (DoDTR) were analyzed. Military ISS, a variation of the ISS, was calculated and compared with standard ISS scores.Receiver operating characteristic curve, area under the curve, and Hosmer-Lemeshow statistics were used to discriminate and calibrate between mISS and ISS. Wilcoxon-Mann-Whitney, t test and χ tests were used, and sensitivity and specificity calculated. Logistic regression was used to calculate the likelihood of mortality associated with levels of mISS and ISS overall. Thirty thousand three hundred sixty-four patients were analyzed. Most were male (96.8%). Median age was 24 years (interquartile range [IQR], 21-29 years). Battle injuries comprised 65.3%. Penetrating (39.5%) and blunt (54.2%) injury types and explosion (51%) and gunshot wound (15%) mechanisms predominated. Overall mortality was 6.0%.Median mISS and ISS were similar in survivors (5 [IQR, 2-10] vs. 5 [IQR, 2-10]) but different in nonsurvivors, 30 (IQR, 16-75) versus 24 (IQR, 9-23), respectively (p < 0.0001). Military ISS and ISS were discordant in 17.6% (n = 5,352), accounting for 56.2% (n = 1,016) of deaths. Among cases with discordant severity scores, the median difference between mISS and ISS was 9 (IQR, 7-16); range, 1 to 59. Military ISS and ISS shared 78% variability (R = 0.78).Area under the curve was higher in mISS than in ISS overall (0.82 vs. 0.79), for battle injury (0.79 vs. 0.76), non-battle injury (0.87 vs. 0.86), penetrating (0.81 vs. 0.77), blunt (0.77 vs. 0.75), explosion (0.81 vs. 0.78), and gunshot (0.79 vs. 0.73), all p < 0.0001. Higher mISS and ISS were associated with higher mortality. Compared with ISS, mISS had higher sensitivity (81.2 vs. 63.9) and slightly lower specificity (80.2 vs. 85.7). Military ISS predicts combat mortality better than does ISS. Prognostic and epidemiologic study, level III.
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas
2003-01-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies
Assessment and Control of International Space Station Spacecraft Charging Risks
NASA Astrophysics Data System (ADS)
Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.
2003-12-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.
Multicultural Ground Teams in Space Programs
NASA Astrophysics Data System (ADS)
Maier, M.
2012-01-01
In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.
Statewide pedestrian and bicycle planning handbook
DOT National Transportation Integrated Search
2014-09-01
This handbook is designed to help State departments of transportation (DOTs) develop or update State pedestrian and bicycle plans. Based on research including interviews with nine State DOTs and critical evaluations of documents from 15 States, this ...
Bogner, V; Brumann, M; Kusmenkov, T; Kanz, K G; Wierer, M; Berger, F; Mutschler, W
2016-03-01
The Injury Severity Score (ISS) is a well-established anatomical scoring system for polytraumatized patients. However, any inaccuracy in the Abbreviated Injury Score (AIS) directly increases the ISS impreciseness. Using the full body computed tomography (CT) scan report, ISS computation can be associated with certain pitfalls. This study evaluates interpretation variations depending on radiological reports and indicates requirements to reliably determine the ISS. The ISS of 81 polytraumatized patients was calculated based on the full body CT scan report. If an injury could not be attributed to a precise AIS cipher, the minimal and maximal ISS was computed. Real ISS included all conducted investigations, intraoperative findings, and final medical reports. The differences in ISS min, ISS max, and ISS real were evaluated using the Kruskal-Wallis test (p<0.05) and plotted in a linear regression analysis. Mean ISS min was 24.0 (± 0.7 SEM) points, mean ISS real 38.6 (±1.3 SEM) and mean ISS max was 48.3 (±1.4 SEM) points. All means were significantly different compared to one another (p<0.001). The difference between possible and real ISS showed a distinctive variation. Mean deviation was 9.7 (±0.9 SEM) points downward and 14.5 (±1.1 SEM) points upward. The difference between deviation to ISS min and ISS max was highly significant (p<0.001). Objectification of injury severity in polytraumatized patients using the ISS is an internationally well-established method in clinical and scientific settings. The full body CT scan report must meet distinct criteria and has to be written in acquaintance to the AIS scale if intended to be used for correct ISS computation.
Development of an expert based ICD-9-CM and ICD-10-CM map to AIS 2005 update 2008.
Loftis, Kathryn L; Price, Janet P; Gillich, Patrick J; Cookman, Kathy J; Brammer, Amy L; St Germain, Trish; Barnes, Jo; Graymire, Vickie; Nayduch, Donna A; Read-Allsopp, Christine; Baus, Katherine; Stanley, Patsye A; Brennan, Maureen
2016-09-01
This article describes how maps were developed from the clinical modifications of the 9th and 10th revisions of the International Classification of Diseases (ICD) to the Abbreviated Injury Scale 2005 Update 2008 (AIS08). The development of the mapping methodology is described, with discussion of the major assumptions used in the process to map ICD codes to AIS severities. There were many intricacies to developing the maps, because the 2 coding systems, ICD and AIS, were developed for different purposes and contain unique classification structures to meet these purposes. Experts in ICD and AIS analyzed the rules and coding guidelines of both injury coding schemes to develop rules for mapping ICD injury codes to the AIS08. This involved subject-matter expertise, detailed knowledge of anatomy, and an in-depth understanding of injury terms and definitions as applied in both taxonomies. The official ICD-9-CM and ICD-10-CM versions (injury sections) were mapped to the AIS08 codes and severities, following the rules outlined in each coding manual. The panel of experts was composed of coders certified in ICD and/or AIS from around the world. In the process of developing the map from ICD to AIS, the experts created rules to address issues with the differences in coding guidelines between the 2 schemas and assure a consistent approach to all codes. Over 19,000 ICD codes were analyzed and maps were generated for each code to AIS08 chapters, AIS08 severities, and Injury Severity Score (ISS) body regions. After completion of the maps, 14,101 (74%) of the eligible 19,012 injury-related ICD-9-CM and ICD-10-CM codes were assigned valid AIS08 severity scores between 1 and 6. The remaining 4,911 codes were assigned an AIS08 of 9 (unknown) or were determined to be nonmappable because the ICD description lacked sufficient qualifying information for determining severity according to AIS rules. There were also 15,214 (80%) ICD codes mapped to AIS08 chapter and ISS body region, which allow for ISS calculations for patient data sets. This mapping between ICD and AIS provides a comprehensive, expert-designed solution for analysts to bridge the data gap between the injury descriptions provided in hospital codes (ICD-9-CM, ICD-10-CM) and injury severity codes (AIS08). By applying consistent rules from both the ICD and AIS taxonomies, the expert panel created these definitive maps, which are the only ones endorsed by the Association for the Advancement of Automotive Medicine (AAAM). Initial validation upheld the quality of these maps for the estimation of AIS severity, but future work should include verification of these maps for MAIS and ISS estimations with large data sets. These ICD-AIS maps will support data analysis from databases with injury information classified in these 2 different systems and open new doors for the investigation of injury from traumatic events using large injury data sets.
Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini
NASA Technical Reports Server (NTRS)
Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.
2012-01-01
We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.
Shi, Junxin; Shen, Jiabin; Caupp, Sarah; Wang, Angela; Nuss, Kathryn E; Kenney, Brian; Wheeler, Krista K; Lu, Bo; Xiang, Henry
2018-05-02
An accurate injury severity measurement is essential for the evaluation of pediatric trauma care and outcome research. The traditional Injury Severity Score (ISS) does not consider the differential risks of the Abbreviated Injury Scale (AIS) from different body regions nor is it pediatric specific. The objective of this study was to develop a weighted injury severity scoring (wISS) system for pediatric blunt trauma patients with better predictive power than ISS. Based on the association between mortality and AIS from each of the six ISS body regions, we generated different weights for the component AIS scores used in the calculation of ISS. The weights and wISS were generated using the National Trauma Data Bank (NTDB). The Nationwide Emergency Department Sample (NEDS) was used to validate our main results. Pediatric blunt trauma patients less than 16 years were included, and mortality was the outcome. Discrimination (areas under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, concordance) and calibration (Hosmer-Lemeshow statistic) were compared between the wISS and ISS. The areas under the receiver operating characteristic curves from the wISS and ISS are 0.88 vs. 0.86 in ISS=1-74 and 0.77 vs. 0.64 in ISS=25-74 (p<0.0001). The wISS showed higher specificity, positive predictive value, negative predictive value, and concordance when they were compared at similar levels of sensitivity. The wISS had better calibration (smaller Hosmer-Lemeshow statistic) than the ISS (11.6 versus 19.7 for ISS=1-74 and 10.9 versus 12.6 for ISS= 25-74). The wISS showed even better discrimination with the NEDS. By weighting the AIS from different body regions, the wISS had significantly better predictive power for mortality than the ISS, especially in critically injured children.Level of Evidence and study typeLevel IV Prognostic/Epidemiological.
In Search of Social Translucence: An Audit Log Analysis of Handoff Documentation Views and Updates.
Jiang, Silis Y; Hum, R Stanley; Vawdrey, David; Mamykina, Lena
2015-01-01
Communication and information sharing are critical parts of teamwork in the hospital; however, achieving open and fluid communication can be challenging. Finding specific patient information within documentation can be difficult. Recent studies on handoff documentation tools show that resident handoff notes are increasingly used as an alternative information source by non-physician clinicians. Previous findings also show that residents have become aware of this unintended use. This study investigated the alignment of resident note updating patterns and team note viewing patterns based on usage log data of handoff notes. Qualitative interviews with clinicians were used to triangulate findings based on the log analysis. The study found that notes that were frequently updated were viewed significantly more frequently than notes updated less often (p < 2.2 × 10(-16)). Almost 44% of all notes had aligned frequency of views and updates. The considerable percentage (56%) of mismatched note utilization suggests an opportunity for improvement.
[Methodological design of the National Health and Nutrition Survey 2016].
Romero-Martínez, Martín; Shamah-Levy, Teresa; Cuevas-Nasu, Lucía; Gómez-Humarán, Ignacio Méndez; Gaona-Pineda, Elsa Berenice; Gómez-Acosta, Luz María; Rivera-Dommarco, Juan Ángel; Hernández-Ávila, Mauricio
2017-01-01
Describe the design methodology of the halfway health and nutrition national survey (Ensanut-MC) 2016. The Ensanut-MC is a national probabilistic survey whose objective population are the inhabitants of private households in Mexico. The sample size was determined to make inferences on the urban and rural areas in four regions. Describes main design elements: target population, topics of study, sampling procedure, measurement procedure and logistics organization. A final sample of 9 479 completed household interviews, and a sample of 16 591 individual interviews. The response rate for households was 77.9%, and the response rate for individuals was 91.9%. The Ensanut-MC probabilistic design allows valid statistical inferences about interest parameters for Mexico´s public health and nutrition, specifically on overweight, obesity and diabetes mellitus. Updated information also supports the monitoring, updating and formulation of new policies and priority programs.
International Space Station: becoming a reality.
David, L
1999-07-01
An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.
ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue
NASA Technical Reports Server (NTRS)
Melvin, Leland D.
2011-01-01
The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.
STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.
Validating the Use of ICD-9 Code Mapping to Generate Injury Severity Scores
Fleischman, Ross J.; Mann, N. Clay; Dai, Mengtao; Holmes, James F.; Wang, N. Ewen; Haukoos, Jason; Hsia, Renee Y.; Rea, Thomas; Newgard, Craig D.
2017-01-01
The Injury Severity Score (ISS) is a measure of injury severity widely used for research and quality assurance in trauma. Calculation of ISS requires chart abstraction, so it is often unavailable for patients cared for in nontrauma centers. Whether ISS can be accurately calculated from International Classification of Diseases, Ninth Revision (ICD-9) codes remains unclear. Our objective was to compare ISS derived from ICD-9 codes with those coded by trauma registrars. This was a retrospective study of patients entered into 9 U.S. trauma registries from January 2006 through December 2008. Two computer programs, ICDPIC and ICDMAP, were used to derive ISS from the ICD-9 codes in the registries. We compared derived ISS with ISS hand-coded by trained coders. There were 24,804 cases with a mortality rate of 3.9%. The median ISS derived by both ICDPIC (ISS-ICDPIC) and ICDMAP (ISS-ICDMAP) was 8 (interquartile range [IQR] = 4–13). The median ISS in the registry (ISS-registry) was 9 (IQR = 4–14). The median difference between either of the derived scores and ISS-registry was zero. However, the mean ISS derived by ICD-9 code mapping was lower than the hand-coded ISS in the registries (1.7 lower for ICDPIC, 95% CI [1.7, 1.8], Bland–Altman limits of agreement = −10.5 to 13.9; 1.8 lower for ICDMAP, 95% CI [1.7, 1.9], limits of agreement = −9.6 to 13.3). ICD-9-derived ISS slightly underestimated ISS compared with hand-coded scores. The 2 methods showed moderate to substantial agreement. Although hand-coded scores should be used when possible, ICD-9-derived scores may be useful in quality assurance and research when hand-coded scores are unavailable. PMID:28033134
Automated ISS Flight Utilities
NASA Technical Reports Server (NTRS)
Offermann, Jan Tuzlic
2016-01-01
During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the EVADES output. As mentioned above, GEnEVADOSE makes extensive use of ROOT version 6, the data analysis framework developed at the European Organization for Nuclear Research (CERN), and the code is written to the C++11 standard (as are the other projects). My second project is the Automated Mission Reference Exposure Utility (AMREU).Unlike GEnEVADOSE, AMREU is a combination of three frameworks written in both Python and C++, also making use of ROOT (and PyROOT). Run as a combination of daily and weekly cron jobs, these macros query the SRAG database system to determine the active ISS missions, and query minute-by-minute radiation dose information from ISS-TEPC (Tissue Equivalent Proportional Counter), one of the radiation detectors onboard the ISS. Using this information, AMREU creates a corrected data set of daily radiation doses, addressing situations where TEPC may be offline or locked up by correcting doses for days with less than 95% live time (the total amount time the instrument acquires data) by averaging the past 7 days. As not all errors may be automatically detectable, AMREU also allows for manual corrections, checking an updated plaintext file each time it runs. With the corrected data, AMREU generates cumulative dose plots for each mission, and uses a Python script to generate a flight note file (.docx format) containing these plots, as well as information sections to be filled in and modified by the space weather environment officers with information specific to the week. AMREU is set up to run without requiring any user input, and it automatically archives old flight notes and information files for missions that are no longer active. My other projects involve cleaning up a large data set from the Charged Particle Directional Spectrometer (CPDS), joining together many different data sets in order to clean up information in SRAG SQL databases, and developing other automated utilities for displaying information on active solar regions, that may be used by the space weather environment officers to monitor solar activity. I consulted my mentor Dr. Ryan Rios and Dr. Kerry Lee for project requirements and added features, and ROOT developer Edmond Offermann for advice on using the ROOT library. I also received advice and feedback from Dr. Janet Barzilla of SRAG, who tested my code. Besides these inputs, I worked independently, writing all of the code by myself. The code for all these projects is documented throughout, and I have attempted to write it in a modular format. Assuming that ROOT is updated accordingly, these codes are also Y2038-compliant (and Y10K-compliant). This allows the code to be easily referenced, modified and possibly repurposed for non-ISS missions in the future, should the necessary inputs exist. These projects have taught me a lot about coding and software design - I have become a much more skilled C++ programmer and ROOT user, and I also learned to code in Python and PyROOT (and its advantages and disadvantages compared to C++/ ROOT). Furthermore, I have learned about space radiation and radiation modeling, topics that greatly interest me as I pursue a degree in physics. Working alongside experimental physicists like Dr. Rios, I have developed a greater understanding and appreciation for experimental science, something I have always leaned towards but to which I lacked significant exposure. My work in SRAG has also given me the invaluable opportunity to witness the work environment for physicists at NASA, and what a career in academia may look like at a government laboratory such as NASA Johnson Space Center. As I continue my studies and look forward to graduate school and a future career, this experience at NASA has given me a meaningful and enjoyable opportunity to put my skills to use and see what my future career path might hold.
ISS Local Environment Spectrometers (ISLES)
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Gilchrist, Brian E.
2014-01-01
In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.
Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations
NASA Technical Reports Server (NTRS)
Minow, Joseph; Pettit, Donald R.; Hartman, William A.
2012-01-01
Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.
NASA Technical Reports Server (NTRS)
Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.
2014-01-01
The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.
Functional and morphological differences following Monarc and TVT-O procedures.
Huang, W-C; Yang, S-H; Yang, J-M; Tzeng, C-R
2012-12-01
To explore function of the lower urinary tract and morphology of tape and urethra following Monarc or TVT-O suburethral tape placement for urodynamic stress incontinence (USI). We recruited prospectively women undergoing either Monarc or TVT-O placement for USI. Before and 3 months after the procedure, participants were evaluated by a question-directed interview, the measures of Sandvik Incontinence Severity Index (SISI), Incontinence Bother Scale (IBS), Ingelman-Sundberg Score (ISS) and short forms of Urogenital Distress Inventory (UDI-6) and Incontinence Impact Questionnaire (IIQ-7), physical examination, a cough stress test and 4D ultrasound investigation. The primary outcome was participants' responses to clinical assessments and the secondary outcome was ultrasound findings. A total of 67 women with Monarc procedures and 60 women with TVT-O procedures completed the survey both preoperatively and 3 months postoperatively. There were significant improvements in scores of SISI, IBS, ISS, UDI-6 and IIQ-7 after both Monarc and TVT-O procedures. At the 3-month follow-up, both procedures had similar success rates, SISI scores, IBS scores, ISS scores, UDI-6 scores and IIQ-7 scores, and similar incidences of postoperative voiding difficulty and overactive bladder symptoms. After Bonferroni correction, all ultrasound parameters representing tape location, tape tension and urethral mobility were similar between the two procedures. At short-term follow-up, Monarc and TVT-O procedures are comparable in both functional outcome of the lower urinary tract and morphology on ultrasound as assessed by parameters representing tape location, tape tension and urethral mobility. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Women deans' perceptions of the gender gap in American medical deanships.
Humberstone, Elizabeth
2017-01-01
: Women account for 16% of deans of American medical schools. To investigate this gender gap, female deans were interviewed about the barriers facing women advancing toward deanships. The author conducted semi-structured interviews with eight women deans. Interviews were analyzed using provisional coding and sub coding techniques. Four main themes emerged during the interviews: (1) the role of relationships in personal and career development, (2) leadership challenges, (3) barriers between women and leadership advancement, and (4) recommendations for improvement. Recommendations included allocating resources, mentorship, career flexibility, faculty development, updating the criteria for deanships, and restructuring search committees. The barriers identified by the deans are similar to those found in previous studies on female faculty and department chairs, suggesting limited improvement in gender equity progress.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e308288 - iss042e309536). Shows Earth views taken from a window aboard the International Space Station (ISS).
ISS Expedition 42 Time Lapse Video of Earth
2014-09-29
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss041e37762 - iss041e39788). Shows Earth and aurora views. Partial views of ISS in and out of view.
Plant Growth Optimization by Vegetable Production System in HI-SEAS Analog Habitat
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua W.; Massa, Gioia D.; Wheeler, Raymond M.; Gill, Tracy R.; Quincy, Charles D.; Roberson, Luke B.; Binsted, Kim; Morrow, Robert C.
2017-01-01
The Vegetable Production System (Veggie) is a scientific payload designed to support plant growth for food production under microgravity conditions. The configuration of Veggie consists of an LED lighting system with modular rooting pillows designed to contain substrate media and time-release fertilizer. The pillows were designed to be watered passively using capillary principles but have typically been watered manually by the astronauts in low-Earth orbit (LEO). The design of Veggie allows cabin air to be drawn through the plant enclosure for thermal and humidity control and for supplying CO2 to the plants. Since its delivery to the International Space Station (ISS) in 2014, Veggie has undergone several experimental trials by various crews. Ground unit testing of Veggie was conducted during an 8-month Mars analog study in a semi-contained environment of a simulated habitat located at approximately 8,200 feet (2,500 m) elevation on the Mauna Loa volcano on the Island of Hawaii. The Hawaii Space Exploration Analog and Simulation (HI-SEAS) offered conditions (habitat, mission, communications, etc.) intended to simulate a planetary exploration mission. This paper provides data and analyses to show the prospect for optimized use of the current Veggie design for human habitats. Lessons learned during the study may provide opportunities for updating the system design and operational parameters for current Veggie experiments being conducted onboard the ISS and for payloads on future deep space missions.
NASA Technical Reports Server (NTRS)
Lyons, Frankel
2013-01-01
A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
Dimopoulos, M A; Kastritis, E; Michalis, E; Tsatalas, C; Michael, M; Pouli, A; Kartasis, Z; Delimpasi, S; Gika, D; Zomas, A; Roussou, M; Konstantopoulos, K; Parcharidou, A; Zervas, K; Terpos, E
2012-03-01
The International Staging System (ISS) is the most widely used staging system for patients with multiple myeloma (MM). However, serum β2-microglobulin increases in renal impairment (RI) and there have been concerns that ISS-3 stage may include 'up-staged' MM patients in whom elevated β2-microglobulin reflects the degree of renal dysfunction rather than tumor load. In order to assess the impact of RI on the prognostic value of ISS, we analyzed 1516 patients with symptomatic MM and the degree of RI was classified according to the Kidney Disease Outcomes Quality Initiative-Chronic Kidney Disease (CKD) criteria. Forty-eight percent patients had stages 3-5 CKD while 29% of patients had ISS-1, 38% had ISS-2 and 33% ISS-3. The frequency and severity of RI were more common in ISS-3 patients. RI was associated with inferior survival in univariate but not in multivariate analysis. When analyzed separately, ISS-1 and ISS-2 patients with RI had inferior survival in univariate but not in multivariate analysis. In ISS-3 MM patients, RI had no prognostic impact either in univariate or multivariate analysis. Results were similar, when we analyzed only patients with Bence-Jones >200 mg/day. ISS remains unaffected by the degree of RI, even in patients with ISS-3, which includes most patients with renal dysfunction.
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni
2004-01-01
The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.
NASA Astrophysics Data System (ADS)
Koontz, Steve; Alred, John; Ellison, Amy; Patton, Thomas; Minow, Joseph; Spetch, William
2010-09-01
Orbital inclination, 51.6 degrees, and altitude range, 300 to 400 km,(low-Earth orbit or LEO) determine the ISS spacecraft charging environment. Specific interactions of the ISS electrical power system and metallic structure with the Earth’s ionospheric plasma and the geomagnetic field dominate spacecraft charging processes for ISS. ISS also flies through auroral electron streams at high latitudes. In this paper, we report the character of ISS spacecraft charging processes in Earth’s ionosphere, the results of measurement and modelling of the subject charging processes, and the safety issues for ISS itself as well as for ISS interoperability with respect to extra vehicular activity(EVA) and visiting vehicle proximity operations.
Biological and Physical Space Research Laboratory 2002 Science Review
NASA Technical Reports Server (NTRS)
Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)
2003-01-01
With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.
Vernooij, Robin W. M.; Alonso-Coello, Pablo; Brouwers, Melissa
2017-01-01
Background Scientific knowledge is in constant development. Consequently, regular review to assure the trustworthiness of clinical guidelines is required. However, there is still a lack of preferred reporting items of the updating process in updated clinical guidelines. The present article describes the development process of the Checklist for the Reporting of Updated Guidelines (CheckUp). Methods and Findings We developed an initial list of items based on an overview of research evidence on clinical guideline updating, the Appraisal of Guidelines for Research and Evaluation (AGREE) II Instrument, and the advice of the CheckUp panel (n = 33 professionals). A multistep process was used to refine this list, including an assessment of ten existing updated clinical guidelines, interviews with key informants (response rate: 54.2%; 13/24), a three-round Delphi consensus survey with the CheckUp panel (33 participants), and an external review with clinical guideline methodologists (response rate: 90%; 53/59) and users (response rate: 55.6%; 10/18). CheckUp includes 16 items that address (1) the presentation of an updated guideline, (2) editorial independence, and (3) the methodology of the updating process. In this article, we present the methodology to develop CheckUp and include as a supplementary file an explanation and elaboration document. Conclusions CheckUp can be used to evaluate the completeness of reporting in updated guidelines and as a tool to inform guideline developers about reporting requirements. Editors may request its completion from guideline authors when submitting updated guidelines for publication. Adherence to CheckUp will likely enhance the comprehensiveness and transparency of clinical guideline updating for the benefit of patients and the public, health care professionals, and other relevant stakeholders. PMID:28072838
NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Peek, Kenneth E.
2011-01-01
With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better understanding of the mission assurance that MOD brings to commercial ventures to the ISS
Cassidy, J Tristan; Phillips, Michael; Fatovich, Daniel; Duke, Janine; Edgar, Dale; Wood, Fiona
2014-08-01
There is limited research validating the injury severity score (ISS) in burns. We examined the concordance of ISS with burn mortality. We hypothesized that combining age and total body surface area (TBSA) burned to the ISS gives a more accurate mortality risk estimate. Data from the Royal Perth Hospital Trauma Registry and the Royal Perth Hospital Burns Minimum Data Set were linked. Area under the receiver operating characteristic curve (AUC) measured concordance of ISS with mortality. Using logistic regression models with death as the dependent variable we developed a burn-specific injury severity score (BISS). There were 1344 burns with 24 (1.8%) deaths, median TBSA 5% (IQR 2-10), and median age 36 years (IQR 23-50). The results show ISS is a good predictor of death for burns when ISS≤15 (OR 1.29, p=0.02), but not for ISS>15 (ISS 16-24: OR 1.09, p=0.81; ISS 25-49: OR 0.81, p=0.19). Comparing the AUCs adjusted for age, gender and cause, ISS of 84% (95% CI 82-85%) and BISS of 95% (95% CI 92-98%), demonstrated superior performance of BISS as a mortality predictor for burns. ISS is a poor predictor of death in severe burns. The BISS combines ISS with age and TBSA and performs significantly better than the ISS. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
[Clinical interview in psychiatric difficult situations].
Lorettu, Liliana; Nivoli, Gian Carlo; Milia, Paolo; Depalmas, Cristiano; Clerici, Massimo; Nivoli, Alessandra M A
2017-01-01
There are here described a number of basic principles underlying an effective clinical interview in psychiatric difficult situations (violent or suicidal patients, victims of serious physical and psychological damages, authors of inadequate or anti-social requests to the therapist). The aim of the present study is to provide the psychiatric operator with useful skills for the optimal management of the interview in difficult situations both at diagnostically and therapeutically level. The methodology was based on examination of the literature and personal experience of the authors. The authors highlighted 18 working hypothesis that may represent beneficial instruments in situations of difficult psychiatric interview. Further studies will deepen under the clinical, actuarial and statistical validity the principles covered in various clinical and crisis situations with difficulty to the interview, in relation also to specific types of patients for a more updated training of the operators in the field of mental health.
Correlation of ISS Electric Potential Variations with Mission Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard
2014-01-01
Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.
Correlation of ISS Electric Potential Variations with Mission Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard
2014-01-01
Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.
Shuttle to Space Station. Heart Assist Implant. Hubble Update. X-30 Mock-Up
NASA Technical Reports Server (NTRS)
1992-01-01
Shuttle to Space Station, Heart Assist Implant, Hubble Update, and X-30 Mockup are the four parts that are discussed in this video. The first part, Shuttle to Space Station, is focussed on the construction and function of the Space Station Freedom. While part two, Heart Assist Implant, discusses a newly developed electromechanical device that helps to reduce heart attack by using electric shocks. Interviews with the co-inventor and patients are also included. Brief introduction to Hubble Telescope, problem behind its poor image quality (mirror aberration), and the plan to correct this problem are the three issues that are discussed in part three, Hubble Update. The last part, part four, reviews the X-30 Mockup designed by the staff and students of Mississippi State University.
Physics of intermediate shocks: A review
NASA Technical Reports Server (NTRS)
Karimabadi, H.
1995-01-01
Intermediate shocks (ISs) lead to a transition from super-Alfvenic to sub-Alfvenic flow and are different from slow and fast shocks in that an IS rotates the component of the magnetic field tangent to the shock plane by 180 deg. Another peculiarity of ISs is that for the same upstream conditions an IS can have two different downstream states. There also exist a second class of ISs which rotate the magnetic field by an angle other than 180 deg. Due to their noncoplanar nature they cannot be time-stationary and are referred to as time-dependent intermediate shocks (TDIS). The existence of ISs has been the subject of much controversy over the years. Early studies questioned the physical reality of ISs. However, the studies of ISs found a new impetus when C.C. Wu showed that ISs do exist and are stable within the resistive MHD framework. In this paper, after a brief historical overview of the subject, we will review the latest developments in the study of ISs. In particular, we will address the questions of stability and structure of ISs and the relationship between ISs and other discontinuities. One of the recent developments has been the finding that ISs can be unsteady, reforming in time. Details of this process will be discussed. Finally, we examine the effect of anisotropy on the resolutions and discuss the relevance of ISs to the observed field rotations at the Earth's magnetopause.
Performance-Based Assessment Resource Guide.
ERIC Educational Resources Information Center
Gilbert, Judith C.; Burger, Patricia
This resource guide reviews a variety of performance-based student assessment strategies, and provides examples of, and references for, the strategies. Strategies include anecdotal records, interviews, peer report and group evaluations, and portfolios. Materials in the guide include: (1) a resource guide update form for teachers; (2) department…
Keeping Pace . . . A Journalism Update for the Teacher/Adviser.
ERIC Educational Resources Information Center
Burdette, Elizabeth; And Others
Intended as a resource book for journalism instructors or school publication advisers, this booklet encompasses the basics that apply to all scholastic journalism endeavors. The first section, "Teaching Journalism--The Total Program," covers official guidelines and editorial policies, interviewing, gathering news, feature writing, editorial…
NASA Technical Reports Server (NTRS)
Andrea-Liner, Kathleen E.; Au, Brion J.; Fisher, Blake R.; Rodbumrung, Watchara; Hamic, Jeffrey C.; Smith, Kary; Beadle, David S.
2012-01-01
The role of PLUTO (Plug-in Port UTilization Officer) and the growth of the International Space Station (ISS) have exceeded the capabilities of the current tool PiP (Plug-in Plan). Its users (crew and flight controllers) have expressed an interest in a new, easy-to-use tool with a higher level of interactivity and functionality that is not bound by the limitations of Excel. The PiP Tool assists crewmembers and ground controllers in making real-time decisions concerning the safety and compatibility of hardware plugged into the UOPs (Utility Outlet Panels) onboard the ISS. The PiP Tool also provides a reference to the current configuration of the hardware plugged in to the UOPs, and enables the PLUTO and crew to test Plug-in locations for constraint violations (such as cable connector mismatches or amp limit violations), to see the amps and volts for an end item, to see whether or not the end item uses 1553 data, and the cable length between the outlet and the end item. As new equipment is flown or returned, the database can be updated appropriately as needed. The current tool is a macroheavy Excel spreadsheet with its own database and reporting functionality. The new tool captures the capabilities of the original tool, ports them to new software, defines a new dataset, and compensates for ever-growing unique constraints associated with the Plug-in Plan. New constraints were designed into the tool, and updates to existing constraints were added to provide more flexibility and customizability. In addition, there is an option to associate a "Flag" with each device that will let the user know there is a unique constraint associated with it when they use it. This helps improve the safety and efficiency of real-time calls by limiting the amount of "corporate knowledge" overhead that has to be trained and learned through use. The tool helps save time by automating previous manual processes, such as calculating connector types and deciding which cables are required and in what order.
Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In
NASA Technical Reports Server (NTRS)
Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.
2013-01-01
Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of similar techniques is being investigated to place ground-based observations in a Google Mars environment, allowing the MSL (Mars Science Laboratory) Science Team a means to visualize the rover and its environment.
Cargo Commercial Orbital Transportation Services Environmental Control and Life Support Integration
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie; Thacker, Karen; Williams, Dave
2012-01-01
The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.
Commercial Orbital Transportation Cargo Services Environmental Control and Life Support Integration
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie; Williams, Dave; Orozco, Nicole; Philistine, Cynthia
2010-01-01
The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, will retire in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.
STS-106 Crew Activities Report/Flight Day 9 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
On this ninth day of the STS-106 Atlantis mission, the flight crew, Commander Commander Terrence W. Wilcutt, Pilot Scott D. Altman, and Mission Specialists Daniel C. Burbank, Edward T. Lu, Richard A. Mastracchio, Yuri Ivanovich Malenchenko, and Boris V. Morukov are shown transferring supplies and equipment. Equipment includes an exercise treadmill, for use by the first resident crew. Altman, Lu, Burbank and Morukov are seen installing the treadmill in the Zvezda module. Footage also shows Lu and Altman participating in a telecommunication interview. A beautiful night shot of the International Space Station (ISS) and Atlantis complex above the Earth is also shown.
Capabilities, Calibration, and Impact of the ISS-RAD Fast Neutron Detector
NASA Technical Reports Server (NTRS)
Leitgab, Martin
2015-01-01
In the current NASA crew radiation health risk assessment framework, estimates for the neutron contributions to crew radiation exposure largely rely on simulated data with sizeable uncertainties due to the lack of experimental measurements inside the ISS. Integrated in the ISS-RAD instrument, the ISS-RAD Fast Neutron Detector (FND) will deploy to the ISS on one of the next cargo supply missions. Together with the ISS-RAD Charged Particle Detector, the FND will perform, for the first time, routine and precise direct neutron measurements inside the ISS between 0.5 and 80 MeV. The measurements will close the NASA Medical Operations Requirement to monitor neutrons inside the ISS and impact crew radiation health risk assessments by reducing uncertainties on the neutron contribution to crew exposure, enabling more efficient mission planning. The presentation will focus on the FND detection mechanism, calibration results and expectations about the FND's interaction with the mixed radiation field inside the ISS.
Understanding healthcare innovation systems: the Stockholm region case.
Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik
2016-11-21
Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public policy making. A better understanding of ISs in general, and in healthcare in particular, may provide the basis for designing and evaluating innovation policy.
Li, Huijuan; Liu, Anping; Zhang, Linli
2018-06-01
In this paper, we propose new sufficient criteria for input-to-state stability (ISS) of time-varying nonlinear discrete-time systems via indefinite difference Lyapunov functions. The proposed sufficient conditions for ISS of system are more relaxed than for ISS with respect to Lyapunov functions with negative definite difference. We prove system is ISS by two methods. The first way is to prove system is ISS by indefinite difference ISS Lyapunov functions. The second method is to prove system is ISS via introducing an auxiliary system and indefinite difference robust Lyapunov functions. The comparison of the sufficient conditions for ISS obtained via the two methods is discussed. The effectiveness of our results is illustrated by three numerical examples. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
[The importance of Injury Severity Score (ISS) in the management of thoracolumbar burst fracture].
Rezende, Rodrigo; Avanzi, Osmar
2009-02-01
There are few publications which relate the injury severity score (ISS) to the thoracolumbar burst fractures. For that reason and for the frequency in which they occur, we have evaluated the severity of the trauma in these patients. We have evaluated 190 burst fractures in the spinal cord according to Denis, using the codes of Abbreviated Injury Scales (AIS) for the calculation of the ISS, which uses the three parts of the human body with major severity. These lesions are a squared number and the results are summed up. Among 190 cases evaluated, the median value of the ISS was 13 and the average was 14,4. Males presented a higher ISS than females. The young adult patients presented an average and a median value of the ISS higher than the old patients. The higher the ISS is, the longer the hospitalization period is, except for the patients with the ISS over 35. The fractures in thoracic level show the ISS higher than the rest. The ISS is directly related to surgical treatment and mortality. The ISS values which were found show that a less severe trauma can cause a burst thoracic or lumbar spinal cord fracture. The value of the ISS has not shown correlation to the sex and the fracture level, but it is proportional to the hospitalization period, the surgical treatment and the mortality rate. This result shows a value which is inversely proportional to the age of the patients.
Multiple Chronic Conditions Among US Adults: A 2012 Update
Schiller, Jeannine S.; Goodman, Richard A.
2014-01-01
The objective of this research was to update earlier estimates of prevalence rates of single chronic conditions and multiple (>2) chronic conditions (MCC) among the noninstitutionalized, civilian US adult population. Data from the 2012 National Health Interview Survey (NHIS) were used to generate estimates of MCC for US adults and by select demographic characteristics. Approximately half (117 million) of US adults have at least one of the 10 chronic conditions examined (ie, hypertension, coronary heart disease, stroke, diabetes, cancer, arthritis, hepatitis, weak or failing kidneys, current asthma, or chronic obstructive pulmonary disease [COPD]). Furthermore, 1 in 4 adults has MCC. PMID:24742395
NASA Technical Reports Server (NTRS)
Scharf, R.
2014-01-01
The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.
International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Raftery, Michael; Hoffman, Jeffrey
2011-01-01
The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.
Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss
NASA Astrophysics Data System (ADS)
Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana
As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e190769 - iss042e191096). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e330173 - iss042e331530). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e238532 - iss042e239150). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e177446 - iss042e178444 ). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e110489 - iss042e111902). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e212874 - iss042e213080). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e285752 - iss042e286830). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e116561 - iss042e117265). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (iss042e071550 - iss042e072050). Shows Earth views over Africa, Sinai, Saudi Arabia, Jordan and Israel.
How Colleges Are Coping, 1995.
ERIC Educational Resources Information Center
Huggett, Kim
1995-01-01
Based on news accounts, correspondence, conference presentations, and interviews, this collection of quarterly reports provides regular updates on actions taken by California's colleges to cope with difficult economic times. These four reports were produced in January, March, May, and September of 1995 and review the effects of and responses to…
The nurse theorists: 21st-century updates--Madeleine M. Leininger.
Fawcett, Jacqueline
2002-04-01
This edited transcript of an interview with Madeleine Leininger presents Leininger's recent thoughts about the development and current state of the discipline of nursing, the development of the theory of culture care diversity and universality, methods for nursing research, mentorship, and transcultural nursing practice.
Defining major trauma using the 2008 Abbreviated Injury Scale.
Palmer, Cameron S; Gabbe, Belinda J; Cameron, Peter A
2016-01-01
The Injury Severity Score (ISS) is the most ubiquitous summary score derived from Abbreviated Injury Scale (AIS) data. It is frequently used to classify patients as 'major trauma' using a threshold of ISS >15. However, it is not known whether this is still appropriate, given the changes which have been made to the AIS codeset since this threshold was first used. This study aimed to identify appropriate ISS and New Injury Severity Score (NISS) thresholds for use with the 2008 AIS (AIS08) which predict mortality and in-hospital resource use comparably to ISS >15 using AIS98. Data from 37,760 patients in a state trauma registry were retrieved and reviewed. AIS data coded using the 1998 AIS (AIS98) were mapped to AIS08. ISS and NISS were calculated, and their effects on patient classification compared. The ability of selected ISS and NISS thresholds to predict mortality or high-level in-hospital resource use (the need for ICU or urgent surgery) was assessed. An ISS >12 using AIS08 was similar to an ISS >15 using AIS98 in terms of both the number of patients classified major trauma, and overall major trauma mortality. A 10% mortality level was only seen for ISS 25 or greater. A NISS >15 performed similarly to both of these ISS thresholds. However, the AIS08-based ISS >12 threshold correctly classified significantly more patients than a NISS >15 threshold for all three severity measures assessed. When coding injuries using AIS08, an ISS >12 appears to function similarly to an ISS >15 in AIS98 for the purposes of identifying a population with an elevated risk of death after injury. Where mortality is a primary outcome of trauma monitoring, an ISS >12 threshold could be adopted to identify major trauma patients. Level II evidence--diagnostic tests and criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Killoran, Kristin E.; Miller, Amber D.; Uray, Karen S.; Weisbrodt, Norman W.; Pautler, Robia G.; Goyert, Sanna M.; van Rooijen, Nico
2014-01-01
Intestinal intussusception (ISS) commonly causes intestinal obstruction in children. One mechanism that has been proposed to cause ISS is inflammation-induced alteration of intestinal motility. We investigated whether innate inflammatory factors or altered motility is required for induction of ISS by LPS. We compared rates of ISS among BALB/c and C57BL/6 mice, mice lacking lymphocytes or depleted of phagocytes, or mice with defects in the Toll-like receptor 4 (TLR4) signaling pathway following administration of LPS or the Ca2+ analog MnCl2. At 6 or 2 h after administration of LPS or MnCl2, respectively, mice underwent image analysis to assess intestinal contraction rate or laparotomy to identify ISS. LPS-induced ISS (LPS-ISS) was observed in BALB/c mice, but not in C57BL/6 mice or any BALB/c mice with disruptions of TLR4 signaling. LPS-induced serum TNF-α, IL-6, and nitric oxide (NO) and intestinal NO levels were similar in BALB/c and C57BL/6 mice. The rate of LPS-ISS was significantly reduced in phagocyte-depleted, but not lymphocyte-deficient, mice. Intestinal contraction rates were reduced in LPS-ISS-susceptible BALB/c mice, but not in LPS-ISS-resistant C57BL/6 or TLR4 mutant mice, suggesting a role for reduced intestinal contraction rate in LPS-ISS susceptibility. This was tested with MnCl2, a Ca2+ antagonist that reduced intestinal contraction rates and induced ISS, irrespective of mouse strain. Therefore, LPS-ISS is initiated by innate immune signaling that requires TLR4 and phagocytes but may be independent of TNF-α, IL-6, and NO levels. Furthermore, alteration of intestinal motility, specifically, reduced intestinal contraction rate, is a key factor in the development of ISS. PMID:24407593
ISS Utilization Potential for 2011-2020 and Beyond
NASA Astrophysics Data System (ADS)
Askew, R.; Chabrow, J.; Nakagawa, R.
The US concept for a permanent human presence in space as directed by President Ronald Reagan in 1984 was called Space Station Freedom. This was the precursor to the International Space Station (ISS) that now orbits the earth. The first element of the ISS, Zarya, was launched November 20, 1998. The launch of STS-133 provides the final component of the assembly, the Multi-Purpose Logistics Module (MPLM). During the assembly the ISS was utilized to the extent possible for the conduct of scientific research and technology development, and for the development of enhancements to the ISS capabilities. These activities have resulted in a significant database of lessons learned regarding operations, both of the ISS platform as well as in the conduct of research. For the coming decade utilization of the ISS will be impacted by how these lessons learned are used to improve operations. Access to the ISS and to its capabilities will determine the types of projects that can use the ISS. Perhaps the most critical limitation is the funds that must be invested by potential users of the ISS. This paper examines the elements that have been identified as impediments to utilization of the ISS by both basic researchers and by the private sector over the past decade and provides an assessment of which of these are likely to be satisfactorily altered and on what time scale.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e260338 - iss042e261334). Shows night time Earth views taken from the Cupola module.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
s time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e207712 - iss042e209132 ). Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e203119 - iss042e203971). Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e334978 - iss042e335976). Shows Earth views. Solar Array Wing (SAW) comes into view.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e324104 - iss042e325631). Shows Earth views. Soyuz and Progress spacecrafts come into view.
Applications of the International Space Station Probabilistic Risk Assessment Model
NASA Technical Reports Server (NTRS)
Grant, Warren; Lutomski, Michael G.
2011-01-01
Recently the International Space Station (ISS) has incorporated more Probabilistic Risk Assessments (PRAs) in the decision making process for significant issues. Future PRAs will have major impact to ISS and future spacecraft development and operations. These PRAs will have their foundation in the current complete ISS PRA model and the current PRA trade studies that are being analyzed as requested by ISS Program stakeholders. ISS PRAs have recently helped in the decision making process for determining reliability requirements for future NASA spacecraft and commercial spacecraft, making crew rescue decisions, as well as making operational requirements for ISS orbital orientation, planning Extravehicular activities (EVAs) and robotic operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decision. This paper will discuss future analysis topics such as life extension, requirements of new commercial vehicles visiting ISS.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e211498 - iss042e212135). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e162807 - iss042e163936). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e210380 - iss042e211441). Shows Earth views. Solar Array Wing (SAW) in and out of view.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e193144 - iss042e194102). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e209133 - iss042e210379). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e215401 -iss042e215812). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e290689 - iss042e291289). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e249923 - iss042e250759). Shows Earth views. Space Station Remote Manipulator system (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e170341 - iss042e171462). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e244330 - iss042e245101). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
Derakhshandeh, A; Zahraei Salehi, T; Tadjbakhsh, H; Karimi, V
2009-09-01
To identify, clone and sequence the iss (increased serum survival) gene from E. coli strain chi1378 isolated from Iranian poultry and to predict its protein product, Iss. The iss gene from E. coli strain chi1378 was amplified and cloned into the pTZ57R/T vector and sequenced. From the DNA sequence, the Iss predictive protein was evaluated using bioinformatics. Iss from strain chi1378 had 100% identity with other E. coli serotypes and isolates from different origins and also 98% identity with E. coli O157:H7 Iss protein. Phylogenetic analysis showed no significant different phylogenic groups among E. coli strains. The strong association of predicted Iss protein among different E. coli strains suggests that it could be a good antigen to control and detect avian pathogenic E. coli (APEC). Because the exact pathogenesis and the role of virulence factors are unknown, the Iss protein could be used as a target for vaccination in the future, but further research is required.
Space radiation concerns for manned exploration.
Stanford, M; Jones, J A
1999-07-01
Spaceflight exposes astronaut crews to natural ionizing radiation. To date, exposures in manned spaceflight have been well below the career limits recommended to NASA by the National Council of Radiation Protection and Measurements (NCRP). This will not be the case for long-duration exploratory class missions. Additionally. International Space Station (ISS) crews will receive higher doses than earlier flight crews. Uncertainties in our understanding of long-term bioeffects, as well as updated analyses of the Hiroshima. Nagasaki and Chernobyl tumorigenesis data, have prompted the NCRP to recommend further reductions by 30-50% for career dose limit guidelines. Intelligent spacecraft design and material selection can provide a shielding strategy capable of maintaining crew exposures within recommended guidelines. Current studies on newer radioprotectant compounds may find combinations of agents which further diminish the risk of radiation-induced bioeffects to the crew.
Modeling International Space Station (ISS) Floating Potentials
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Gardner, Barbara
2002-01-01
The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.
Surface Warfare Officers Initial Training For Future Success
2018-03-01
updating and creating learning modules and Surface Warfare Officer School (SWOS) staffing as well as weaknesses in the methodologies used for...and Surface Warfare Officer School (SWOS) staffing as well as weaknesses in the methodologies used for training. We conclude that the Basic Division... METHODOLOGY ....................................................................................9 1. Staff Interviews
The National Health Educator Job Analysis 2010: Process and Outcomes
ERIC Educational Resources Information Center
Doyle, Eva I.; Caro, Carla M.; Lysoby, Linda; Auld, M. Elaine; Smith, Becky J.; Muenzen, Patricia M.
2012-01-01
The National Health Educator Job Analysis 2010 was conducted to update the competencies model for entry- and advanced-level health educators. Qualitative and quantitative methods were used. Structured interviews, focus groups, and a modified Delphi technique were implemented to engage 59 health educators from diverse work settings and experience…
Making It As a Stepparent: New Roles/New Rules. Updated Edition.
ERIC Educational Resources Information Center
Berman, Claire
Based on interviews with hundreds of remarried men and women, this guide to stepparenting realistically acknowledges the fears, doubts, and difficulties that affect the stepparenting situation, and offers practical help and insight into the many accompanying challenges and rewards. Following an introduction that acknowledges how few role-models…
Mori, Amani Thomas; Kaale, Eliangiringa Amos; Ngalesoni, Frida; Norheim, Ole Frithjof; Robberstad, Bjarne
2014-01-01
Background Insufficient access to essential medicines is a major health challenge in developing countries. Despite the importance of Standard Treatment Guidelines and National Essential Medicine Lists in facilitating access to medicines, little is known about how they are updated. This study aims to describe the process of updating the Standard Treatment Guidelines and National Essential Medicine List in Tanzania and further examines the criteria and the underlying evidence used in decision-making. Methods This is a qualitative study in which data were collected by in-depth interviews and document reviews. Interviews were conducted with 18 key informants who were involved in updating the Standard Treatment Guidelines and National Essential Medicine List. We used a thematic content approach to analyse the data. Findings The Standard Treatment Guidelines and National Essential Medicine List was updated by committees of experts who were recruited mostly from referral hospitals and the Ministry of Health and Social Welfare. Efficacy, safety, availability and affordability were the most frequently utilised criteria in decision-making, although these were largely based on experience rather than evidence. In addition, recommendations from international guidelines and medicine promotions also influenced decision-making. Cost-effectiveness, despite being an important criterion for formulary decisions, was not utilised. Conclusions Recent decisions about the selection of essential medicines in Tanzania were made by committees of experts who largely used experience and discretionary judgement, leaving evidence with only a limited role in decision-making process. There may be several reasons for the current limited use of evidence in decision-making, but one hypothesis that remains to be explored is whether training experts in evidence-based decision-making would lead to a better and more explicit use of evidence. PMID:24416293
Mori, Amani Thomas; Kaale, Eliangiringa Amos; Ngalesoni, Frida; Norheim, Ole Frithjof; Robberstad, Bjarne
2014-01-01
Insufficient access to essential medicines is a major health challenge in developing countries. Despite the importance of Standard Treatment Guidelines and National Essential Medicine Lists in facilitating access to medicines, little is known about how they are updated. This study aims to describe the process of updating the Standard Treatment Guidelines and National Essential Medicine List in Tanzania and further examines the criteria and the underlying evidence used in decision-making. This is a qualitative study in which data were collected by in-depth interviews and document reviews. Interviews were conducted with 18 key informants who were involved in updating the Standard Treatment Guidelines and National Essential Medicine List. We used a thematic content approach to analyse the data. The Standard Treatment Guidelines and National Essential Medicine List was updated by committees of experts who were recruited mostly from referral hospitals and the Ministry of Health and Social Welfare. Efficacy, safety, availability and affordability were the most frequently utilised criteria in decision-making, although these were largely based on experience rather than evidence. In addition, recommendations from international guidelines and medicine promotions also influenced decision-making. Cost-effectiveness, despite being an important criterion for formulary decisions, was not utilised. Recent decisions about the selection of essential medicines in Tanzania were made by committees of experts who largely used experience and discretionary judgement, leaving evidence with only a limited role in decision-making process. There may be several reasons for the current limited use of evidence in decision-making, but one hypothesis that remains to be explored is whether training experts in evidence-based decision-making would lead to a better and more explicit use of evidence.
Evolution of the iss gene in Escherichia coli.
Johnson, Timothy J; Wannemuehler, Yvonne M; Nolan, Lisa K
2008-04-01
The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.
International Space Station Utilization: Tracking Investigations from Objectives to Results
NASA Technical Reports Server (NTRS)
Ruttley, T. M.; Mayo, Susan; Robinson, J. A.
2011-01-01
Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods
International Space Station (ISS)
2001-08-20
This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.
Kastritis, Efstathios; Terpos, Evangelos; Roussou, Maria; Gavriatopoulou, Maria; Migkou, Magdalini; Eleutherakis-Papaiakovou, Evangelos; Fotiou, Despoina; Ziogas, Dimitrios; Panagiotidis, Ioannis; Kafantari, Eftychia; Giannouli, Stavroula; Zomas, Athanasios; Konstantopoulos, Konstantinos; Dimopoulos, Meletios A.
2017-01-01
The Revised International Staging System (R-ISS) was recently introduced in order to improve risk stratification over that provided by the widely used standard International Staging System. In addition to the parameters of the standard system, the R-ISS incorporates the presence of chromosomal abnormalities detected by interphase fluorescence in situ hybridization [t(4;14), t(14;16) and del17p] and elevated serum lactate dehydrogenase. The R-ISS was formulated on the basis of a large dataset of selected patients who had participated in clinical trials and has not been validated in an independent cohort of unselected patients. Thus, we evaluated the R-ISS in 475 consecutive, unselected patients, treated in a single center. Our patients were older and more often had severe renal dysfunction than those in the original publication on the R-ISS. As regards distribution by group, 18% had R-ISS-1, 64.5% R-ISS-2 and 18% R-ISS-3. According to R-ISS group, the 5-year survival rate was 77%, 53% and 19% for R-ISS-1, -2 and -3, respectively (P<0.001). The R-ISS could identify three groups with distinct outcomes among patients treated with or without autologous stem cell transplantation, among those treated with either bortezomib-based or immunomodulatory drug-based primary therapy and in patients ≤65, 66–75 or >75 years. However, in patients with severe renal dysfunction the distinction between groups was less clear. In conclusion, our data in consecutive, unselected patients, with differences in the characteristics and treatment approaches compared to the original International Myeloma Working Group cohort, verified that R-ISS is a robust tool for risk stratification of newly diagnosed patients with symptomatic myeloma. PMID:27789676
Initial Results from the Floating Potential Measurement Unit aboard the International Space Station
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Swenson, Charles; Thompson, Don; Barjatya, Aroh; Koontz, Steven L.; Schneider, Todd; Vaughn, Jason; Minow, Joseph; Craven, Paul; Coffey, Victoria;
2007-01-01
The Floating Potential Measurement Unit (FPMU) is a multi-probe package designed to measure the floating potential of the 1nternational Space Station (ISS) as well as the density and temperature of the local ionospheric plasma environment. The role oj the FPMU is to provide direct measurements of ISS spacecraft charging as continuing construction leads to dramatic changes in ISS size and configuration. FPMU data are used for refinement and validation of the ISS spacecraft charging models used to evaluate the severity and frequency of occurrence of ISS charging hazards. The FPMU data and the models are also used to evaluate the effectiveness of proposed hazard controls. The FPMU consists of four probes: a floating potential probe, two Langmuir probes. and a plasma impedance probe. These probes measure the floating potential of the ISS, plasma density, and electron temperature. Redundant measurements using different probes support data validation by inter-probe comparisons. The FPMU was installed by ISS crewmembers, during an ExtraVehicular Activity, on the starboard (Sl) truss of the ISS in early August 2006, when the ISS incorporated only one 160V US photovoltaic (PV) array module. The first data campaign began a few hours after installation and continued for over five days. Additional data campaigns were completed in 2007 after a second 160V US PV array module was added to the ISS. This paper discusses the general performance characteristics of the FPMU as integrated on ISS, the functional performance of each probe, the charging behavior of the ISS before and after the addition of a second 160V US PV array module, and initial results from model comparisons.
Interplanetary Transit Simulations Using the International Space Station
NASA Technical Reports Server (NTRS)
Charles, J. B.; Arya, Maneesh
2010-01-01
It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.
Patient distribution in a mass casualty event of an airplane crash.
Postma, Ingri L E; Weel, Hanneke; Heetveld, Martin J; van der Zande, Ineke; Bijlsma, Taco S; Bloemers, Frank W; Goslings, J Carel
2013-11-01
Difficulties have been reported in the patient distribution during Mass Casualty Incidents. In this study we analysed the regional patient distribution protocol (PDP) and the actual patient distribution after the 2009 Turkish Airlines crash near Amsterdam. Analysis of the patient distribution of 126 surviving casualties of the crash by collecting data on medical treatment capacity, number of patients received per hospital, triage classification, Injury Severity Score (ISS), secondary transfers, distance from the crash site, and the critical mortality rate. The PDP holds ambiguous definitions of medical treatment capacity and was not followed. There were 14 receiving hospitals (distance from crash: 5.8-53.5 km); four hospitals received 133-213% of their treatment capacity, and 5 hospitals received 1 patient. Three hospitals within 20 km of the crash did not receive any casualties. Level I trauma centres received 89% of the 'critical' casualties and 92% of the casualties with ISS ≥ 16. Only 3 casualties were secondarily transferred, and no casualties died in, or on the way to hospital (critical mortality rate=0%). Patient distribution worked out well after the crash as secondary transfers were low and critical mortality rate was zero. However, the regional PDP was not followed in this MCI and casualties were unevenly distributed among hospitals. The PDP is indistinctive, and should be updated in cooperation between Emergency Services, surrounding hospitals, and Schiphol International Airport as a high risk area. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.
2010-01-01
The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine acceptable plasma electron current levels that can be collected by a single or combined fleet of ISS-docked VVs.
NASA Technical Reports Server (NTRS)
Matty, Christopher M.; Cover, John M.
2009-01-01
The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.
Quantitative Risk Modeling of Fire on the International Space Station
NASA Technical Reports Server (NTRS)
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
Brown, Joshua B; Gestring, Mark L; Leeper, Christine M; Sperry, Jason L; Peitzman, Andrew B; Billiar, Timothy R; Gaines, Barbara A
2017-06-01
The Injury Severity Score (ISS) is the most commonly used injury scoring system in trauma research and benchmarking. An ISS greater than 15 conventionally defines severe injury; however, no studies evaluate whether ISS performs similarly between adults and children. Our objective was to evaluate ISS and Abbreviated Injury Scale (AIS) to predict mortality and define optimal thresholds of severe injury in pediatric trauma. Patients from the Pennsylvania trauma registry 2000-2013 were included. Children were defined as younger than 16 years. Logistic regression predicted mortality from ISS for children and adults. The optimal ISS cutoff for mortality that maximized diagnostic characteristics was determined in children. Regression also evaluated the association between mortality and maximum AIS in each body region, controlling for age, mechanism, and nonaccidental trauma. Analysis was performed in single and multisystem injuries. Sensitivity analyses with alternative outcomes were performed. Included were 352,127 adults and 50,579 children. Children had similar predicted mortality at ISS of 25 as adults at ISS of 15 (5%). The optimal ISS cutoff in children was ISS greater than 25 and had a positive predictive value of 19% and negative predictive value of 99% compared to a positive predictive value of 7% and negative predictive value of 99% for ISS greater than 15 to predict mortality. In single-system-injured children, mortality was associated with head (odds ratio, 4.80; 95% confidence interval, 2.61-8.84; p < 0.01) and chest AIS (odds ratio, 3.55; 95% confidence interval, 1.81-6.97; p < 0.01), but not abdomen, face, neck, spine, or extremity AIS (p > 0.05). For multisystem injury, all body region AIS scores were associated with mortality except extremities. Sensitivity analysis demonstrated ISS greater than 23 to predict need for full trauma activation, and ISS greater than 26 to predict impaired functional independence were optimal thresholds. An ISS greater than 25 may be a more appropriate definition of severe injury in children. Pattern of injury is important, as only head and chest injury drive mortality in single-system-injured children. These findings should be considered in benchmarking and performance improvement efforts. Epidemiologic study, level III.
Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes
NASA Technical Reports Server (NTRS)
Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth
2012-01-01
The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.
Design And Testing of The Floating Potential Probe For ISS
NASA Technical Reports Server (NTRS)
Hillard, G. Barry; Ferguson, Dale C.
2001-01-01
Flight 4A was an especially critical mission for the International Space Station (ISS). For the first time, the high voltage solar arrays generated significant amounts of power and long predicted environmental interactions (high negative floating potential and concomitant dielectric charging) became serious concerns. Furthermore, the same flight saw the Plasma Contacting Unit (PCU) deployed and put into operation to mitigate and control these effects. The ISS program office has recognized the critical need to verify, by direct measurement, that ISS does not charge to unacceptable levels. A Floating Potential Probe (FPP) was therefore deployed on ISS to measure ISS floating potential relative to the surrounding plasma and to measure relevant plasma parameters. The primary objective of FPP is to verify that ISS floating potential does not exceed the specified level of 40 volts with respect to the ambient. Since it is expected that in normal operations the PCU will maintain ISS within this specification, it is equivalent to say that the objective of FPP is to monitor the functionality of the PCU. In this paper, we report on the design and testing of the ISS FPP. In a separate paper, the operations and results obtained so far by the FPP will be presented.
Stewart, Kenneth E; Cowan, Linda D; Thompson, David M
2011-09-01
The Abbreviated Injury Scale (AIS) recently underwent a major revision from AIS 98 to AIS 05. AIS injury codes form the basis of widely used injury severity scores such as the injury severity score (ISS). ISS thresholds are often used in trauma case definitions and ISS is widely used in injury research to adjust for injury severity. This study evaluated changes from AIS 98 to AIS 05, the changes' effect on ISS distributions, and presents an application of the results. Injury descriptions from medical records of 137 randomly selected patients in the Oklahoma Trauma Registry (OTR) were obtained. A single trained coder used AIS 98 and AIS 05 to code each injury. ISS values were calculated and grouped into 4 categories: 1-8, 9-14, 16-24, >24. Paired ISS was compared using Kappa statistics and tests of symmetry. We identified common injury diagnoses for which AIS severity changed between versions. Estimates of the proportion of patients changing ISS groups were applied to the entire OTR to assess the impact on reporting and on a model for reimbursement. OTR AIS 98 and manual AIS 98-based ISS values had a weighted Kappa of 0.71. OTR AIS 98 and manual AIS 05-based ISS values had a Kappa of 0.58. Manual AIS 98 and manual AIS 05 ISS had the highest Kappa of 0.81, however, though the scores differed by only 1 ISS category, there were 30 discordant pairs. The distribution of these discordant pairs was not symmetrical (Bowker's S=30; df=6; p<0.0001) with AIS 05-based ISS values consistently shifted to a lower ISS category. Reductions in AIS severity and ISS values using AIS 05 were common for extremity fractures and thorax injuries. The results suggest fewer patients would be reported to the OTR or be eligible for reimbursement. Changing from AIS 98 to AIS 05 injury coding resulted in systematic changes in AIS codes and ISS. Specific injuries and body regions were differentially affected. Trauma registries and injury researchers that use AIS based injury coding can use this information to evaluate the potential impact of changes in AIS 2005. Copyright © 2010 Elsevier Ltd. All rights reserved.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e103580 - iss042e104044). Shows night time Earth views. Solar Array Wing (SAW) and Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e196791 - iss042e197504). Shows Earth views. Day time views turn into night time views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS 7A.1 Flight Control Team Photo in BFCR
2001-08-17
JSC2001-02225 (17 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 2 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houstons Mission Control Center (MCC). Orbit 2 flight director Rick LaBrode (front right) holds the STS-105 mission logo, and Astronaut Joan E. Higginbotham, ISS spacecraft communicator (CAPCOM), holds the ISS 7A.1 mission logo.
An Initial Strategy for Commercial Industry Awareness of the International Space Station
NASA Technical Reports Server (NTRS)
Jorgensen, Catherine A.
1999-01-01
While plans are being developed to utilize the ISS for scientific research, and human and microgravity experiments, it is time to consider the future of the ISS as a world-wide commercial marketplace developed from a government owned, operated and controlled facility. Commercial industry will be able to seize this opportunity to utilize the ISS as a unique manufacturing platform and engineering testbed for advanced technology. NASA has begun the strategic planning of the evolution and commercialization of the ISS. The Pre-Planned Program Improvement (P3I) Working Group at NASA is assessing the future ISS needs and technology plans to enhance ISS performance. Some of these enhancements will allow the accommodation of commercial applications and the Human Exploration and Development of Space mission support. As this information develops, it is essential to disseminate this information to commercial industry, targeting not only the private and public space sector but also the non-aerospace commercial industries. An approach is presented for early distribution of this information via the ISS Evolution Data book that includes ISS baseline system information, baseline utilization and operations plans, advanced technologies, future utilization opportunities, ISS evolution and Design Reference Missions (DRM). This information source and tool can be used as catalyst in the commercial world for the generation of ideas and options to enhance the current capabilities of the ISS.
Immune response to recombinant Escherichia coli Iss protein in poultry.
Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K
2006-06-01
Colibacillosis accounts for significant losses to the poultry industry, and control efforts are hampered by limited understanding of the mechanisms used by avian pathogenic Escherichia coli (APEC) to cause disease. We have found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not with commensal E. coli, making iss, and the protein it encodes (Iss), candidate targets of colibacillosis control procedures. To assess the potential of Iss to elicit a protective response in chickens against APEC challenge, Iss fusion proteins were produced and administered subcutaneously to four groups of 2-wk-old specific-pathogen-free leghorn chickens. At 4 wk postimmunization, birds were challenged with APEC from serogroups 02 and 078 via intramuscular injection. At 2 wk postchallenge, birds were necropsied, and lesions consistent with colibacillosis were scored. Also, sera were collected from the birds pre- and postimmunization, and antibody titers to Iss were determined. Immunized birds produced a humoral response to Iss, and they had significantly lower lesion scores than the unimmunized control birds following challenge with both APEC strains. Birds that received the smallest amount of immunogen had the lowest lesion scores. Although further study will be needed to confirm the value of Iss as an immunoprotective antigen, these preliminary data suggest that Iss may have the potential to elicit significant protection in birds against heterologous E. coli challenge.
González-Calle, Verónica; Slack, Abigail; Keane, Niamh; Luft, Susan; Pearce, Kathryn E; Ketterling, Rhett P; Jain, Tania; Chirackal, Sintosebastian; Reeder, Craig; Mikhael, Joseph; Noel, Pierre; Mayo, Angela; Adams, Roberta H; Ahmann, Gregory; Braggio, Esteban; Stewart, A Keith; Bergsagel, P Leif; Van Wier, Scott A; Fonseca, Rafael
2018-04-06
The International Myeloma Working Group has proposed the Revised International Staging System (R-ISS) for risk stratification of multiple myeloma (MM) patients. There are a limited number of studies that have validated this risk model in the autologous stem cell transplant (ASCT) setting. In this retrospective study, we evaluated the applicability and value for predicting survival of the R-ISS model in 134 MM patients treated with new agents and ASCT at the Mayo Clinic in Arizona and the University Hospital of Salamanca in Spain. The patients were reclassified at diagnosis according to the R-ISS: 44 patients (33%) had stage I, 75 (56%) had stage II, and 15 (11%) had stage III. After a median follow-up of 60 months, R-ISS assessed at diagnosis was an independent predictor for overall survival (OS) after ASCT, with median OS not reached, 111 and 37 months for R-ISS I, II and III, respectively (P < 0.001). We also found that patients belonging to R-ISS II and having high-risk chromosomal abnormalities (CA) had a significant shorter median OS than those with R-ISS II without CA: 70 vs. 111 months, respectively. Therefore, this study lends further support for the R-ISS as a reliable prognostic tool for estimating survival in transplant myeloma patients and suggests the importance of high-risk CA in the R-ISS II group.
NASA Technical Reports Server (NTRS)
Severance, Mark T.; Tate-Brown, Judy; McArthur, Cynthia L.
2010-01-01
The International Space Station (ISS) National Lab Education Project has been created as a part of the ISS National Lab effort mandated by the U.S. Congress The project seeks to expand ISS education of activities so that they reach a larger number of students with clear educational metrics of accomplishments. This paper provides an overview of several recent ISS educational payloads and activities. The expected outcomes of the project, consistent with those of the NASA Office of Education, are also described. NASA performs numerous education activities as part of its ISS program. These cover the gamut from formal to informal educational opportunities in grades Kindergarten to grade 12, Higher Education (undergraduate and graduate University) and informal educational venues (museums, science centers, exhibits). Projects within the portfolio consist of experiments performed onboard the ISS using onboard resources which require no upmass, payloads flown to ISS or integrated into ISS cargo vehicles, and ground based activities that follow or complement onboard activities. Examples include ground based control group experiments, flight or experiment following lesson plans, ground based activities involving direct interaction with ISS or ground based activities considering ISS resources in their solution set. These projects range from totally NASA funded to projects which partner with external entities. These external agencies can be: other federal, state or local government agencies, commercial entities, universities, professional organizations or non-profit organizations. This paper will describe the recent ISS education activities and discuss the approach, outcomes and metrics associated with the projects.
Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L
2013-01-01
As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e218184 - iss042e219070 ). Shows night time views over Egypt, Sinai, Saudi Arabia, Jordan and Israel. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 45 / 46 Underwater Crew Training
2015-02-03
Underwater camera views of ISS Expedition 45 (Soyuz 42) crewmember Scott Kelly and ISS Expedition 46 (Soyuz 43) crewmember Kjell Lindgren during ISS Extravehicular Activity (EVA) Maintenance 9 Training (PMA/PMM Relocate) at JSC's Neutral Buoyancy Lab (NBL) Pool Deck at Sonny Carter Training Facility (SCTF). TIME magazine film crew filming activities.
NASA Technical Reports Server (NTRS)
Jackson, Dan
2017-01-01
The ISS is an outstanding platform for developing, testing and refining laser communications systems for future exploration. A recent ISS project which improved ISS communications satellite acquisition performance proves the platform’s utility as a laser communications systems testbed.
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2016-01-01
A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.
NASA Technical Reports Server (NTRS)
Laible, Michael R.
2011-01-01
The Microgravity performance assessment of the International Space Station (ISS) is comprised of a quasi-steady, structural dynamic and a vibro-acoustic analysis of the ISS assembly-complete vehicle configuration. The Boeing Houston (BHOU) Loads and Dynamics Team is responsible to verify compliance with the ISS System Specification (SSP 41000) and USOS Segment (SSP 41162) microgravity requirements. To verify the ISS environment, a series of accelerometers are on-board to monitor the current environment. This paper summarizes the results of the analysis that was performed for the Verification Analysis Cycle (VAC)-Assembly Complete (AC) and compares it to on-orbit acceleration values currently being reported. The analysis will include the predicted maximum and average environment on-board ISS during multiple activity scenarios
International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment
NASA Technical Reports Server (NTRS)
Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark
2014-01-01
The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.
Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott
2013-01-01
WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.
ISS Plasma Interaction: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.
2004-01-01
Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
Automated Derivation of Complex System Constraints from User Requirements
NASA Technical Reports Server (NTRS)
Muery, Kim; Foshee, Mark; Marsh, Angela
2006-01-01
International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.
International Space Station (ISS)
2005-06-09
The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.
On Crosslinguistic Variations in Imperfective Aspect: The Case of L2 Korean
ERIC Educational Resources Information Center
Lee, EunHee; Kim, Hae-Young
2007-01-01
This article examines the acquisition of Korean imperfective markers, the progressive "-ko iss-" and the resultative "-a iss-," with a view to understanding how tense/aspect morphology expands beyond prototype associations with inherent aspects of the verbs. We hypothesized that "-a iss-" will develop later than "-ko iss-," but that the…
Pettit uses a Grab Sample Container in the FGB during Expedition Six
2003-01-22
ISS006-E-20835 (22 January 2003) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, holds a Grab Sample Container (GSC) in the functional cargo block (FGB), or Zarya, on the International Space Station (ISS). GSC is used for collecting air samples as part of ISS environmental monitoring.
Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/Unity
2005-04-17
ISS011-E-05161 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, uses the ISS wet/dry vacuum cleaner assembly to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).
Pettit uses a Grab Sample Container in the U.S. Laboratory during Expedition Six
2003-01-22
ISS006-E-20834 (22 January 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, holds a Grab Sample Container (GSC) in the Destiny laboratory on the International Space Station (ISS). GSC is used for collecting air samples as part of ISS environmental monitoring.
International Space Station (ISS)
2003-05-01
Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and "gone to seed." The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.
SAGEIII-ISS L2 Lunar Data Release
Atmospheric Science Data Center
2018-01-12
... Space Station (SAGE III-ISS) Science Team and the NASA Langley Atmospheric Science Data Center (ASDC), announces the public ... Lunar Event Species Profiles (HDF-EOS) V5 (g3bssp) doi: 10.5067/ISS/SAGEIII/LUNAR_HDF4_L2-V5.0 SAGE III/ISS L2 Lunar Event ...
Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS
NASA Technical Reports Server (NTRS)
Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.
2017-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.
Tax Education: An Assessment of Needs at the Secondary Level. Research Report Number 97.
ERIC Educational Resources Information Center
Agency for Instructional Technology, Bloomington, IN.
This research report examines the current use in secondary schools of the Internal Revenue Service's (IRS) nine-chapter booklet, "Understanding Taxes," and the complementary six program videos, "Tax Whys," and offers suggestions for updating the video programs. The review begins with telephone interviews of the IRS Taxpayer…
Update on Research and Leadership. Vol. 21, No. 1. Fall 2009
ERIC Educational Resources Information Center
Bragg, Debra D., Ed.; Taylor, Jason L., Ed.
2009-01-01
This edition features current research, practice, and policy related to the Joyce Foundation's Shifting Gears initiative beginning with an interview with Whitney Smith, Manager of the Employment Program at the Joyce Foundation. Julie Strawn, Center for Law and Social Policy, presents a national perspective of basic skills reform efforts similar to…
An Assessment of Illinois Area Vocational Centers, 1976.
ERIC Educational Resources Information Center
Hamilton, James A. G.
This 1976 study presents an update of a 1971 assessment of Illinois Area Vocational Centers (AVCs). The following topics are discussed in sections of this report: (1) methodology of the study which included meetings with an advisory committee of AVC directors, interviews at each of twenty-nine operating AVCs, distribution of 2,000 of eleven…
The Educational Psychologist in the Early Years: Current Practice and Future Directions
ERIC Educational Resources Information Center
Shannon, Deborah; Posada, Susan
2007-01-01
Following suggestions for updated models of service within the early years educational psychologist (EP) role, the study aimed to provide exploratory research evidence of current models of service delivery and EP attitudes. Questionnaires were completed by 32 EPs. Interviews were conducted with three EPs. Quantitative data obtained were analysed…
Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.
2016-01-01
Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609
NASA Technical Reports Server (NTRS)
D’Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.;
2017-01-01
Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) greater than 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures less than or or equal to -40degdegC. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by approximately 3-4 orders of magnitude at higher updraft speeds (greater than 1 m s(exp -1) than those at the lower updraft speeds when ice water content (IWC) greater than 0.01 gm(exp -3), while observations show smaller differences up to approximately 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (less than or equal or 0.01 gm(exp -3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS greater than 20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g.,lees than or equal to 25%).
The New Jettison Policy for the International Space Station
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
During more than seven years of operations by the International Space Station (ISS), approximately three dozen pieces of debris were released and subsequently cataloged by the U.S. Space Surveillance Network (SSN). The individual mass of these objects ranged from less than 1 kg to 70 kg. Although some of these debris were separated from the ISS accidentally, some were intentionally cast-off, especially the larger items. In addition, small operational satellites are candidates for launch from the ISS, such as the TNS-O satellite deployed from ISS in March 2005. Recently an official ISS Jettison Policy was developed to ensure that decisions to deliberately release objects in the future were based upon a complete evaluation of the benefits and risks to the ISS, other resident space objects, and people on the Earth. The policy identifies four categories of items which might be considered for release: (1) items that pose a safety issue for return on-board a visiting vehicle, (2) items that negatively impact ISS utilization, return, or on-orbit stowage manifests, (3) items that represent an EVA timeline savings, and (4) items that are designed for jettison. Some of the principal issues to be addressed during this evaluation process are the potential for the object to recontact the ISS within the first two days after jettison, the potential of the object to breakup prior to reentry, the ability of the SSN to track the object, and the risk to people on Earth from components which might survive reentry. This paper summarizes the history of objects released from ISS, examines the specifics of the ISS jettison policy, and addresses the overall impact of ISS debris on the space environment.
NASA Astrophysics Data System (ADS)
D'Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; DiGangi, Josh P.
2017-03-01
Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) > 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures ≤ -40°C. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by 3-4 orders of magnitude at higher updraft speeds (>1 m s-1) than those at the lower updraft speeds when ice water content (IWC) > 0.01 g m-3, while observations show smaller differences up to 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (≤0.01 g m-3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS >20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g., ≥25%).
Characterization of monoclonal antibodies to avian Escherichia coli Iss.
Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K
2006-09-01
Colibacillosis accounts for annual multimillion dollar losses in the poultry industry, and control of this disease is hampered by limited understanding of the virulence mechanisms used by avian pathogenic Escherichia coli (APEC). Previous work in our laboratory has found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not commensal E. coli, making iss and the protein it encodes (Iss) candidate targets of colibacillosis-control procedures. Previously, we produced monoclonal antibodies (MAbs) against Iss to be used as a reagent in studies of APEC virulence and colibacillosis pathogenesis. Unfortunately, the utility of these MAbs was limited because these MAbs exhibited nonspecific binding. It was thought that the lack of specificity might be related to the fact that these MAbs were of the immunoglobulin M (IgM) isotype. In the present study, new MAbs were produced using a different immunization strategy in an effort to generate MAbs of a different isotype. Also, because Iss bears strong similarity to Bor, a lambda-derived protein that occurs commonly among E. coli, MAbs were assessed for their ability to distinguish Iss and Bor. For these studies, the bor gene from an APEC isolate was cloned into an expression vector. The fusion protein expressed from this construct was used to assess the potential of the anti-Iss MAbs produced in the past and present studies to distinguish Bor and Iss. The MAbs produced in this study were of the IgG1 isotype, which appeared to bind more specifically to Iss than previously generated antibodies in certain immunologic procedures. These results suggested that the MAbs generated in this study might prove superior to the previous MAbs as a reagent for study of APEC. However, both MAbs recognized recombinant Iss and Bor, suggesting that any results obtained using anti-Iss MAbs would need to be interpreted with this cross-reactivity in mind.
Palumbo, Antonio; Avet-Loiseau, Hervé; Oliva, Stefania; Lokhorst, Henk M.; Goldschmidt, Hartmut; Rosinol, Laura; Richardson, Paul; Caltagirone, Simona; Lahuerta, Juan José; Facon, Thierry; Bringhen, Sara; Gay, Francesca; Attal, Michel; Passera, Roberto; Spencer, Andrew; Offidani, Massimo; Kumar, Shaji; Musto, Pellegrino; Lonial, Sagar; Petrucci, Maria T.; Orlowski, Robert Z.; Zamagni, Elena; Morgan, Gareth; Dimopoulos, Meletios A.; Durie, Brian G.M.; Anderson, Kenneth C.; Sonneveld, Pieter; San Miguel, Jésus; Cavo, Michele; Rajkumar, S. Vincent; Moreau, Philippe
2015-01-01
Purpose The clinical outcome of multiple myeloma (MM) is heterogeneous. A simple and reliable tool is needed to stratify patients with MM. We combined the International Staging System (ISS) with chromosomal abnormalities (CA) detected by interphase fluorescent in situ hybridization after CD138 plasma cell purification and serum lactate dehydrogenase (LDH) to evaluate their prognostic value in newly diagnosed MM (NDMM). Patients and Methods Clinical and laboratory data from 4,445 patients with NDMM enrolled onto 11 international trials were pooled together. The K-adaptive partitioning algorithm was used to define the most appropriate subgroups with homogeneous survival. Results ISS, CA, and LDH data were simultaneously available in 3,060 of 4,445 patients. We defined the following three groups: revised ISS (R-ISS) I (n = 871), including ISS stage I (serum β2-microglobulin level < 3.5 mg/L and serum albumin level ≥ 3.5 g/dL), no high-risk CA [del(17p) and/or t(4;14) and/or t(14;16)], and normal LDH level (less than the upper limit of normal range); R-ISS III (n = 295), including ISS stage III (serum β2-microglobulin level > 5.5 mg/L) and high-risk CA or high LDH level; and R-ISS II (n = 1,894), including all the other possible combinations. At a median follow-up of 46 months, the 5-year OS rate was 82% in the R-ISS I, 62% in the R-ISS II, and 40% in the R-ISS III groups; the 5-year PFS rates were 55%, 36%, and 24%, respectively. Conclusion The R-ISS is a simple and powerful prognostic staging system, and we recommend its use in future clinical studies to stratify patients with NDMM effectively with respect to the relative risk to their survival. PMID:26240224
NASA Technical Reports Server (NTRS)
Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.
2014-01-01
The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both electrostatic (i.e. particles) and electromagnetic modes. SASSI will advance the understanding of plasma-boundary interaction phenomena, demonstrate a suite a sensors acting in concert to provide effective SSA, and validate and/or calibrate existing ISS space environment instruments and models.
Bertollo, David N; Alexander, Mary Jane; Shinn, Marybeth; Aybar, Jalila B
2007-06-01
This column describes the nonproprietary software Talker, used to adapt screening instruments to audio computer-assisted self-interviewing (ACASI) systems for low-literacy populations and other populations. Talker supports ease of programming, multiple languages, on-site scoring, and the ability to update a central research database. Key features include highly readable text display, audio presentation of questions and audio prompting of answers, and optional touch screen input. The scripting language for adapting instruments is briefly described as well as two studies in which respondents provided positive feedback on its use.
Mortality following helicopter versus ground transport of injured children.
Polites, Stephanie F; Zielinski, Martin D; Fahy, Aodhnait S; Wagie, Amy E; Moir, Christopher R; Jenkins, Donald H; Zietlow, Scott P; Habermann, Elizabeth B
2017-05-01
Injured children may be transported to trauma centers by helicopter air ambulance (HAA); however, a benefit in outcomes to this expensive resource has not been consistently shown in the literature and there is concern that HAA is over-utilized. A study that adequately controls for selection biases in transport mode is needed to determine which injured children benefit from HAA. The purpose of this study was to determine if HAA impacts mortality differently in minimally and severely injured children and if there are predictors of over-triage of HAA in children that can be identified. Children ≤18 years of age transported by HAA or ground ambulance (GA) from scene to a trauma center were identified from the 2010-2011 National Trauma Data Bank. Analysis was stratified by Injury Severity Score (ISS) into low ISS (≤15) and high ISS (>15) groups. Following propensity score matching of HAA to GA patients, conditional multivariable logistic regression was performed to determine if transport mode independently impacted mortality in each stratum. Rates and predictors of over-triage of HAA were also determined. Transport by HAA occurred in 8218 children (5574 low ISS, 2644 high ISS) and by GA in 35305 (30506 low ISS, 4799 high ISS). Overall mortality was greater in HAA patients (4.0 vs 1.4%, p<0.001). After propensity score matching, mortality was equivalent between HAA and GA for low ISS patients (0.2 vs 0.2%, p=0.82) but, for high ISS patients, mortality was lower in HAA (9.0 vs 11.1% p=0.014). On multivariable analysis, HAA was associated with decreased mortality in high ISS patients (OR=0.66, p=0.017) but not in low ISS patients (OR=1.13, p=0.73). Discharge within 24h of HAA transport occurred in 36.5% of low ISS patients versus 7.4% high ISS patients (p<0.001). Based on a national cohort adjusted for nonrandom assignment of transport mode, a survival benefit to HAA transport exists only for severely injured children with ISS >15. Many children with minor injuries are transported by helicopter despite frequent dismissal within 24h and no mortality benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recombinant Iss as a potential vaccine for avian colibacillosis.
Lynne, Aaron M; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Johnson, Timothy J; Johnson, Sara J; Sinha, Avanti S; Lynne, Dorie K; Moon, Harley W; Jordan, Dianna M; Logue, Catherine M; Foley, Steven L; Nolan, Lisa K
2012-03-01
Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized with 10 microg of GST-Iss, and 1/12 chickens immunized with 50 microg of GST-Iss died when challenged with the O78 strain. No other deaths occurred. Immunized chickens produced a serum and mucosal antibody response to Iss and had significantly lower lesion scores than nonimmunized chickens following challenge, regardless of the challenge strain. This study expands on our previous report of the value of Iss as an immunoprotective antigen and demonstrates that immunization with Iss can provide significant protection of chickens against challenge with three different E. coli strains.
Analysis of ISS Plasma Interaction
NASA Technical Reports Server (NTRS)
Reddell, Brandon; Alred, John; Kramer, Leonard; Mikatarian, Ron; Minow, Joe; Koontz, Steve
2006-01-01
To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data from several radar locations around the globe were used to assure consistency of the satellite data. PIM predictions for ISS charging made with this data correlated very well with FPP data, indicating that the general physics of spacecraft charging with high voltage solar arrays have been captured. The predictions also provided the probabilities of occurrences for ISS charging. These probabilities give a numerical measure of the number of times when the ISS will approach or exceed the vehicle plasma hazard conditions for each configuration. In this paper we shall present the interaction mechanisms between the ISS and the surrounding plasma and give an overview of the PIM components. PIM predictions are compared with available data followed by a discussion of the variability of plasma parameters and the conductive area on the ISS. The ISS PIM will be further tested and verified as data from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos;
2003-01-01
In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high latitude, the ISS wake may produce a spacecraft charging environment similar to that experienced by the DMSP and Freja satellites (800 to 100 km altitude polar orbits), especially during geo-magnetic disturbances (12-14). ISS is also subject to magnetic induction voltages (VxB L) on conducting structure, a result of high velocity flight through Earth's magnetic field. The magnitude of the magnetic induction voltage varies with location on ISS, as well as the relative orientation of the vehicle velocity vector and planetary magnetic field vector, leading to maximum induction voltages at high latitude (15). The space environment factors, natural and induced, that have had the largest impact on pre-launch ISS flight hardware verification and flight operations during the first two years of ISS flight operations are listed below and grouped according to the physical and chemical processes driving their interaction with ISS materials.
2004-09-20
ISS009-E-23888 (20 September 2004) --- Downtown Pittsburgh, with its swollen, muddy rivers, is featured in this image photographed from the International Space Station (ISS). Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, who is a native of Emsworth, captured this image with a digital camera at 5 p.m. on Monday, September 20, 2004.
Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 1
NASA Technical Reports Server (NTRS)
Madaras, Eric I
2013-01-01
International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the outcome of the NESC assessment.
Biomedical Results of ISS Expeditions 1-12
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer; Sams, Clarence F.
2007-01-01
A viewgraph presentation on biomedical data from International Space Station (ISS) Expeditions 1-12 is shown. The topics include: 1) ISS Expeditions 1-12; 2) Biomedical Data; 3) Physiological Assessments; 4) Bone Mineral Density; 5) Bone Mineral Density Recovery; 6) Orthostatic Tolerance; 7) Postural Stability Set of Sensory Organ Test 6; 8) Performance Assessment; 9) Aerobic Capacity of the Astronaut Corps; 10) Pre-flight Aerobic Fitness of ISS Astronauts; 11) In-flight and Post-flight Aerobic Capacity of the Astronaut Corps; and 12) ISS Functional Fitness Expeditions 1-12.
Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Madaras, Eric I.
2013-01-01
International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the appendices the final report.
NASA Technical Reports Server (NTRS)
Hershey, Matthew P.; Newswander, Daniel R.; Evernden, Brent A.
2016-01-01
On January 29, 2016, the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, deployed Lonestar from the ISS. The deployment of Lonestar, a collaboration between Texas A&M University and the University of Texas at Austin, continued to showcase the simplicity and reliability of the Cyclops deployment system. Cyclops, a NASA-developed, dedicated 10-100 kg class ISS SmallSat deployment system, utilizes the Japanese airlock and robotic systems to seamlessly insert SmallSats into orbit. This paper will illustrate Cyclops' successful deployment of Lonestar from the ISS as well as outline its concept of operations, interfaces, requirements, and processes.
NASA Technical Reports Server (NTRS)
Cobb, Sharon
2017-01-01
NASA has a phased approach to ensure our nation's leadership in space exploration, beginning in Earth orbit, developing our skills in lunar space, and extending those skills and technologies to a human mission to Mars. We're currently in Phase 0, using the ISS to better understand living and working in space. You may have heard about our "twin study" with astronauts Scott and Mike Kelly that's giving us valuable information on the effects of microgravity environments on the human body during long stays in LEO. During Phase 1 in the 2020s, SLS will be used to lift the pieces of a "deep space gateway" outpost to lunar orbit. Developing and operating the gateway will get us to Mars in a step-by-step fashion, with lessons learned in each phase of the process informing the next steps. First step of moving humans farther into the solar system is completing and flying SLS and Orion.
Update of the Bisphosphonate ISS Flight Experiment
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackelford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert;
2014-01-01
The bisphosphonate study is an international collaboration between the NASA and JAXA space agencies to investigate the potential value of antiresorptive drugs to mitigate the well-established bone changes associated with long-duration spaceflight. Our hypothesis is that an antiresorptive drug in combination with in-flight exercise will ameliorate bone loss and hypercalcuria during long-duration spaceflight. We have completed data analysis for 7 crewmembers treated with alendronate during flight and 3 of 10 controls without treatment. We previously reported the pre/postflight changes in bone density and the pre versus in-flight changes in various biomarkers in crewmembers taking alendronate during flight. The purpose of this report is to compare these results with the 12- month follow-up data. The table below presents these data as a percentage change from baseline either immediately postflight or in-flight (biochemical markers) with a 1-year follow-up.
Weber, Christian David; Hildebrand, Frank; Kobbe, Philipp; Lefering, Rolf; Sellei, Richard M; Pape, Hans-Christoph
2018-02-02
Open tibia fractures usually occur in high-energy mechanisms and are commonly associated with multiple traumas. The purposes of this study were to define the epidemiology of open tibia fractures in severely injured patients and to evaluate risk factors for major complications. A cohort from a nationwide population-based prospective database was analyzed (TraumaRegister DGU ® ). Inclusion criteria were: (1) open or closed tibia fracture, (2) Injury Severity Score (ISS) ≥ 16 points, (3) age ≥ 16 years, and (4) survival until primary admission. According to the soft tissue status, patients were divided either in the closed (CTF) or into the open fracture (OTF) group. The OTF group was subdivided according to the Gustilo/Anderson classification. Demographic data, injury mechanisms, injury severity, surgical fracture management, hospital and ICU length of stay and systemic complications (e.g., multiple organ failure (MOF), sepsis, mortality) were collected and analyzed by SPSS (Version 23, IBM Inc., NY, USA). Out of 148.498 registered patients between 1/2002 and 12/2013; a total of 4.940 met the inclusion criteria (mean age 46.2 ± 19.4 years, ISS 30.4 ± 12.6 points). The CTF group included 2000 patients (40.5%), whereas 2940 patients (59.5%) sustained open tibia fractures (I°: 49.3%, II°: 27.5%, III°: 23.2%). High-energy trauma was the leading mechanism in case of open fractures. Despite comparable ISS and NISS values in patients with closed and open tibia fractures, open fractures were significantly associated with higher volume resuscitation (p < 0.001), more blood (p < 0.001), and mass transfusions (p = 0.006). While the rate of external fixation increased with the severity of soft tissue injury (37.6 to 76.5%), no major effect on mortality and other major complications was observed. Open tibia fractures are common in multiple trauma patients and are therefore associated with increased resuscitation requirements, more surgical procedures and increased in-hospital length of stay. However, increased systemic complications are not observed if a soft tissue adapted surgical protocol is applied.
Detection of Iss and Bor on the surface of Escherichia coli.
Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K
2007-03-01
To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.
Enterprise: an International Commercial Space Station Option
NASA Astrophysics Data System (ADS)
Lounge, John M.
2002-01-01
In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.
Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V
2016-02-01
Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/ Unity
2005-04-17
ISS011-E-05163 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, poses for a photo with the ISS wet/dry vacuum cleaner assembly he used to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).
Development and psychometric properties of the Inner Strength Scale.
Lundman, Berit; Viglund, Kerstin; Aléx, Lena; Jonsén, Elisabeth; Norberg, Astrid; Fischer, Regina Santamäki; Strandberg, Gunilla; Nygren, Björn
2011-10-01
Four dimensions of inner strength were previously identified in a meta-theoretical analysis: firmness, creativity, connectedness, and flexibility. The aim of this study was to develop an Inner Strength Scale (ISS) based on those four dimensions and to evaluate its psychometric properties. An initial version of ISS was distributed for validation purpose with the Rosenberg Self-Esteem Scale, the resilience scale, and the sense of Coherence Scale. A convenience sample of 391 adults, aged 19-90 years participated. Principal component analysis (PCA) and confirmatory factor analysis (CFA) were used in the process of exploring, evaluating, and reducing the 63-item ISS to the 20-item ISS. Cronbach's alpha and test-retest were used to measure reliability. CFA showed satisfactory goodness-of-fit for the 20-item ISS. The analysis supported a fourfactor solution explaining 51% of the variance. Cronbach's alpha on the 20-item ISS was 0.86, and the test-retest showed stability over time (r=0.79). The ISS was found to be a valid and reliable instrument for capturing a multifaceted understanding of inner strength. Further tests of psychometric properties of the ISS will be performed in forthcoming studies. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, I.; Cristescu, I. R.; Doerr, L.
2008-07-15
The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less
NASA Technical Reports Server (NTRS)
Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph
2016-01-01
The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.
Risk Mitigation Approach to Commercial Resupply to the International Space Station
NASA Technical Reports Server (NTRS)
Koons, Diane S.; Schreiber, Craig
2010-01-01
In August 2006, NASA awarded Space Act Agreements (SAAs) for Commercial Orbital Transportation Services (COTS) under the Commercial Crew and Cargo Project Office at Johnson Space Center. One of the goals of the SAAs is to facilitate U.S. private industry demonstration of cargo transportation capabilities, ultimately achieving reliable, cost effective access to low-Earth orbit (LEO). Each COTS provider is required to complete International Space Stations (ISS) Integration activities, which includes meeting the physical and functional interfaces and interface requirements between the ISS and COTS vehicles. These requirements focus on the areas of risk to the ISS during rendezvous and proximity operations, as well as the integration operations while the COTS vehicle is berthed to the ISS. On December 23, 2008, NASA awarded Commercial Resupply Service (CRS) contracts to provide resupply services to the ISS, following the Shuttle retirement. In addition to performing any ISS Integration activities, NASA will be performing independent assessments of the launch vehicle and orbital vehicle to evaluate the readiness of the contractor to deliver NASA cargo safely to the ISS. This paper will address the activities NASA Centers, both JSC and KSC, in the oversight and insight function over commercial visiting vehicles to the ISS.
NASA Technical Reports Server (NTRS)
Yang, Qi Rong
2014-01-01
Our current International Space Station Probabilistic Risk Assessment (ISS PRA) model assumes all collisions between a visiting vehicle (VV) and the ISS result in worst case loss of the ISS crew and the vehicle (LOCV). Drawing results from the Mir-Progress collision, we know this assumption is inaccurate because that collision did not lead to LOCV. Therefore the PRA team is conducting a study to determine the likelihood of LOCV when a collision occurs between a VV and the ISS. Kinetic energy is calculated and converted to pounds of TNT for the moving VVs when they collide with the ISS. Different scenarios are evaluated to obtain collision related data such as translational kinetic energy and rotational kinetic energy. These calculated data are integrated into the results from the expert elicitation performed on the Mir- Progress collision. As a result of this study, the PRA model will now calculate the probability of a VV collision with ISS, the probability that collision will result in Loss of Soyuz Crew (LOC) or Loss of ISS Crew and Vehicle (LOCV).
On-Orbit Propulsion System Performance of ISS Visiting Vehicles
NASA Technical Reports Server (NTRS)
Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor
2013-01-01
The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.
Organization and Management of the International Space Station (ISS) Multilateral Medical Operations
NASA Technical Reports Server (NTRS)
Duncan, J. M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.
2007-01-01
The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews.
International Space Station in Orbit
NASA Technical Reports Server (NTRS)
2001-01-01
This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.
High spatial resolution infrared camera as ISS external experiment
NASA Astrophysics Data System (ADS)
Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan
High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.
Environmental Effects on ISS Materials Aging (1998 to 2008)
NASA Technical Reports Server (NTRS)
Alred, John; Dasgupta, Rajib; Koontz, Steve; Soares, Carlos; Golden, John
2009-01-01
The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the geomagnetic field. As a result, ISS exposure to many environmental factors can vary dramatically along a particular orbital ground track, and from one ground track to the next, during any 24-hour period. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles fleet. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma (7-11). Vehicle size (L) and velocity (V), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during flight through high latitudes (> +45deg) during each orbit. Finally, an induced ionizing radiation environment is produced by cosmic ray interaction with the relatively thick ISS structure and shielding materials. The intent of this review article is, therefore, to provide a summary of selected aspects and elements of the ISS vehicle with regard to LEO space environment effects, associated with the much larger and more complicated vehicle that ISS has become since 1998, but also with an eye towards performance life extension to the year 2016 and beyond.
Impact of Solar Array Position on ISS Vehicle Charging
NASA Technical Reports Server (NTRS)
Alred, John; Mikatarian, Ronald; Koontz, Steve
2006-01-01
The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA. Arcing from the EMU is classified as a catastrophic hazard, which requires two-failure tolerant controls, i.e., three hazard controls. Each PCU is capable of maintaining the ISS floating potential below the requirement during EVA. The two PCUs provide a single failure tolerant control of ISS floating potential. In the event of the failure of one or two PCUs, a combination of solar array shunting and turning the solar arrays into their own wakes will be used to supply control of the plasma hazard (Reference 3). The purpose of this paper is to present on-orbit information that shows that ISS solar array placement with respect to the ISS velocity vector can control solar array plasma charging, and hence, provide an operational control for the plasma hazard. Also, this paper will present on-orbit information that shows that shunting of the ISS solar arrays can control solar array plasma charging, and hence, provide an additional operational control for the plasma hazard.
SpeedyTime_7-Minus_Eighty_Degrees_Laboratory_Freezer_for_ ISS
2017-08-23
SpeedyTime 7 – Minus Eighty Degrees Laboratory Freezer for ISS Cutting-edge science is on the daily menu on board the International Space Station, but where do the astronauts store their lab results before they’re shipped back to Earth? In one of a dozen large freezers, of course: in this SpeedyTime segment, Expedition 52 flight engineer Jack Fischer shines a light on the MELFI, Minus Eighty Degrees Laboratory Freezer for ISS. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
NASA Technical Reports Server (NTRS)
Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John
2006-01-01
Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.
The Floating Potential Probe (FPP) for ISS: Operations and Initial Results
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry; Morton, Thomas L.
2001-01-01
In this paper we report early results from the Floating Potential Probe (FPP) recently installed on the International Space Station (ISS). The data show that FPP properly measures the electrical potential of ISS structure with respect to the plasma it is flying through. FPP Langmuir probe data seem to give accurate measurements of the ambient plasma density, and are generally consistent with the IRI-90 model. FPP data are used to judge the performance of the ISS Plasma Contacting Units (PCUs), and to evaluate the extent of ISS charging in the absence of the PCUs.
NASA Technical Reports Server (NTRS)
Semones, Edward; Leitgab, Martin
2016-01-01
The ISS-RAD instrument was activated on ISS on February 1st, 2016. Integrated in ISS-RAD, the Fast Neutron Detector (FND) performs, for the first time on ISS, routine and precise direct neutron measurements between 0.5 and 8 MeV. Preliminary results for neutron dose equivalent and neutron flux energy distributions from online/on-board algorithms and offline ground analyses will be shown, along with comparisons to simulated data and previously measured neutron spectral data. On-orbit data quality and pre-launch analysis validation results will be discussed as well.
The ISS as a platform for a fully simulated mars voyage
NASA Astrophysics Data System (ADS)
Narici, Livio; Reitz, Guenther
2016-07-01
The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the needed operational support for the ISS survival as well as the support for emergency situations. Beside helping in focusing the attention of the many space and space related programs to the quest for Mars, ISS4Mars will maintain a high level of attention of the funding institutions and provide an important focus for the general public. This talk will present the many scientific issues still open to be addressed (see for example the disciplinary reports of the THESEUS project#), some example of the challenging tests that could be performed, some of the operational challenges, as well as list some of the issues not likely/possible to be simulated. # http://www.theseus-eu.org
NASA Technical Reports Server (NTRS)
Charles, John B.; Bogomolov, Valery V.
2015-01-01
Effective use of the unique capabilities of the International Space Station (ISS) for risk reduction on future deep space missions involves preliminary work in analog environments to identify and evaluate the most promising techniques, interventions and treatments. This entails a consolidated multinational approach to biomedical research both on ISS and in ground analogs. The Multilateral Human Research Panel for Exploration (MHRPE) was chartered by the five ISS partners to recommend the best combination of partner investigations on ISS for risk reduction in the relatively short time available for ISS utilization. MHRPE will also make recommendations to funding agencies for appropriate preparatory analog work. In 2011, NASA's Human Research Program (HRP) and the Institute of Biomedical Problems (IBMP) of the Russian Academy of Science, acting for MHRPE, developed a joint US-Russian biomedical program for the 2015 one-year ISS mission (1YM) of American and Russian crewmembers. This was to evaluate the possibilities for multilateral research on ISS. An overlapping list of 16 HRP, 9 IBMP, 3 Japanese, 3 European and 1 Canadian investigations were selected to address risk-reduction goals in 7 categories: Functional Performance, Behavioral Health, Visual Impairment, Metabolism, Physical Capacity, Microbial and Human Factors. MHRPE intends to build on this bilateral foundation to recommend more fully-integrated multilateral investigations on future ISS missions commencing after the 1YM. MHRPE has also endorsed an on-going program of coordinated research on 6-month, one-year and 6-week missions ISS expeditions that is now under consideration by ISS managers. Preparatory work for these missions will require coordinated and collaborative campaigns especially in the psychological and psychosocial areas using analog isolation facilities in Houston, Köln and Moscow, and possibly elsewhere. The multilateral Human Analogs research working group (HANA) is the focal point of those planning discussions, with MHRPE coordinating between the national programs and then supporting implementation on ISS. Experience gained during preparations for the 1YM has identified improvements in both American and Russian processes to enable well-integrated investigations on all subsequent ISS expeditions. Among those is that the greatest efficiency is to be gained with investigations that are fully integrated from their conception, with co-principal investigators, a consolidated proposal and integrated plans for crewmember time and other flight-related resources. Analog investigations preceding future ISS expeditions will employ these lessons in efficiency to evaluate the techniques and tools to be validated aboard ISS. In this way, the resources and capabilities of ISS can be applied most efficiently to solving the problems facing astronauts of all nations in missions deep into the solar system.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various scientific disciplines represented in investigations on ISS? Are there lessons specific to human research, technology development, life sciences, and physical sciences that can be used to increase future research accomplishments? Research has been conducted and completed on ISS under a set of challenging constraints during the past 7 years. The history of research accomplished on ISS during this time serves as an indicator of the value and potential of ISS when full utilization begins. By learning from our early experience in completing research on ISS, NASA and our partners can be positioned to optimize research returns as a full crew complement comes onboard, assembly is completed, and research begins in full.
Space Flight Resource Management for ISS Operations
NASA Technical Reports Server (NTRS)
Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert
2011-01-01
This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.
2017-07-01
2017 to incorporate revised factors from the DEOMI Organizational Climate Survey (DEOCS) version 4.0 to version 4.1. This update primarily effects...begins with a survey , such as the DEOMI Organizational Climate Survey (DEOCS). Once survey themes, indicators, or concerns are identified, other...climate assessment to verify indicators and concerns identified through other assessment methods ( surveys , observations, and interviews
ERIC Educational Resources Information Center
Arnold, Karen D.; Wartman, Katherine Lynk; Brown, Paul Gordon; Gismondi, Adam N.; Pesce, Jessica R.; Stanfield, David
2016-01-01
Tracking low-income students after high school graduation presents significant problems for data collection. The Connector Study is an attempt to increase and enrich outcomes data in a longitudinal study of low-income graduates of a national network of innovative high schools by gathering alumni updates through telephone interviews with high…
Living memorials project: year 1 social and site assessment
Erika S. Svendsen; Lindsay K. Campbell
2005-01-01
The Living Memorials Project (LMP) social and site assessment identified more than 200 public open spaces created, used, or enhanced in memory of the tragic events of September 11, 2001 (9-11). A national registry of these sites is available for viewing and updating online. Researchers interviewed 100 community groups using social ecology methods of observation,...
Update: What Nurses Need to Know about Human Trafficking.
Washburn, Joy
Nurses are key people who interact with victims of human trafficking in healthcare and other settings. This article provides a current overview of human trafficking, explains legal definitions, elements for protocols in healthcare settings when trafficking is suspected, nursing roles and responses, interview tools, resources, public health recommendations, and nursing education approaches to address human trafficking.
The National Mapping of Teacher Professional Learning Project: A Multi-Dimensional Space?
ERIC Educational Resources Information Center
Doecke, Brenton; Parr, Graham
2011-01-01
This essay focuses on the "National Mapping of Teacher Professional Learning" (2008), a report that we co-authored along with a number of other researchers on the basis of extensive surveys and interviews relating to the policies and practices of teacher professional learning in Australia. The report is an update of an earlier survey…
Exterior view of the ISS taken during EVA-3
2011-05-25
ISS028-E-005416 (25 May 2011) --- The forward section of the space shuttle Endeavour is pictured with two components of the International Space Station (ISS) -- the Harmony node (left) and the European Space Agency's Columbus laboratory. Nine astronauts and cosmonauts continue to work inside the shirt-sleeve environment of the ISS and preparing for the final of four spacewalks on May 26.
NASA Technical Reports Server (NTRS)
Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan
2011-01-01
Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination
NASA Technical Reports Server (NTRS)
Menkin, Evgeny; Juillerat, Robert
2015-01-01
With the International Space Station Program transition from assembly to utilization, focus has been placed on the optimization of essential resources. This includes resources both resupplied from the ground and also resources produced by the ISS. In an effort to improve the use of two of these, the ISS Engineering teams, led by the ISS Program Systems Engineering and Integration Office, undertook an effort to modify the techniques use to perform several key on-orbit events. The primary purposes of this endeavor was to make the ISS more efficient in the use of the Russian-supplied fuel for the propulsive attitude control system and also to minimize the impacts to available ISS power due to the positioning of the ISS solar arrays. Because the ISS solar arrays are sensitive to several factors that are present when propulsive attitude control is used, they must be operated in a manner to protect them from damage. This results in periods of time where the arrays must be positioned, rather than autonomously tracking the sun, resulting in negative impacts to power generated by the solar arrays and consumed by both the ISS core systems and payload customers. A reduction in the number and extent of the events each year that require the ISS to use propulsive attitude control simultaneously accomplishes both these goals. Each instance where the ISS solar arrays normal sun tracking mode must be interrupted represent a need for some level of powerdown of equipment. As the magnitude of payload power requirements increases, and the efficiency of the ISS solar arrays decreases, these powerdowns caused by array positioning, will likely become more significant and could begin to negatively impact the payload operations. Through efforts such as this, the total number of events each year that require positioning of the arrays to unfavorable positions for power generation, in order to protect them against other constraints, are reduced. Optimization of propulsive events and transitioning some of them to non-propulsive CMG control significantly reduces propellant usage on the ISS leading to the reduction of the propellant delivery requirement. This results in move available upmass that can be used for delivering critical dry cargo, additional water, air, crew supplies and science experiments.
Checinska, Aleksandra; Probst, Alexander J; Vaishampayan, Parag; White, James R; Kumar, Deepika; Stepanov, Victor G; Fox, George E; Nilsson, Henrik R; Pierson, Duane L; Perry, Jay; Venkateswaran, Kasthuri
2015-10-27
The International Space Station (ISS) is a unique built environment due to the effects of microgravity, space radiation, elevated carbon dioxide levels, and especially continuous human habitation. Understanding the composition of the ISS microbial community will facilitate further development of safety and maintenance practices. The primary goal of this study was to characterize the viable microbiome of the ISS-built environment. A second objective was to determine if the built environments of Earth-based cleanrooms associated with space exploration are an appropriate model of the ISS environment. Samples collected from the ISS and two cleanrooms at the Jet Propulsion Laboratory (JPL, Pasadena, CA) were analyzed by traditional cultivation, adenosine triphosphate (ATP), and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assays to estimate viable microbial populations. The 16S rRNA gene Illumina iTag sequencing was used to elucidate microbial diversity and explore differences between ISS and cleanroom microbiomes. Statistical analyses showed that members of the phyla Actinobacteria, Firmicutes, and Proteobacteria were dominant in the samples examined but varied in abundance. Actinobacteria were predominant in the ISS samples whereas Proteobacteria, least abundant in the ISS, dominated in the cleanroom samples. The viable bacterial populations seen by PMA treatment were greatly decreased. However, the treatment did not appear to have an effect on the bacterial composition (diversity) associated with each sampling site. The results of this study provide strong evidence that specific human skin-associated microorganisms make a substantial contribution to the ISS microbiome, which is not the case in Earth-based cleanrooms. For example, Corynebacterium and Propionibacterium (Actinobacteria) but not Staphylococcus (Firmicutes) species are dominant on the ISS in terms of viable and total bacterial community composition. The results obtained will facilitate future studies to determine how stable the ISS environment is over time. The present results also demonstrate the value of measuring viable cell diversity and population size at any sampling site. This information can be used to identify sites that can be targeted for more stringent cleaning. Finally, the results will allow comparisons with other built sites and facilitate future improvements on the ISS that will ensure astronaut health.
NASA Technical Reports Server (NTRS)
Helms, W. Jason; Pohlkamp, Kara M.
2011-01-01
The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.
Kucera, Kristen L.; Marshall, Stephen W.; Bell, David R.; DiStefano, Michael J.; Goerger, Candice P.; Oyama, Sakiko
2011-01-01
Context: Few validation studies of sport injury-surveillance systems are available. Objective: To determine the validity of a Web-based system for surveillance of collegiate sport injuries, the Injury Surveillance System (ISS) of the National Collegiate Athletic Association's (NCAA). Design: Validation study comparing NCAA ISS data from 2 fall collegiate sports (men's and women's soccer) with other types of clinical records maintained by certified athletic trainers. Setting: A purposive sample of 15 NCAA colleges and universities that provided NCAA ISS data on both men's and women's soccer for at least 2 years during 2005–2007, stratified by playing division. Patients or Other Participants: A total of 737 men's and women's soccer athletes and 37 athletic trainers at these 15 institutions. Main Outcome Measure(s): The proportion of injuries captured by the NCAA ISS (capture rate) was estimated by comparing NCAA ISS data with the other clinical records on the same athletes maintained by the athletic trainers. We reviewed all athletic injury events resulting from participation in NCAA collegiate sports that resulted in 1 day or more of restricted activity in games or practices and necessitated medical care. A capture-recapture analysis estimated the proportion of injury events captured by the NCAA ISS. Agreement for key data fields was also measured. Results: We analyzed 664 injury events. The NCAA ISS captured 88.3% (95% confidence interval = 85.9%, 90.8%) of all time-lost medical-attention injury events. The proportion of injury events captured by the NCAA ISS was higher in Division I (93.8%) and Division II (89.6%) than in Division III (82.3%) schools. Agreement between the NCAA ISS data and the non–NCAA ISS data was good for the majority of data fields but low for date of full return and days lost from sport participation. Conclusions: The overall capture rate of the NCAA ISS was very good (88%) in men's and women's soccer for this period. PMID:22488136
Optimal Propellant Maneuver Flight Demonstrations on ISS
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis
2013-01-01
In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic manipulator relative to the ISS. Since 2005 USTO has been used for nominal ISS operations.
Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements
NASA Technical Reports Server (NTRS)
Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.;
2008-01-01
Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment measurements to investigations of on-orbit anomalies in ISS systems.
Rowell, Susan E; Barbosa, Ronald R; Diggs, Brian S; Schreiber, Martin A; Holcomb, J B; Wade, C E; Brasel, K J; Vercruysse, G; MacLeod, J; Dutton, R P; Hess, J R; Duchesne, J C; McSwain, N E; Muskat, P; Johannigamn, J; Cryer, H M; Tillou, A; Cohen, M J; Pittet, J F; Knudson, P; De Moya, M A; Schreiber, M A; Tieu, B; Brundage, S; Napolitano, L M; Brunsvold, M; Sihler, K C; Beilman, G; Peitzman, A B; Zenait, M S; Sperry, J; Alarcon, L; Croce, M A; Minei, J P; Kozar, R; Gonzalez, E A; Stewart, R M; Cohn, S M; Mickalek, J E; Bulger, E M; Cotton, B A; Nunez, T C; Ivatury, R; Meredith, J W; Miller, P; Pomper, J; Marin, B
2011-08-01
The Injury Severity Score (ISS) is widely used as a method for rating severity of injury. The ISS is the sum of the squares of the three worst Abbreviated Injury Scale (AIS) values from three body regions. Patients with penetrating injuries tend to have higher mortality rates for a given ISS than patients with blunt injuries. This is thought to be secondary to the increased prevalence of multiple severe injuries in the same body region in patients with penetrating injuries, which the ISS does not account for. We hypothesized that the mechanism-based difference in mortality could be attributed to certain ISS ranges and specific AIS values by body region. Outcome and injury scoring data were obtained from transfused patients admitted to 23 Level I trauma centers. ISS values were grouped into categories, and a logistic regression model was created. Mortality for each ISS category was determined and compared with the ISS 1 to 15 group. An interaction term was added to evaluate the effect of mechanism. Additional logistic regression models were created to examine each AIS category individually. There were 2,292 patients in the cohort. An overall interaction between ISS and mechanism was observed (p = 0.049). Mortality rates between blunt and penetrating patients with an ISS between 25 and 40 were significantly different (23.6 vs. 36.1%; p = 0.022). Within this range, the magnitude of the difference in mortality was far higher for penetrating patients with head injuries (75% vs. 37% for blunt) than truncal injuries (26% vs. 17% for blunt). Penetrating trauma patients with an AIS head of 4 or 5, AIS abdomen of 3, or AIS extremity of 3 all had adjusted mortality rates higher than blunt trauma patients with those values. Significant differences in mortality between blunt and penetrating trauma patients exist at certain ISS and AIS category values. The mortality difference is greatest for head injured patients.
Schiwon, Katarzyna; Arends, Karsten; Rogowski, Katja Marie; Fürch, Svea; Prescha, Katrin; Sakinc, Türkan; Van Houdt, Rob; Werner, Guido; Grohmann, Elisabeth
2013-04-01
The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.
Integrating MBSE into Ongoing Projects: Requirements Validation and Test Planning for the ISS SAFER
NASA Technical Reports Server (NTRS)
Anderson, Herbert A.; Williams, Antony; Pierce, Gregory
2016-01-01
The International Space Station (ISS) Simplified Aid for Extra Vehicular Activity (EVA) Rescue (SAFER) is the spacewalking astronaut's final safety measure against separating from the ISS and being unable to return safely. Since the late 1990s, the SAFER has been a standard element of the spacewalking astronaut's equipment. The ISS SAFER project was chartered to develop a new block of SAFER units using a highly similar design to the legacy SAFER (known as the USA SAFER). An on-orbit test module was also included in the project to enable periodic maintenance/propulsion system checkout on the ISS SAFER. On the ISS SAFER project, model-based systems engineering (MBSE) was not the initial systems engineering (SE) approach, given the volume of heritage systems engineering and integration (SE&I) products. The initial emphasis was ensuring traceability to ISS program standards as well as to legacy USA SAFER requirements. The requirements management capabilities of the Cradle systems engineering tool were to be utilized to that end. During development, however, MBSE approaches were applied selectively to address specific challenges in requirements validation and test and verification (T&V) planning, which provided measurable efficiencies to the project. From an MBSE perspective, ISS SAFER development presented a challenge and an opportunity. Addressing the challenge first, the project was tasked to use the original USA SAFER operational and design requirements baseline, with a number of additional ISS program requirements to address evolving certification expectations for systems operating on the ISS. Additionally, a need to redesign the ISS SAFER avionics architecture resulted in a set of changes to the design requirements baseline. Finally, the project added an entirely new functionality for on-orbit maintenance. After initial requirements integration, the system requirements count was approaching 1000, which represented a growth of 4x over the original USA SAFER system. This presented the challenge - How to confirm that this new set of requirements set would result in the creation of the desired capability.
Chalouhi, Nohra; Drueding, Ross; Starke, Robert M; Jabbour, Pascal; Dumont, Aaron S; Gonzalez, L Fernando; Rosenwasser, Robert; Tjoumakaris, Stavropoula
2013-03-01
Neuroform and Enterprise are widely used self-expanding stents designed to treat wide-necked intracranial aneurysms. To assess the incidence, clinical significance, predictors, and outcomes of in-stent stenosis (ISS). Angiographic studies and hospital records were retrospectively reviewed for 435 patients treated between 2005 and 2011 in our institution. A multivariable regression analysis was conducted to determine the predictors of ISS. The Neuroform stent was used in 264 patients (60.7%) and the Enterprise in 171 patients (39.3%). A total of 11 patients (2.5%) demonstrated some degree of ISS during the follow-up period at a mean time point of 4.2 months (range, 2-12 months). The stenosis was mild (< 50%) in 8 patients (1.8%), moderate (50-75%) in 2 patients (0.5%), and severe (> 75%) in 1 patient (0.2%). No patients were symptomatic or required further intervention. There was complete ISS resolution in 2 patients, partial resolution in 2 patients, and no change in 5 patients on follow-up angiography. Patients developing ISS were significantly younger than those without ISS (40.3 vs. 54.9 years; P < .001). ISS rates were 2.7% with the Neuroform and 2.3% with the Enterprise stent (P = .6). In multivariable analysis, younger patient age (odds ratio = 0.92; P = .008), carotid ophthalmic aneurysm location (odds ratio = 7.7; P =0.01), and carotid terminus aneurysm location (odds ratio = 8.1; P = .009) were strong independent predictors of ISS. The type of stent was not a predictive factor. Neuroform and Enterprise ISS is an uncommon, often transient, and clinically benign complication. Younger patients and those harboring anterior circulation aneurysms located at ophthalmic and carotid terminus locations are more likely to develop ISS.
Insertion sequence diversity in archaea.
Filée, J; Siguier, P; Chandler, M
2007-03-01
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.
Cho, Hyungwoo; Yoon, Dok Hyun; Lee, Jung Bok; Kim, Sung-Yong; Moon, Joon Ho; Do, Young Rok; Lee, Jae Hoon; Park, Yong; Lee, Ho Sup; Eom, Hyeon Seok; Shin, Ho-Jin; Min, Chang-Ki; Kim, Jin Seok; Jo, Jae-Cheol; Kang, Hye Jin; Mun, Yeung-Chul; Lee, Won Sik; Lee, Je-Jung; Suh, Cheolwon; Kim, Kihyun
2017-12-01
The revised International Staging System (R-ISS) has recently been developed to improve the risk stratification of multiple myeloma (MM) patients over the ISS. We assessed the R-ISS in MM patients who were treated with novel agents as a primary therapy and evaluated its discriminative power and ability to reclassify patients from the ISS. A total of 514 newly diagnosed MM patients treated with novel agents including thalidomide, bortezomib, and lenalidomide as a primary therapy were included in this retrospective analysis. With a median follow-up duration of 42.3 months (range, 40.5-44.1), the median overall survival (OS) was 61.0 months. There was a significant difference in median OS (not reached, 60.9, and 50.1 months for stages 1, 2, and 3, respectively, P < 0.001) among the three stages of R-ISS. The C-statistic was significantly greater for R-ISS than for ISS (0.769 vs. 0.696, P < 0.001). The event NRI was -0.08 (95% confidence interval [CI], -0.18-0.01) and the non-event NRI was 0.05 (95% CI, -0.03-0.10), resulting in a total NRI of -0.03 (95% CI, -0.14-0.08, P = 0.602). The R-ISS performs well and has significantly better discriminative power than the ISS in MM patients treated with novel agents as a primary therapy. However, it does not better reclassify patients from the ISS, suggesting that there is still room to improve the staging system. Moreover, new statistical measures for assessing and quantifying the risk prediction of new prognostic models are necessary in future studies. © 2017 Wiley Periodicals, Inc.
Sørensen, Jette Led; Navne, Laura Emdal; Martin, Helle Max; Ottesen, Bent; Albrecthsen, Charlotte Krebs; Pedersen, Berit Woetmann; Kjærgaard, Hanne; van der Vleuten, Cees
2015-01-01
Objective To examine how the setting in in situ simulation (ISS) and off-site simulation (OSS) in simulation-based medical education affects the perceptions and learning experience of healthcare professionals. Design Qualitative study using focus groups and content analysis. Participants Twenty-five healthcare professionals (obstetricians, midwives, auxiliary nurses, anaesthesiologists, a nurse anaesthetist and operating theatre nurse) participated in four focus groups and were recruited due to their exposure to either ISS or OSS in multidisciplinary obstetric emergencies in a randomised trial. Setting Departments of obstetrics and anaesthesia, Rigshospitalet, Copenhagen, Denmark. Results Initially participants preferred ISS, but this changed after the training when the simulation site became of less importance. There was a strong preference for simulation in authentic roles. These perceptions were independent of the ISS or OSS setting. Several positive and negative factors in simulation were identified, but these had no relation to the simulation setting. Participants from ISS and OSS generated a better understanding of and collaboration with the various health professionals. They also provided individual and team reflections on learning. ISS participants described more experiences that would involve organisational changes than the OSS participants did. Conclusions Many psychological and sociological aspects related to the authenticity of the learning experience are important in simulation, but the physical setting of the simulation as an ISS and OSS is the least important. Based on these focus groups OSS can be used provided that all other authenticity elements are taken into consideration and respected. The only difference was that ISS had an organisational impact and ISS participants talked more about issues that would involve practical organisational changes. ISS and OSS participants did, however, go through similar individual and team learning experiences. PMID:26443655
Modeling Ionosphere Environments: Creating an ISS Electron Density Tool
NASA Technical Reports Server (NTRS)
Gurgew, Danielle N.; Minow, Joseph I.
2011-01-01
The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.
Grandić, Leo; Olić, Ivna; Pogorelić, Zenon; Mrklić, Ivana; Perko, Zdravko
2017-09-01
The aim of this study was to investigate the influence of etiology, types of injury, levels of consciousness and the Injury Severity Score (ISS) and Abbreviated Injury Scale (AIS) values on the selection of treatment modality and survival in patients with injuries of parenchymal abdominal organs. Case records of 224 patients treated for traumatic injury of parenchymal abdominal organs from January 2003 until December 2015 were reviewed. Th e values of ISS and AIS of injury severity were calculated and compared to the values obtained according to the etiology, state of consciousness and survival. Of the 224 patients, 172 (76.8%) were treated by surgical approach and 52 (23.2%) were treated conservatively. Th e mean patient age was 40.1}18.3 years. Th ere were 97 (43.3%) polytrauma cases. Of the 224 injured patients, 143 (63.8%) were treated with transfusions of blood products. Two hundred and six (92%) patients survived. Th e mean AIS and ISS values were significantly lower in patients that survived (AIS=3; ISS=28) than in those that died (AIS=5; ISS=34) (p< 0.001). There was a statistically significant difference in AIS and ISS values between conscious (AIS=2.7; ISS=25.9) and unconscious (AIS=3.2; ISS=33) patients (p< 0.001). Of the 224 patients that did not survive, 18 (8%) were hemodynamically unstable. Survival depended on hemodynamic stability at admission; the ISS and AIS values were associated with the injuries and state of consciousness at admission. Hemodynamic stability, state of consciousness, and ISS and AIS values were the quality predictors of survival after abdominal traumatic injury.
NASA Technical Reports Server (NTRS)
Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael
2011-01-01
In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.
Orbiter Repair Maneuver Contingency Separation Methods and Analysis
NASA Technical Reports Server (NTRS)
Machula, Michael
2005-01-01
Repairing damaged thermal protection system tile requires the Space Shuttle to be oriented such that repair platform access from the International Space Station (ISS) is possible. To do this, the Space Shuttle uses the Orbiter Repair Maneuver (ORM), which utilizes the Shuttle Remote Manipulator System (SRMS) to rotate the Space Shuttle in relation to the ISS, for extended periods of time. These positions cause difficulties and challenges to performing a safe separation (no collision or thruster plume damage to sensitive ISS structures) should an inadvertent release occur or a contingency procedure require it. To help protect for an SRMS failure or other failures, a method for separating without collision and the ability to redock to ISS from the ORM configuration was needed. The contingency ORM separation solution elegantly takes advantage of orbital mechanics between ISS and the separating Space Shuttle. By pitching the ISS down approximately 45 degrees, in a majority of the ORM repair positions, the altitude difference between the ISS and Space Shuttle center of gravity is maximized. This altitude difference results in different orbital energies (orbital periods) causing objects to separate from each other without requiring translational firings. Using this method, a safe contingency ORM separation is made possible in many odd positions even though some separation positions point high powered thrusters directly at fragile ISS and Soyuz solar arrays. Documented in this paper are the development simulations and procedures of the contingency ORM separation and the challenges encountered with large constraints to work around. Lastly, a method of returning to redock with the ISS to pick up the stranded crew members (or transfer the final crew members) is explained as well as the thruster and ISS loads analysis.
NASA Astrophysics Data System (ADS)
Shumilina, I.
Impossibility of just in time stocks delivery to the International Space Station ISS because of Shuttle space flights absence has led to forced changing of standards of underwear garments and personal hygiene means using Therefore hygienic treatment of textiles underwear garments towels and napkins are necessary for long-term space flight missions Investigations into the ways of cosmonauts sanitary -- hygienic supply are prepared The resent equipment means and methods of cosmonauts sanitary -- hygienic supply were created for space flight conditions with an opportunity of stocks updating This investigations are confirm necessity of new generation system creation for cosmonauts sanitary -- hygienic supply and special designing of hygienic treatment laundry drying equipment and technologies for long-term space flights without an opportunity of stocks updating in particular for martian mission One from main requirements for equipment means and methods of cosmonauts sanitary -- hygienic supply is full safety for human organisms under systematic and long-term application in space flight conditions small energy consumption and combining with space Life-Support Systems Method and program of experimental investigations of textiles laundry with application of washing means for long-term space flight conditions are prepared It is necessary to estimate opportunity and efficiency of washing means application for textiles laundry for space flight missions also to estimate compatibility of washing means for textiles laundry and for washing
Expedition Seven Science Officer Lu with laptop
2003-07-16
ISS007-E-10478 (16 July 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, uses a computer in the Destiny laboratory on the International Space Station (ISS).
International Space Station (ISS)
1994-09-21
Artist's concept of the final configuration of the International Space Station (ISS) Alpha. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.
International Space Station (ISS)
1994-04-20
An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.
IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing
NASA Technical Reports Server (NTRS)
Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.
2015-01-01
Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.
NASA Technical Reports Server (NTRS)
Grubbs, Rodney
2016-01-01
The first live High Definition Television (HDTV) from a spacecraft was in November, 2006, nearly ten years before the 2016 SpaceOps Conference. Much has changed since then. Now, live HDTV from the International Space Station (ISS) is routine. HDTV cameras stream live video views of the Earth from the exterior of the ISS every day on UStream, and HDTV has even flown around the Moon on a Japanese Space Agency spacecraft. A great deal has been learned about the operations applicability of HDTV and high resolution imagery since that first live broadcast. This paper will discuss the current state of real-time and file based HDTV and higher resolution video for space operations. A potential roadmap will be provided for further development and innovations of high-resolution digital motion imagery, including gaps in technology enablers, especially for deep space and unmanned missions. Specific topics to be covered in the paper will include: An update on radiation tolerance and performance of various camera types and sensors and ramifications on the future applicability of these types of cameras for space operations; Practical experience with downlinking very large imagery files with breaks in link coverage; Ramifications of larger camera resolutions like Ultra-High Definition, 6,000 [pixels] and 8,000 [pixels] in space applications; Enabling technologies such as the High Efficiency Video Codec, Bundle Streaming Delay Tolerant Networking, Optical Communications and Bayer Pattern Sensors and other similar innovations; Likely future operations scenarios for deep space missions with extreme latency and intermittent communications links.
SpaceOps 2012 Plus 2: Social Tools to Simplify ISS Flight Control Communications and Log Keeping
NASA Technical Reports Server (NTRS)
Cowart, Hugh S.; Scott, David W.
2014-01-01
A paper written for the SpaceOps 2012 Conference (Simplify ISS Flight Control Communications and Log Keeping via Social Tools and Techniques) identified three innovative concepts for real time flight control communications tools based on social mechanisms: a) Console Log Tool (CoLT) - A log keeping application at Marshall Space Flight Center's (MSFC) Payload Operations Integration Center (POIC) that provides "anywhere" access, comment and notifications features similar to those found in Social Networking Systems (SNS), b) Cross-Log Communication via Social Techniques - A concept from Johnsson Space Center's (JSC) Mission Control Center Houston (MCC-H) that would use microblogging's @tag and #tag protocols to make information/requests visible and/or discoverable in logs owned by @Destination addressees, and c) Communications Dashboard (CommDash) - A MSFC concept for a Facebook-like interface to visually integrate and manage basic console log content, text chat streams analogous to voice loops, text chat streams dedicated to particular conversations, generic and position-specific status displays/streams, and a graphically based hailing display. CoLT was deployed operationally at nearly the same time as SpaceOps 2012, the Cross- Log Communications idea is currently waiting for a champion to carry it forward, and CommDash was approved as a NASA Iinformation Technoloby (IT) Labs project. This paper discusses lessons learned from two years of actual CoLT operations, updates CommDash prototype development status, and discusses potential for using Cross-Log Communications in both MCC-H and/or POIC environments, and considers other ways for synergizing console applcations.
Assessment of lnternational Space Station (ISS) Lithium-ion Battery Thermal Runaway (TR)
NASA Technical Reports Server (NTRS)
Graika, Jason
2017-01-01
This task was developed in the wake of the Boeing 787 Dreamliner lithium-ion battery TR incidents of January 2013 and January 2014. The Electrical Power Technical Discipline Team supported the Dreamliner investigations and has followed up by applying lessons learned to conduct an introspective evaluation of NASA's risk of similar incidents in its own lithium-ion battery deployments. This activity has demonstrated that historically NASA, like Boeing and others in the aerospace industry, has emphasized the prevention of TR in a single cell within the battery (e.g., cell screening) but has not considered TR severity-reducing measures in the event of a single-cell TR event. center dotIn the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. This task will serve as a pathfinder for meeting those requirements and will specifically look at a number of different lithium-ion batteries currently in the design pipeline within the ISS Program batteries that, should they fail in a Dreamliner-like incident, could result in catastrophic consequences. This test is an abuse test to understand the heat transfer properties of the cell and ORU in thermal runaway, with radiant barriers in place in a flight like test in on orbit conditions. This includes studying the heat flow and distribution in the ORU. This data will be used to validate the thermal runaway analysis. This test does not cover the ambient pressure case. center dotThere is no pass/ fail criteria for this test.
NASA Technical Reports Server (NTRS)
Owens, Andrew; De Weck, Olivier L.; Stromgren, Chel; Goodliff, Kandyce; Cirillo, William
2017-01-01
Future crewed missions to Mars present a maintenance logistics challenge that is unprecedented in human spaceflight. Mission endurance – defined as the time between resupply opportunities – will be significantly longer than previous missions, and therefore logistics planning horizons are longer and the impact of uncertainty is magnified. Maintenance logistics forecasting typically assumes that component failure rates are deterministically known and uses them to represent aleatory uncertainty, or uncertainty that is inherent to the process being examined. However, failure rates cannot be directly measured; rather, they are estimated based on similarity to other components or statistical analysis of observed failures. As a result, epistemic uncertainty – that is, uncertainty in knowledge of the process – exists in failure rate estimates that must be accounted for. Analyses that neglect epistemic uncertainty tend to significantly underestimate risk. Epistemic uncertainty can be reduced via operational experience; for example, the International Space Station (ISS) failure rate estimates are refined using a Bayesian update process. However, design changes may re-introduce epistemic uncertainty. Thus, there is a tradeoff between changing a design to reduce failure rates and operating a fixed design to reduce uncertainty. This paper examines the impact of epistemic uncertainty on maintenance logistics requirements for future Mars missions, using data from the ISS Environmental Control and Life Support System (ECLS) as a baseline for a case study. Sensitivity analyses are performed to investigate the impact of variations in failure rate estimates and epistemic uncertainty on spares mass. The results of these analyses and their implications for future system design and mission planning are discussed.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2011-01-01
As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment
International Space Station Research Benefits for Humanity
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Kamigaichi, Shigeki; Sorokin, Igor V.; Zell, Martin; Fuglesang, Christer;
2012-01-01
The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth -- not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.
International Space Station Benefits for Humanity
NASA Technical Reports Server (NTRS)
Thumm, Tracy L.; Robinson, Julie A.; Buckley, Nicole; Johnson-Green, Perry; Kamigaichi, Shigeki; Karabadzhak, George; Nakamura, Tai; Sabbagh, Jean; Sorokin, Igor; Zell, Martin
2012-01-01
The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth--not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.
ISS and Space Environment Interactions in Event of Plasma Contactor Failure
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)
2000-01-01
The International Space Station (ISS), illustrated in Figure 1, will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, and similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur.
A Year in the Life of International Space Station
NASA Technical Reports Server (NTRS)
Uri, John J.
2006-01-01
The past twelve months (October 2005 to September 2006) have been among the busiest in the life of the International Space Station (ISS), both in terms of on-orbit operations as well as future planning, for both ISS systems and research. The Expedition 12 and 13 crews completed their missions successfully, carrying out research for Russia, the United States, Europe and Japan, and bringing continuous ISS occupancy to nearly six years. The European Space Agency's (ESA) first Long Duration Mission on ISS is underway, involving significant international research. The Expedition 14 crew completed its training and is embarking on its own 6-month mission with a full slate of international research. Future crews are in training for their respective assembly and research missions. Shuttle flights resumed after a 10-month hiatus, delivering new research facilities and resuming assembly of ISS. ESA's Columbus research module was delivered to the Kennedy Space Center, joining Japan's Kibo research module already there. Following preflight testing, the two modules will launch in 2007 and 2008, respectively, joining Destiny as ISS's research infrastructure. A revised ISS configuration and assembly sequence were endorsed by all the Partners, with a reduced number of Shuttle flights, but for the first time including plans for post-Shuttle ISS operations after 2010. The new plan will pose significant challenges to the ISS research community. As Europe and Japan build their on-orbit research infrastructure, and long-term plans become firmer, the next 12 months should prove to be equally challenging and exciting.
NASA Technical Reports Server (NTRS)
2011-01-01
The purpose of this catalog is to provide a detailed description of each piece of hardware in the Crew Health Care System (CHeCS), including subpacks associated with the hardware, and to briefly describe the interfaces between the hardware and the ISS. The primary user of this document is the Space Medicine/Medical Operations ISS Biomedical Flight Controllers (ISS BMEs).
ERIC Educational Resources Information Center
Smith, Kenneth H.
2005-01-01
This article describes the revised Inviting School Survey (ISS-R) which is a 50- item checklist based on the 100-item Inviting School Survey (Purkey & Schmidt, 1990, Purkey & Fuller, 1995). Both the original ISS and the ISS-R are designed for use by Grade Four students and above, teachers, school administrators and others associated with the…
ISS 7A.1 Flight Control Team Photo in BFCR
2001-08-16
JSC2001-02229 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 1 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houstons Mission Control Center (MCC). Flight director Mark Ferring is kneeling as he holds the Expedition Three mission logo. Astronaut Stephanie D. Wilson, ISS spacecraft communicator (CAPCOM), is standing behind Ferring.
Lu, Jing; Lu, Jin; Liu, Aijun; Fu, Weijun; Du, Juan; Huang, Xiaojun; Chen, Wenming; Hou, Jian
2015-01-01
The International Staging System (ISS) is the most important prognostic system for multiple myeloma (MM). It was identified in the era of conventional agents. The outcome of MM has significantly changed by novel agents. Thus the applicability of ISS system in the era of novel agents in Chinese patients needs to be demonstrated. We retrospectively analyzed the clinical outcomes and prognostic significance of ISS system in 1016 patients with newly diagnosed multiple myeloma in Chinese patients between 2008 and 2012, who received bortezomib- or thalidomide-based regimens as first-line therapy. The median overall survival (OS) of patients for ISS stages I/II/III was not reached/55.4 months/41.7 months (p < 0.001), and the median progression-free survival (PFS) was 30/29.5/25 months (p = 0.072), respectively. Statistically significant difference in survival was confirmed among three ISS stages in thalidomide-based group, but not between ISS stages I and II in bortezomib-based group. These findings suggest that ISS system can predict the survival in the era of novel agents in Chinese MM patients, and bortezomib may have the potential to partially overcome adverse effect of risk factors on survival, especially in higher stage of ISS system. PMID:26640799
Ambient mass density effects on the International Space Station (ISS) microgravity experiments
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Smith, R. E.
1996-01-01
The Marshall engineering thermosphere model was specified by NASA to be used in the design, development and testing phases of the International Space Station (ISS). The mass density is the atmospheric parameter which most affects the ISS. Under simplifying assumptions, the critical ambient neutral density required to produce one micro-g on the ISS is estimated using an atmospheric drag acceleration equation. Examples are presented for the critical density versus altitude, and for the critical density that is exceeded at least once a month and once per orbit during periods of low and high solar activity. An analysis of the ISS orbital decay is presented.
Crew Transportation Technical Management Processes
NASA Technical Reports Server (NTRS)
Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)
2013-01-01
Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
2013-02-20
Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)
Zahraei Salehi, Taghi; Derakhshandeh, Abdollah; Tadjbakhsh, Hasan; Karimi, Vahid
2013-02-01
The ISS (increased serum survival) gene and its protein product (ISS) of avian pathogenic Escherichia coli (APEC) are important characteristics of resistance to the complement system. The aims of this study were to clone, sequence and characterize sequence diversity of the ISS gene between two predominant serogroups in Iran and among those previously deposited in Genbank. The ISS gene of 309 bp from the APEC χ1390 strain was amplified by PCR, cloned and sequenced using pTZ57R/T vector. The ISS gene from the χ1390 strain has 100% identity among different serogroups of APEC in different geographical regions throughout the world. Phylogenetic analysis shows two different phylogenic groups among the different strains. Strong association of nucleotide sequences among different E. coli strains suggests that it may be a conserved gene and could be a suitable antigen to control and detect avian pathogenic E. coli, at least in our region. Currently, our group is working on the ISS protein as candidate vaccine in SPF poultry. Copyright © 2012 Elsevier Ltd. All rights reserved.
STS-114 Flight Day 3 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Video coverage of Day 3 includes highlights of STS-114 during the approach and docking of Discovery with the International Space Station (ISS). The Return to Flight continues with space shuttle crew members (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) seen in onboard activities on the fore and aft portions of the flight deck during the orbiter's approach. Camarda sends a greeting to his family, and Collins maneuvers Discovery as the ISS appears steadily closer in sequential still video from the centerline camera of the Orbiter Docking System. The approach includes video of Discovery from the ISS during the orbiter's Rendezvous Pitch Maneuver, giving the ISS a clear view of the thermal protection systems underneath the orbiter. Discovery docks with the Destiny Laboratory of the ISS, and the shuttle crew greets the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS onboard the station. Finally, the Space Station Remote Manipulator System hands the Orbiter Boom Sensor System to its counterpart, the Shuttle Remote Manipulator System.
NASA Technical Reports Server (NTRS)
1998-01-01
This video is a collection of computer animations and live footage showing the construction and assembly of the International Space Station (ISS). Computer animations show the following: (1) ISS fly around; (2) ISS over a sunrise seen from space; (3) the launch of the Zarya Control Module; (4) a Proton rocket launch; (5) the Space Shuttle docking with Zarya and attaching Zarya to the Unity Node; (6) the docking of the Service Module, Zarya, and Unity to Soyuz; (7) the Space Shuttle docking to ISS and installing the Z1 Truss segment and the Pressurized Mating Adapter (PMA); (8) Soyuz docking to the ISS; (9) the Transhab components; and (10) a complete ISS assembly. Live footage shows the construction of Zarya, the Proton rocket, Unity Node, PMA, Service Module, US Laboratory, Italian Multipurpose Logistics Module, US Airlock, and the US Habitation Module. STS-88 Mission Specialists Jerry Ross and James Newman are seen training in the Neutral Buoyancy Laboratory (NBL). The Expedition 1 crewmembers, William Shepherd, Yuri Gidzenko, and Sergei Krikalev, are shown training in the Black Sea and at Johnson Space Flight Center for water survival.
NASA Technical Reports Server (NTRS)
Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.;
2016-01-01
The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide knowledge of GNSS orbits and reduce the processing on board. Trade off and various options for telemetry and uplink data are presented and discussed. Finally, integration and validation of the waveform are one of the major challenges of GARISS: The Experiment Development System (EDS) and the the Ground Integration Unit (GIU) for VV will be used prior to conducting the experiment on the ISS. The EDS can be used in lab environment and allows prototyping and verification activities with the simulator, but does not include all hardware components. The GIU on the other side is the flight model which replicates the flying equipment, but has limited flexibility for testing.As conclusion, the project is now approaching the Preliminary Design Review (PDR) and indeed only preliminary results are available. This paper is an opportunity to present the GARISS mission as part of an International cooperation between ESA, NASA and Qascom. The preliminary results include GPS and Galileo processing from space signals, the challenges and trade off decisions, the high level STRS architecture and foreseen experimentation campaign. Detailed results from the test campaigns are expected in 2017.
Lu plays with a droplet of liquid
2003-10-25
ISS007-E-17985 (2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, watches a water bubble float between him and the camera, showing his image refracted, on the International Space Station (ISS).
International Space Station (ISS)
1995-04-17
International Cooperation Phase III: A Space Shuttle docked to the International Space Station (ISS) in this computer generated representation of the ISS in its completed and fully operational state with elements from the U.S., Europe, Canada, Japan, and Russia.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07133 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition 6 is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab
2002-12-06
ISS006-E-07134 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.
NASA Technical Reports Server (NTRS)
2000-01-01
Dwayne Brown, NASA Public Affairs, introduces Bob Cabana of NASA, Mikhail Sinelshikov of PKA, Vasily Tsibliev of GCTC, Steve Mozes of CSA, Ian Pryke of ESA, and Masaaki Komatsu of NASDA. Each man gives an overview of the status of the International Space Station (ISS), including details on the current configuration, future missions and what they will bring to the ISS, and each space agency's contribution to the ISS. They then answer questions from the press.
ISS Expedition 42 / 43 Crew Training Resource Reel (JSC-2641)
2014-11-14
Media resource reel of ISS Expedition 42 / 43 Crew training activities. Includes footage of crew photo shots with Samantha Cristoforetti, Anton Shkaplerov and Terry Virts; Routine shots with Virts, ISS Expedition 43 crewmember Scott Kelly, Cristoforetti, ISS Expedition 41 / 42 crewmember Barry Wilmore; and Shklaplerov; T-38 Operations with Virts; Routine operations with Cristoforetti, Shkaplerov and Virts; Neutral Buoyancy Lab (NBL) with Cristoforetti and Kelly; and Emergency Scenatios with Virts, Cristoforetti and Shkaplerov.
International Space Station (ISS)
2001-05-14
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Diversity in immunological synapse structure
Thauland, Timothy J; Parker, David C
2010-01-01
Immunological synapses (ISs) are formed at the T cell–antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)–peptide major histocompatibility complex (pMHC) interactions. Although the structure of these ‘classical’ ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR–pMHC, and motile ‘immunological kinapses’ have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function. PMID:21039474
NASA Technical Reports Server (NTRS)
Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos
2007-01-01
The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma. Vehicle size (L) and velocity (v), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during high latitude flight (>+/- 45deg) during each orbit. In addition, ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals species are largely excluded. ISS must fly in a very limited number of approved flight attitudes, so that exposure of a particular material or system to environmental factors depends upon: 1) location on ISS, 2) ISS flight configuration, 3) ISS flight attitude, and 4) variation of solar exposure (Beta angle), and hence thermal environment, with time. Finally, an induced ionizing radiation environment is produced by trapped radiation and solar/cosmic ray interactions with the relatively massive ISS structural shielding.
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Hasbrook, Pete; Tate Brown, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki;
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the e orts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible \\open data" repositories. For ISS data, these repositories include GeneLab, the Physical Science Informatics System, and different Earth science data systems. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores effectiveness of international collaboration in the course of the ISS Program execution. The collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) are also considered in the paper in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Feiveson, Alan H.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.
2011-01-01
Our laboratory previously reported that the incidence of orthostatic hypotension (OH) was greater after long- than short-duration spaceflight in astronauts who participated in Mir Space Station and Space Shuttle missions. To confirm and extend these findings, we retrospectively examined tilt test data from International Space Station (ISS) and Shuttle astronauts. We anticipated that the proportion of ISS astronauts experiencing OH would be high on landing day and the number of days to recover greater after long- than short-duration missions. Methods: Twenty ISS and 66 Shuttle astronauts participated in 10-min 80? head-up tilt tests 10 d before launch (L-10), on landing day (R+0) or 1 d after landing (R+1). Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. Many astronauts repeated the test 3 d (R+3) after landing. Fisher?s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the tilt test on R+0. Cox regression was used to identify cardiovascular parameters that were associated with test completion across all tests, and mixed model analysis was used to compare the change and recovery rates between ISS and Shuttle astronauts. In these analyses, ISS data from R+0 and R+1 were pooled to provide sufficient statistical power. Results: The proportion of astronauts who completed the tilt test on R+0 without OH was less in ISS than in Shuttle astronauts (p=0.03). On R+0, only 2 of 6 ISS astronauts completed the test compared to 53 of 66 (80%) Shuttle astronauts. However, 8 of 9 ISS astronauts completed the test on R+1. On R+3, 13 of 15 (87%) of the ISS and 19 of 19 (100%) of the Shuttle astronauts completed the 10-min test. An index comprised of stroke volume and diastolic blood pressure provided a very good prediction of overall tilt survival. This index was altered by spaceflight similarly for both groups soon after landing (pooled R+0 and R+ 1), but ISS astronauts did not recover at the same rate as Shuttle astronauts (p=0.007). Conclusions: The proportion of ISS astronauts who could not complete the tilt test on R+0 due to OH (4 of 6) is similar to that reported in astronauts who flew on Mir (5 of 6). Further, cardiovascular parameters most closely associated with OH recover more slowly after long- compared to short-duration spaceflight.
The International Space Station Supports International Polar Year (IPY)
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Pettit, Donald R.
2007-01-01
Every day, ISS astronauts photograph designated sites and dynamic events on the Earth's surface using digital cameras equipped with a variety of lenses. Depending on observation parameters, astronauts can collect high resolution (4-6 m pixel size) or synoptic views (lower resolution but covering very large areas) digital data in 3 (red-green-blue) color bands. ISS crews have daily opportunities to document a variety of high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6o orbital inclination and 400 km altitude of the ISS provide the crew an unique vantage point for collecting image-based data of polar phenomena, including surface observations to roughly 65o latitude, and upper atmospheric observations that reach nearly to the poles. During the 2007-2009 timeframe of the IPY, polar observations will become a scientific focus for the CEO experiment; the experiment is designated ISS-IPY. We solicit requests from scientists for observations from the ISS that are coordinated with or complement ground-based polar studies. The CEO imagery website for ISS-IPY provides an on-line form that allows IPY investigators to interact with CEO scientists and define their imagery requests. This information is integrated into daily communications with the ISS astronauts about their Earth Observations targets. All data collected are cataloged and posted on the website for downloading and assimilation into IPY projects. Examples of imagery and detailed information about scientific observations from the ISS can also be downloaded from the ISS-IPY web site.
Vaneker, Michiel; Wilder-Smith, Oliver H G; Schrombges, Patrick; Oerlemans, H Margreet
2006-10-01
Complex Regional Pain Syndrome type 1 (CRPS 1) is a potentially incapacitating complication in which pain seems to be the most disabling factor. We performed a late follow up study of a well-defined CRPS 1 population more than eight years after diagnosis. The relationships between early and late impairments were studied with a view to outcome prediction and to investigate possible differences in long-term impairments according to initial CRPS 1 subdiagnosis (i.e. "warm" or "cold", diagnosed according to skin temperature measured via infrared thermometer). We again measured patients using the Impairment Level SumScore (ISS) (T8). These data were compared with earlier ISS measurements at CRPS diagnosis (T0) and after one year's treatment (T1). Correlations were determined between these measures. Forty-five patients participated in the present study. Total median ISS improved by 55% (statistically/clinically significant) after one year's treatment (T1), and worsened (non-significantly) by 14% from T1 to T8 - without differences according to original subdiagnosis. ISS correlations were stronger for T1 vs. T8 than for T0 vs. T1 or T0 vs. T8, being strongest for the ISS factors related to pain. Considerable impairments, as measured by ISS, are still present over eight years after first CRPS 1 diagnosis. These do not greatly change between one and eight years post-diagnosis. ISS outcomes are similar for "cold" and "warm" CRPS 1 diagnostic subgroups. Component ISS scores associated with pain appear to possess greatest predictive power.
ISS Utilization for Exploration-Class Missions
NASA Technical Reports Server (NTRS)
FIncke, R.; Davis-Street, J.; Korth, D.
2006-01-01
Exercise countermeasures are the most commonly utilized approach for maintaining the health and performance of astronauts during spaceflight missions. However, International Space Station (ISS) exercise countermeasure hardware reliability and prescriptions are not at a point of departure to support exploration-class missions. The JSC Exercise Countermeasures Project (ECP) plans to use ISS as a research and hardware evaluation platform to define and validate improved exercise hardware, prescriptions, and monitoring strategies to support crewmember operations on the Moon and Mars. The ECP will partner with JSC's Space Medicine Division to standardize elements of ISS exercise prescriptions to better understand their efficacy and to propose modified prescriptions for implementation that may be used in the crew exploration vehicle and/or lunar habitat. In addition, evaluations of the ISS treadmill harness will be conducted to define and improve fit and function, and assess the next generation medical monitoring devices such as the portable unit for metabolic analysis and the muscle atrophy research and exercise system for completion of periodic fitness evaluations during lunar and Mars travel. Finally, biomechanical data from ISS crew exercise sessions will be obtained to better understand loading and restraint systems, and identify the physiologic requirements during ISS extravehicular activities that may be analogous to extended excursions from the lunar habitat. It is essential to optimize exercise prescriptions, hardware, and monitoring strategies for exploration initiatives using ISS as a platform before the planned retirement of the Shuttle in 2010 and the declining NASA emphasis on ISS to maximize knowledge before embarking on travel to the Moon and Mars.
Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.
2010-01-01
Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.
Pettit works at the HRF workstation in Destiny during Expedition Six
2003-01-02
ISS006-E-13995 (2 January 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, performs the Human Research Facility (HRF) Ultrasound functional checkout in the Destiny laboratory on the International Space Station (ISS).
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete; Robinson, Julie A.; Brown Tate, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki;
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab and the Physical Science Informatics System. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores international collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.
Impact of the severity of trauma on early retirement.
Kuhlman, Michael Bilde; Lohse, Nicolai; Sørensen, Anne Marie; Larsen, Claus Falck; Christensen, Karl Bang; Steinmetz, Jacob
2014-03-01
To assess the association between Injury Severity Score (ISS) and subsequent risk of early retirement. Observational cohort study with follow-up based on prospectively collected data. Hospital-based data were linked to national register data on pension reception and vital status. Level-one urban trauma centre. Patients aged 18-64 years entering the trauma centre in Copenhagen during 1999-2007 who were alive after three days were followed until early retirement, death or emigration. Primary outcome was early retirement, defined as receiving disability pension (unintentional) or voluntary early retirement pension (intentional) before the regular age of retirement (65 years). Relative risk of early retirement according to ISS (low, ISS 1-15 vs. high, ISS 16-75) was assessed using Cox proportional hazards regression, adjusted for age and gender. Of all 6687 patients admitted to the trauma centre, a total of 1722 trauma patients were included and followed for a median of 6.2 years (interquartile range (IQR) 3.7-9.1). Of these, 1305 (75.8%) were males, median age was 35.0 years (IQR 25.4-46.5), and median ISS was 16 (IQR 9-25). Three hundred and twenty-two patients retired during follow-up. Patients with high ISS, compared to patients with low ISS, had an increased risk of early retirement, adjusted hazard ratio 2.60 (95% confidence interval (CI) 2.05-3.30; p<0.001). Relative increase in retirement risk was 1.04 (95% CI 1.03-1.05) per ISS point and 1.03 (95% CI 1.03-1.04) per year older. Gender was not found to be a significant risk factor (p=0.69). Five-year absolute risks of early retirement were 9.9% (95% CI 7.8-12.0%) for the low ISS group and 24.6% (95% CI 21.6-27.5%) for the high ISS group. The risk of early retirement is 2.6 times higher in severely injured patients (ISS 16-75) than the risk in low to moderately injured patients (ISS 1-15) and they have a high absolute 5-year risk as well. Early, targeted interventions to assist with return to work might be able to reduce this risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete
2016-01-01
The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging systems mounted on ISS as well as other orbiting spacecraft to improve our understanding of the Earth and its climate. NASA and Roscosmos continue to encourage international scientific cooperation and expanded use of the ISS Laboratory. "Long-term", larger collaborations will achieve scientific objectives that no single national science team or agency can achieve on its own. The joint accomplishments achieved so far have paved the way for a stronger international scientific community and improved results and benefits from ISS.
The International Space Station and the Space Debris Environment: 10 Years On
NASA Technical Reports Server (NTRS)
Johnson, Nicholas; Klinkrad, Heiner
2009-01-01
For just over a decade the International Space Station (ISS), the most heavily protected vehicle in Earth orbit, has weathered the space debris environment well. Numerous hypervelocity impact features on the surface of ISS caused by small orbital debris and meteoroids have been observed. In addition to typical impacts seen on the large solar arrays, craters have been discovered on windows, hand rails, thermal blankets, radiators, and even a visiting logistics module. None of these impacts have resulted in any degradation of the operation or mission of the ISS. Validating the rate of small particle impacts on the ISS as predicted by space debris environment models is extremely complex. First, the ISS has been an evolving structure, from its original 20 metric tons to nearly 300 metric tons (excluding logistics vehicles) ten years later. Hence, the anticipated space debris impact rate has grown with the increasing size of ISS. Secondly, a comprehensive visual or photographic examination of the complete exterior of ISS has never been accomplished. In fact, most impact features have been discovered serendipitously. Further complications include the estimation of the size of an impacting particle without knowing its mass, velocity, and angle of impact and the effect of shadowing by some ISS components. Inadvertently and deliberately, the ISS has also been the source of space debris. The U.S. Space Surveillance Network officially cataloged 65 debris from ISS from November 1998 to November 2008: from lost cameras, sockets, and tool bags to intentionally discarded equipment and an old space suit. Fortunately, the majority of these objects fall back to Earth quickly with an average orbital lifetime of less than two months and a maximum orbital lifetime of a little more than 15 months. The cumulative total number of debris object-years is almost exactly 10, the equivalent of one piece of debris remaining in orbit for 10 years. An unknown number of debris too small to be tracked and cataloged have also been generated, but normally with even shorter orbital lifetimes. Finally, eight collision avoidance maneuvers have been performed to avoid potential collisions between ISS and large, tracked space debris. The most recent such maneuver was accomplished by ESA's Automated Transfer Vehicle, the Jules Verne, just three months before the 10th anniversary of the launch of ISS's first element.