Science.gov

Sample records for itaipu dam brazil

  1. Coming: 12,600 megawatts at Itaipu Island

    SciTech Connect

    de Moraes, J.

    1983-08-01

    This paper describes the hydroelectric plant being constructed jointly by Brazil and Paraguay on Itaipu Island in the Parana River. The planned generating capacity of 12,600 MW will make the Itaipu plant the world's largest. It will employ the most powerful hydrogenerators and turbines yet built, the world's largest concentration of 500-kilovolt gas-insulated switchgear, the highest dc transmission voltages and power--600 kV and 6300 MW--ever used, about 1000 kilometers of 765-kV ac transmission, and an extensive computer-based digital supervisory system in which continuous diagnostic evaluation of equipment is emphasized. To maintain national standards, nine generators will operate at 60 hertz for Brazil and nine at 50 hertz for Paraguay. Initially, any excess electricity available from the Paraguay generators will be routed to Brazil, but Paraguay is ultimately expected to share in half the Itaipu generation. The paper discusses the plant from its original feasibility studies to the newly created technologies which its size necessitated. The environmental impact on forests, farmlands and wildlife resulting from the construction of the Itaipu dam and the loss of the 1400 square kilometers which it flooded--including the popular Seven Waterfalls--is addressed. References to other papers as well as a symposium on the Itaipu project are cited.

  2. Spatial-temporal analysis of marine debris on beaches of Niterói, RJ, Brazil: Itaipu and Itacoatiara.

    PubMed

    da Silva, Melanie Lopes; de Araújo, Fábio Vieira; Castro, Rebeca Oliveira; Sales, Alessandro Souza

    2015-03-15

    In many areas of the world, studies of marine debris are conducted with an emphasis on analyzing their composition, quantification and distribution on sandy beaches. However, in Brazil, studies are still restricted to some areas of the coast, and the quantities and the spatial and temporal patterns are unknown. To enhance the marine debris information in these areas, we selected the Itaipu and Itacoatiara beaches in Niterói, RJ, to collect, quantify and qualify the solid residues present in their sands. We collected 12 samples and recorded 118.39 kg of residues in Itaipu and 62.94 kg in Itacoatiara. At both beaches, the largest portion of debris was located on the upper part of the beach. Several debris items were related to food and drink consumption on the beaches, which indicated the contribution of beach users to pollution. Most of the debris was plastic. The greatest amount of debris was found at Itaipu in January and February and at Itacoatiara in January and March, months related to both the holiday season and abundant rainfall. The results demonstrated the necessity to implement an Environmental Education project for these areas to reduce its degradation.

  3. A barrier to upstream migration in the fish passage of Itaipu Dam (Canal da Piracema), Paraná River basin

    USGS Publications Warehouse

    ,; Fontes Júnior, Hélio Martins; Makrakis, Sergio; Gomes, Luiz Carlos; Latini, João Dirço

    2012-01-01

    The majority of the fish passages built in the Neotropical region are characterised by low efficiency and high selectivity; in many cases, the benefits to fish populations are uncertain. Studies conducted in the Canal da Piracema at Itaipu dam on the Parana River indicate that the system component designated as the Discharge channel in the Bela Vista River (herein named Canal de deságue no rio Bela Vista or CABV), a 200 m long technical section, was the main barrier to the upstream migration. The aim of this study was to evaluate the degree of restriction imposed by the CABV on upstream movements of Prochilodus lineatus and Leporinus elongatus, Characiformes. Fish were tagged with passive integrated transponders (PIT tags) and released both downstream and upstream of this critical section. Individuals of both species released downstream of the CABV took much more time to reach the upper end of the system (43.6 days vs. 15.9 days), and passed in much lower proportions (18% vs. 60.8%) than those tagged upstream of this component. Although more work is needed to differentiate between fishway effects and natural variation in migratory motivation, the results clearly demonstrate passage problems at the CABV.

  4. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    PubMed

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  5. New data on species of Demidospermus (Dactylogyridae: Monogenea) parasitizing fishes from the reservoir of the Itaipu Hydroelectric Power Station, Paraná State, Brazil, with new synonymies.

    PubMed

    Cohen, Simone C; Kohn, Anna

    2008-01-01

    Eight known species of Demidospermus (Dactylogyridae, Monogenea) were collected from siluriform fishes from reservoir of the Itaipu Hydroelectric Power Station, Paraná, Brazil. Four of them are recorded for the first time in Brazil, enlarging their geographical distribution: Demidospermus armostus, Demidospermus anus, Demidospermus bidiverticulatum and Demidospermus valenciennesi. Demidospermus labrosi is synonymized with Demidospermus cornicinus and Demidospermus mandi with Demidospermus leptosynophallus and reported from two new hosts. Demidospermus paravalenciennesi and Demidospermus uncusvalidus were also collected.

  6. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil.

    PubMed

    Mormul, Roger Paulo; Ferreira, Fernando Alves; Michelan, Thaisa Sala; Carvalho, Priscilla; Silveira, Marcio José; Thomaz, Sidinei Magela

    2010-12-01

    In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage composition differed among reservoir arms. Macrophyte species were sampled in each of the 235 sampling stations using a boat, which was positioned inside three places of each macrophyte stand to record species and search for small plants. We also collected submerged plants using a rake with the boat moving at constant velocity for ten minutes. We assigned individual macrophyte species to life form and identified representative species for each life form. A total of 87 macrophyte taxa were identified. The "emergent" life forms contained the highest number of species, followed by "rooted submerged" life forms. The extensive survey of macrophytes undertaken in September 2008 recorded more species than a survey conducted between 1995 and 1998. This could be due to changes in water physico-chemistry, disturbances due to water drawdown and the long period between surveys, which may have allowed natural colonization by other species. Additionally, differences in the classification systems and taxonomic resolution used in the surveys may account for differences in the number of species recorded. Assemblage composition varied among the arms and was affected by underwater radiation (as measured using a Secchi disk) and fetch. Five non-native species were found. Two of these non-native species (Urochloa subquadripara and Hydrilla verticillata) are of special concern because they have a high frequency of occurrence and occupy large marginal areas of the reservoir. Future surveys should be

  7. [Specific dengue transmission conditions at the local level: a study in Itaipu, Niterói, Rio de Janeiro State, Brazil].

    PubMed

    San Pedro, Alexandre; Souza-Santos, Reinaldo; Sabroza, Paulo Chagastelles; Oliveira, Rosely Magalhães de

    2009-09-01

    This study analyzes the specific conditions involved in dengue transmission in various areas in Itaipu, a coastal neighborhood in the city of Niterói, Rio de Janeiro State, Brazil, with a focus on socio-environmental determinants and conditioning factors. Four areas were selected with similar dengue incidence rates but different urban planning and socioeconomic patterns. The socio-spatial characteristics of each area were obtained through interviews with key informants and systematic observation. Two distinct factors were identified that may potentially condition the risk of dengue transmission. The first related to the limited water supply and scarce financial resources in a lower-income population. The second was associated with a group having better socioeconomic status, which allowed them to store water in larger tanks. The implementation of a housing infrastructure generated by real estate speculation was a determining factor for the creation of socio-spatial segregation, resulting in different forms of receptiveness and vulnerability to dengue. In this sense, the incomplete and unequal installation of housing infrastructure is a determining factor for the differentiated generation of vector breeding sites and thus for dengue transmission.

  8. Allozyme relationships in hypostomines (Teleostei: Loricariidae) from the Itaipu Reservoir, Upper Rio Paraná basin, Brazil.

    PubMed

    Zawadzki, Cláudio Henrique; Renesto, Erasmo; dos Reis, Roberto Esser; Moura, Maurício Osvaldo; Mateus, Rogério Pincela

    2005-03-01

    In an allozyme electrophoresis survey of 15 hypostomine species from the Itaipu Hydroelectric Reservoir, 25 loci from 14 enzyme systems were scored. Allozyme data allowed recording diagnostic genetic markers for all species analyzed and for some species groups within Hypostomus, a taxon which is taxonomically still unresolved in the Upper Rio Paraná basin. The mean expected heterozygosity of the species was considerably variable and hypotheses to tentatively explain this variation are discussed. A cladogram based upon the allelic frequencies of the species analyzed was produced by the continuous maximum likelihood method: Rhinelepis aspera and M. parananus were separated from the species of Hypostominae by a long branch length. Pterygoplichthys anisitsi was the sister of all the representatives of the genus Hypostomus. Within Hypostomus, two main clades were produced: in the first, H. cochliodon was the sister of the species comprising the H. plecostomus group, and in the second, the tree showed the following relationships: (H. albopunctatus (H. regani + Hypostomus sp. 3) + (H. margaritifer (H. microstomus (Hypostomus sp. 1 (H. ternetzi + Hypostomus sp. 2)). Hypostomus ternetzi and Hypostomus sp. 2 are referred to here as representatives of the H. ternetzi group.

  9. Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin.

    PubMed

    Fearnside, Phillip M

    2006-07-01

    Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil's proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country's national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.

  10. Amazon dams and waterways: Brazil's Tapajós Basin plans.

    PubMed

    Fearnside, Philip M

    2015-09-01

    Brazil plans to build 43 "large" dams (>30 MW) in the Tapajós Basin, ten of which are priorities for completion by 2022. Impacts include flooding indigenous lands and conservation units. The Tapajós River and two tributaries (the Juruena and Teles Pires Rivers) are also the focus of plans for waterways to transport soybeans from Mato Grosso to ports on the Amazon River. Dams would allow barges to pass rapids and waterfalls. The waterway plans require dams in a continuous chain, including the Chacorão Dam that would flood 18,700 ha of the Munduruku Indigenous Land. Protections in Brazil's constitution and legislation and in international conventions are easily neutralized through application of "security suspensions," as has already occurred during licensing of several dams currently under construction in the Tapajós Basin. Few are aware of "security suspensions," resulting in little impetus to change these laws.

  11. Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass

    USGS Publications Warehouse

    Makrakis, S.; Miranda, L.E.; Gomes, L.C.; Makrakis, M.C.; Junior, H.M.F.

    2011-01-01

    The Piracema Canal is a complex 10-km fish pass system that climbs 120m to connect the Paran?? River to the Itaipu Reservoir along the Brazil-Paraguay border. The canal was constructed to allow migratory fishes to reach suitable habitats for reproduction and feeding in tributaries upstream from the reservoir. The Piracema Canal attracted 17 of the 19 long-distance migratory species that have been recorded in the Paran?? River Basin and Paraguay-Paran?? Basin. However, the incidence of migratory fish decreased from downstream to upstream, with the pattern of decrease depending on species. Overall, 0.5% of the migratory fish that entered the Piracema Canal and segment 1, eventually were able to reach segment 5 and potentially Itaipu Reservoir. Ascension rate was examined relative to various physical attributes of canal segments; maximum water velocity emerged as the most influential variable affecting fish passage. Water velocity may be manipulated by controlling water discharge, and by re-engineering critical sections of the canal. Because the Itaipu Reservoir flooded a set of falls that separated two distinct biogeographical regions, facilitating fish movements through the Piracema Canal into the Itaipu Reservoir presents a management dilemma that requires deliberation in the context of the fish assemblages rather than on selected migratory species. ?? 2010 John Wiley & Sons, Ltd.

  12. Itaipu royalties: The role of the hydroelectric sector in water resource management.

    PubMed

    Lorenzon, Alexandre Simões; Alvares Soares Ribeiro, Carlos Antonio; Rosa Dos Santos, Alexandre; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Soares, Vicente Paulo; Martins de Castro, Nero Lemos; Teixeira, Thaisa Ribeiro; Martins da Costa de Menezes, Sady Júnior; Silva, Elias; de Oliveira Barros, Kelly; Amaral Dino Alves Dos Santos, Gleissy Mary; Ferreira da Silva, Samuel; Santos Mota, Pedro Henrique

    2017-02-01

    For countries dependent on hydroelectricity, water scarcity poses a real risk. Hydroelectric plants are among the most vulnerable enterprises to climate change. Investing in the conservation of the hydrographic basin is a solution found by the hydropower sector. Given the importance of the Itaipu plant to the energy matrix of Brazil and Paraguay, the aim of this study is to review the current distribution of royalties from Itaipu, using the hydrographic basin as a of criterion of analysis. Approximately 98.73% of the Itaipu basin is in Brazil. The flow contributes 99% of the total electricity generated there, while the drop height of the water contributes only 1%. Under the current policy, royalties are shared equally between Brazil and Paraguay. In the proposed approach, each country would receive a percentage for their participation in the drop height and water flow in the output of the turbines, which are intrinsic factors for electricity generation. Thus, Brazil would receive 98.35% of the royalties and Paraguay, 1.65%. The inclusion of the hydrographic basin as a criterion for the distribution of royalties will promote more efficient water resource management, since the payment will be distributed throughout the basin of the plant. The methodology can be applied to hydroelectric projects worldwide.

  13. Dams in the Amazon: Belo Monte and Brazil's Hydroelectric Development of the Xingu River Basin

    NASA Astrophysics Data System (ADS)

    Fearnside, Phillip M.

    2006-07-01

    Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil’s proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country’s national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.

  14. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, H.; Bianchi, M.; Assumpção, M.; Schimmel, M.; Collaço, B.; Ciardelli, C.; Barbosa, J. R.; Calhau, J.

    2016-05-01

    The collapse of a mine tailings dam and subsequent flood in SE Brazil on 5 November 2015 was preceded by a small-magnitude seismic sequence. In this report, we explore the spatiotemporal associations between the seismic events and the accident and discuss their possible connection. We also analyze the signals generated by the turbulent mudflow, as recorded by the Brazilian Seismographic Network (RSBR). In light of our observations, we propose as possible contributing factor for the dam collapse either ground shaking and/or soil liquefaction triggered by the earthquakes. The possibility of such a small-magnitude earthquake contributing to the collapse of a tailings dam raises important concerns regarding safety and related legislation of dams in Brazil and the world.

  15. The Cotingo Dam as a Test of Brazil's System for Evaluating Proposed Developments in Amazonia

    PubMed

    Fearnside; Barbosa

    1996-09-01

    The proposed Cotingo Dam in Brazil's far northern state of Roraima is examined with the objective of drawing lessons for Brazil's system of evaluating environmental, social, and financial consequences of development decisions. The Cotingo Dam illustrates the difficulty of translating into practice the principles of economic and environmental assessment. Examination of the financial arguments for the Cotingo Dam indicates that justifications in this sphere are insufficient to explain why the project is favored over other alternatives and points to political factors as the best explanation of the project's high priority. Strong pressure from political and entrepreneurial interest groups almost invariably dominates decision making in Amazonia. The analysis indicates the inherent tendency of the present system to produce decisions in favor of large construction projects at the expense of the environment and local peoples. The requirements intended to assure proper weight for these concerns, such as the report on environmental impacts (RIMA) and the public hearing, fail to serve this role. Cotingo also provides a test case for constitutional protections restricting construction of dams in indigenous lands.KEY WORDS: Hydroelectric dams; Amazonia; Indigenous peoples; Brazil; Roraima

  16. Brazil's Samuel Dam: lessons for hydroelectric development policy and the environment in Amazonia.

    PubMed

    Fearnside, Philip M

    2005-01-01

    Brazil's Samuel Dam, which formed a 540-km2 reservoir in the state of Rondônia in 1988, provides lessons for development decisions throughout Amazonia and in other tropical areas. The decision to build the dam was heavily influenced by its role in the political strategies of key decision makers. Samuel illustrates both impacts and benefits of electricity supply and the dilemmas facing decision makers regarding the various options for planned electricity generation. Environmental costs included flooding forest and stimulating illegal logging activity throughout western Amazonia because of an exception opened for Samuel in Brazil's prohibition of export of raw logs. Samuel emitted substantially more greenhouse gases than would have been emitted by generating the same amount of electricity from oil. Contamination of fish in the reservoir resulted from methylation of mercury present in the soil. Social costs of the dam included resettlement of 238 families of farmers; impacts on indigenous people were indirect. Mitigating measures included faunal rescue and creation of a forest reserve. The lessons of Samuel include the need to consider a full range of alternatives prior to making decisions in practice and the importance of adhering to the logical sequence of decision making, where information is gathered and compared prior to the decision. It also shows the need to maintain flexibility when the costs and benefits of different alternatives change significantly over the course of the project's planning and execution, as occurred at Samuel.

  17. Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil).

    PubMed

    Segura, Fabiana Roberta; Nunes, Emilene Arusievicz; Paniz, Fernanda Pollo; Paulelli, Ana Carolina Cavalheiro; Rodrigues, Gabriela Braga; Braga, Gilberto Úbida Leite; Dos Reis Pedreira Filho, Walter; Barbosa, Fernando; Cerchiaro, Giselle; Silva, Fábio Ferreira; Batista, Bruno Lemos

    2016-11-01

    On November 5th, 2015, Samarco's iron mine dam - called Fundão - spilled 50-60 million m(3) of mud into Gualaxo do Norte, a river that belongs to Rio Doce Basin. Approximately 15 km(2) were flooded along the rivers Gualaxo do Norte, Carmo and Doce, reaching the Atlantic Ocean on November 22nd, 2015. Six days after, our group collected mud, soil and water samples in Bento Rodrigues (Minas Gerais, Brazil), which was the first impacted area. Overall, the results, water samples - potable and surface water from river - presented chemical elements concentration according to Brazilian environmental legislations, except silver concentration in surface water that ranged from 1.5 to 1087 μg L(-1). In addition, water mud-containing presented Fe and Mn concentrations approximately 4-fold higher than the maximum limit for water bodies quality assessment, according to Brazilian laws. Mud particle size ranged from 1 to 200 μm. SEM-EDS spot provided us some semi quantitative data. Leaching/extraction tests suggested that Ba, Pb, As, Sr, Fe, Mn and Al have high potential mobilization from mud to water. Low microbial diversity in mud samples compared to background soil samples. Toxicological bioassays (HepG2 and Allium cepa) indicated potential risks of cytotoxicity and DNA damage in mud and soil samples used in both assays. The present study provides preliminary information aiming to collaborate to the development of future works for monitoring and risk assessment.

  18. Soybean yield in relation to distance from the Itaipu reservoir

    NASA Astrophysics Data System (ADS)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  19. Soybean yield in relation to distance from the Itaipu reservoir.

    PubMed

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  20. Political Benefits as Barriers to Assessment of Environmental Costs in Brazil's Amazonian Development Planning: The Example of the Jatapu Dam in Roraima

    PubMed

    Fearnside; Barbosa

    1996-09-01

    Development projects are rapidly changing the landscape in Brazilian Amazonia. Environmental impact assessments have been required since 1986, and the regulatory system is evolving as precedents are set by each new development project. The Jatapu Dam in Roraima provides an illustration of underlying impediments to assessment of environmental costs and to due consideration being given to these assessments when decisions are made. The high priority placed on the dam by the Roraima state government is unexplainable in terms of economic returns. The place of the dam in a long-term political strategy provides the best of several possible explanations, any one of which is incompatible with a "rational" weighing of economic and environmental costs and benefits. A number of lessons can be drawn from the experience of Jatapu, but some of the problems have no solution. The barriers to rational decision making illustrated by Jatapu apply to development projects in many parts of the world.KEY WORDS: Jatapu Dam; Amazonia; Dams; Hydroelectric development; Brazil; Tropical forest; Environmental impact assessment

  1. Changes in a large regulated tropical river: The Paraná River downstream from the Porto Primavera Dam, Brazil

    NASA Astrophysics Data System (ADS)

    Stevaux, José C.; Martins, Débora P.; Meurer, M.

    2009-12-01

    Dams disturb in the fluvial dynamics by changing the natural cycle of the rivers, interfering with the transport-deposition processes and affecting river ecology. The Brazilian part of the Paraná Basin has the largest hydrometrical power potential of the country with more than 150 hydroelectric power dams that transformed the Paraná River and its tributaries in a succession of lakes. This research aims to analyze the changes in certain fluvial variables in the last natural downstream reach of the Upper Paraná River after closure of the Porto Primavera Dam. Data acquired before and after dam construction showed changes in water discharge, bank erosion, flood pulse, bed load grain size discharge, concentration of suspended load and bedform morphology and size. Those alterations generated changes in river ecology especially on fish reproduction, benthic community, and rotifers variety and density. A review of the obscure regional literature, generally in Portuguese, is also presented.

  2. The Effect of Large Dams on Flow Regime and Eco-hydrologic Connectivity Processes in the Floodplain of the Upper Parana River, Brazil

    NASA Astrophysics Data System (ADS)

    Aquino, S.; Souza Filho, E. E.; Stevaux, J. C.; Corradini, F.

    2008-12-01

    The Parana River, one of the largest alluvial rivers of the world, had been strongly affected by dams in special along the Brazilian territory. Here we present results on the eco-hydrologic effect of dams on the floodplain of the upper Paraná River, from Porto Primavera Dam to Guaíra, Brazil along more than 200km. The area includes the last remnant of floodplain in "natural" conditions of the Paraná River in Brazilian territory. Detailed mapping and field surveys of morpho-vegetation units and floristic identifications were performed. The daily discharges, stages and flow variability and temporal distribution of flows as well as the ENSO events influence, time duration flows curves and recurrence curves were analyzed at three gauge stations: Porto São José, Porto Caiuá and Guaíra. The record was divided in three periods taking account the human impact on the basin. The first period extended from 1971 to 1982, the second one from 1982 to 1998 and the last one from 1999 to 2006. Since the first period a decreasing in flow duration is detected as well as a decreasing of the recurrence period of floods. The effect of the Porto Primavera dam construction in 1998 was very strong and affected substantially the hydrology and ecology of the fluvial system. The hydrological regime was related with the ecologically important morphologic levels (stages) of the floodplain to determine the river-floodplain connections. The river stages (levels) were tested and studied for each temporal interval. The difference in river stages necessaries for connections as proposed permit the idealization of different scenarios on the ecology of the river-floodplain system and suggest that improvements need to be obtained in the identification of critical values connecting the channel with the floodplain to different stages.

  3. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  4. Profiles of sex steroids, fecundity, and spawning of the curimatã-pacu Prochilodus argenteus in the São Francisco River, downstream from the Três Marias Dam, Southeastern Brazil.

    PubMed

    Arantes, Fábio P; Santos, Helio B; Rizzo, Elizete; Sato, Yoshimi; Bazzoli, Nilo

    2010-04-01

    The present study evaluated for the first time sex steroid profiles and fecundity in females of Prochilodus argenteus from two sections of the São Francisco River Brazil, downstream from the Três Marias Dam, which influences characteristics of their water habitat. The model species in the study, P. argenteus, is an important commercial and recreational species in Brazil. In the region closest to the dam (section 1), females did not reach final oocyte maturation, failed to spawn, and displayed lesser circulating concentrations of testosterone, 17(-hydroxyprogesterone (17(-P) and 17beta-estradiol (E2) than those farther downstream of the dam (section 2). The endocrine and fecundity deficiencies probably are attributed to lower water temperature and oxygen concentration in (section 1). The follicular atresia rate in the region closest to the dam (26%) was greater than those fish captured farther downstream of the dam (13%), after the Abaeté River (section 2). Variations in testosterone, E2 and 17(-P concentrations in section 2, followed gonadal maturation which are typical features of species which have seasonal reproduction, group-synchronous oocyte development, and are single batch spawners such as P. argenteus. Results document the first evidence of endocrine and reproductive dysfunctions caused by inadequate water conditions in a wild population of the migratory species P. argenteus in the São Francisco River, downstream from the Três Marias dam.

  5. Environmental assessment of the area surrounding Dam Rio Verde - Parana/Brazil. An overview of environmental geomorphology.

    PubMed

    Garcia, Claudia Moreira; Carrijo, Beatriz Rodrigues; Sessegolo, Gisele; Passos, Everton

    2012-04-01

    This paper presents a brief essay on the situation in which the environment of the dam of the Rio Verde Basin-Parana, from the vision of environmental geomorphology. The area is located between the cities of Campo Magro and Campo Largo, Paraná plateau in the first part of theAlto Iguaçu basin. This study aims to raise the concepts relating to environmental geomorphology, to identify the anthropogenic impacts caused in the reservoir areas, identify the environmental compartments found around the dam and characterize the geologic and physiographic region. It was found that the area has intense anthropogenic influence, as urban growth is present in areas and wavy and rough terrain, subject to mass movements and floods. Besides these aspects, the use of land for agriculture contributes to fragility of the area.

  6. Survey of microcystins in water between 1995 and 1996 in Paraná, Brazil using ELISA.

    PubMed

    Hirooka, E Y; Pinotti, M H; Tsutsumi, T; Yoshida, F; Ueno, Y

    1999-01-01

    An enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody was used to determine microcystin (MC) concentrations in water supplies and water plant samples collected between November 1995 and October 1996, from five regions of Paraná, Brazil. In addition, the presence of Microcystis sp. was monitored. Of the 50 samples obtained, 12 were from an urban lake, 8 from human water supplies, 10 from recreational lakes, 13 from farm waters used for animal pasture and 7 from aquaculture facilities. M. aeruginosa was positive in all locations. MCs were positive (>50 pg ml(-1)) in 9 samples (2 samples from human water supplies, 5 from recreational lakes and 2 from animal pasture). Heavy contamination with MCs was observed in water samples collected in May 1996 from 2 recreation (swimming-fishing sites at Itaipu dam, 6380 and 10,000 pg ml(-1)) and human supplies (6627 pg ml(-1)) samples. At these sites, a large bloom of Microcystis sp. was detected. Treatment with 1 ppm Cl- reduced MCs levels, although 267 pg ml(-1) remained in the water plant samples. Our data showed frequent occurrence of Microcystis sp., which may be a hazard to humans and animals in the state of Paraná. More detailed investigations are required to evaluate the risk of natural MC contamination in the water supplied in this region.

  7. Susceptibility of Biomphalaria straminea from Peixe Angical dam, Tocantins, Brazil to infection with three strains of Schistosoma mansoni.

    PubMed

    Fernandez, Monica Ammon; Thiengo, Silvana Carvalho

    2010-07-01

    Environmental changes from water resource developmental projects affect the epidemiology of water-associated diseases, as well as malaria and schistosomiasis. Aiming to investigate the occurrence and distribution of freshwater snails of medical and veterinary importance in the area of influence of the Peixe Angical hydroelectric dam, a survey has been conducted over four years (2004-2008). The study has revealed the occurrence of populations of Biomphalaria straminea (Dunker) in all municipalities surrounding the lake. Studies on parasite-mollusc compatibility were undertaken using 35 populations of B. straminea, descendants of specimens obtained from that area and three strains of Schistosoma mansoni (Sambon) (BH, CM and CMO). The main results are as follows: (i) among the 1,314 specimens used, eight had been infected (infection index of 0.6%) with only the BH strain, (ii) for B. straminea populations, the mortality index was 6.8% and, depending on the strain used, the indexes were 4.6%, 8.49% and 19% with BH, CM and CMO strains, respectively, (iii) the infection indexes varied according to the B. straminea populations, ranging from 0-12.5% and (iv) the duration of the precercarial period varied from 25-49 days. These results, in addition to environmental and social changes that took place in the Peixe Angical dam region, indicate the possibility of B. straminea emerging as a schistosomiasis vector in this area.

  8. Simulium (Chirostilbia) brunnescens (Diptera: Simuliidae) - new species from the Brazilian cerrado, Manso Dam, state of Mato Grosso, Brazil.

    PubMed

    Maia-Herzog, Marilza; Valente, Ana Carolina Dos Santos; Luna-Dias, Antonio Paulino A; Gil-Azevedo, Leonardo Henrique; Marchon-Silva, Verônica

    2012-08-01

    A new species of Simuliidae, Simulium (Chirostilbia) brunnescens, was discovered at Chapada dos Guimarães, state of Mato Grosso, Brazil, and nearby municipalities (Paranatinga, Rosário do Oeste and Nobres). This species is described here based on the adults, pupae and larvae. This species is closely related to Simulium (C.) subpallidum Lutz, but could be differentiated in all stages: females, leg colour pattern and frontal dilatation size; males, gonostyle shape; pupae, number of gill filaments; larvae, body size and colour, postgenal cleft, ratio between antenna and stalk of labral fan.

  9. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  10. Brazil.

    PubMed

    1983-07-01

    Attention in this discussion of Brazil focuses: the history of the country's demographic situation; government's overall approach to population problems; population data systems and development planning; institutional arrangements for the integration of population within development planning; government's view of the importance of population policy in achieving development objectives; population size, growth, and natural increase; fertility; international migration; and spatial distribution. The population of Brazil grew from 17 million in 1900 to about 119 million in 1960, making it the most populous country in the world and 1 of the relatively few countries to have sustained rates of population growth of more than 2% for over a century. The government has not adopted an explicit policy to modify fertility or population growth. Initially this was because of its positive perception of the benefits of population growth and a large population size and, amore recently, because of Brazil's gradual transition to more moderate levels of fertility and population growth. Brazil's main sources of demographic data are its 9 censuses, conducted in 1982, 1890, 1900, 1920, 1940, 1950, 1960, 1970, and most recently in August 1980. A nationwide system of vital registration data are still lacking in many geographic areas, researchers have had to rely on indirect estimation techniques to derive estimates of past trends in fertility and mortality. Population policy has been regarded as a highly sensitive issue by Brazilian officials, and the government remains cautious in regard to population issues. Preliminary results of Brazil's 1980 census indicate a population of 119 million and an annual rate of population growth of 2.1%, continuing the downward trend that was first evident in 1976. The government considers levels and trends of population growth to be satisfactory, and morbidity and mortality to be unacceptable, partly because of a lack of success in reducing the incidence of

  11. The influence of particles recycling on the geochemistry of sediments in a large tropical dam lake in the Amazonian region, Brazil

    NASA Astrophysics Data System (ADS)

    Fonseca, Rita; Pinho, Catarina; Oliveira, Manuela

    2016-12-01

    As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and

  12. 107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  13. Population structure and allometry of Podocnemis unifilis (Testudines, Podocnemididae) in a protected area upstream Belo Monte dam in Xingu River, Brazil.

    PubMed

    Miorando, Priscila S; Giarrizzo, Tommaso; Pezzuti, Juarez C B

    2015-01-01

    Amazon river turtles are increasingly threatened by habitat loss and alteration due to the Brazilian energy policy based on construction of hydroelectric dams, meanwhile, populational studies remain scarce. We described the population structure, and established body allometric relationships of Podocnemis unifilis in the Terra do Meio Ecological Station in the Iriri River, tributary of the Xingu River upstream the Belo Monte dam under construction Turtles were captured by hand net and diving in 2012 and 2013 dry seasons, and 2013 rainy season. A total of 728 males, 296 females and four juveniles were captured. Adult sex ratio was male-biased by 9.15 ♂:1 ♀. Females were significantly larger than males. Mean straight carapace length was 268.9 ± 46.7 mm (165 - 403) for females; and 232.7 ± 24.8 mm (167 - 303) for males. The sexes were morphologically distinct in function of a proportionally larger plastron, and higher carapace, on females. Allometric relationships between straight carapace length and other morphometric traits were strong for males (R2 range = 0.87 - 0.96 and females (R2 range =0.79 - 0.98. Exploitation of P. unifilis in biomass extirpated from the Middle Xingu River may be estimated from body parts found post-consumption by the presented regressions.

  14. The bat fauna of the Kararaô and Kararaô Novo caves in the area under the influence of the Belo Monte hydroelectric dam, in Pará, Brazil.

    PubMed

    Zortéa, M; Bastos, N A; Acioli, T C

    2015-08-01

    Brazil's large territory displays significant richness in caves with about 12 thousand caves already recorded. Nevertheless, studies on bats in these environments are extremely scarce and fragmented. This study characterized the chiropteran fauna from two sandstone caves under the influence of the Belo Monte hydroelectric dam (Belo Monte UHE) in Pará, Brazil. The Kararaô and Kararaô Novo caves are located on the same ridge, 250 m apart. Three expeditions were carried out in 2013 and 2014, with a 4- to 5-month interval in between. A total of 589 animals were caught, 246 in the Kararaô cave and 343 in the Kararaô Novo cave. Fifteen species were recorded (13 in each cave) representing 79% similarity. With the exception of Vampyrum spectrum, which is not a cave species, the remaining recorded species were mostly cave bat species. Some species seemed to use the caves seasonally, although the basis of this pattern is still unknown. The most commonly observed species were Pteronotus personatus (dominant in the Kararaô cave), P. parnellii (dominant in the Kararaô Novo cave), and Lionycteris spurrelli, which accounted for 65% of all captures recorded for the two caves. Natalus macrourus is a species recorded in the Kararaô cave that is regionally threatened with extinction. Both caves are less than 500 m from the future reservoir; however, because the Kararaô cave entry is in an area that is lower than the reservoir, it can suffer alterations that would affect its dynamics. This raises great concern about the cave's associated fauna.

  15. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  16. CRIB DAM, LOOKING ALONG DAM FROM WEST ABUTMENT, SHOWING PLANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CRIB DAM, LOOKING ALONG DAM FROM WEST ABUTMENT, SHOWING PLANK SHEATHING IN FOREGROUND. VIEW TO EAST - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  17. 50. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM -- DAM CONCRETE -- GENERAL ARRANGEMENT -- SECTION AND ELEVATIONS. M-L 26(R) 40/3 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  18. 49. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM -- DAM CONCRETE -- TYPICAL PIER ISOMETRIC. M-L 26(R) 40/1 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  19. Focusing on dam safety

    SciTech Connect

    Lagassa, G.

    1993-01-01

    With increased relicensing activity and a federal emphasis on safety, dam repair and refurbishment is a growing business. Providers of goods and services are gearing up to meet the dam repair and rehabilitation needs that result.

  20. Hoover Dam Learning Packet.

    ERIC Educational Resources Information Center

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  1. PERSPECTIVE ON LANDSLIDE DAMS.

    USGS Publications Warehouse

    Schuster, Robert L.; Costa, John E.; ,

    1986-01-01

    The most common types of mass movements that form landslide dams are rock and soil slumps and slides; mud, debris, and earth flows: and rock and debris avalanches. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snow melt, and earthquakes. Most landslide dams are remarkable short-lived. In a sample of 63 documented cases, 22 percent of the landslide dams failed in less than 1 day after formation, and half failed within 10 days. Overtopping was by far the most frequent cause of landslide-dam failure. Backwater flooding behind landslide dams can inundate communities and valuable agricultural land. Floods from the failure of landslide dams are smaller than floods from constructed dams impounding bodies of water with the same potential energy, but larger than floods from failure of ice dams. Secondary effects of landslide-dam failures include additional landslides as reservoir levels drop rapidly, aggradation of valleys upstream and downstream of the dams, and avulsive channel changes downstream.

  2. 16. Parker Dam, only top fourth of dam visible, at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Parker Dam, only top fourth of dam visible, at 320' high, Parker Dam is one of the highest in the world. Much of this height is because dam penetrates well below river bottom to fasten to bedrock. - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  3. 9. Excavation work at Pleasant Dam (now called Waddell Dam). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Excavation work at Pleasant Dam (now called Waddell Dam). Photographer unknown, July, 22, 1926. Source: Maricopa County Municipal Water Conservation District Number One (MWD). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  4. Dammed or Damned?

    ERIC Educational Resources Information Center

    Hirsch, Philip

    1988-01-01

    Summarizes issues raised at a workshop on "People and Dams" organized by the Society for Participatory Research in Asia. Objectives were to (1) understand problems created by dams for people, (2) consider forces affecting displaced populations and rehabilitation efforts, and (3) gain a perspective on popular education efforts among…

  5. Detecting dam failures

    SciTech Connect

    Knarr, C.M.; Barker, T.J.; McKenery, S.F. )

    1994-06-01

    This article describes efforts by Southern California Edison to meet Federal Energy Regulatory Commission requirements for unattended dam monitoring against failure. The topics include a description of the two dam systems, monitoring system design and operation including warning sirens for remote camping areas, and installation of the systems.

  6. Fish reproductive guilds downstream of dams.

    PubMed

    Vasconcelos, L P; Alves, D C; Gomes, L C

    2014-11-01

    Fish reproductive guilds were used to evaluate the responses of species with different reproductive strategies during two different periods of post-dam construction. The data used for the comparisons were collected in the upper Paraná River floodplain (Brazil), downstream of the Porto Primavera dam, 2 and 10 years after impoundment. The abundance (catch per unit effort, CPUE), species richness, evenness and structure of communities, all within reproductive guilds, were used to test the hypothesis that these metrics vary spatially and temporally. The influence of damming on species structure and the diversity of fish reproductive guilds varied spatiotemporally, and species with opportunistic reproductive strategies tended to be less affected. Conversely, long-distance migratory species responded more markedly to spatiotemporal variations, indicating that the ecosystem dynamics exert greater effects on populations of these species. Thus, the effects of a dam, even if attenuated, may extend over several years, especially downstream. This finding emphasizes the importance of maintaining large undammed tributaries downstream of reservoirs.

  7. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams

    NASA Astrophysics Data System (ADS)

    Fearnside, Philip M.

    2016-01-01

    Tropical dams are often falsely portrayed as ‘clean’ emissions-free energy sources. The letter by de Faria et al (2015 Environ. Res. Lett. 10 124019) adds to evidence questioning this myth. Calculations are made for 18 dams that are planned or under construction in Brazilian Amazonia and show that emissions from storage hydroelectric dams would exceed those from electricity generation based on fossil fuels. Fossil fuels need not be the alternative, because Brazil has vast potential for wind and solar power as well as opportunities for energy conservation. Because dam-building is rapidly shifting to humid tropical areas, where emissions are higher than in other climatic zones, the impact of these emissions needs to be given proper weight in energy-policy decisions.

  8. 1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A GRAVITY SECTION IS THE THIRD DAM BUILT BY SEATTLE CITY LIGHT TO PROVIDE WATER FOR GORGE POWERHOUSE AND WAS COMPLETED IN 1961, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    PubMed

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  10. Assessment of spermatogenesis and plasma sex steroids in a seasonal breeding teleost: a comparative study in an area of influence of a tributary, downstream from a hydroelectric power dam, Brazil.

    PubMed

    Domingos, Fabricio F T; Thomé, Ralph G; Arantes, Fabio P; Castro, Antonio Carlos S; Sato, Yoshimi; Bazzoli, Nilo; Rizzo, Elizete

    2012-12-01

    River damming and building of hydroelectric power plants interrupt the reproductive migration routes and change the major physicochemical parameters of water quality, with drastic consequences for populations of migratory fishes. The goal of this study was to evaluate proliferation and cell death during spermatogenesis and serum profiles of sex steroids in Prochilodus argenteus, from the São Francisco River, downstream from the Três Marias Dam. A total of 257 adult males were caught quarterly during a reproductive cycle in two sites: the first 34 km of the river after the dam (site 1) and the second 34-54 km after the dam (site 2), after the confluence with a tributary, the Abaeté River. Seasonal changes in the testicular activity associated with morphometric analyses of germ cells as well as proliferation and testicular apoptosis support a more active spermatogenesis in fish from site 2, where higher levels of sex steroids and gonadosomatic index (GSI) were also found. In site 1, fish presented low serum levels of testosterone, 17β-estradiol and 17α-hydroxyprogesterone and a low GSI during gonadal maturation. Spermatogonial proliferation (PCNA) and apoptosis (TUNEL) were more elevated in fish from site 1, but spermatocytes were mainly labelled in fish from site 2. Overall, these data demonstrate changes in testicular activity and plasma sex steroids in a neotropical teleost fish living downstream from a hydroelectric dam, supplying new data on fish reproduction in regulated rivers. Moreover, morphometric analyses associated with sex steroids profiles provide reliable tools to assess fish spermatogenesis under environmental stress conditions.

  11. Wynoochee Dam Foundation Report

    DTIC Science & Technology

    1988-01-01

    metamorphosed tholeiitic basalt, diabase , volcaniclastic, and associated sediments. From 8 miles upstream to 10 miles downstream from the dam the rocks are...clay and fine sandy interbeds are occasion- ally present at flow contacts. locally, the basalt is cut by dark gray, moderately jointed diabase dike...rock. 3.03.2 All of the concrete dam is founded on bedrock (figure 3-3). Basalt forms the right abutment, diabase forms the left, and a contact zone

  12. Dams and Intergovernmental Transfers

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2012-12-01

    Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.

  13. Coupled dam safety analysis using WinDAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Windows® Dam Analysis Modules (WinDAM) is a set of modular software components that can be used to analyze overtopping and internal erosion of embankment dams. Dakota is an extensive software framework for design exploration and simulation. These tools can be coupled to create a powerful framework...

  14. ECHETA DAM RIPRAP ON RESERVOIR SIDE OF THE DAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM RIP-RAP ON RESERVOIR SIDE OF THE DAM AT BREACH. VIEW TO NORTH-NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  15. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  16. Dam health diagnosis and evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Zhongru; Su, Huaizhi

    2005-06-01

    Based on the bionics principle in the life sciences field, we regard a dam as a vital and intelligent system. A bionics model is constructed to observe, diagnose and evaluate dam health. The model is composed of a sensing system (nerve), central processing unit (cerebrum) and decision-making implement (organism). In addition, the model, index system and engineering method on dam health assessment are presented. The proposed theories and methods are applied to evaluate dynamically the health of one concrete dam.

  17. Alterations in morphometric and organosomatic indices and histopathological analyses indicative of environmental contamination in Mullet, Mugil liza, from Southeastern Brazil.

    PubMed

    Hauser-Davis, R A; Lavandier, R C; Bastos, F F; Oliveira, T F; Ribeiro, C A Oliveira; Ziolli, R L; de Campos, R C

    2012-12-01

    Mullet (Mugil liza) were sampled in five different areas along the Guanabara Bay, southeastern Brazil, classified as non-contaminated, moderately contaminated and contaminated. Morphometric (Fulton condition factor, relative condition factor and weight to length scaling coefficient) and organosomatic (hepatosomatic index) indices of environmental stress were analysed. Fish from the differentially contaminated areas show statistically different Fulton and relative condition factors and hepatosomatic indices, but not the weight to length scaling coefficient. The Kn and the FCF followed the same trend, with fish from São Gonçalo (1.07 ± 0.04 and 0.89 ± 0.03), Itaipu (0.84 ± 0.01 and 0.86 ± 0.01) and the Rodrigo de Freitas Lagoon (1.03 ± 0.01 and 0.87 ± 0.20) showing higher FCFs than fish from Magé (0.96 ± 0.01 and 0.81 ± 0.01). Fish from Itaipu showed significantly higher HSI values than the other sampling sites (1.68 ± 0.07), with fish from Olaria and Ipiranga showing the lowest (1.56 ± 0.12 and 1.60 ± 0.07, respectively).

  18. Environmental Assessment : Tumwater Dam and Dryden Dam Fish Passage Projects.

    SciTech Connect

    United States. Bonneville Power Administration.

    1986-01-01

    Existing fish passage facilities at Tumwater Dam and Dryden Dam currently do not effectively pass the anadromous fish runs in the Wenatchee River. At Tumwater Dam, the proposed action includes the construction of a new fish ladder which will improve water flow characteristics and, subsequently, fish passage. In order to improve fish passage at Dryden Dam, a new fish ladder will be constructed to replace the existing ladder and another ladder will be constructed. The proposed action will supplement mitigation of adverse hydroelectric impacts to the fisheries of the Columbia River basin. The proposal to fund the Tumwater Dam and Dryden Dam Fish Passage facilities does not appear to constitute a major Federal action significantly affecting the quality of the human environment and would not require an environmental impact statement.

  19. 1000 dams down and counting

    USGS Publications Warehouse

    O'Connor, James E.; Duda, Jeff J.; Grant, Gordon E.

    2015-01-01

    Forty years ago, the demolition of large dams was mostly fiction, notably plotted in Edward Abbey's novel The Monkey Wrench Gang. Its 1975 publication roughly coincided with the end of large-dam construction in the United States. Since then, dams have been taken down in increasing numbers as they have filled with sediment, become unsafe or inefficient, or otherwise outlived their usefulness (1) (see the figure, panel A). Last year's removals of the 64-m-high Glines Canyon Dam and the 32-m-high Elwha Dam in northwestern Washington State were among the largest yet, releasing over 10 million cubic meters of stored sediment. Published studies conducted in conjunction with about 100 U.S. dam removals and at least 26 removals outside the United States are now providing detailed insights into how rivers respond (2, 3).

  20. USGS Dam Removal Science Database

    USGS Publications Warehouse

    Bellmore, J. Ryan; Vittum, Katherine; Duda, Jeff J.; Greene, Samantha L.

    2015-01-01

    This database is the result of an extensive literature search aimed at identifying documents relevant to the emerging field of dam removal science. In total the database contains 179 citations that contain empirical monitoring information associated with 130 different dam removals across the United States and abroad. Data includes publications through 2014 and supplemented with the U.S. Army Corps of Engineers National Inventory of Dams database, U.S. Geological Survey National Water Information System and aerial photos to estimate locations when coordinates were not provided. Publications were located using the Web of Science, Google Scholar, and Clearinghouse for Dam Removal Information.

  1. Health impacts of large dams

    SciTech Connect

    Lerer, L.B.; Scudder, T.

    1999-03-01

    Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.

  2. Using causal maps to support ex-post assessment of social impacts of dams

    SciTech Connect

    Aledo, Antonio; García-Andreu, Hugo; Pinese, José

    2015-11-15

    - Highlights: • We defend the usefulness of causal maps (CM) for ex-post impact assessment of dams. • Political decisions are presented as unavoidable technical measures. • CM enable the identification of multiple causes involved in the dam impacts. • An alternative management of the dams is shown from the precise tracking of the causes. • Participatory CM better the quality of information and the governance of the research. This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams.

  3. War damages and reconstruction of Peruca dam

    SciTech Connect

    Nonveiller, E.; Rupcic, J. |; Sever, Z.

    1999-04-01

    The paper describes the heavy damages caused by blasting in the Peruca rockfill dam in Croatia in January 1993. Complete collapse of the dam by overtopping was prevented through quick action of the dam owner by dumping clayey gravel on the lowest sections of the dam crest and opening the bottom outlet of the reservoir, thus efficiently lowering the water level. After the damages were sufficiently established and alternatives for restoration of the dam were evaluated, it was decided to construct a diaphragm wall through the damaged core in the central dam part as the impermeable dam element and to rebuild the central clay core at the dam abutments. Reconstruction works are described.

  4. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  5. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries.

    PubMed

    Agostinho, A A; Pelicice, F M; Gomes, L C

    2008-11-01

    Reservoirs have been built in almost all of the hydrographic basins of Brazil. Their purposes include water supply for cities, irrigation and mainly, generation of electricity. There are more than 700 large dams and associated reservoirs in the large rivers of the country. These reservoirs favor local and regional economic development, but they also bring serious and irreversible alterations in the natural hydrologic regime of rivers, affecting habitat quality and the dynamics of the biota. In the impounded area, the main impact is the change from lotic to lentic water, which influences aquatic fauna, including fishes. Impacts of reservoirs present relevant spatiotemporal variations. Immediately after reservoir formation, fish species richness usually increases due to incorporation of surrounding habitats, but richness decreases as reservoirs age. However, impacts downstream of dams appear to be similar or stronger than those that occur within the reservoir. Dams promote discharge control, altering the seasonal cycles of floods. These effects are augmented when dams are constructed in cascades. Therefore, dams profoundly influence composition and structure of fish assemblages. Most affected species are the rheophilics and long distance migratory that require distinct habitats to fulfill their life cycles. Populations of migratory species may collapse or even disappear in intensely regulated stretches. Management actions taken to minimize impacts of dams in Brazil historically considered construction of fish passages, fishery control and stocking. The results of these actions are questionable and/or with clear failures. In this paper, we give emphasis to the Paraná River basin, the most affected by dams in Brazil. We describe some patterns in the alteration and decline in fish diversity in areas influenced by dams. We also discuss negative consequences in the fishery and ecosystems functioning. Finally, we argue the relevance and the success of the management

  6. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Dam safety. 1724.55 Section 1724.55 Agriculture... § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... for Dam Safety,”(Guidelines), as applicable. A dam, as more fully defined in the Guidelines,...

  7. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Dam safety. 1724.55 Section 1724.55 Agriculture... § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... for Dam Safety,”(Guidelines), as applicable. A dam, as more fully defined in the Guidelines,...

  8. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Dam safety. 1724.55 Section 1724.55 Agriculture... § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... for Dam Safety,”(Guidelines), as applicable. A dam, as more fully defined in the Guidelines,...

  9. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Dam safety. 1724.55 Section 1724.55 Agriculture... § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... for Dam Safety,”(Guidelines), as applicable. A dam, as more fully defined in the Guidelines,...

  10. Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of dam complex access road and U.S. Highway 189 to center of dam, 874 feet/352 degrees from Hydroelectric Powerplant (HAER UT-93-B) to center of dam, Charleston, Wasatch County, UT

  11. Is it worth a dam?

    PubMed Central

    Joyce, S

    1997-01-01

    Once a sign of modernization and growth, dams are often seen today as symbols of environmental and social devastation. Over 800,000 dams have been built worldwide to provide drinking water, flood control, hydropower, irrigation, navigation, and water storage. Dams do indeed provide these things,but at the cost of several adverse, unexpected effects: disruption of ecosystems, decline of fish stocks, forced human and animal resettlements, and diseases such as malaria, which are borne by vectors that thrive in quiet waters. PMID:9349830

  12. A brief history of 20th century dam construction and a look into the future

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick

    2010-05-01

    In this presentation, an overview is given of global dam building activities in the 20th century. Political, economical and hydrological factors shaped the building of large dams. The development of the relations between these three factors and dam building over time is examined. One can argue whether or not history is simply "one damn thing after another" but the second half of the 20th century suggests that history is at least reflected by the construction of one dam after another. The financial crisis of the 1930's started the first construction wave of large hydropower dams in the United States. This wave continued into the Second World War. During the Cold War, the weapon race between the USA and USSR was accompanied by a parallel neck-and-neck race in dam construction. By the 1970's, dam construction in the USA tapered off, while that in the USSR continued until its political disintegration. In China, we see two spurts in dam development, the first one coinciding with the disastrous Great Leap Forward and the second with the liberalization of the Chinese economy after the fall of the Berlin Wall. Economic and political events thus shaped to an important extent decisions surrounding the construction of large dams. Clearly, there are some hydrological prerequisites for the construction of dams. The six largest dam building nations are USSR, Canada, USA, China, Brazil, and India, all large countries with ample water resources and mountain ranges. Australia has relatively little reservoir storage for the simple fact that most of this country is flat and dry. A few countries have relatively large amounts of reservoir storage. Especially Uganda (Owens Falls), Ghana (Akosombo), and Zimbabwe (Kariba) are examples of small countries where gorges in major rivers were "natural" places for large dams and reservoirs to be built early on. It seems that, deserts aside, the average potential storage capacity lies for most continents around 10 cm or about 50% of the total

  13. FORMATION AND FAILURE OF NATURAL DAMS.

    USGS Publications Warehouse

    Costa, John E.; Schuster, Robert L.

    1988-01-01

    Of the numerous kinds of dams that form by natural processes, dams formed from landslides, glacial ice, and late-neoglacial moraines present the greatest threat to people and property. Landslide dams form a wide range of physiographic settings. The most common types of mass movements that form landslide dams are rock and debris avalanches; rock and soil slumps and slides; and mud, debris, and earth flows. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snowmelt and earthquakes. Natural dams may cause upstream flooding as the lake rises and downstream flooding as a result of failure of the dam. Although data are few, for the same potential energy at the dam site, downstream flood peaks from the failure of glacier-ice dams are smaller than those from landslide, moraine, and constructed earth-fill and rock-fill dam failures.

  14. OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM FROM DIRECTION OF KACHESS DAM. VIEW TO NORTH - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  15. 17. VIEW OF MAIN AND DIVERSION DAMS FROM WATERGATE AFTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF MAIN AND DIVERSION DAMS FROM WATER-GATE AFTER REMOVAL OF DRIFTWOOD. DIVERSION DAM IN LEFT FOREGROUND, MAIN DAM TO THE RIGHT. Photographed July 18, 1938. - Forge Creek Dam-John Cable Mill, Townsend, Blount County, TN

  16. The Dramatic Methods of Hans van Dam.

    ERIC Educational Resources Information Center

    van de Water, Manon

    1994-01-01

    Interprets for the American reader the untranslated dramatic methods of Hans van Dam, a leading drama theorist in the Netherlands. Discusses the functions of drama as a method, closed dramatic methods, open dramatic methods, and applying van Dam's methods. (SR)

  17. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  18. Three Gorges Dam, China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest.

    This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 60 x 24 km (36 x 15 miles) Location: 30.6 deg. North lat., 111.2 deg. East long. Orientation: North at top Image Data: ASTER

  19. Survey of feline leukemia virus and feline coronaviruses in captive neotropical wild felids from Southern Brazil.

    PubMed

    Guimaraes, Ana M S; Brandão, Paulo E; de Moraes, Wanderlei; Cubas, Zalmir S; Santos, Leonilda C; Villarreal, Laura Y B; Robes, Rogério R; Coelho, Fabiana M; Resende, Mauricio; Santos, Renata C F; Oliveira, Rosangela C; Yamaguti, Mauricio; Marques, Lucas M; Neto, Renata L; Buzinhani, Melissa; Marques, Regina; Messick, Joanne B; Biondo, Alexander W; Timenetsky, Jorge

    2009-06-01

    A total of 57 captive neotropical felids (one Leopardus geoffroyi, 14 Leopardus pardalis, 17 Leopardus wiedii, 22 Leopardus tigrinus, and three Puma yagouaroundi) from the Itaipu Binacional Wildlife Research Center (Refúgio Bela Vista, Southern Brazil) were anesthetized for blood collection. Feces samples were available for 44 animals, including one L. geoffroyi, eight L. pardalis, 14 L. wiedii, 20 L. tigrinus, and one P. yagouaroundi. Total DNA and RNA were extracted from blood and feces, respectively, using commercial kits. Blood DNA samples were evaluated by polymerase chain reaction (PCR) for feline leukemia virus (FeLV) proviral DNA, whereas reverse transcriptase-PCR was run on fecal samples for detection of coronavirus RNA. None of the samples were positive for coronaviruses. A male L. pardalis and a female L. tigrinus were positive for FeLV proviral DNA, and identities of PCR products were confirmed by sequencing. This is the first evidence of FeLV proviral DNA in these species in Southern Brazil.

  20. WinDAM C earthen embankment internal erosion analysis software

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two primary causes of dam failure are overtopping and internal erosion. For the purpose of evaluating dam safety for existing earthen embankment dams and proposed earthen embankment dams, Windows Dam Analysis Modules C (WinDAM C) software will simulate either internal erosion or erosion resulting f...

  1. Webinar: Stepped chute design for embankment dams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changing demographics in the vicinity of dams have led to hazard creep in a number of dams worldwide. Many of these dams now have insufficient spillway capacity as a result of these changes in hazard classification from low to significant or high hazard. Stepped chutes applied to the embankment da...

  2. 30 CFR 57.20010 - Retaining dams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Retaining dams. 57.20010 Section 57.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....20010 Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be...

  3. 30 CFR 57.20010 - Retaining dams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Retaining dams. 57.20010 Section 57.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....20010 Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be...

  4. 30 CFR 56.20010 - Retaining dams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Retaining dams. 56.20010 Section 56.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be of...

  5. 30 CFR 56.20010 - Retaining dams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Retaining dams. 56.20010 Section 56.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be of...

  6. 30 CFR 56.20010 - Retaining dams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Retaining dams. 56.20010 Section 56.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be of...

  7. 30 CFR 57.20010 - Retaining dams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Retaining dams. 57.20010 Section 57.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....20010 Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be...

  8. 30 CFR 56.20010 - Retaining dams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Retaining dams. 56.20010 Section 56.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be of...

  9. 30 CFR 57.20010 - Retaining dams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Retaining dams. 57.20010 Section 57.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....20010 Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be...

  10. 30 CFR 57.20010 - Retaining dams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Retaining dams. 57.20010 Section 57.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....20010 Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be...

  11. 30 CFR 56.20010 - Retaining dams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Retaining dams. 56.20010 Section 56.20010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Retaining dams. If failure of a water or silt retaining dam will create a hazard, it shall be of...

  12. Inception point for embankment dam stepped spillways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stepped spillways applied to embankment dams have become a common design practice with the rehabilitation of aging watershed dams, especially those experiencing a hazard classification change from low to high hazard. Previous research on stepped spillways focused on gravity dams where aerated flow ...

  13. The formation and failure of natural dams

    USGS Publications Warehouse

    Costa, J.E.; Schuster, R.L.

    1987-01-01

    Of the numerous kinds of dams that form by natural processes, dams formed from landslides, glacial ice, and neoglacial moraines present the greatest threat to people and property. The most common types of mass movements that form landslide dams are rock and debris avalanches, rock and soil slumps and slides, and mud, debris, and earth flows. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snowmelt and earthquakes. Landslide dams can be classified into six categories based on their relation with the valley floor. Type I dams (11%) of the 81 landslide dams around the world that were classifed do not reach from one valley side to the other. Type II dams (44%) span the entire valley flood, occasionally depositing material high up on opposite valley sides. Type III dams (41%) move considerable distances both upstream and downstream from the landslide failure. Type IV dams (1%) are rare and involve the contemporaneous failure of material from both sides of a valley. Type V dams (1%) are also rare, and are created when a single landslide sends multiple tongues of debris into a valley forming two or more landslide dams in the same surfaces, that extend under the stream or valley and emerge on the opposite valley side. Many landslide dams fail shortly after formation. Overtopping is by far the most common cause of failure. Glacial ice dams can produce at least nine kinds of ice-dammed lakes. The most dangerous are lakes formed in main valleys dammed by tributary glaciers. Failure can occur by erosion of a drainage tunnel under or through the ice dam or by a channel over the ice dam. Cold polar ice dams generally drain supraglacially or marginally by downmelting of an outlet channel. Warmer temperate-ice dams tend to fail by sudden englacial or subglacial breaching and drainage. Late neoglacial moraine-dammed lakes are located in steep mountain areas affected by the advances and retreats of valley glaciers in the last several

  14. Nonlinear Seismic Analysis of Morrow Point Dam

    SciTech Connect

    Noble, C R; Nuss, L K

    2004-02-20

    This research and development project was sponsored by the United States Bureau of Reclamation (USBR), who are best known for the dams, power plants, and canals it constructed in the 17 western states. The mission statement of the USBR's Dam Safety Office, located in Denver, Colorado, is ''to ensure Reclamation dams do not present unacceptable risk to people, property, and the environment.'' The Dam Safety Office does this by quickly identifying the dams which pose an increased threat to the public, and quickly completing the related analyses in order to make decisions that will safeguard the public and associated resources. The research study described in this report constitutes one element of USBR's research and development work to advance their computational and analysis capabilities for studying the response of dams to strong earthquake motions. This project focused on the seismic response of Morrow Point Dam, which is located 263 km southwest of Denver, Colorado.

  15. Seismic safety of high concrete dams

    NASA Astrophysics Data System (ADS)

    Chen, Houqun

    2014-08-01

    China is a country of high seismicity with many hydropower resources. Recently, a series of high arch dams have either been completed or are being constructed in seismic regions, of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper, a brief introduction to major progress in the research on seismic aspects of large concrete dams, conducted mainly at the Institute of Water Resources and Hydropower Research (IWHR) during the past 60 years, is presented. The dam site-specific ground motion input, improved response analysis, dynamic model test verification, field experiment investigations, dynamic behavior of dam concrete, and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.

  16. Egypt: after the Aswan Dam

    SciTech Connect

    Walton, S.

    1981-05-01

    Ten years after its completion, the controversial Aswan High Dam's hydrologic and human consequences are clearer because of a joint US-Egyptian interdisciplinary study. Water supply and distribution is emerging as a major world resource problem with the recognition that unsafe drinking water and inadequate sanitation contribute to health problems. Dams provide water supplies, but they also create conditions favorable to the spread of water-borne diseases. The Aswan Dam solved problems of flooding and drought by opening 2.5 million acres to year-round irrigation, although some of the reclaimed land has been lost to urban expansion and shoreline erosion, and provides hydroelectric power. The negative effects include increasing soil salinity, changes in the water table, excessive downstream water plant growth, and diseases such as schistosomiasis and other intestinal parasites, and the social impact on the Nubians, whose homeland was flooded. Planners must use the information gathered in this study to see that the benefits outweigh the human costs. 22 references, 7 figures.

  17. View of upstream face of the forebay dam of Grand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of the forebay dam of Grand Coulee Dam, looking west. Construction of the forebay dam, which replaced the eastern end of the original Grand Coulee Dam, was completed in 1974. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  18. 18. DETAIL AT JUNCTION OF MAIN DAM AT LEFT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL AT JUNCTION OF MAIN DAM AT LEFT AND DIVERSION DAM AT RIGHT SHOWING LOG CRIBBING. SPACES INSIDE CRIBBING WERE FILLED WITH STONE TO ANCHOR DAM; DETERIORATION OF DAM HAS ALLOWED STONE BALLAST TO WASH AWAY. Photographed July 18, 1938. - Forge Creek Dam-John Cable Mill, Townsend, Blount County, TN

  19. Exporting dams: China's hydropower industry goes global.

    PubMed

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas.

  20. Comparison of Dam Breach Parameter Estimators

    DTIC Science & Technology

    2008-01-01

    from a large storm in 1975 (CEATI). The dam was constructed of a clay core containing shale. The upstream and downstream fill was homogeneous earth ...Comparison of Dam Breach Parameter Estimators D. Michael Gee1 1 Senior Hydraulic Engineer, Corps of Engineers Hydrologic Engineering...Center, 609 2nd St., Davis, CA 95616; email: michael.gee@usace.army.mil. ABSTRACT Analytical techniques for the estimation of dam breach

  1. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    NASA Astrophysics Data System (ADS)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS

  2. 33 CFR 100.1102 - Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). 100.1102 Section... Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). (a) General. Sponsors are... Roadrunner Resort and Headgate Dam). Bullhead City Boat Drags Sponsor: Sunshine Promotions Date: 2 to...

  3. National Dam Safety Program. Inventory of Dams, Delaware.

    DTIC Science & Technology

    1981-09-01

    of these regions and basins follows. 0 13. Item 17. River /Stream. Official name of river or stream on which dam is built. If un-named, listing should...0208 Lover Chesapeake Bay South Atlantic Oulf 03 I -two0301 R~oanoke 0302 Tar -Neuse 0305 Cape Fear 303-\\004& Pee Dee 0305 Santee- Edisto 0306 Savannab...has an official name. 12. Items 15 & 16. Codes for Region & Basin respectively in accordance with the following: Region 02 Middle Atlantic Basin 01

  4. 3. VIEW, LOOKING NORTHEAST, SHOWING A SMALL FIELDSTONE DAM (KNOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW, LOOKING NORTHEAST, SHOWING A SMALL FIELD-STONE DAM (KNOWN LOCALLY AS DAM NO. 2), BUILT BY THE CCC - J. Clark Salyer National Wildlife Refuge Dams, Along Lower Souris River, Kramer, Bottineau County, ND

  5. 8. VIEW OF DAM 83, SHOWING OLD SOURIS RIVER CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF DAM 83, SHOWING OLD SOURIS RIVER CHANNEL FROM THE DOWNSTREAM FACE OF THE DAM WITH POND A IN THE BACKGROUND, LOOKING SOUTH - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  6. 4. VIEW, LOOKING SOUTHWEST, SHOWING A LARGE FIELDSTONE DAM (KNOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW, LOOKING SOUTHWEST, SHOWING A LARGE FIELD-STONE DAM (KNOWN LOCALLY AS DAM NO. 1), BUILT BY THE CCC - J. Clark Salyer National Wildlife Refuge Dams, Along Lower Souris River, Kramer, Bottineau County, ND

  7. Dam located to east of powerhouse, view from south. This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dam located to east of powerhouse, view from south. This dam holds back the waters of the Chattahoochee River to form the mill pond north of Riverdale Cotton Mill - Riverdale Cotton Mill, Powerhouse & Dam, Valley, Chambers County, AL

  8. 3. VIEW OF UPSTREAM FACE OF DAM, SHOWING OUTLET GATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF UPSTREAM FACE OF DAM, SHOWING OUTLET GATE, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Island Lake Dam, Ashley National Forest, 4.8 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  9. 10. BRIDGE IN CONTEXT OF DAM, THIRD POWER HOUSE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. BRIDGE IN CONTEXT OF DAM, THIRD POWER HOUSE IN FOREGROUND, LOOKING NORTH BY 360 DEGREES - Columbia River Bridge at Grand Coulee Dam, Spanning Columbia River at State Route 155, Coulee Dam, Okanogan County, WA

  10. 56. LOCK AND DAM NO. 26 (REPLACEMENT). AUXILIARY LOCK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. LOCK AND DAM NO. 26 (REPLACEMENT). AUXILIARY LOCK AND REMAINDER OF DAM -- CONCRETE MONOLITH PLAN AND WALL ELEVATIONS (WITH LOCK APPURTENANCES). Drawing V-601 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  11. 5. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  12. 4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  13. 6. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  14. 3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  15. 7. DETAIL VIEW OF DAM, SHOWING ROLLER GATES, GATE PIERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF DAM, SHOWING ROLLER GATES, GATE PIERS, HEADHOUSES AND DAM BRIDGE, LOOKING NORTHWEST, UPSTREAM - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 9, Lynxville, Crawford County, WI

  16. 5. DETAIL VIEW OF DAM, SHOWING ROLLER AND TAINTER GATES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF DAM, SHOWING ROLLER AND TAINTER GATES, GATE PIERS, HEADHOUSES AND DAM BRIDGE, LOOKING NORTHWEST, UPSTREAM - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 9, Lynxville, Crawford County, WI

  17. GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT IN THE BACKGROUND. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  18. 2. East side of lower dam shown with water flowing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. East side of lower dam shown with water flowing over dam. VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  19. View of upstream face of Lake Sabrina Dam showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing the redwood planks and base of dam from Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  20. View of Lake Sabrina Dam downstream face from parking lot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam downstream face from parking lot showing concrete outlet structure on tow of dam at left edge of photo, view southeast - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  1. 24. VIEW OF DAM ROLLER GATE BULKHEADS, BULKHEAD CARS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF DAM ROLLER GATE BULKHEADS, BULKHEAD CARS AND TRACKS IN STORAGE YARD, WITH MOVABLE CRANE AND DAM BRIDGE IN BACKGROUND, LOOKING WEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 3, Red Wing, Goodhue County, MN

  2. Fragility Analysis of Concrete Gravity Dams

    NASA Astrophysics Data System (ADS)

    Tekie, Paulos B.; Ellingwood, Bruce R.

    2002-09-01

    Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.

  3. McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.

    SciTech Connect

    Hillson, Todd; Lind, Sharon; Price, William

    1997-07-01

    The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites can be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.

  4. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    SciTech Connect

    Amini, Ali Reza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-07-08

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams.

  5. National Dam Safety Program. Brushy Creek Tailings Dam (MO 30951), White Basin, Reynolds County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-08-01

    a crushed rock underdrainage system and earth starter dam . The configuration of the dam , reservoir, and appurtenant structures are best described by...AO-AI06 458 ARMY ENGINEER DISTRICT ST LOUIS MO F/6 13/13 NATIONAL DAM SAFETY PROGRAM. BRUSHY CREEK TAILINGS DAM (MO 3095--ETC(U) AUG 79 W ft...CATALOG NUMBER 4. TITLE (ind Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Phase I Dam Inspection Report National Dam Safety Program Final F’eprt . Brushy

  6. Potential for seepage erosion of landslide dam

    USGS Publications Warehouse

    Meyer, W.; Schuster, R.L.; Sabol, M.A.

    1994-01-01

    The failure potential of the debris-avalanche dam at Castle Lake near Mount St. Helens, Washington, by three processes of seepage erosion (1) Heave; (2) piping; and (3) internal erosion, is examined. Results indicated that the dam is stable against piping but potentially locally unstable against heave. -from Authors

  7. 76 FR 12094 - Whitman River Dam, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ..., 38.5-foot-high Crocker Pond dam; (2) an existing 99.7- acre impoundment with a normal water surface... Federal Energy Regulatory Commission Whitman River Dam, Inc. Notice of Application Tendered for Filing With the Commission and Soliciting Additional Study Requests Take notice that the...

  8. 75 FR 62024 - Metal and Nonmetal Dams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 56 and 57 RIN 1219-AB70 Metal and Nonmetal Dams AGENCY... measures to assure that metal and nonmetal mine operators design, construct, operate and maintain dams in...

  9. 75 FR 49429 - Metal and Nonmetal Dams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Safety and Health Administration 30 CFR Parts 56 and 57 RIN 1219-AB70 Metal and Nonmetal Dams AGENCY...). SUMMARY: Dam failures at metal and nonmetal mines have exposed miners to life-threatening hazards. The Mine Safety and Health Administration (MSHA) is reviewing its existing metal and nonmetal standards...

  10. Do we need construct more dams?

    NASA Astrophysics Data System (ADS)

    Chen, J.; Shi, H.

    2013-12-01

    This paper reviews global dam development in association with the growths of global population, economy, and energy consumption in the past several decades, and also evaluates contributions of dam development to future world sustainable development. Eventually, this paper answers whether we need more dams in the future or not. The world population has rapidly increased from 1.6 billion in 1900, 2.5 billion in 1950, 6.1 billion in 2000, to 7.0 billion in 2011, and is projected to reach 9.5 billion in 2050; similarly, the world economy has dramatically expanded. To maintain socioeconomic development, the consumption of water, food and energy has increased rapidly as well. However, the total volume of available water resource over the world is limited, the food production largely depends on water supply, and the main energy sources are still oil, coal and gas at present, which are regarded as non-renewable resources. Accordingly, it is expected that we will face serious problems to deal with the challenges of water crisis, food security and energy shortage in the near future. In order to enhance the capability of regulating water resource, a great number of global dams (and related reservoirs) have been constructed in the last one hundred years; currently, almost all large rivers over the world have been regulated by dams. The reservoirs can supply sufficient water for irrigated land to ensure food production, and the associated hydropower stations can generate electricity. This article collects the dam data from the ICOLD (International Commission on Large Dams) and GRanD (Global Reservoir and Dam) databases, and some socioeconomic data, including population, economy, and consumptions of water, food and energy over the world. Analysis of these data reveals that global dam development has a great impact on the world sustainable development. Further, it is concluded that we need further dam development to maintain our future development.

  11. Diphyllobothriasis, Brazil.

    PubMed

    Sampaio, Jorge Luiz Mello; de Andrade, Victor Piana; Lucas, Maria da Conceição; Fung, Liang; Gagliardi, Sandra Maria B; Santos, Sandra Rosalem P; Mendes, Caio Marcio Figueiredo; Eduardo, Maria Bernadete de Paula; Dick, Terry

    2005-10-01

    Cases of human diphyllobothriasis have been reported worldwide. Only 1 case in Brazil was diagnosed by our institution from January 1998 to December 2003. By comparison, 18 cases were diagnosed from March 2004 to January 2005. All patients who became infected ate raw fish in sushi or sashimi.

  12. Diphyllobothriasis, Brazil

    PubMed Central

    Piana de Andrade, Victor; Lucas, Maria da Conceição; Fung, Liang; Gagliardi, Sandra Maria B.; Santos, Sandra Rosalem P.; Mendes, Caio Marcio Figueiredo; Eduardo, Maria Bernadete de Paula; Dick, Terry

    2005-01-01

    Cases of human diphyllobothriasis have been reported worldwide. Only 1 case in Brazil was diagnosed by our institution from January 1998 to December 2003. By comparison, 18 cases were diagnosed from March 2004 to January 2005. All patients who became infected ate raw fish in sushi or sashimi. PMID:16318703

  13. Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.

    2014-12-01

    Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must en­able the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the

  14. Use of GIS for Earthquakes in Brazil

    NASA Astrophysics Data System (ADS)

    Franca, G. S.; Algarte, K. T.; Assumpcao, M.; Barbosa, J. R.; Roig, H. L.; Pascual, M. F.; Vasconcelos, A. E.; Ferreira, J. M.; Ribotta, L. C.; do Nascimento, A. F.; Pavao, C. G.

    2011-12-01

    We present geoprocessing techniques to monitor and analyse earthquakes in Brazil. We constructed a georeferenced database called SIGSIBRA using PostgreSQL + PostGIS softwares, and fed by information from the SISBRA earthquake catalog, IBGE geographical data and CPRM geological data. The SISBRA catalog was built from the book "Sismicidade Brasileira" (Berrocal et al, 1984), updated with the Brazilian seismic bulletins from the Brazilian Geophysical Journal up to 1995, and especially with the data from seismographic monitoring activities of the University of Brasília-SIS/UnB, the Federal University of Rio Grande do Norte-UFRN, the University of Sao Paulo-USP and the Institute for Technological Research (IPT). Earthquakes occur in Brazil with moderate to low magnitudes. Besides natural earthquakes, seismic activity triggered by water dams must also be monitored. With the growing number and size of Brazilian dams (because of the many rivers, favorable topography and "clean" energy) concern with reservoir triggered seismicity is expected to increase. Approval for the construction of a hydropower plant requires seismic hazard assesmment prepared by an interdisciplinary team, with a large contribution of geoprocessing specialists. Therefore, it is important to study the characteristics of this seismicity, so that these professionals can avoid or mitigate potential environmental and social harm to communities on the margins of large dams. Thus the SIGSIBRA system can generate spatial analysis of its events, such as intensity estimation of "Kernel" points distribution; spatial statistics; spatial autocorrelation (Morans I) and correlations with geological structures, making it possible to characterize important aspects of the Brazilian seismicity. Finally, we show the statistical analysis of the database through the program ZMAP and estimate the intraplate seismogenic zones in Brazil.

  15. Modeling an ancient Iranian dam system

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; De Schacht, Tijs

    2013-04-01

    In Iran, along the northern and eastern fringes of the Pasargadae plain, five dam remains from the Achaemenid period (550-330 BCE) present an important footprint of the human impact and reshaping of the region. The dams are predominantly found in dry wadi beds. In the framework of the Joint Iranian-French Archaeological Project at Pasargadae, these dam sites were studied and excavated. Located 22 km to the north of Pasargadae in a small wadi, the Sad-i Didegan dam has a watershed of circa 46 square km, small compared with catchments of other known Achaemenid dams. It is an earth built gravity dam of circa 90 m wide, 21 m high and with a crown length of about 150 m. In the lower body of the dam, remains of a feeder canal and an accessible control infrastructure at the downstream flank of the dam were found. To the northwest, the dam site of Sad-i Shahidabad can be found, another large Achaemenid dam, which stored water from the perennial river of the Rud-i Polvar. This dam also had a similar canal and control structure. Close to the Sad-i Didegan area is a large earthwork, found to cross the watershed divide between Didegan and Shahidabad, consisting of a wide V-shaped trench of remarkable size: up to 100 m wide, a total length of at least 900 m and a maximum present day depth of 7.5 m. Even though the construction of the system in this case clearly was left unfinished, the remains echo the major investment of available labor. Given the contemporaneity of both dam sites, it is clear evidence of the more regionally and elaborately planned character of the hydrological endeavors in the Pasargadae area. Only through further study and future fieldwork (also obtaining absolute dating material), this impressive feature will be fully understood. This contribution proposes a possible use of the two dam system using a modern control simulation model. This analysis will also shed light on the question why the system probably never functioned.

  16. Dam Failure Inundation Map Project

    NASA Technical Reports Server (NTRS)

    Johnson, Carl; Iokepa, Judy; Dahlman, Jill; Michaud, Jene; Paylor, Earnest (Technical Monitor)

    2000-01-01

    At the end of the first year, we remain on schedule. Property owners were identified and contacted for land access purposes. A prototype software package has been completed and was demonstrated to the Division of Land and Natural Resources (DLNR), National Weather Service (NWS) and Pacific Disaster Center (PDC). A field crew gathered data and surveyed the areas surrounding two dams in Waimea. (A field report is included in the annual report.) Data sensitivity analysis was initiated and completed. A user's manual has been completed. Beta testing of the software was initiated, but not completed. The initial TNK and property owner data collection for the additional test sites on Oahu and Kauai have been initiated.

  17. Trapping efficiency of three types check dams experiment

    NASA Astrophysics Data System (ADS)

    Huang, Hui-Kai; CHEN, Su-Chin; AN, Hsuan-Pei

    2015-04-01

    The check dams constructed to trap debris flow. This study divide check dams into three types as closed-type check dam, slit dam, and modular steel check dam. Closed-type check dam which can trap all kind of sediment or driftwood. Slit check dam is permeable dam, so it can prevent from depositing all of sediment or driftwood. A modular steel check dam improves the existing hard-to-change disadvantages of slit dam structure. The assembling of longitudinal and transverse beams can be constructed independently, and then it could be freely configured to form a flexibly adjustable modular steel check dam. This study used the laws of geometric similitude to design model of dam. To explore the trapping mechanisms and phenomenon in different dismantle transverse beams conditions and compared the trapping efficiency with different type of check dams. This study used different volume ratio with driftwood and sediment. In order to capture the trace of debris flow and calculate accuracy velocity of debris flow the study used several high-speed photography combining the method of 3D Remodeling from Motion Structure with Multi-View Stereo which constructed with multiple photos of overlapping coefficient at least 70% and established three-dimensional system of coordinate in laboratory experiment. As a result, the driftwood deposition rate of modular steel check dam increase 60% than slit dam and 40% than closed-type dam; the debris deposition rate increase 30% than slit dam. In addition, the increment of driftwood volume ratio led to the increment of trapping efficiency of three type of check dams. Meanwhile slit dam is the most effective type in trapping driftwood and sediment with more than 50% of increased rate, because of more driftwood flow through the slit dam jam together easily. Finally, transverse beams which installed the modular steel check dam can suppress the upward movement of driftwood, therefore driftwood can easily form the arched stacking efficiency with

  18. 8. VIEW OF BASIN BEHIND DAM, SHOWING SCARS FROM EARTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF BASIN BEHIND DAM, SHOWING SCARS FROM EARTH MOVING TO CONSTRUCT DAM, LOOKING NORTH - High Mountain Dams in Upalco Unit, East Timothy Lake Dam, Ashley National Forest, 8.4 miles North of Swift Creek Campground, Mountain Home, Duchesne County, UT

  19. 4. VIEW OF DOWNSTREAM FACE OF DAM, WITH SCARS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF DOWNSTREAM FACE OF DAM, WITH SCARS FROM EARTH MOVING TO CONSTRUCT DAM IN FOREGROUND, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Five Point Lake Dam, Ashley National Forest, 12 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT

  20. 9. VIEW OF BASIN BEHIND DAM, SHOWING SCARS FROM EARTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF BASIN BEHIND DAM, SHOWING SCARS FROM EARTH MOVING TO CONSTRUCT DAM, LOOKING EAST - High Mountain Dams in Upalco Unit, East Timothy Lake Dam, Ashley National Forest, 8.4 miles North of Swift Creek Campground, Mountain Home, Duchesne County, UT

  1. 66. AVALON DAM Photographic copy of historic photo, May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. AVALON DAM - Photographic copy of historic photo, May 22, 1908 (original print filed in Record Group 115, National Archives, Washington, D.C.) W.J.Lubken, photographer 'VIEW LOOKING EAST FROM WEST END OF AVALON DAM, SHOWING DOWNSTREAM FACE OF DAM' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  2. 2. Overview of the Lost River Diversion Dam House complex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Overview of the Lost River Diversion Dam House complex taken from west edge of horseshoe-shaped Lost River Diversion Dam. Interior of east side of dam in the foreground. Facing East. - Klamath Basin Project, Lost River Diversion Dam House, Lost River near intersection of State Highway 140 & Hill Road, Klamath Falls, Klamath County, OR

  3. 8. WEST DAM, LOOKING DUE NORTH OVER TOP OF WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. WEST DAM, LOOKING DUE NORTH OVER TOP OF WEST DAM, SHOWING RELATIONSHIP BETWEEN OUTLET TO RIGHT OF DAM, NEW PUMP PLANT BUILDING AND CANAL TO LEFT OF DAM. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA

  4. 46. Photocopy of photograph, c. 1933. VIEW OF DAM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Photocopy of photograph, c. 1933. VIEW OF DAM AND FOREBAY. NOTE ALL WATER FLOWING THROUGH FOREBAY AND OUT EITHER TAILRACE OR SLUICE GATE (INSTEAD OF OVER DAM) BECAUSE OF LOW WATER FLOW. (Courtesy of the Potomac Edison Company Library (Hagerstown, MD), Historical Data Files, Dam No. 5 listing - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  5. 53. AVALON DAM Photographic copy of historic photo, August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. AVALON DAM - Photographic copy of historic photo, August 9, 1893 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'EDDY DAM. LOOKING EAST.' VIEW OF COLLAPSED DAM - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  6. 43. Credit TR. Reconstruction of Dam No. 4 after 1936 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Credit TR. Reconstruction of Dam No. 4 after 1936 flood. Pouring concrete for new dam section; opening at left for flume to remove water from behind coffer dam. Photo c. 1936 - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  7. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Diversions at Derby Dam. 418.18 Section 418... and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam...) Increases in canal diversions which would reduce Truckee River flows below Derby Dam by more than 20...

  8. 6. DAM AFTERBAY, WITH OWYEE RIVER IN FOREGROUND, SHOWING OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DAM AFTERBAY, WITH OWYEE RIVER IN FOREGROUND, SHOWING OUTLET TUNNEL PORTAL (LEFT) AND POWERHOUSE AND ENTRANCE PORTAL TO DAM INTERIOR (RIGHT). NOTE RELEASE OF WATER FROM NEEDLE VALVE NUMBER 2 IN VALVEHOUSE ON DAM. VIEW TO SOUTHEAST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  9. 7. SOUTHEAST VIEW OF BIG DALTON DAM SHOWING THE MULTIPLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTHEAST VIEW OF BIG DALTON DAM SHOWING THE MULTIPLE ARCHES, AN UPSTREAM VIEW OF THE PARAPET WALL ALONG THE CREST OF THE DAM, AND THE SHELTER HOUSE AT THE EAST END OF THE DAM. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  10. Concrete dam on the Bratsk hydroelectric station

    SciTech Connect

    Solov'eva, Z.I.

    1988-07-01

    The Bratsk concrete dam was designed and constructed with a sufficient degree of reliability. Settlement of the dam together with the powerhouse developed uniformly under the entire foundation. Two irreversible processes causing aging of the dam have been established by operating observations: leaching of the concrete and decompression of the contact zone of the foundation near the upstream face of the powerhouse sections. The decompression is due to the fact that the powerhouse sections are lighter than the spillway sections. At the present level this process can only be slowed by the combined use of grouting and drainage unloading.

  11. Weighing a dam's economic and environmental impact

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    While some people claim that it was a publicity stunt or criticize it as an economic loss and a move in the wrong direction, the breaching of the low-slung Edwards Dam on July 1 has changed the landscape of the Kennebec River flowing through Augusta, Maine, and may also change the landscape for some other dammed rivers nationwide.The breaching marks the first time that the Federal Energy Regulatory Commission (FERC), which licenses nonfederal hydroelectric projects, has ruled that a dam should be removed because the environmental damage that it causes outweighs its economic benefits.

  12. Sustainability of dams-an evaluation approach

    NASA Astrophysics Data System (ADS)

    Petersson, E.

    2003-04-01

    Situated in the stream bed of a river, dams and reservoirs interrupt the natural hydrological cycle. They are very sensitive to all kinds of changes in the catchment, among others global impacts on land use, climate, settlement structures or living standards. Vice versa dams strongly affect the spatially distributed, complex system of ecology, economy and society in the catchment both up- and downstream of the reservoir. The occurrence of negative impacts due to large dams led to serious conflicts about future dams. Nevertheless, water shortages due to climatic conditions and their changes, that are faced by enormous water and energy demands due to rising living standards of a growing world population, seem to require further dam construction, even if both supply and demand management are optimised. Although environmental impact assessments are compulsory for dams financed by any of the international funding agencies, it has to be assumed that the projects lack sustainability. Starting from an inventory of today's environmental impact assessments as an integral part of a feasibility study the presentation will identify their inadequacies with regard to the sustainability of dams. To improve the sustainability of future dams and avoid the mistakes of the past, the planning procedures for dams have to be adapted. The highly complex and dynamical system of interrelated physical and non-physical processes, that involves many different groups of stakeholders, constitutes the need for a model-oriented decision support system. In line with the report of the World Commission of Dams an integrated analysis and structure of the complex interrelations between dams, ecology, economy and society will be presented. Thus the system, that a respective tool will be based on, is analysed. Furthermore an outlook will be given on the needs of the potential users of a DSS and how it has to be embedded in the overall planning process. The limits of computer-based decision-support in the

  13. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  14. Reliablity analysis of gravity dams by response surface method

    NASA Astrophysics Data System (ADS)

    Humar, Nina; Kryžanowski, Andrej; Brilly, Mitja; Schnabl, Simon

    2013-04-01

    A dam failure is one of the most important problems in dam industry. Since the mechanical behavior of dams is usually a complex phenomenon existing classical mathematical models are generally insufficient to adequately predict the dam failure and thus the safety of dams. Therefore, numerical reliability methods are often used to model such a complex mechanical phenomena. Thus, the main purpose of the present paper is to present the response surface method as a powerful mathematical tool used to study and foresee the dam safety considering a set of collected monitoring data. The derived mathematical model is applied to a case study, the Moste dam, which is the highest concrete gravity dam in Slovenia. Based on the derived model, the ambient/state variables are correlated with the dam deformation in order to gain a forecasting tool able to define the critical thresholds for dam management.

  15. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Texas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Texas. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Texas. In the interest of flood control, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford Dam...

  16. Central Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Moderate resolution Imaging Spectroradiometer (MODIS) true-color image was acquired on October 19, 2000, over a region in Brazil large enough to show much of the country's diverse landscape. Spanning some 8.5 million square kilometers (3.2 million square miles), Brazil is by far the largest South American nation--both in terms of land and population. The region known as the Amazon Basin lies to the northwest (upper left) and extends well beyond the northern and western edges of this scene. Typically, from this perspective Amazonia appears as a lush, dark green carpet due to the thick canopy of vegetation growing there. Some of the Amazon Basin is visible in this image, but much is obscured by clouds (bright white pixels), as is the Amazon River. This region is home to countless plant and animal species and some 150,000 native South Americans. The clusters of square and rectangular patterns toward the center of the image (light green or reddish-brown pixels) are where people have cleared away trees and vegetation to make room for development and agriculture. Toward the western side of the scene there is considerable haze and smoke from widespread biomass burning in parts of Brazil and Bolivia, which shares its eastern border with Brazil. Toward the east in this image is the highland, or 'cerrado,' region, which is more sparsely vegetated and has a somewhat drier climate than the Amazon Basin. The capital city, Brasilia, lies within this region just southwest of the Geral de Goias Mountains (orangish pixels running north-south). There are two large water reservoirs visible in this scene--the Sobradinho Reservoir about 800 km (500 miles) northeast of Brasilia, and the Paranaiba about 500 km (300 miles) southwest of Brasilia. MODIS flies aboard NASA's Terra spacecraft. Image courtesy Brian Montgomery, Reto Stockli, and Robert Simmon, based on data from the MODIS Science Team.

  17. Research on Dam Simulation System Based on OpenGL

    NASA Astrophysics Data System (ADS)

    Li, Kairong; Wang, Juanni; Zuo, Kui; Yun, Jian

    Dam, not only has great ability to alleviate water shortages especially during the dry season which improve hydropower capacity, but also plays an imporant rule in the river ecosystem. Dam has significant effect in improving our water environment and protecting ecological system.This paper copes with the three-dimensional model of dams and discusses OpenGL modeling, lighting, material, model transformation, perspective transformation technologies to achieve visualization of the dam, and eventually we visualize the dam through concrete examples.

  18. Analysis of seismic disaster failure mechanism and dam-break simulation of high arch dam

    NASA Astrophysics Data System (ADS)

    Zhang, Jingkui; Zhang, Liaojun

    2014-06-01

    Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code (3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, influence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far field energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.

  19. White Sturgeon Passage at The Dalles Dam

    USGS Publications Warehouse

    ,

    2008-01-01

    Researchers at the USGS Western Fisheries Research Center's Columbia River Research Laboratory, working with the U.S. Army Corps of Engineers, sought to better understand upstream and downstream passage of white sturgeon at dams. A study at The Dalles Dam provided the opportunity to compare two fish ladders; one that passes sturgeon upstream to one that does not, to determine if subtle differences in construction result in better passage of white sturgeon. Researchers conducted a study using a combination of acoustic and radio telemetry technologies to obtain information on juvenile and adult white sturgeon near The Dalles Dam, with the objectives of characterizing the distribution and movements of white sturgeon in the immediate vicinity of the dam and to determine timing and routes of upstream and downstream passage.

  20. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... impounding capacity at maximum water storage elevation of 55 acre-feet (68,000 m3) or more. (ii) The“Federal... publications regarding dam safety are available from FEMA: (i)“Emergency Action Planning Guidelines for...

  1. Socioeconomic Considerations in Dam Safety Risk Analysis.

    DTIC Science & Technology

    1987-06-01

    The analytical review and summary critique of literature related to risk analysis was conducted for the purpose of highlighting those ideas, concepts...alternative solutions. The critique of the philosophical and analytical bases of risk analysis as further directed toward the specific problem of dam...safety risk analysis . Dam safety is unique in that it represents an extreme situation characteristic of low probability/high consequence event

  2. Geologic Conceptual Model of Mosul Dam

    DTIC Science & Technology

    2007-09-01

    options in the Groundwater Modeling System (GMS) • MODFLOW modeling • ERDC Hydrogeologic Flow Model for Mosul Dam Most of the workshop time was...L., T. J. Budge, A. M. Lemon, and A. K. Zundel. 2002. Generating MODFLOW grids from boundary representation solid models. Ground Water 40(2):194-200...Modeling System (GMS) • MODFLOW Modeling • ERDC Hydrogeologic Flow Model for Mosul Dam ERDC TR-07-6 31 Trainees To fully benefit from the

  3. National Dam Safety Program. Welch Lake Dam (MO 10733), Missouri - Kansas City Basin, Boone County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1981-03-01

    of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection...Corps of Engi- neers. The purpose of the inspection wa to make an assessment of the general condition of the dam with respect to safety, based upon...professional engineering organizations, and private engineers. Based on these guidelines, this dam is classified as a small size dam with a high

  4. Upper and Middle Tiete River Basin dam-hydraulic system, travel time and temperature modeling

    NASA Astrophysics Data System (ADS)

    Devkota, Bishnu; Imberger, Jörg

    2012-12-01

    SummaryTiete River System in the State of Sao Paolo, Brazil is characterized by complex hydraulics and operational problems due to series of dams and point and diffuse inflows along the river. A one dimension Lagrangian river model was developed and applied to the 313 km reach of the Upper and Middle Tiete River Basin from the Penha Dam to the head water of Bara Bonita Reservoir, a stretch of river that includes six small to medium size dams (3.4-22 m high) including the Pirapora Reservoir and 26 inflows into the river (11 tributaries, 9 diffuse source areas, and discharges of 4 cities stormwater and 2 wastewater treatment plants. The conservative tracer transport and temperature model that accounts for the short and long wave radiation and heat transfers at the free surface was included and solved using the Crank-Nicholson scheme. The time variable catchment input to the model was the simulated output of the external hydrological model called Runoff Load Model which results were provided by CETESB. The numerical treatment of series of dams and spillway (that included uncontrolled overflow spillway, gate-controlled ogee spillway; and underflow gates and tunnels) and parameterisation of hydraulic jumps are described. Special attention was focused on the high spatial and temporal variation of flows in Tiete River Basin, a result of the large variation in catchment inflows and channel geometry due to dams and reservoirs along the river. Predicted and measured spatial and seasonal variation of flow and temperature profiles along the river show good agreement. The simulated travel time of conservative tracer is compared against the CETESB's 1982 and 1984 field study data in a 254 km reach of the Middle Tiete River that again shows good agreement. Being Lagrangian in construction, this new model is computationally efficient making it an ideal tool for long term simulation for water resource planning, management and operation decision making in a large and complex river

  5. Global phosphorus retention by river damming

    PubMed Central

    Maavara, Taylor; Parsons, Christopher T.; Ridenour, Christine; Stojanovic, Severin; Dürr, Hans H.; Powley, Helen R.; Van Cappellen, Philippe

    2015-01-01

    More than 70,000 large dams have been built worldwide. With growing water stress and demand for energy, this number will continue to increase in the foreseeable future. Damming greatly modifies the ecological functioning of river systems. In particular, dam reservoirs sequester nutrient elements and, hence, reduce downstream transfer of nutrients to floodplains, lakes, wetlands, and coastal marine environments. Here, we quantify the global impact of dams on the riverine fluxes and speciation of the limiting nutrient phosphorus (P), using a mechanistic modeling approach that accounts for the in-reservoir biogeochemical transformations of P. According to the model calculations, the mass of total P (TP) trapped in reservoirs nearly doubled between 1970 and 2000, reaching 42 Gmol y−1, or 12% of the global river TP load in 2000. Because of the current surge in dam building, we project that by 2030, about 17% of the global river TP load will be sequestered in reservoir sediments. The largest projected increases in TP and reactive P (RP) retention by damming will take place in Asia and South America, especially in the Yangtze, Mekong, and Amazon drainage basins. Despite the large P retention capacity of reservoirs, the export of RP from watersheds will continue to grow unless additional measures are taken to curb anthropogenic P emissions. PMID:26644553

  6. Crosshole seismic tomography across a masonry dam

    NASA Astrophysics Data System (ADS)

    Wong, Joe

    1995-05-01

    An intensive crosshole seismic survey was done across a 700-foot-long stone-masonry dam. It involved measurements on six connected panels each approximately 100 feet in width extending completely across the dam from abutment to abutment. The objective was to provide tomographic images of P-wave velocity and dynamic elastic moduli of the dam and foundation materials along the axis of the dam. Field seismograms were recorded with an airgun source and hydrophone detectors. Data analysis included interactive time-picking, plotting of common source gathers, and tomographic imaging using an iterative back-propagation technique. Color-coded tomograms of velocity and dynamic Young's modulus were produced and correlated with geological and geophysical data measured on drill core samples. Low values of velocity and dynamic elastic modulus correlated with low RQD and high fracture frequency. The tomograms showed significant variations of mechanical properties in the stone masonry dam and its foundation. The colored tomograms were useful in highlighting zones of weak rock possibly requiring remedial action. They also assisted engineering evaluation of the dam by providing a detailed two-dimensional distribution of mechanical properties which can be used as ground truth data for numerical modeling of stress-strain fields.

  7. Stability analysis of White Oak Dam

    SciTech Connect

    1995-04-11

    White Oak Dam is located in the White Oak Creek watershed which provides the primary surface drainage for Oak Ridge National Laboratory. A stability analysis was made on the dam by Syed Ahmed in January 1994 which included an evaluation of the liquefaction potential of the embankment and foundation. This report evaluates the stability of the dam and includes comments on the report prepared by Ahmed. Slope stability analyses were performed on the dam and included cases for sudden drawdown, steady seepage, partial pool and earthquake. Results of the stability analyses indicate that the dam is stable and failure of the structure would not occur for the cases considered. The report prepared by Ahmed leads to the same conclusions as stated above. Review of the report finds that it is complete, well documented and conservative in its selection of soil parameters. The evaluation of the liquefaction potential is also complete and this report is in agreement with the findings that the dam and foundation are not susceptible to liquefaction.

  8. Distributional Impacts of Large Dams in China

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2010-12-01

    Dams on a river are believed to have heterogeneous impacts to the upstream, local and downstream areas. Generally, irrigation dams will bring benefits to the downstream by facilitating more irrigation, while it will bring negative impacts to upstream due to inundation or no impact to local area as a combination result of population dislocation and economic benefits. This paper checked the impacts of large dams (above 100 meters) on the upstream, downstream and local area, using 2000-2008 county level data in China. Robust heterogeneous impacts of different categories of dams (mainly dams serving for irrigation, hydropower, or other purposes) were found on different areas, using IV regression approaches. Dams higher than 100 meters are significantly and heterogeneously impacting agricultural production, urban employment and rural per capita income. Its beneficial impact on agriculture production is significant for downstream especially in continuous drought years. But its impacts on social welfare indicators, such as primary school enrollment and hospital beds, are not heterogeneously different across regions.

  9. Floodplain Hyporheic Response under Dam Release Hydrographs

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Ward, A. S.; O'Connor, B. L.; Endreny, T. A.

    2012-12-01

    Hydropower operations cause altered hydrograph patterns downstream of dams, which regulates the direction and magnitude of floodplain and riverbed hyporheic flux. Periodic adjustments in river stage changes temporal and spatial patterns in hydraulic pressure, initiates propagation of lateral and vertical hyporheic flux, and affects the riparian ecological system by changing the hyporheic penetration distance, hyporheic flux rate, and thermal conditions in river banks. While this issue has been largely neglected by watershed scientists and managers, there is the potential to use hyporheic metrics in setting dam release rules and restoring downstream river reaches. In order to evaluate the hyporheic feedbacks of various dam release patterns, this study applied a computational fluid dynamics (CFD) model to simulate the interaction of open water hydrographs on porous media lateral hyporheic exchange for the Green River, Utah, downstream of Flaming Gorge Dam. The CFD initially represented the river as a straight channel with a thick porous media extending from the channel banks and bottom. The dam release hydrographs changed the patterns of hyporheic flux at the river banks, the penetration distance of the hyporheic flux, the subsurface thermal patterns, and the residence time of water in the subsurface. The results suggest the undulating river stage downstream of dam releases can initiate patterns of hyporheic exchange similar to those induced by restoration of river bed morphology.

  10. Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta

    2015-01-01

    Results from the simulated dam failure of the Lago de Matrullas Dam using the HEC–RAS model for the 6- and 24-hour PMP events showed peak discharges at the dam of 3,149.33 and 3,604.70 m3/s, respectively. Dam failure during the 100-year-recurrence, 24-hour rainfall event resulted in a peak discharge of 2,103.12 m3/s directly downstream from the dam. Dam failure under sunny day conditions produced a peak discharge of 1,695.91 m3/s at the dam assuming the antecedent lake level was at the morning-glory spillway invert elevation. Flood-inundation maps prepared as part of the study depict the flood extent and provide valuable information for preparing an Emergency Action Plan. Results of the failure analysis indicate that a failure of the Lago de Matrullas Dam could cause flooding to many of the inhabited areas along stream banks from the Lago de Matrullas Dam to the mouth of the Río Grande de Manatí. Among the areas most affected are the low-lying regions in the vicinity of the towns of Ciales, Manatí, and Barceloneta. The delineation of the flood boundaries near the town of Barceloneta considered the effects of a levee constructed during 2000 at Barceloneta in the flood plain of the Río Grande de Manatí to provide protection against flooding to the near-by low-lying populated areas. The results showed overtopping can be expected in the aforementioned levee during 6- and 24-hour probable-maximum-precipitation dam failure scenarios. No overtopping of the levee was simulated, however, during dam failure scenarios under the 100-year recurrence, 24-hour rainfall event or sunny day conditions.

  11. Hydraulics of embankment-dam breaching

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Iverson, R. M.; Logan, M.; Godt, J. W.; Solovitz, S.

    2012-12-01

    Constructed or natural earthen dams can pose hazards to downstream communities. Experiments to date on earthen-dam breaching have focused on dam geometries relevant to engineering practice. We have begun experiments with dam geometries more like those of natural dams. Water was impounded behind dams constructed at the downstream end of the USGS debris-flow flume. Dams were made of compacted, well-sorted, moist beach sand (D50=0.21 mm), 3.5 m from toe to toe, but varying in height from 0.5 to 1 m; the lower the dam, the smaller the reservoir volume and the broader the initially flat crest. Breaching was started by cutting a slot 30-40 mm wide and deep in the dam crest after filling the reservoir. Water level and pore pressure within the dam were monitored. Experiments were also recorded by an array of still- and video cameras above the flume and a submerged video camera pointed at the upstream dam face. Photogrammetric software was used to create DEMs from stereo pairs, and particle-image velocimetry was used to compute the surface-velocity field from the motion of tracers scattered on the water surface. As noted by others, breaching involves formation and migration of a knickpoint (or several). Once the knickpoint reaches the upstream dam face, it takes on an arcuate form whose continued migration we determined by measuring the onset of motion of colored markers on the dam face. The arcuate feature, which can be considered the head of the "breach channel", is nearly coincident with the transition from subcritical to supercritical flow; that is, it acts as a weir that hydraulically controls reservoir emptying. Photogenic slope failures farther downstream, although the morphologically dominant process at work, play no role at all in hydraulic control aside from rare instances in which they extend upstream so far as to perturb the weir, where the flow cross section is nearly self-similar through time. The domain downstream of the critical-flow section does influence

  12. Evidence of regression of fibropapillomas in juvenile green turtles Chelonia mydas caught in Niterói, southeast Brazil.

    PubMed

    Machado Guimarães, Suzana; Mas Gitirana, Humberto; Vidal Wanderley, Amanda; Monteiro-Neto, Cassiano; Lobo-Hajdu, Gisele

    2013-02-28

    Fibropapillomatosis is a disease characterized by cutaneous tumors affecting all marine turtle species, but mostly Chelonia mydas. The disease was first reported in 1938, and since then, the number of sightings has been increasing over the years. This disease can cause many complications in the affected animal and can lead to death, and is thus included in the many threats to marine turtle populations. It is still not known for certain what causes this disease, although many studies indicate a herpesvirus as the main etiologic agent. The incidence of fibropapillomatosis is rarely reported in adults, leading to speculations that there may be a cure for the disease or that the animals die before reaching adulthood. In this paper, 2 cases of fibropapillomatosis regression are reported from juvenile C. mydas caught between July 2008 and July 2010 in the coastal zone of Itaipu, Niterói, Rio de Janeiro, Brazil. These individuals were identified photographically upon recapture. One individual had a total regression (disappearance) of external papilloma within 164 d between first capture and recapture, and the other individual had a partial regression (decrease in size) observed within 13 to 188 d of recapture. The mechanism that triggers the regression is still unknown but is likely to be an immune system response or removal of the tumor promoter. There are few reported cases of regression in the world, and constant monitoring through mark-recapture is necessary to assess whether the marine turtles affected by this disease have real chances of survival.

  13. National Dam Safety Program. Windmiller Dam Number 1 (MO 10035), Windmiller Dam Number 2 (MO 11675), Missouri - Kansas City Basin, Boone County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-05-01

    excavated through limestone bedrock approx- Cimately 1300 feet north of the left end of the dam. See Plate A-l. (b) Dam No. 2 discharge is through a...flows and flow from the spring are not periodi- cally monitored for change of color or change in volume. b. Dam No. 2. The lack of control of erosion of...which is considered a deficiency. c. Operating Records. There are no controlled operating facilities for these dams. d. Post Construction Changes . It

  14. 78 FR 53494 - Dam Safety Modifications at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... of Dam Structures: Combination of Concrete Floodwalls and Earthen Embankments, will protect the four... Watts Bar). TVA also installed a permanent concrete apron on approximately 2 acres of the downstream...--Permanent Modifications of Dam Structures: Combination of Concrete Floodwalls and Earthen Embankments....

  15. Project Planning for Cougar Dam during 2010

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of

  16. Dental dam patch: an effective intraoral repair technique using cyanoacrylate.

    PubMed

    Liebenberg, W H

    1998-10-01

    Secondary dental dam retention is a critical component of successful dental dam isolation and relates to the provision of an effective seal at the dam/tooth junction. Restorative success can be compromised if this seal is inadvertently interrupted during the operative effort. One such periodic mishap is entanglement of the bur and the interdental dam strip during caries or restorative removal. This invariably results in a gaping interproximal defect in the dam. This article discusses the importance of optimum isolation as it relates to current "wet bonding" adhesive procedures, and introduces a repair technique using a patch of dental dam and cyanoacrylate.

  17. Marmot Dam Removal: Predictions and Observations

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Orr, B. K.; Wilcox, A.; Vick, J.; Podolak, C.; Wilcox, P.

    2008-12-01

    The 14-m tall Marmot Dam on the Sandy River, Oregon was removed in the summer of 2007, allowing the approximately 730,000 cubic meters of sand and gravel to remain in the river for natural erosion by the flow. Pre-dam removal studies included sediment transport modeling that simulated several dam removal alternatives and provided key pieces of information that allowed a diverse stakeholder group to unanimously agree on the "blow-and-go" alternative, allowing a large amount of sediment to be released to a major salmonid-bearing river in the Columbia River basin. Although it is still too early to provide a comprehensive evaluation of the model performance because morphological responses in the downstream reaches, if any, are likely years away, observations to date (one year after dam removal) indicate that model predictions are generally accurate. Here we present some of the key findings of pre-dam-removal sediment transport modeling predictions and compare them with post-removal observations.

  18. The Remains of the Dam: What Have We Learned From 10 Years of Dam Removals?

    NASA Astrophysics Data System (ADS)

    Grant, G. E.; O'Connor, J. E.; Major, J. J.

    2012-12-01

    Over the past 10 years in the U.S., dam removal has evolved from an occasionally implemented, rarely studied, and poorly understood intervention to improve rivers, to a much more frequently accomplished and better studied and understood approach to river restoration. Over that same time period, the numbers and sizes of dams and volumes of sediment released have dramatically increased. By some estimates close to 1000 dams have been removed over the last 100 years, with most of those occurring within the last 10. While most of these are small (less than 15 m high) dams, removals of dams up to 70 m high are presently underway. Releases of sediment associated with these removals over the past 10 years have also increased by close to four orders of magnitude; for example removal of the Elwha River dams in Washington is estimated to release almost 107 m3 of sediment into the lower Elwha River. Given a decade's worth of dam removals and, in some cases, well-orchestrated case studies of the effects of removal on the geomorphology and (to a lesser extent) ecology of rivers, what have we learned? More specifically, where do we now stand with respect to being able to predict the consequences of future dam removals? Drawing on both field examples and numerical models of dam removals in the western U.S., several key lessons stand out. Although every dam removal and river are different, removals initiate very rapid upstream river response and reservoir erosion and evacuation of sediment by various mechanisms that are strongly controlled by grain size of the deposit, volumes of residual sediment relative to total reservoir volume, and style of dam removal (instantaneous versus staged). Erosion of sediment accumulations in fully and partially filled (by sediment) reservoirs proceeds by different trajectories and rates, with full reservoirs releasing sediment primarily by upstream knickpoint retreat while erosion and sediment release in partially-filled reservoirs proceeds by

  19. Toward policies and decision-making for dam removal.

    PubMed

    Doyle, Martin W; Harbor, Jon M; Stanley, Emily H

    2003-04-01

    Dam removal has emerged as a critical issue in environmental management. Agencies responsible for dams face a drastic increase in the number of potential dam removals in the near future. Given limited resources, these agencies need to develop ways to decide which dams should be removed and in what order. The underlying science of dam removal is relatively undeveloped and most agencies faced with dam removal lack a coherent purpose for removing dams. These shortcomings can be overcome by the implementation of two policies by agencies faced with dam removal: (1) the development and adoption of a prioritization scheme for what constitutes an important dam removal, and (2) the establishment of minimum levels of analysis prior to decision-making about a dam removal. Federal and state agencies and the scientific community must encourage an initial experimental phase of dam removal during which only a few dams are removed, and these are studied intensively. This will allow for the development of the fundamental scientific understanding needed to support effective decision-making in the future and minimize the risk of disasters arising from poorly thought out dam removal decisions.

  20. International small dam safety assurance policy benchmarks to avoid dam failure flood disasters in developing countries

    NASA Astrophysics Data System (ADS)

    Pisaniello, John D.; Dam, Tuyet Thi; Tingey-Holyoak, Joanne L.

    2015-12-01

    In developing countries small dam failure disasters are common yet research on their dam safety management is lacking. This paper reviews available small dam safety assurance policy benchmarks from international literature, synthesises them for applicability in developing countries, and provides example application through a case study of Vietnam. Generic models from 'minimum' to 'best' practice (Pisaniello, 1997) are synthesised with the World Bank's 'essential' and 'desirable' elements (Bradlow et al., 2002) leading to novel policy analysis and design criteria for developing countries. The case study involved 22 on-site dam surveys finding micro level physical and management inadequacies that indicates macro dam safety management policy performs far below the minimum benchmark in Vietnam. Moving assurance policy towards 'best practice' is necessary to improve the safety of Vietnam's considerable number of hazardous dams to acceptable community standards, but firstly achieving 'minimum practice' per the developed guidance is essential. The policy analysis/design process provides an exemplar for other developing countries to follow for avoiding dam failure flood disasters.

  1. Channel changes downstream from a dam

    USGS Publications Warehouse

    Hadley, R.F.; Emmett, W.W.

    1998-01-01

    A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the riffle to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.

  2. Optimizing the dammed: water supply losses and fish habitat gains from dam removal in California.

    PubMed

    Null, Sarah E; Medellín-Azuara, Josué; Escriva-Bou, Alvar; Lent, Michelle; Lund, Jay R

    2014-04-01

    Dams provide water supply, flood protection, and hydropower generation benefits, but also harm native species by altering the natural flow regime and degrading aquatic and riparian habitat. Restoring some rivers reaches to free-flowing conditions may restore substantial environmental benefits, but at some economic cost. This study uses a systems analysis approach to preliminarily evaluate removing rim dams in California's Central Valley to highlight promising habitat and unpromising economic use tradeoffs for water supply and hydropower. CALVIN, an economic-engineering optimization model, is used to evaluate water storage and scarcity from removing dams. A warm and dry climate model for a 30-year period centered at 2085, and a population growth scenario for year 2050 water demands represent future conditions. Tradeoffs between hydropower generation and water scarcity to urban, agricultural, and instream flow requirements were compared with additional river kilometers of habitat accessible to anadromous fish species following dam removal. Results show that existing infrastructure is most beneficial if operated as a system (ignoring many current institutional constraints). Removing all rim dams is not beneficial for California, but a subset of existing dams are potentially promising candidates for removal from an optimized water supply and free-flowing river perspective. Removing individual dams decreases statewide delivered water by 0-2282 million cubic meters and provides access to 0 to 3200 km of salmonid habitat upstream of dams. The method described here can help prioritize dam removal, although more detailed, project-specific studies also are needed. Similarly, improving environmental protection can come at substantially lower economic cost, when evaluated and operated as a system.

  3. 1. VIEW OF DAM 83, LOOKING SOUTHWEST FROM THE LOOKOUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DAM 83, LOOKING SOUTHWEST FROM THE LOOKOUT TOWER AT THE REFUGE HEADQUARTERS (see HAER No. ND-3-A-13 for comparison) - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  4. 11. VIEW OF SPILLWAY AT DAM 83, SHOWING REFUGE HEADQUARTERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF SPILLWAY AT DAM 83, SHOWING REFUGE HEADQUARTERS ON THE HORIZON (LEFT, CENTER), LOOKING EAST - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  5. 9. VIEW OF SPILLWAY AT DAM 83, SHOWING LOCATION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF SPILLWAY AT DAM 83, SHOWING LOCATION OF FORMER CONCRETE FLASHBOARD STRUCTURE ON RIGHT, LOOKING WEST - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  6. 10. DETAIL VIEW OF SPILLWAY AT DAM 83, SHOWING RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL VIEW OF SPILLWAY AT DAM 83, SHOWING RIVER COBBLE PAVING (FOREGROUND) AND WINGWALL, LOOKING EAST - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  7. View of powerhouse and dam from third floor of original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of powerhouse and dam from third floor of original section of Langdale Cotton Mill, looking northeast - Langdale Cotton Mill, Powerhouse & Dam, 5910 Nineteenth Avenue, Valley, Chambers County, AL

  8. View of Read Sawmill masonry dam, site of submerged sawmill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Read Sawmill masonry dam, site of submerged sawmill remains and earthen dam, facing north - Silas C. Read Sawmill, Outlet of Maxwell Lake near North Range Road, Fort Gordon, Richmond County, GA

  9. 1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN FOREGROUND, LOCK IN BACKGROUND ON NORTH RIVER BANK. VIEW TO NORTH. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  10. 32. Otter Lake Dam. View from downstream show how the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Otter Lake Dam. View from downstream show how the dam blends into its environment. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  11. 11. VIEW OF HOCK OUTCROPPING, CONCRETE GRAVITY DAM FACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF HOCK OUTCROPPING, CONCRETE GRAVITY DAM FACE AND LAKE WITH TUNNEL INLET STRUCTURE IN DISTANCE, SHOWN AT MINIMUM WATER FLOW, LOOKING SOUTHEAST (UPSTREAM) - Van Arsdale Dam, South Fork of Eel River, Ukiah, Mendocino County, CA

  12. 12. DETAIL VIEW OF STEPPED CONCRETE GRAVITY DAM FACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL VIEW OF STEPPED CONCRETE GRAVITY DAM FACE AND ROCK OUTCROPPING, WITH LAKE IN BACKGROUND, SHOWN AT MINIMUM WATER FLOW, LOOKING SOUTHEAST (UPSTREAM) - Van Arsdale Dam, South Fork of Eel River, Ukiah, Mendocino County, CA

  13. 6. GENERAL CONSTRUCTION VIEW ALONG AXIS OF DAM FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL CONSTRUCTION VIEW ALONG AXIS OF DAM FROM THE EAST ABUTMENT.... Volume XVII, No. 18, December 18, 1939. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  14. 21. THE WHITNEY CONSTRUCTION CAMP AT THE DIVERSION DAM, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. THE WHITNEY CONSTRUCTION CAMP AT THE DIVERSION DAM, FACING SOUTH. WOOD BURNING PLANT AT RIGHT, INTAKE GATES AT CENTER LEFT. Photographer: Walter J. Lubken, June 13, 1906 - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ

  15. 10. DETAIL OF NONOVERFLOW SECTION OF DAM SHOWING PENSTOCK OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF NON-OVERFLOW SECTION OF DAM SHOWING PENSTOCK OF SUBMERSIBLE TURBINE-GENERATOR - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  16. 10. Downstream face of Mormon Flat Dam under construction. Cement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Downstream face of Mormon Flat Dam under construction. Cement storage shed is at center right. Photographer unknown, September 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  17. 87. DAM TAINTER GATE OPERATING MACHINERY TRAVELING HOIST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. DAM - TAINTER GATE OPERATING MACHINERY - TRAVELING HOIST - AMERICAN TYPE ASSEMBLY (ML-5-55/111-FS), February 1938 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 5, Minneiska, Winona County, MN

  18. 15. AERIAL PHOTOGRAPH OF DAM SITE SHOWING SPILLWAY OGEE SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. AERIAL PHOTOGRAPH OF DAM SITE SHOWING SPILLWAY OGEE SECTION AND SPILLWAY APRON EXCAVATION IN FOREGROUND.... Volume XVIII, No. 10, January 18, 1940. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. 32. AERIAL VIEW OF BOISE DIVERSION DAM. VIEW TO NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF BOISE DIVERSION DAM. VIEW TO NORTH. Photocopy of photograph by Glade Walker, U.S. Bureau of Reclamation, Pacific Northwest Region, May 1981. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID

  20. Harvesting river water through small dams promote positive environmental impact.

    PubMed

    Agoramoorthy, Govindasamy; Chaudhary, Sunita; Chinnasamy, Pennan; Hsu, Minna J

    2016-11-01

    While deliberations relating to negative consequences of large dams on the environment continue to dominate world attention, positive benefits provided by small dams, also known as check dams, go unobserved. Besides, little is known about the potential of check dams in mitigating global warming impacts due to less data availability. Small dams are usually commissioned to private contractors who do not have clear mandate from their employers to post their work online for public scrutiny. As a result, statistics on the design, cost, and materials used to build check dams are not available in public domain. However, this review paper presents data for the first time on the often ignored potential of check dams mitigating climate-induced hydrological threats. We hope that the scientific analysis presented in this paper will promote further research on check dams worldwide to better comprehend their eco-friendly significance serving society.

  1. 5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND IN FOREGROUND AND NORTH EMBANKMENT (MI-98-A) AT LEFT. VIEW TO NORTHEAST. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  2. 7. CLOSEUP VIEW OF WASHED UP 12' x 12' DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSE-UP VIEW OF WASHED UP 12' x 12' DAM SUPPORT TIMBERS, THREE BEARS LAKE, LOOKING NORTHEAST FROM SOUTH SIDE OF LAKE - Three Bears Lake & Dams, North of Marias Pass, East Glacier Park, Glacier County, MT

  3. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  4. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  5. 12. VIEW SHOWING CCC CREWS FREEING FLOOD GATES AT DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW SHOWING CCC CREWS FREEING FLOOD GATES AT DAM 326 OF ICE TO PREVENT DAMAGE TO STRUCTURE - J. Clark Salyer National Wildlife Refuge, Dam 326, Along Lower Souris River, Kramer, Bottineau County, ND

  6. 59. AERIAL VIEW OF OWYHEE DAM SHOWING RINGGATE SPILLWAY. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. AERIAL VIEW OF OWYHEE DAM SHOWING RING-GATE SPILLWAY. VIEW TO NORTHEAST. Aerial photo by Glade Walker, U.S. Bureau of Reclamation, Pacific Northwest Region, September 29, 1989. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  7. 117. Maricopa Dam Water System, Electric Transmission Lines, Catwalk, Derrick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Maricopa Dam Water System, Electric Transmission Lines, Catwalk, Derrick at Elev. +65. October 15, 1934. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  8. 4. Aerial view of Whitsett intake (lower right), Parker Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view of Whitsett intake (lower right), Parker Dam and village (left), Gene Wash Reservoir, Gene Pump Plant and village (right). - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  9. 9. VIEW OF DAM FROM LEFT SIDE. PUMPCRETE PIPE LINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF DAM FROM LEFT SIDE. PUMPCRETE PIPE LINES ARE CARRIED ON WALKWAY. UPSTREAM PARTS OF BUTTRESSES ARE FOG-SPRAYED TO PERMIT PROMPT FILLING OF CONTRACTION JOINTS. July 30, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  10. 5. VIEW SHOWING THE DOWNSTREAM SIDE OF SWAN FALLS DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING THE DOWNSTREAM SIDE OF SWAN FALLS DAM AND POWER HOUSE, LOOKING UPSTREAM TO SOUTH FROM THE A MOUND OF DEBRIS ABOUT THIRTY TO FORTY FEET ABOVE THE RIVER - Swan Falls Dam, Snake River, Kuna, Ada County, ID

  11. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  12. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. 2. EASTSIDE RESERVOIR UNDER CONSTRUCTION LOOKING WEST WITH EAST DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EASTSIDE RESERVOIR UNDER CONSTRUCTION LOOKING WEST WITH EAST DAM IN MIDDLE GROUND, WEST DAM IN DISTANCE. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA

  14. 3. POOL, DAM, AND INTAKE TO PIPELINE LEADING TO FISH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. POOL, DAM, AND INTAKE TO PIPELINE LEADING TO FISH WHEEL, LOOKING WEST-NORTHWEST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  15. 5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOWWATER DAM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOW-WATER DAM, LOOKING NORTHWEST (UPSTREAM). ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  16. 2. OVERALL VIEW OF LOWWATER DAM, LOOKING UPSTREAM. CHAIN OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF LOW-WATER DAM, LOOKING UPSTREAM. CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  17. 6. VIEW NORTHEAST, WEST END OF DAM DURING CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTHEAST, WEST END OF DAM DURING CONSTRUCTION OF FISHWAY, DECEMBER 1995, SHOWING REMOVAL OF PLANKING - Norwich Water Power Company, Dam, West bank of Shetucket River opposite Fourteenth Street, Greenville section, Norwich, New London County, CT

  18. 7. Detail view of reinforced concrete archrings comprising dam's upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  19. 54. Downstream face of Agua Fria project's diversion dam showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Downstream face of Agua Fria project's diversion dam showing initial masonry construction and poured concrete capping. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  20. 44. Reinforcement construction to Pleasant Dam. Photographer unknown, 1935. Source: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Reinforcement construction to Pleasant Dam. Photographer unknown, 1935. Source: Huber Collection, University of California, Berkeley, Water Resources Library. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  1. 2. VIEW EAST OF HEADGATES AT SPOOL DAM; DRAIN GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW EAST OF HEADGATES AT SPOOL DAM; DRAIN GATE MECHANISM AND DAM EDGE AT RIGHT - Willimantic Linen Company, Mill No. 1, Immediately West of South Main Street, North Bank of Willimantic River, Windham, Windham County, CT

  2. 50. Upstream face of Humbug Creek Diversion Dam showing sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Upstream face of Humbug Creek Diversion Dam showing sluice opening. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  3. 60. Waddell Dam in relation and spillway tailrace. Photographer Mark ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Waddell Dam in relation and spillway tailrace. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  4. 45. Reinforcement work to buttresses at Pleasant Dam. Support work ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Reinforcement work to buttresses at Pleasant Dam. Support work for roadway and roadway visible. Photographer unknown, 1935. Source: Huber Collection. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  5. 57. Downstream side of left section of diversion dam. Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Downstream side of left section of diversion dam. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. 56. Upstream face of diversion dam looking east. Headgates are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Upstream face of diversion dam looking east. Headgates are partially visible at far left. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  7. 70. Downstream view of Waddell Dam spillway and taintor gates. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Downstream view of Waddell Dam spillway and taintor gates. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  8. 49. Downstream face of Humbug Creek Diversion Dam with sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Downstream face of Humbug Creek Diversion Dam with sluice opening at center. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  9. 40. Reservoir behind Pleasant Dam, looking downstream, spillway is at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Reservoir behind Pleasant Dam, looking downstream, spillway is at right. Photographer unknown, c. late 1920s. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  10. 27. Evening view of downstream face of Pleasant Dam under ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Evening view of downstream face of Pleasant Dam under construction. Part of construction camp housing is visible in foreground. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. 39. Pleasant Dam from east abutment with spillway visible at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Pleasant Dam from east abutment with spillway visible at center. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  12. 55. Downstream face of diversion dam looking northwest. Photographer Mark ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Downstream face of diversion dam looking northwest. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  13. View of upstream face of Grand Coulee Dam, looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast. This image features a cloudless sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  14. 19. View of low crib dam, headworks, and tramway above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of low crib dam, headworks, and tramway above dam, looking southeast. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  15. 1. OVERALL VIEW SHOWING FACE OF CONCRETE GRAVITY DAM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW SHOWING FACE OF CONCRETE GRAVITY DAM AND FISH LADDER, LOOKING SOUTHWEST (UPSTREAM) FROM SNORE OPPOSITE FISH LADDER - Van Arsdale Dam, South Fork of Eel River, Ukiah, Mendocino County, CA

  16. 1. East side of lower dam shown with water level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. East side of lower dam shown with water level dropped. VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  17. 3. Side view of upper dam overspill, taken from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Side view of upper dam overspill, taken from east bank of Millstone Creek. VIEW WEST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  18. 5. View of upper dam side sluice taken from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of upper dam side sluice taken from east bank of Millstone Creek. VIEW WEST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  19. 4. Side of view of upper dam overspill, taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Side of view of upper dam overspill, taken from west bank of Millstone Creek, VIEW EAST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  20. View of upstream face of Lake Sabrina Dam showing redwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing redwood planks and boulders in Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  1. View of Lake Sabrina Dam upstream face from ridge showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam upstream face from ridge showing spillway at lower right of photo, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  2. View of Lake Sabrina Dam and Lake Sabrina from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and Lake Sabrina from east ridge showing spillway at photo center, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  3. View of Lake Sabrina Dam showing the wooden planks along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam showing the wooden planks along the upstream side face and the spillway at the right center of photo, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  4. 76. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: DOWNSTREAM ELEVATION, SHEET 3; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  5. 78. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: DIMENSIONS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: DIMENSIONS, SECTION THROUGH ARCH RING, SHEET 5; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. 79. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: REINFORCEMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: REINFORCEMENT, SHEET 6; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  7. 77. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: CROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: CROSS SECTIONS, SHEET 4; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  8. 74. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: PLAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: PLAN, SHEET 1, OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  9. 75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: UPSTREAM ELEVATION, SHEET 2; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  10. 7. ISLAND PLANT AND HORSESHOE DAM FROM WEST BANK (negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ISLAND PLANT AND HORSESHOE DAM FROM WEST BANK (negative reversed) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  11. 20. HORSESHOE DAM LOOKING EAST WITH UPPER END DEMOLISHED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. HORSESHOE DAM LOOKING EAST WITH UPPER END DEMOLISHED FOR NEW SPILLWAY (negative reversed) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  12. 20. View of Mormon Flat Dam, power plant, and reservoir. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Mormon Flat Dam, power plant, and reservoir. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  13. 1. Site of Mormon Flat Dam looking upstream. Photographer unknown, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Site of Mormon Flat Dam looking upstream. Photographer unknown, 1923. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  14. 26. Original hydroelectric unit at Mormon Flat Dam. Unit is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Original hydroelectric unit at Mormon Flat Dam. Unit is still in operation. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  15. 19. Downstream face of Mormon Flat Dam completed. Power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Downstream face of Mormon Flat Dam completed. Power plant is nearing completion. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  16. 1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ELEVATION OF INTAKE ON EAST SIDE OF DAM - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  17. 24. CLOSEUP VIEW OF HORSE MESA DAM. HEFU PENSTOCK IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. CLOSE-UP VIEW OF HORSE MESA DAM. HEFU PENSTOCK IS AT CENTER RIGHT, AND LEFT (OR SOUTH) SPILLWAY CHUTE IS AT UPPER RIGHT - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  18. 36. CROSS SECTIONAL VIEW OF ORIGINAL HORSE MESA DAM POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. CROSS SECTIONAL VIEW OF ORIGINAL HORSE MESA DAM POWER PLANT, LOOKING NORTH. ONLY TWO OF THE THREE UNITS ARE VISIBLE - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  19. 22. VIEW SHOWING THE COMPLETED HORSE MESA DAM, EXCEPT FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW SHOWING THE COMPLETED HORSE MESA DAM, EXCEPT FOR TRANSFORMER EQUIPMENT BEING INSTALLED ABOVE THE POWER PLANT 1927 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  20. 23. VIEW OF HORSE MESA DAM, SHOWING SPILLWAY DISCHARGE TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW OF HORSE MESA DAM, SHOWING SPILLWAY DISCHARGE TUNNEL AT LEFT, RIGHT (OR NORTH) SPILLWAY, HEFU POWER UNIT, AND ORIGINAL POWER PLANT - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  1. 3. VIEW SOUTHEAST, WEST END OF DAM AT LEFT CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST, WEST END OF DAM AT LEFT CENTER, HEADGATE STRUCTURE AT CENTER - Dayville Mills Hydroelectric Facility, Dam, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  2. 2. VIEW EAST, WEST END OF DAM AT CENTER, HEADGATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW EAST, WEST END OF DAM AT CENTER, HEADGATE OPERATING MECHANISMS AT LEFT - Dayville Mills Hydroelectric Facility, Dam, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  3. 1. VIEW NORTH, SOUTH FACE OF DAM AT RIGHT CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTH, SOUTH FACE OF DAM AT RIGHT CENTER, HEADGATES AND CANAL AT LEFT - Dayville Mills Hydroelectric Facility, Dam, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  4. 77. Plan of Proposed Concrete of Rubble Masonry Dam at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. Plan of Proposed Concrete of Rubble Masonry Dam at Frog Tanks on the Agua Fria River, Arizona. September 1903. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  5. 4. View of dam front and sluiceway outlets Mississippi ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of dam front and sluiceway outlets - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  6. 3. Down river view of lock and dam to southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Down river view of lock and dam to southwest - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  7. 2. Distant view of lock and dam to northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Distant view of lock and dam to northwest - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  8. 1. Distant view of lock and dam to northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Distant view of lock and dam to northeast - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  9. INTAKE AND DAM #3; FACING NORTHEAST Shoshone Falls Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTAKE AND DAM #3; FACING NORTHEAST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  10. OVERVIEW OF FALLS AND DAM COMPLEX, SPILLWAY AT RIGHT; FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF FALLS AND DAM COMPLEX, SPILLWAY AT RIGHT; FACING EAST-NORTHEAST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  11. OVERVIEW OF DAM COMPLEX FROM SPILLWAY TO INTAKE; FACING WESTNORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF DAM COMPLEX FROM SPILLWAY TO INTAKE; FACING WEST-NORTHWEST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  12. INTAKE, DAMS #1, #2, AND #3, AND FOOTBRIDGE; FACING NORTHNORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTAKE, DAMS #1, #2, AND #3, AND FOOTBRIDGE; FACING NORTH-NORTHEAST - Shoshone Falls Hydroelectric Project, Intake, North Bank of Snake River, immediately West/Northwest of the Shoshone Falls Hydroelectric Project Dam No. 1, Tipperary Corner, Jerome County, ID

  13. Lac Courte Oreilles Hydro Dam Assessment

    SciTech Connect

    Weaver, Jason; Meyers, Amy

    2014-12-31

    The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

  14. "No. 172. General view of the dam, looking downstream from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "No. 172. General view of the dam, looking downstream from the east end. F.E.D. June, 1916." Compare this historic image, taken upon dam completion (1916), with current-condition photograph HAER CO-90-1. The dam retains a remarkable degree of integrity of design and setting - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  15. 2. View of the southern twothirds of the dam showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of the southern two-thirds of the dam showing the Glens Falls Bridge over the Hudson River on the left, the Niagara Mohawk Power Corporation penstocks and inktake structure at the southeast corner of the dam, and the dam itself. The Finch Pruyn & Company Forebay is the foreground. Facing south. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY

  16. Planning Guide for Fish Passage at Pittsburgh District Dams

    DTIC Science & Technology

    2013-08-01

    slowed sufficiently, or 4) by swimming over the dam spillway (either as a fixed crest dam or supplemental weir at a gated dam; this route is seldom...of the Dashields fixed crest dam. The plan at Dashields includes a new gate for additional flow capacity. LRP was directed by the USACE Great Lakes...fishways on the spillway. Technical fishways (e.g., Denil, pool and weirs , and vertical slot) are known to effectively pass some fish species and could

  17. Seismic performance analysis of Tendaho earth fill dam, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Berhe, T.; Wu, W.

    2009-04-01

    The Tendaho dam is found in the Afar regional state, North Eastern part of Ethiopia. It is located within an area known as the ‘Tendaho Graben' ,which forms the center of Afar triangle, a low lying area of land where East African, Red sea and the Gulf of Eden Rift systems converge. The dam is an earthfill dam with a volume of about 4 Million cubic meters and with mixed clay core. The geological setting associated with the site of the dam, the geotechnical properties of the dam materials and seismicity of the region are reviewed. Based on this review, the foundation materials and dam body include some liquefiable granular soils. Moreover, the active East African Rift Valley fault, which can generate an earthquake of magnitude greater than 6, passes through the dam body. This valley is the primary seismic source contributing to the hazard at the Tendaho dam site. The availability of liquefiable materials beneath and within the dam body and the presence of the active fault crossing the dam site demand a thorough seismic analysis of the dam. The peak ground acceleration (PGA) is selected as a measure of ground motion severity. The PGA was selected according to the guidelines of the International Commission on Large Dams, ICOLD. Based on the criteria set by the ICOLD, the dam is analyzed for two different earthquake magnitudes, the Maximum Credible Earthquake (MCE) and the Operating Basis Earthquake (OBE). Numerical codes are useful tools to investigate the safety of dams in seismic prone areas. In this paper, FLAC3D numerical tool is used to investigate the performance of the dam under dynamic loading. Based on the numerical analysis, the seismic performance of the dam is investigated.

  18. WinDAM C earthern embankment internal erosion analysis software

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has partnered with landowners to build rural flood control dams. Overtopping and internal erosion are the causes of most dam failures. To estimate the peak discharge associated with a dam incident, the USDA-NRCS, -ARS, and Kansas State University have collaboratively developed software. ...

  19. 6. VIEW OF DAM 83, SHOWING OUTLET CHANNEL FLOWING INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF DAM 83, SHOWING OUTLET CHANNEL FLOWING INTO POND A WITH DIVERSION GATES LONG EAST (LEFT) SIDE OF OUTLET CHANNEL, LOOKING SOUTH FROM DOWNSTREAM FACE OF THE DAM - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  20. 29. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View from downstream of intake, dam wind wall to right, lower wall of overflow chute in left foreground (contains pipes and small dam, possibly for water pumping). West 320 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  1. 6. VIEW OF NORTH END OF EAST DAM, LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF NORTH END OF EAST DAM, LOOKING SOUTH. (View is taken from lakeside with lowered water level. This view encompasses the same area as MT-88-A-5 above.) - Three Bears Lake & Dams, East Dam, North of Marias Pass, East Glacier Park, Glacier County, MT

  2. 25 CFR 173.16 - Reserved area, Coolidge Dam.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Reserved area, Coolidge Dam. 173.16 Section 173.16... area, Coolidge Dam. No permit for any commercial business or other activity (except boating concessions...-fourths of a mile from the center of the Coolidge Dam, Arizona....

  3. 25 CFR 173.16 - Reserved area, Coolidge Dam.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Reserved area, Coolidge Dam. 173.16 Section 173.16... area, Coolidge Dam. No permit for any commercial business or other activity (except boating concessions...-fourths of a mile from the center of the Coolidge Dam, Arizona....

  4. 25 CFR 173.16 - Reserved area, Coolidge Dam.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Reserved area, Coolidge Dam. 173.16 Section 173.16... area, Coolidge Dam. No permit for any commercial business or other activity (except boating concessions...-fourths of a mile from the center of the Coolidge Dam, Arizona....

  5. 25 CFR 173.16 - Reserved area, Coolidge Dam.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Reserved area, Coolidge Dam. 173.16 Section 173.16 Indians..., Coolidge Dam. No permit for any commercial business or other activity (except boating concessions confined...-fourths of a mile from the center of the Coolidge Dam, Arizona....

  6. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Diversions at Derby Dam. 418.18 Section... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River...

  7. 25 CFR 173.16 - Reserved area, Coolidge Dam.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Reserved area, Coolidge Dam. 173.16 Section 173.16... area, Coolidge Dam. No permit for any commercial business or other activity (except boating concessions...-fourths of a mile from the center of the Coolidge Dam, Arizona....

  8. 30. Otter Lake Dam. View shows rustic stone facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Otter Lake Dam. View shows rustic stone facade of the dam. The stepped face of the dam gives the illusion of a natural cascade. Facing southeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. 2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN TAN FLOOD-WATER HEADGATE IN FOREGROUND. TAKEN FROM NORTH END OF DAM - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ

  10. 51. AVALON DAM Photographic copy of historic photo, c1889 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. AVALON DAM - Photographic copy of historic photo, c1889 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF EXCAVATION OF HEADGATE CHANNEL. ALSO SHOWS A PORTION OF DAM - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  11. 61. AVALON DAM Photographic copy of historic photo, 1907 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. AVALON DAM - Photographic copy of historic photo, 1907 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF AVALON DAM RECONSTRUCTION - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  12. 56. AVALON DAM Photographic copy of historic photo, December ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. AVALON DAM - Photographic copy of historic photo, December 18, 1905 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'REMAINING PORTIONS OF WASHED OUT TEMPORARY DAM' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  13. 50. AVALON DAM Photographic copy of historic photo, c1889 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. AVALON DAM - Photographic copy of historic photo, c1889 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'ROCK CUT AND DAM AT HEAD OF DITCH ABOVE EDDY, N.M.' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  14. 75. AVALON DAM Photographic copy of historic photo, April ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. AVALON DAM - Photographic copy of historic photo, April 10, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'AVALON DAM - CCC ROCK WORK AT SPILLWAY NO. 2' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  15. 52. AVALON DAM Photographic copy of historic photo, c1890 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. AVALON DAM - Photographic copy of historic photo, c1890 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF SCOURWAY THROUGH AVALON DAM DISCHARGING WATER - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  16. 1. VIEW OF DOWNSTREAM SIDE OF DIVERSION DAM ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DOWNSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING NORTHEAST. NOTE HEADGATE STRUCTURE ON NORTH BANK, SPILLWAY ON LEFT SIDE OF DAM, AND SPLASH LOGS ON DOWNSTREAM SIDE OF DAM. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  17. 3. View of the northern twothirds of the dam showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of the northern two-thirds of the dam showing the Finch, Pruyn & Company intake structure and forebay canal on the right and the ice-covered log chute along the dam. Facing south-southwest. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY

  18. 28. Photocopied August 1978. UPPER INTAKE COFFER DAM, OCTOBER 7, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopied August 1978. UPPER INTAKE COFFER DAM, OCTOBER 7, 1901. LOGS WERE PLACED ON THE WATER SIDE OF THIS DAM TO COUNTERACT WAVE ACTION AGAINST THE DAM. NOTE THE TIMBER RETAINING WALL ON THE NORTH SIDE OF THE LOWER INTAKE. (185) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  19. LOOKING DOWNSTREAM FROM KACHESS DAM CREST, 1910 RIVER CUTOFF CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING DOWNSTREAM FROM KACHESS DAM CREST, 1910 RIVER CUTOFF CHANNEL WITH CRIB STRUCTURE IN CENTER. BRIDGE FOOTING CRIB STRUCTURE AT RIGHT (Upstream face of Kachess Dam in foreground) - Kachess Dam, Cutoff Channel and Crib Structures, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  20. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  1. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  2. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  3. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  4. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  5. LOCK, DOG HOUSE, CONTROL STATION, DAM GATE, MANEUVER BOAT No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOCK, DOG HOUSE, CONTROL STATION, DAM GATE, MANEUVER BOAT No. 1, AND DAM. NOTE LOWER LOCK GATE IN FOREGROUND. LOOKING NORTH NORTHEAST. - Illinois Waterway, La Grange Lock and Dam, 3/4 mile south of Country 795N at Illinois River, Versailles, Brown County, IL

  6. 1. East apron upper dam with water flowing over overspill. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. East apron upper dam with water flowing over overspill. Photograph taken from crest of lower dam in foreground). VIEW WEST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  7. 55. AVALON DAM (Photographic copy of photo in Reservoirs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. AVALON DAM - (Photographic copy of photo in Reservoirs for Irrigation, Water-Power, and Domestic Water Supply. New York: John Wiley & Sons, 1902.) 'CANAL HEADGATES, LAKE AVALON DAM' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  8. 6. VIEW SHOWING CREST OF DAM AND OUTLET GATE WHEEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING CREST OF DAM AND OUTLET GATE WHEEL, STEM AND STEM GUIDE, LOOKING SOUTHEAST - High Mountain Dams in Upalco Unit, Milk Lake Dam, Ashley National Forest, 9.4 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT

  9. 20. VIEW FROM DOWNSTREAM SIDE OF DAM SHOWING BUTTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW FROM DOWNSTREAM SIDE OF DAM SHOWING BUTTS OF LOGS PROJECTING BETWEEN CROSS LOGS. FREQUENTLY WHOLE TREES WERE USED IN CONSTRUCTING THESE DAMS. THE BRANCHES WERE PLACED UPSTREAM AND COVERED WITH EARTH AND STONE TO ANCHOR THEM. Photographed November 6, 1935. - Forge Creek Dam-John Cable Mill, Townsend, Blount County, TN

  10. Seismic Stability Evaluation of Folsom Dam and Reservoir Project. Report 8. Mormon Island Auxiliary Dam. Phase 2

    DTIC Science & Technology

    1988-10-01

    static stresses, strains, and dis- placements in earth and rockfill dams and their foundations. The program uses a hyperbolic constitutive model...Earthquake Resistant Design of Earth and Rockfill Dams ," Geotechnique, Vol 29, No. 3, pp 215-263. , 1983. "Earthquake-Resistant Design of Earth Dams ...06, University of California, Berkeley, CA. Hynes-Griffin, M. E. 1979. "Dynamic Analyses of Earth Embankments for Richard B. Russell Dam and Lake

  11. National Dam Safety Program. Moeckel Dam (MO 30476), Mississippi - Kaskaskia -St. Louis Basin, Washington County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-12-01

    the dam site and a cutoff is often made to shallow bedrock. Locally obtained earth , usually a gravelly clay, is then typically placed to form the... earth , densely vegetated j. Regulating outlets. None 8 SECTION 2 ENGINEERING DATA 2.1 Peis No design drawings or data were found for this dam . 2.2...the guidance of a professional engineer experienced in the design and construction of rockfill dams , in order to maintain stable and safe dam

  12. Facilitating fish passage at ultra low head dams: An alternative to dam removal

    USGS Publications Warehouse

    Odeh, M.

    2004-01-01

    Ecosystem sustainability and returning the biological integrity to rivers continue to change the landscape of fish passage technology. Installing a conventional fishways has a limited degree of success in accommodating fish passage needs. Recently, the option of total dam removal has been gaining momentum among resource managers, conservationists, and even engineers. Certain dams, however, cannot be removed, and conventional fishways are either too expensive to build or the real estate is simply not available; yet freedom of passage must be attained. At the Little Falls Dam on the Potomac River a notch in the crest of the dam was installed to accommodate passage of fish. The notch has three labyrinth weirs used for energy dissipation. Water velocities are maintained at less than about 4 m/s anywhere within the passage structure during migratory season of the target species (American shad). Construction of this novel design was recently completed (March 2000) and future biological evaluations are ongoing. Copyright ASCE 2004.

  13. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford...

  14. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford...

  15. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford...

  16. Experimental research on the dam-break mechanisms of the Jiadanwan landslide dam triggered by the Wenchuan earthquake in China.

    PubMed

    Xu, Fu-gang; Yang, Xing-guo; Zhou, Jia-wen; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation.

  17. Socioeconomic and Institutional Dimensions of Dam Removals: The Wisconsin Experience

    PubMed

    Born; Genskow; Filbert; Hernandez-Mora; Keefer; White

    1998-05-01

    / There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders

  18. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  19. Will We. . .? Thai Dam Resource Book.

    ERIC Educational Resources Information Center

    Murphy, Richard, Ed.; And Others

    This resource book is intended as an aid to persons working with Thai Dam refugees. To help the language teacher, some differences between Lao and English are discussed, specifically tonal inflections, positioning, declension of pronouns, conjugation of verbs, interrogatives, classifiers and predicate adjectives. An outline of cultural differences…

  20. Dams and Salmon: A Northwest Choice

    ERIC Educational Resources Information Center

    Tucker, Michael; Tromley, Cheryl L.

    2005-01-01

    This article describes an experiential exercise in which participants assume the roles of various stakeholder groups in the controversy surrounding possible dam removal to revive northwestern U. S. salmon populations. The role-play (a) increases environmental awareness in the context of the competing interests various stakeholders have in our…

  1. White Oak Dam stability analysis. Volume I

    SciTech Connect

    Ahmed, S.B.

    1994-01-01

    A parametric study was conducted to evaluate the stability of the White Oak Dam (WOD) embankment and foundation. Slope stability analyses were performed for the upper and lower bound soil properties at three sections of the dam using the PCSTABL4 computer program. Minimum safety factors were calculated for the applicable seismic and static loading conditions. Liquefaction potential of the dam embankment and foundation solid during the seismic event was assessed by using simplified procedures. The WOD is classified as a low hazard facility and the Evaluation Basis Earthquake (EBE) is defined as an earthquake with a magnitude of m{sub b} = 5.6 and a Peak Ground Accelerator (PGA) of 0.13 g. This event is approximately equivalent to a Modified Mercalli Intensity of VI-VIII. The EBE is used to perform the seismic evaluation for slope stability and liquefaction potential. Results of the stability analyses and the liquefaction assessment lead to the conclusion that the White Oak Dam is safe and stable for the static and the seismic events defined in this study. Ogden Environmental, at the request of MMES, has checked and verified the calculations for the critical loading conditions and performed a peer review of this report. Ogden has determined that the WOD is stable under the defined static and seismic loading conditions and the embankment materials are in general not susceptible to liquefaction.

  2. Yellowtail Dam Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022993, the U.S. Bureau of Reclamation is authorized to discharge from its wastewater treatment facility located at the Yellowtail Dam Field Office in Big Horn County, Montana, to the Yellowtail Afterbay Reservoir/Bighorn River.

  3. Radar proves its worth in dam rehabilitation

    SciTech Connect

    1996-08-01

    This article outlines the use of radar techniques to survey the masonry structure of White Marble Dam. The survey used a subsurface interface radar, and this equipment displayed a cross-sectional profile of the entire structure, revealing the size and location of any faults. By avoiding the draining and dredging of the upstream pool, it is estimated that this technique saved three months.

  4. Serological survey of Toxoplasma gondii in captive Neotropical felids from Southern Brazil.

    PubMed

    Ullmann, Leila Sabrina; da Silva, Rodrigo Costa; de Moraes, Wanderlei; Cubas, Zalmir Silvino; dos Santos, Leonilda Correia; Hoffmann, Juliano Leônidas; Moreira, Nei; Guimaraes, Ana Marcia Sa; Montaño, Patrícia; Langoni, Helio; Biondo, Alexander Welker

    2010-08-27

    Toxoplasma gondii is the causative intracellular protozoan of toxoplasmosis in human being and animals. Members of the Felidae family are considered the single definitive host for the infection; both wild and domestic cats are able to excrete oocysts in the environment. Wild cats maintained in captivity may serve as source of infection for other clinically susceptible animals in the same environment. The aim of this study was to determine the frequency of T. gondii IgG antibodies in 57 neotropical felids (1 Leopardus geoffroyi; 3 Puma yagouaroundi; 17 Leopardus wiedii; 22 Leopardus tigrinus; and 14 Leopardus pardalis) kept at the Bela Vista Biological Sanctuary, Itaipu Binacional, Southern Brazil, by the modified agglutination test (MAT) using titer 16 as cut-off point. Seropositivity was observed in 38/57 (66.67%; 95% CI 53.66-77.51%) samples, with higher frequency in ocelots (71.43%). Wild-caught felids were three times more likely to be infected when compared to zoo-born animals (P

  5. Secondary retention of rubber dam: effective moisture control access considerations.

    PubMed

    Liebenberg, W H

    1995-04-01

    Primary rubber dam retention affects attachment of the latex sheet to the anchor teeth bordering the isolated working field. Secondary rubber dam retention is the provision of an effective seal at the dam-tooth junction, which is essential to the maintenance of adequate access and moisture control within the working field. Practical hints are offered to optimize access and moisture control through well-planned and properly executed secondary retention of classic rubber dam applications. In addition, innovative solutions to the limitations of general field isolation, which pertain mostly to secondary retention of the unrestrained buccal and lingual curtains of the slit dam, are introduced.

  6. The use of rubber dam among Czech dental practitioners.

    PubMed

    Kapitán, Martin; Sustová, Zdenka

    2011-01-01

    Rubber dam is considered an ideal device for tooth isolation. Nevertheless, its usage is quite rare in the Czech Republic. The aim of this study was: firstly, to gather and evaluate information regarding the use of rubber dam by dentists in the Czech Republic and to compare it with other countries; secondly to find out whether there are any influencing factors as to rubber dam usage; and finally to find out frequency of rubber dam use separately in endodontic treatment and in placing fillings of different materials. A questionnaire-based survey was conducted. Dentists filled in the questionnaires during dental conventions, educational events, conferences and congresses. Rubber dam was routinely used by less than eight per cent of the respondents (n = 35); less than twenty-two per cent of the respondents (n = 97) used rubber dam occasionally, and more than seventy per cent of the respondents (n = 317) has never use it. The results showed that rubber dam is not used frequently in the Czech Republic. If rubber dam is used, then it is typically for endodontic treatment or composite fillings. There were several factors with a statistically significant influence on the usage of rubber dam, such as gender, length of professional career, percentage of direct payments, previous experience in using rubber dam, and undergraduate training in rubber dam use.

  7. National Program for Inspection of Non-Federal Dams. Bickford Pond Dam (MA 01021), Bickford Reservoir Dam (MA 01022), Connecticut River Basin, Hubbardston and Princeton, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-06-01

    long earth dam with concrete core wall. The dam has a maximum height of 51.2 feet and includes a drop inlet spillway and box conduit outlet structure...spillway. Bickford Reservoir Dam , also known as the Bickford Dike, was built in 1970 and is a 507-foot long earth dam with a concrete core wall. The dam ...deg. 56.1 min. I west. b. Description of Dams and Appurtenances. Bickford Pond Dam is a 933-foot long, earth embankment dam with a 15-inch thick

  8. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are

  9. National Program for Inspection of Non-Federal Dams. Ludlow Dam (MA 00547) and Cherry Valley Dam (MA 00548), Chicopee River Basin, Ludlow, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    of Springfield Reservoir. Both dams , which were built in approximately 1877, are of the earth fill . type with a vertical spiling wall along their...of the reservoir. Both dams are of the earth filled type with a ’ .,, vertical spiling wall along their centerlines. An overall view of the . . " LS...ne j.Asonry 0 Tim.bpr _____ Rockfill ______Other_______ Dam Tyrpe: Gravity X_ Stra i.L,L X __Curved, Arched - ~ Other . Overflow _____Non-overflow S

  10. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  11. Gabcikovo dam and Liptovska Mara dam - statistical analysis of measurement data

    NASA Astrophysics Data System (ADS)

    Hakac, J.; Sabo, M.

    2012-04-01

    Introduction: Water level in the observation wells is measured regularly and one of the reasons is evaluation of the safety of the water constructions. In this paper we are exploring the reliability of the measuring devices that are responsible for evaluation of the safety of the two largest and the most important dams in Slovakia. We test ability of selected statistical methods to detect early inaccuracies of measuring devices and thus improve the evaluation of the safety of the water constructions. As a follow-up study, we used the time series model (Neural network) to predict water levels in the observation wells that were considered to be without defects. Neural Network is also able to show dynamics of the filtration stability of the observational well. Methods: On the Liptovska Mara dam weekly data was used as a monitoring tool. On the Gabcikovo dam five minute time series of the measurements of the water level in observation wells around the right lock chamber were used. Data from the measuring devices of the dams were explored with boxplots, correlations, neural network, etc. The mentioned statistical tools analyze time series and detect the errors that measuring devices make when generating data and can be used to predict errors even in real time. In the second step, agreement between predicted data from neural network and measured data in the real time was evaluated. We used grid search for finding the optimal number of neurons and then predicted errors by using this model. The ability of the neural network in evaluation of the sealing of the dilatation joints on the filtration stability in the years 2009 - 2011 is presented. Results: From the 18 selected measuring devices on the Liptovska Mara dam there are only 3 devices which can be considered as reliable. On the Gabcikovo dam, 8 of 9 measuring devices (observation wells around right lock chamber) were considered as a reliable. There was very good agreement between the predicted and measured data at the

  12. National Dam Inspection Program. Lake Housatonic Dam and Dike (CT 00026 and CT 01714). Connecticut Coastal Basin, Housatonic River, Derby-Shelton, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    8217;’,.-+-.-. ""’"" . .•• "•;. - NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT Identification No.: CT 00026, CT 01714 N *~ Name of Dam: Lake Housatonic Dam and Dike " Town...approach was used between 1868 and 1870 to strengthen the Holyoke dam. The dam that existed there at the time was a timber crib dam, 1,017 feet long and 30

  13. Earthquake Hazard for Aswan High Dam Area

    NASA Astrophysics Data System (ADS)

    Ismail, Awad

    2016-04-01

    Earthquake activity and seismic hazard analysis are important components of the seismic aspects for very essential structures such as major dams. The Aswan High Dam (AHD) created the second man-made reservoir in the world (Lake Nasser) and is constructed near urban areas pose a high-risk potential for downstream life and property. The Dam area is one of the seismically active regions in Egypt and is occupied with several cross faults, which are dominant in the east-west and north-south. Epicenters were found to cluster around active faults in the northern part of Lake and AHD location. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. The Aswan seismicity separates into shallow and deep seismic zones, between 0 and 14 and 14 and 30 km, respectively. These two seismic zones behave differently over time, as indicated by the seismicity rate, lateral extent, b-value, and spatial clustering. It is characterized by earthquake swarm sequences showing activation of the clustering-events over time and space. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area. The peak ground acceleration is estimated in the dam site based on strong ground motion simulation. This seismic hazard analyses have indicated that AHD is stable with the present seismicity. The earthquake epicenters have recently took place approximately 5 km west of the AHD structure. This suggests that AHD dam must be

  14. Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The junctions of the Amazon and the Rio Negro Rivers at Manaus, Brazil. The Rio Negro flows 2300 km from Columbia, and is the dark current forming the north side of the river. It gets its color from the high tannin content in the water. The Amazon is sediment laden, appearing brown in this simulated natural color image. Manaus is the capital of Amazonas state, and has a population in excess of one million. The ASTER image covers an area of 60 x 45 km. This image was acquired on July 16, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation

  15. Dam removal increases American eel abundance in distant headwater streams

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Eyler, Sheila; Wofford, John E.B.

    2012-01-01

    American eel Anguilla rostrata abundances have undergone significant declines over the last 50 years, and migration barriers have been recognized as a contributing cause. We evaluated eel abundances in headwater streams of Shenandoah National Park, Virginia, to compare sites before and after the removal of a large downstream dam in 2004 (Embrey Dam, Rappahannock River). Eel abundances in headwater streams increased significantly after the removal of Embrey Dam. Observed eel abundances after dam removal exceeded predictions derived from autoregressive models parameterized with data prior to dam removal. Mann–Kendall analyses also revealed consistent increases in eel abundances from 2004 to 2010 but inconsistent temporal trends before dam removal. Increasing eel numbers could not be attributed to changes in local physical habitat (i.e., mean stream depth or substrate size) or regional population dynamics (i.e., abundances in Maryland streams or Virginia estuaries). Dam removal was associated with decreasing minimum eel lengths in headwater streams, suggesting that the dam previously impeded migration of many small-bodied individuals (<300 mm TL). We hypothesize that restoring connectivity to headwater streams could increase eel population growth rates by increasing female eel numbers and fecundity. This study demonstrated that dams may influence eel abundances in headwater streams up to 150 river kilometers distant, and that dam removal may provide benefits for eel management and conservation at the landscape scale.

  16. Radial gate evaluation: Olympus Dam, Colorado

    SciTech Connect

    1997-06-01

    The report presents a structural analysis of the radial gates of Olympus Dam in eastern Colorado. Five 20-foot wide by 17-foot high radial gates are used to control flow through the spillway at Olympus Dam. The spillway gates were designed in 1947. The gate arm assemblies consist of two separate wide flange beams, with a single brace between the arms. The arms pivot about a 4.0-inch diameter pin and bronze graphite-insert bushing. The pin is cantilevered from the pier anchor girder. The radial gates are supported by a pin bearing on a pier anchor birder bolted to the end of the concrete pier. The gates are operated by two-part wire rope 15,000-pound capacity hoise. Stoplog slots upstream of the radial gates are provided in the concrete piers. Selected drawings of the gates and hoists are located in appendix A.

  17. Three-dimensional dynamic response analysis of earth dams

    SciTech Connect

    Mejia, L.H.

    1981-01-01

    The purpose of the present work has been to develop numerical techniques for the three-dimensional dynamic analysis of earth and rockfill dams and to study the dynamic behavior of embankment dams in three dimensions. A computer program suitable for the three-dimensional dynamic response analysis of earth dams was used to back-calculate the dynamic material properties of Oroville Dam from the recorded response of the dam to the August 1, 1975 Oroville earthquake. The dynamic response characteristics of earth dams which exhibit considerable three-dimensional behavior have been studied and the applicability of two-dimensional analysis to the computation of the dynamic response of such structures has been evaluated. Additionally, the effects that the degree of discretization in the cross-valley direction has on the computed three-dimensional dynamic response of earth dams have been studied. A K/sub 2/max value of 170 was found to be representative of the in-situ dynamic characteristics of the Oroville gravels. The three-dimensional effects of canyon geometry on the dynamic response of dams in triangular canyons were found to depend on the crest length to height ratio, L/H, of the dam. For dams with L/H greater than 7, these effects are small. The dynamic characteristics of these dams can, therefore, be simulated reasonably well using two-dimensional analyses. However, 2-D analyses cannot simulate correctly the dynamic response of dams in narrower canyons since the effects of canyon geometry for these dams are very pronounced.

  18. The geomorphic influences of beaver dams and failures of beaver dams

    NASA Astrophysics Data System (ADS)

    Butler, David R.; Malanson, George P.

    2005-10-01

    Uncounted millions of beaver ponds and dams existed in North America prior to European contact and colonization. These ponds acted as sediment traps that contained tens to hundreds of billions of cubic meters of sediment that would otherwise have passed through the fluvial system. Removal of beavers by overtrapping in the 16th-19th centuries severely reduced their number and the number of ponds and dams. Dam removal altered the fluvial landscape of North America, inducing sediment evacuation and entrenchment in concert with widespread reduction in the wetlands environments. Partial recovery of beaver populations in the 20th century has allowed reoccupation of the entirety of the pre-contact range, but at densities of only one-tenth the numbers. Nevertheless, modern beaver ponds also trap large volumes of sediment in the high hundred millions to low billions of cubic meters range. Failure of beaver dams is a more common phenomenon than often assumed in the literature. During the past 20 years, numerous cases of dam failure have been documented that resulted in outburst floods. These floods have been responsible for 13 deaths and numerous injuries, including significant impacts on railway lines.

  19. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  20. The Dalles Dam juvenile bypass electrical systems

    SciTech Connect

    Bannister, B.D.; Luck, B.

    1995-12-31

    The Corps of Engineers is in the process of providing a juvenile fish bypass system at The Dalles Lock and Dam project on the lower Columbia River. This system is intended to preserve and enhance the dwindling stocks of wild anadromous fish. The impact of the proposed facilities on the electrical systems and on plant operations are developed along with descriptions of the special bypass features including the incorporation of provisions for a future small hydropower generator.

  1. Distribution and prevention of dammed lakes triggered by Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Han, Yongshun; Liu, Hongjiang; Zhu, Boqin; Han, Jun; Yang, Yingchang; Zhang, Yu

    2010-11-01

    Wenchuan earthquake induced large-scale of collapses and landslides which blocked river channels and brought about quantities of dammed lakes. The number and the scale of dammed lakes are extremely rare in the world. Besides the backwater of the dammed lakes can flood the road traffic, villages and farmland on the upstream, it can severely threaten the safety of the people's lives and properties on the downstream. Once the dammed lakes burst out, they can cause severe flood disaster. Therefore, it is urgent to monitor the dammed lakes, study their distribution and analyze their development by means of remote sensing (RS) and geography information system (GIS) after the earthquake. In this paper, 145 high-resolution images were processed and 31 severely-afflicted counties were studied through RS monitoring and field investigation. By the time of May 28,2008, 257 dammed lakes existing more than 14 days were identified and there were 34 dammed lakes with capacity of more than 100 000m3. Based on these conditions, the distribution and development of dammed lakes were discussed and the findings showed that: (a) The dammed lakes induced by Wenchuan earthquake mainly scatter in Beichuan, Wenchuan, Shifang, Mianzhu and Anxian counties, and there exist 154 dammed lakes in these regions, which is 59.92 percent of the total. (b) 95.3 percent of the dammed lakes are within 10km of three major fault zones of Longmen Mountains and the relationship between the number of dammed lakes and their distance to fault zone accords with the law of logarithmic decrement. (c) Most of dammed lakes are distributed in the upper reaches of Minjiang River, Tuojiang River, Jianjiang River and Fujiang River, etc. in rosary. (d) The distribution of dammed lakes in the study areas is dominated by seismic intensity, lithology, slope and altitude. In the next 5-10 years, collapses, landslides and debris flows in the study area will occur frequently and severely and they are likely to block river

  2. Characterization of grain sizes in the reservoir impoundment behind Marmot Dam post-dam removal

    NASA Astrophysics Data System (ADS)

    di Leonardo, D. R.; Podolak, C.; Wilcock, P.

    2009-12-01

    Marmot Dam was built in 1913 and stood until 2007 to divert water from the Sandy River to the Bull Run Hydroelectric Plant. During that time Marmot Dam impounded a reservoir deposit of approximately 750,000 cubic meters of sediment. Prior to dam removal Squier Associates completed a series of sediment cores and bulk samples to estimate the composition of the deposit (Stillwater 2000). Since 2007 the Sandy River has carved a path through the reservoir leaving vertical sections of the deposit exposed. This study aims to use these remains of the deposit to make another estimate of its composition using pebble counts and a bulk sample. It serves as a back of the envelope double check of the Squier Associates study and an experiment with a new sampling method. Our results suggest that the deposit may be coarser than previously thought

  3. The Effect of Dam Closure on Downstream Rapids

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    1980-02-01

    The force of flowing water and the resistance of the largest boulder provide a means of evaluation of the stability of rapids in canyon rivers. Field measurements and calculations show that the closure of Flaming Gorge Dam, Utah, has had a significant effect on the stability of rapids in the canyons of the Green River in Dinosaur National Monument 68 km (42 mi) downstream from the dam. The reduction in peak flows by the dam has limited the competence of the river to move boulders deposited in the main channel by tributary processes, landslides, and prehistoric floods. Before the dam was closed, 62% of the rapids were stable, as indicated by the immobility of the largest boulder in each rapid. After the dam was closed, 93% of the rapids were stable as geomorphic/hydraulic features, though small boulders continue to move. A continuing buildup of boulders in the rapids will result from tributary contributions which are not affected by the dam.

  4. Dams and Rivers: A Primer on the Downstream Effects of Dams

    USGS Publications Warehouse

    Collier, Michael; Webb, Robert H.; Schmidt, John C.

    1996-01-01

    The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse

  5. Innovative resettlement schemes planned for the Numata Dam project

    NASA Astrophysics Data System (ADS)

    Nakayama, Mikiyasu

    2003-10-01

    The Numata Dam, planned for the Tone River basin of Gunma Prefecture, was the largest dam construction project ever considered in Japan. This dam construction project, however, did not materialize. The proposal for the Numata Dam was first launched in 1959, at a time when the Tokyo Metropolitan area was mushrooming, both in population and industrial activity. The Numata Dam was supposed to be a prioritized dam construction project to alleviate the then anticipated water shortage in the Tokyo Metropolitan area. The Numata Dam plan experienced fierce opposition from those who would have been obliged to resettle, whereas those in Tokyo and the surrounding metropolitan area welcomed the plan. The major concern of the planned Numata Dam was the number of resettlers, which was then estimated to be around 3000 families. The resettlement plan developed for the Numata Dam included some innovative concepts, which may be applicable even today, for dam construction projects in the developing world. The plan included such ideas as (a) having resettlers share existing farmland with the present owners provided improvements were made to increase productivity, (b) paying rent to resettlers, and (c) establishing the Tone River Development Agency. After more than a decade of debate, both at national and local levels, the Numata Dam project was finally discarded through a decision of the Prime Minister in 1972. The resettlement schemes elaborated for the Numata Dam still appear to be innovative. Such schemes may be applied to projects in the developing world, in particular, in nations that are about to take off with economic development. Copyright

  6. Oblique view, looking west, of top side of diversion dam, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view, looking west, of top side of diversion dam, also showing eastern profiles of piers and gatehouses. Roller gate (raised position) on right. Note detail of extension shield that, when lowered to a secure position against the dam sill, creates a virtually impervious seal - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  7. 2. FORMER INTAKE DAM NO. 2 AT 560" CONSTRUCTED OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FORMER INTAKE DAM NO. 2 AT 560" CONSTRUCTED OF RUBBLE MASONRY IN 1937-1938. VIEW LOOKING DOWN LINE FORMER INTAKE GRILLE WAS TO LEFT SIDE OF DAM (TWO 8" IRON PIPES FROM NEW INTAKE NOW ENTER OLD INTAKE OPENING), BOX FLUME EXITS AT RIGHT AND CARRIES WATER TO AERATOR. NOTE THE SMALL SLUICEWAY OPENING AT CENTER ALONG WATERLINE. THIS DAM WAS SUPERCEDED BY THE NEW INTAKE DAM TO REACH THE MORE RELIABLE WATER SOURCE OF THE MAIN STREAM. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  8. Recent sediment studies refute Glen Canyon Dam Hypothesis

    NASA Astrophysics Data System (ADS)

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  9. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  10. Environmental impacts of increased hydroelectric development at existing dams

    SciTech Connect

    Railsback, S. F.; Cada, G. F.; Petrich, C. H.; Sale, M. J.; Shaakir-Ali, J. A.; Watts, J. A.; Webb, J. W.

    1991-04-01

    This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams. Hydropower development at existing dams has, in general, fewer impacts than development of additional fossil-fueled resources or hydropower at new dams, although potential cumulative impacts of developing multiple hydropower projects have not been explicitly addressed. Environmental review of project impacts and mitigation needs can ensure that additional hydropower development at existing dams can provide a renewable resource with fewer impacts than alternative resources.

  11. 5. EASTSIDE RESERVOIR, LOOKING WEST. WEST DAM UNDER CONSTRUCTION, QUARRIES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EASTSIDE RESERVOIR, LOOKING WEST. WEST DAM UNDER CONSTRUCTION, QUARRIES TO LEFT MIDDLE GROUND OF PICTURE. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA

  12. Outlet Works for Cerrillos Dam, Cerrillos River, and Portugues Dam, Portugues River, Puerto Rico; Hydraulic Model Investigation.

    DTIC Science & Technology

    1979-03-01

    Tests were conducted on a 1:24-scale model of the outlet works for the Cerrillos and Portugues Dams located in Puerto Rico. The purpose of the model... Portugues outlet works were designed to provide for river diversion during construction of the dams. When the dams are completed, the flow will be regulated... Portugues . However, the stilling basins were designed for 2500 cfs (Cerrillos) and 1100 cfs ( Portugues ), the bank-full capacities downstream. Therefore

  13. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  14. Jadwin Dam Condition Report. Dam, Outlet Works & Spillway Periodic Inspection Report Number 4. Lackawaxen River Basin, Dyberry Creek, Pennsylvania.

    DTIC Science & Technology

    1980-11-01

    AD-A098 782 ARMY ENGINEER DISTRICTE PHILADELPHIA PA FIG 13/13 JADAI N DAM CONDITION REPORT. DA, OUTLET WORKS & SPILLWAY PERIO-ETC (U) UNCLASSIFIED...HUJREALI f ANDARD, 1961, L -GOVED FOR PUBLIC RELEASE; DISTRIBUtiON UNLIMITED. LACKAWAXEN RIVER BASIN * DYBERRY CREEK, PENNSYLVANIA DClJADWIN DAM DTIC ELECTE...MAY 1 2 1981fl CONDITION REFORT E DAM , OUTLET WORKS a SPILLWAY - PERIODIC INSPECTION REPORT NO. 4 NOVEMBER 1980 DEPARTMENT OF THE ARMY 0. PHILADELPHIA

  15. National Dam Safety Program. Lakeview Dam (MO 10543), Mississippi - Salt - Quincy River Basin, Lincoln County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-09-01

    RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subttlte) S. TYPE OF REPORT & PERIOD COVERED Phase I Dam Inspection Report National Dam Safety Program )ial...IT The absence of seepage and stability analyses is a deficiency which should be corrected. Periodic inspections by a qualified engineer and...action. The following problems were observed which could affect the safety of the dam or which will require maintenance within a reasonable period of

  16. Media Monopoly in Brazil.

    ERIC Educational Resources Information Center

    Amaral, Roberto; Guimaraes, Cesar

    1994-01-01

    Documents the process of broadcasting media development in Brazil, the failure of new technologies to produce democratization, and the barriers to democratization erected by monopolization and "metastasis." (SR)

  17. Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection of dam complex access road with U.S. Highway 189, 1,340 feet/352 degrees from the dam spillway overpass, Charleston, Wasatch County, UT

  18. National Dam Safety Program. Wiggins Ozark Camp Dam (MO 30026), White Basin, Reynolds County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1978-12-01

    irregular top of dam (the crest is not level) was calculated using a coefficient of 3.0 in the broad - crested weir equation for the sections of dam...acre feet (2) Crest of principal spillway -127 acre feet. f. Reservoir Surface (1) Top of damn - 29.6 acres (2) Spillway crest - 15.9 acres g. Dam (1...embankment. The absence of brush or tree growth on the dam surfaces makes an assumption of no animal activity and its probable adverse effect on the

  19. National Program for Inspection of Non-Federal Dams. Upper Sackett Reservoir Dam MA 00227, Housatonic River Basin, Hinsdale, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    d.eftl by block nmobst) --The dam is a 75.5 high, 660 ft. long earth embankment dam with a concrete corewall, a gate structure and an ungated concrete...The dam is a 75.5 high, 660 feet long earth embankment dam with a concrete corewall, a gate structure and an ungated concrete 60 foot long spillway... dam . b. Description of Dam and Appurtenances The structure is a 75.5 foot high, 660 foot long earth . embankment dam with a concrete corewall, a gate

  20. National Dam Safety Program. Colonie Dam (Inventory Number NY 204), Mohawk River Basin, Saratoga County, New York. Phase I Inspection Report

    DTIC Science & Technology

    1978-09-27

    MOHAWK RIVER BASIN COLONIE DAM f- ’iSARATOGA COUNTY, NEW YORK 1-t 1 INVENTORY NO. N.Y. 204 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM...8217release; Distribution ur~limited. /.L ~ ~ ’ 15. SUPPLE N National Dam Safety Program. Colonie Dam (Inventory Number NY 204t)) Mohawk Q River Basin...Saratoga County) New York. Phase I Inspection Rpr J I. KEY WORDS (Cofnut YTVd7T~iw :d Identify by block riumber) Dam- Safety Colonie Dam Nainal Dam Safety

  1. Hydrology, geomorphology, and dam-break modeling of the July 15, 1982, Lawn Lake Dam and Cascade Lake Dam failures, Larimer County, Colorado

    USGS Publications Warehouse

    Jarrett, R.D.; Costa, J.E.

    1984-01-01

    On July 15, 1982, Lawn Lake Dam, a 26-foot-high earthfill irrigation dam built in 1903 in Rocky Mountain National Park, Colorado, failed, due to piping, releasing 674 acre-feet of water with a peak discharge of 18,000 cubic feet per second down the Roaring River. Three people were killed, and damages were estimated at $31 million. Cascade Lake Dam, downstream from Lawn Lake Dam, subsequently failed as a result of the flood, increasing the peak flow at this point from 7,210 cubic feet per second to 16,000 cubic feet per second. The flood wave took 3.28 hours to travel 12.5 miles to Lake Estes, where all the floodwater was stored. The channel of the Roaring River was scoured as much as 50 feet and widened 300 feet. An alluvial fan of 42.3 acres, containing 10 million cubic feet of material, was deposited at the mouth of the Roaring River, damming the Fall River and forming a 17-acre lake. Various methods were used to indirectly compute peak discharge, attenuation of flow, and flood traveltime. A version of the National Weather Service dam-break flood model was used to evaluate its performance on high-gradient streams, to provide supplemental hydrologic information, and to evaluate various scenarios of dam-break development. (USGS)

  2. Dam Safety Program Flood Control Project Pine River Dam and Reservoir

    DTIC Science & Technology

    1990-09-01

    Hay, Ox, Loon , and Pig. These lakes are generally connected by shallow, narrow channels, maintained to allow boat passage. a. Pine River Dam Pine...the inundation area during the PMF includes areas adjacent to Velvet Lake, Big Bird Lake, Greer Lake, Big Pine Lake, Bass Lake, and Google Lake. The

  3. Hog Island Bank Protection - Lock and Dam 16 and Huron Chute Closing Dam Modification - Pool 18

    DTIC Science & Technology

    1990-07-01

    siteG. iTne site is located at Lock and Dam (L/D) 16 between Rock Island County, Illinois, and Muscatine County, Iowa. The site, referred to as Hog Isla ...to fulfill its ,Waic uroe ifno. see Section 2 and Information gathered fo? IA alterative). VIES OD J * ~ ~ ~ b. The activity does not eppear to (1

  4. Interaction of Dams and Landslides--Case Studies and Mitigation

    USGS Publications Warehouse

    Schuster, Robert L.

    2006-01-01

    In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these

  5. Gypsum-karst problems in constructing dams in the USA

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.

    2008-01-01

    Gypsum is a highly soluble rock and is dissolved readily to form caves, sinkholes, disappearing streams, and other karst features that typically are also present in limestones and dolomites. Gypsum karst is widespread in the USA and has caused problems at several sites where dams were built, or where dam construction was considered. Gypsum karst is present (at least locally) in most areas where gypsum crops out, or is less than 30-60 m below the land surface. These karst features can compromise on the ability of a dam to hold water in a reservoir, and can even cause collapse of a dam. Gypsum karst in the abutments or foundation of a dam can allow water to pass through, around, or under a dam, and solution channels can enlarge quickly, once water starts flowing through such a karst system. The common procedure for controlling gypsum karst beneath the dam is a deep cut-off trench, backfilled with impermeable material, or a close-spaced grout curtain that hopefully will fill all cavities. In Oklahoma, the proposed Upper Mangum Dam was abandoned before construction, because of extensive gypsum karst in the abutments and impoundment area. Catastrophic failure of the Quail Creek Dike in southwest Utah in 1989 was due to flow of water through an undetected karstified gypsum unit beneath the earth-fill embankment. The dike was rebuilt, at a cost of US 12 million, with construction of a cut-off trench 600 m long and 25 m deep. Other dams in the USA with severe gypsum-karst leakage problems in recent years are Horsetooth and Carter Lake Dams, in Colorado, and Anchor Dam, in Wyoming.

  6. Gypsum-karst problems in constructing dams in the USA

    USGS Publications Warehouse

    Johnson, K.S.

    2008-01-01

    Gypsum is a highly soluble rock and is dissolved readily to form caves, sinkholes, disappearing streams, and other karst features that typically are also present in limestones and dolomites. Gypsum karst is widespread in the USA and has caused problems at several sites where dams were built, or where dam construction was considered. Gypsum karst is present (at least locally) in most areas where gypsum crops out, or is less than 30-60 m below the land surface. These karst features can compromise on the ability of a dam to hold water in a reservoir, and can even cause collapse of a dam. Gypsum karst in the abutments or foundation of a dam can allow water to pass through, around, or under a dam, and solution channels can enlarge quickly, once water starts flowing through such a karst system. The common procedure for controlling gypsum karst beneath the dam is a deep cut-off trench, backfilled with impermeable material, or a close-spaced grout curtain that hopefully will fill all cavities. In Oklahoma, the proposed Upper Mangum Dam was abandoned before construction, because of extensive gypsum karst in the abutments and impoundment area. Catastrophic failure of the Quail Creek Dike in southwest Utah in 1989 was due to flow of water through an undetected karstified gypsum unit beneath the earth-fill embankment. The dike was rebuilt, at a cost of US $12 million, with construction of a cut-off trench 600 m long and 25 m deep. Other dams in the USA with severe gypsum-karst leakage problems in recent years are Horsetooth and Carter Lake Dams, in Colorado, and Anchor Dam, in Wyoming. ?? 2007 Springer-Verlag.

  7. Spillway sizing of large dams in Austria

    NASA Astrophysics Data System (ADS)

    Reszler, Ch.; Gutknecht, D.; Blöschl, G.

    2003-04-01

    This paper discusses the basic philosophy of defining and calculating design floods for large dams in Austria, both for the construction of new dams and for a re-assessment of the safety of existing dams. Currently the consensus is to choose flood peak values corresponding to a probability of exceedance of 2*10-4 for a given year. A two step procedure is proposed to estimate the design flood discharges - a rapid assessment and a detailed assessment. In the rapid assessment the design discharge is chosen as a constant multiple of flood values read from a map of regionalised floods. The safety factor or multiplier takes care of the uncertainties of the local estimation and the regionalisation procedure. If the current design level of a spillway exceeds the value so estimated, no further calculations are needed. Otherwise (and for new dams) a detailed assessment is required. The idea of the detailed assessment is to draw upon all existing sources of information to constrain the uncertainties. The three main sources are local flood frequency analysis, where flood data are available; regional flood estimation from hydrologically similar catchments; and rainfall-runoff modelling using design storms as inputs. The three values obtained by these methods are then assessed and weighted in terms of their reliability to facilitate selection of the design flood. The uncertainty assessment of the various methods is based on confidence intervals, estimates of regional heterogeneity, data availability and sensitivity analyses of the rainfall-runoff model. As the definition of the design floods discussed above is based on probability concepts it is also important to examine the excess risk, i.e. the possibility of the occurrence of a flood exceeding the design levels. The excess risk is evaluated based on a so called Safety Check Flood (SCF), similar to the existing practice in other countries in Europe. The SCF is a vehicle to analyse the damage potential of an event of this

  8. Serologic survey for Leptospira spp. in captive neotropical felids in Foz do Iguaçu, Paraná, Brazil.

    PubMed

    Ullmann, Leila Sabrina; Hoffmann, Juliano L; de Moraes, Wanderlei; Cubas, Zalmir S; dos Santos, Leonilda Correia; da Silva, Rodrigo Costa; Moreira, Nei; Guimaraes, Ana Marcia Sa; Camossi, Lucilene Granuzzio; Langoni, Helio; Biondo, Alexander W

    2012-06-01

    Leptospirosis is a bacterial zoonosis of worldwide distribution and is endemic in tropical countries, where rodents and other wild mammals are abundant and may act as reservoirs. Leptospirosis has become a concern in captive wild animals, due mostly to their exposure to contaminated urine or environment. Although domestic cats (Felis catus) have been reported refractory to leptospirosis, serology and disease in captive wild felids is still unclear. In this study 57 adult, clinically healthy felids, including 1 Geoffroy's cat (Leopardus geoffroyi), 3 jaguarundis (Puma yagouaroundi), 17 margays (Leopardus wiedii), 22 little spotted cats (Leopardus tigrinus), and 14 ocelots (Leopardus pardalis) kept in captivity at the Sanctuary at the Itaipu Binacional hydroelectric power plant (Bela Vista Biological Sanctuary), Foz do Iguacu City, Paraná State, Brazil, were serologically surveyed for the presence of antibodies against 28 serovars of Leptospira spp. by microagglutination test (MAT). Two animals (3.5%) were seropositive: one male ocelot to the serovar Cynopteri (titer 100) and one female margay to Autumnalis (100) and Butembo (200). The captive-born, 5-yr-old ocelot had been solitary housed in an individual cage. The approximately 21-yr-old wild-caught margay was also kept individually. None of the tested animals showed signs ofleptospirosis. During a study conducted 4 yr previously in the same facility, this particular margay also tested positive for the same two serovars, among others. The present study indicates that the felids tested for Leptospira spp. by MAT were exposed to serovars, but did not demonstrate clinical signs of disease. Comparison with a previous study suggests that serovar titers may vary over time and that leptospirosis dynamics remains unclear in wild felids.

  9. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  10. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites

  11. National Dam Safety Program. Butterfly Lake Dam (MO 30501) and Rainbow Lake Dam (MO 30641), Mississippi - Kaskaskia - St. Louis Basin, Ste. Genevieve County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1978-09-01

    Entered) READ INSAUC 0SREPORT DOCUMENTATION PAGE BEF’ORE COMPLE 0 ORU REPORT NUMBER 12. O0VT ACCESSION No. 3. RECOXIENT’S CA ALO UM ER - /& 4. TITLE (and...PERFORMING ORG. REPORT NUMBER Ste. Genevieve County, Missouri 7. AIJTHR(e) S. CONTRACT OR GRANT NUMBER (&) Corps of Engineers, St. Louis District...SUPPLEMENTARY NOTES It. KEY WORDS (Continue on roevae side If naccearY and identity by block number ) Dam Safety, Lake, Dam Inspection, Private DamsS i 20i

  12. National Dam Safety Program. Larchwood Lake Dam (Inventory Number NY 727), Susquehanna River Basin, Otsego County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-04

    analysis on tle- ph7sica. condition of the dam as of the report date. Information and analysis are based on Visual inspection of the dam by the...identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon...studies. In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time

  13. National Program for Inspection of Non-Federal Dams. New Durham Dam (NH 00345), Merrimack River Basin, New Durham, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1979-03-01

    21 feet high. At the eastend of the dam is an earth embankment about 50 feet long. The main dam consists of a 66-foot long free overfall spillway...including replacement of the former stop log spillway with a concrete free - overfall spillway with 2: flashboards. According to the design drawing for the...to about 567 feet at the streambed at New Durham Dam. b. Discharge at Dam Site. Discharges from the New Durham Dam occur at both the free overfall

  14. Connectivity processes and riparian vegetation of the upper Paraná River, Brazil

    NASA Astrophysics Data System (ADS)

    Stevaux, José C.; Corradini, Fabrício A.; Aquino, Samia

    2013-10-01

    In fluvial systems, the relationship between a dominant variable (e.g. flood pulse) and its dependent ones (e.g. riparian vegetation) is called connectivity. This paper analyzes the connectivity elements and processes controlling riparian vegetation for a reach of the upper Paraná River (Brazil) and estimates the future changes in channel-vegetation relationship as a consequence of the managing of a large dam. The studied reach is situated 30 km downstream from the Porto Primavera Dam (construction finished in 1999). Through aerial photography (1:25,000, 1996), RGB-CBERS satellite imagery and a previous field botany survey it was possible to elaborate a map with the five major morpho-vegetation units: 1) Tree-dominated natural levee, 2) Shrubby upper floodplain, 3) Shrub-herbaceous mid floodplain, 4) Grass-herbaceous lower floodplain and 5) Shrub-herbaceous flood runoff channel units. By use of a detailed topographic survey and statistical tools each morpho-vegetation type was analyzed according to its connectivity parameters (frequency, recurrence, permanence, seasonality, potamophase, limnophase and FCQ index) in the pre- and post-dam closure periods of the historical series. Data showed that most of the morpho-vegetation units were predicted to present changes in connectivity parameters values after dam closing and the new regime could affect, in different intensity, the river ecology and particularly the riparian vegetation. The methods used in this study can be useful for dam impact studies in other South American tropical rivers.

  15. 80. AVALON DAM Photographic copy of construction drawing c1908 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. AVALON DAM - Photographic copy of construction drawing c1908 (from aperture card located at Bureau of Reclamation, Salt Lake City). UNTITLED DRAWING OF AUTOMATIC FLOOD GATES. PARTIAL PLAN AND ELEVATION - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  16. Institutionalizing the option of dam removal: the New Hampshire initiative.

    PubMed

    Lindloff, S D

    2003-01-01

    For two years, the State of New Hampshire has worked to institutionalize the option of dam removal. The high gradient streams that flow through the granite hills and mountains of this small northeastern state provided ideal conditions for dam construction, particularly during America's Industrial Revolution of the 1800s when mills were constructed throughout the area. With more than 4,800 dams in the state's database, there are many opportunities for the removal of dams that no longer serve a useful purpose, have become a public safety hazard and impact the river environment. Efforts to facilitate removal of dams in New Hampshire include the formation of a River Restoration Task Force and the creation of a dam removal program within the state agency responsible for regulating dams. This has led to the removal of two dams in the past year, with approximately ten additional projects in various stages of planning. A history of this agency-led initiative, as well as a discussion of the program's strengths, challenges and goals for the future are presented.

  17. 7. VIEW OF DAM 83, SHOWING DIVERSION GATES TO SOURIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF DAM 83, SHOWING DIVERSION GATES TO SOURIS RIVER CHANNEL (LEFT) AND POND A (RIGHT) FROM THE WEST SIDE OF THE OUTLET CHANNEL, LOOKING SOUTHEAST (for view of the original diversion gate, see historic photograph, HAER No. ND-3-A-15) - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  18. Attitudes of Operative Dentistry Faculty toward Rubber Dam Isolation.

    ERIC Educational Resources Information Center

    Brackett, William W.; And Others

    1989-01-01

    Dental faculty responses (N=332) to a survey concerning use of rubber dams for excluding fluids from the working field in operative dentistry procedures indicated students receive adequate instruction in rubber dam use and are proficient at graduation, though motivating students to its use is problematic and patient resistance a factor. (MSE)

  19. Correlations among the WISC-R, PIAT, and DAM.

    ERIC Educational Resources Information Center

    White, Thomas H.

    1979-01-01

    The WISC-R, PIAT, and DAM were examined to ascertain relationships among the three instruments. Correlations indicate that information yielded by the PIAT may be obtained through WISC-R results, while the DAM may be tapping other abilities not adequately assessed by either of the other two measures. (Author)

  20. 9. Photographic copy of historic photograph showing lower dam without ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photographic copy of historic photograph showing lower dam without stone apron and water flowing over the overspill. Date and photographer unknown. (original in possession of United States Department of Agriculture-Forest Service-Allegheny National Forest) VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  1. 11. Photographic copy of original Lower Dam for Loleta Camp ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photographic copy of original Lower Dam for Loleta Camp Ground drawing by Paul Wakefield, 1933 (original in possession of United States Department of Agriculture-Forest Service-Allegheny National Forest). - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  2. 5. DIABLO DAM: DETAIL VIEW OF RELIEF VALVES AT ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DIABLO DAM: DETAIL VIEW OF RELIEF VALVES AT ELEVATION 1044. VALVE IN FOREGROUND IS A BUTTERFLY VALVE SIX FEET IN DIAMETER; VALVE TO THE REAR IS A JOHNSON-TYPE NEEDLE VALVE BOTH VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY, 1989. - Skagit Power Development, Diablo Dam, On Skagit River, 6.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  3. 23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. NOTE FORMS FOR LEFT GRAVITY ABUTMENT AT UPPER RIGHT CORNER OF PICTURE. ARCHES 3, 4, 5, AND 7 COMPLETED TO ELEVATION 1795. 5 OR 7.5 FEET BELOW TOP OF PARAPET WALL. November 29, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  4. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG),...

  5. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  6. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  7. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  8. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  9. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work...

  10. 79 FR 3873 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-01-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The GCDAMP includes a Federal advisory committee, the AMWG, a technical work group...

  11. 79 FR 24748 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-05-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  12. 71 FR 44042 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-08-03

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and provide recommendations to the Secretary...

  13. 80 FR 21261 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-04-17

    ....05940913.7000000] Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG... committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  14. 73 FR 45070 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2008-08-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  15. 5. GENERAL VIEW FROM EAST ABUTMENT ALONG AXIS OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW FROM EAST ABUTMENT ALONG AXIS OF DAM SHOWING STEEL SHEET PILE CUTOFF WALL COMPLETED, AND EMBANKMENT MATERIAL BEING COMPACTED INTO POSITION. Volume XVI, No. 11, July 21, 1939. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  16. DESCHUTES PROJECT – WICKIUP DAM, CONTROL TOWER COMPLETE TO ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM, CONTROL TOWER COMPLETE TO ELEVATION 4348.5 WITH TEMPORARY ROOF. BURNING OPERATIONS ON RESERVOIR CLEARING IN THE DISTANCE. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, August 31, 1943 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  17. 95. AVALON DAM Photographic copy of construction drawing dated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. AVALON DAM - Photographic copy of construction drawing dated January 19, 1911 1912? (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) BALANCING DEVICE FOR 21 FT. DIA. CYLINDER GATE - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  18. 59. AVALON DAM Photographic copy of historic photo, October ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. AVALON DAM - Photographic copy of historic photo, October 29, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'OLD HEADGATES AT SPILLWAY NO. 1 SHOWING STOCKPILES FOR PAVING' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  19. 73. AVALON DAM Photographic copy of historic photo, C1912 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. AVALON DAM - Photographic copy of historic photo, C1912 (original print located at the Carlsbad Irrigation District office, Carlsbad, New Mexico) photographer unknown VIEW OF SPILLWAY NO. 2 - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  20. 71. AVALON DAM Photographic copy of historic photo, 1911 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. AVALON DAM - Photographic copy of historic photo, 1911 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'VIEW SHOWING CONSTRUCTION OF THE CYLINDER GATES' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  1. 65. AVALON DAM Photographic copy of historic photo, c1910 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. AVALON DAM - Photographic copy of historic photo, c1910 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF U.S.R.S. ADMINISTRATIVE BUILDING (GATE KEEPER'S HOUSE) - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  2. 70. AVALON DAM Photographic copy of historic photo, August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. AVALON DAM - Photographic copy of historic photo, August 5, 1911 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown AUTOMATIC GATES AT SPILLWAY NO. 1 - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  3. 62. AVALON DAM Photographic copy of historic photo, 1907 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. AVALON DAM - Photographic copy of historic photo, 1907 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW SHOWING CONCRETE DIAPHRAGM AND WORKERS - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  4. 76. AVALON DAM Photographic copy of historic photo, 1939 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. AVALON DAM - Photographic copy of historic photo, 1939 (original print in '1939 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF CCC WORKERS COMPLETING CONSTRUCTION OF SUSPENSION BRIDGE - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  5. 22. Lake Whitney Dam, 1895 Photocopied from an original photograph, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Lake Whitney Dam, 1895 Photocopied from an original photograph, NHCHSL. Shows the rear of the dam building, and on Lake Whitney, Day's Store and Boathouse, and an ice house and steam-powered elevators. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  6. COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (LR) NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (L-R) NORTH EMBANKMENT (MI-98-A), SPILLWAY (MI-98-B), PENSTOCK ENTRANCES, POWERHOUSE (MI-98-C), AND SOUTH EMBANKMENT (MI-98-E). VIEW TO NORTHEAST - Cooke Hydroelectric Plant, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  7. Controlling Works, Section AA at Bear Trap Dam, Section BB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Controlling Works, Section A-A at Bear Trap Dam, Section B-B at Bear-Trap Dam, Section C-C at Sluice Gate - Chicago Sanitary and Ship Canal, Lockport Controlling Works, Illinois Waterway River Mile 293.2, Lockport, Will County, IL

  8. 1. INTAKE DAM NO. 1 AT HEAD OF SYSTEM (600 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INTAKE DAM NO. 1 AT HEAD OF SYSTEM (600 ALTITUDE). CONSTRUCTED WITH CONCRETE AND RUBBLE MASONRY IN 1948. INCLUDES INTAKE SCREEN AT LEFT AND SLUICE GATE AT RIGHT. TWO 8" CAST-IRON PIPES CARRY WATER FROM THE INTAKE TO THE OLD DAM (FORMER INTAKE) DOWN LINE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  9. 3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT LEFT IS RUBBLE MASONRY COVERING INTERSECTION OF THE TWO IRON PIPES FROM NEW DAM ENTERING OLD INTAKE OPENING AT RIGHT IS BOX FLUME LEADING TO AERATOR. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  10. WinDAM B earthern embankment overtopping analysis software

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Windows Dam Analysis Modules (WinDAM) is a modular software application being developed for the analysis of overtopped earth embankments and internal erosion. The development is being carried out in stages. The initial computational model development addressed routing of the flood through the rese...

  11. DESCHUTES PROJECT – WICKIUP DAM – VIEW OF UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM – VIEW OF UPSTREAM FACE FROM RIGHT ABUTMENT. CPS CREW PLACING RIPRAP. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, July 26, 1944 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  12. DESCHUTES PROJECT – WICKIUP DAM – CPS ASSIGNEES PLACING RIPRAP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM – CPS ASSIGNEES PLACING RIPRAP ON UPSTREAM FACE. DOZER SHAPING TOE OF RIPRAP. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, July 26, 1944 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  13. 5. Rear view of lower dam showing crest, masonry pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Rear view of lower dam showing crest, masonry pier and sluice gate. Photograph taken from east bank of the sandy beach. VIEW SOUTH - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  14. 4. Side view of lower dam showing crest, overspill and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Side view of lower dam showing crest, overspill and apron. Photograph taken from east side of Millstone Creek. VIEW SOUTHWEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  15. 3. Side view of lower dam showing crest, overspill and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Side view of lower dam showing crest, overspill and apron. Photograph taken from west side of Millstone Creek. VIEW NORTHEAST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  16. 6. View of lower dam masonry pier which houses the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of lower dam masonry pier which houses the sluice. Photograph taken from cut stone apron edging in Millstone Creek. VIEW WEST. - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  17. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... releases from Stampede Reservoir and other reservoirs, in cooperation with the Federal Water Master,...

  18. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... releases from Stampede Reservoir and other reservoirs, in cooperation with the Federal Water Master,...

  19. 86. LOCK AND DAM NUMBERS 1013, 1618, 2022. INCLUSIVEGASOLINE SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. LOCK AND DAM NUMBERS 10-13, 16-18, 20-22. INCLUSIVE-GASOLINE SERVICE PUMPS (ML-10-37/10/1-FS), December 1938. - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 10, Guttenberg, Clayton County, IA

  20. 3. LOOKING NORTHEAST ACROSS DAM TO GATE CONTROLS, CABLE CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING NORTHEAST ACROSS DAM TO GATE CONTROLS, CABLE CAR ANCHORING, AND, AT RIGHT, HEAD WORKS AT PORTAL OF TUNNEL ZERO FOR DIVERSION OF WATER TO BEAR CREEK/SANTA ANA RIVER CONFLUENCE POOL. - Santa Ana River Hydroelectric System, Santa Ana River Diversion Dam, Redlands, San Bernardino County, CA

  1. 5. VIEW FROM TOP OF DAM ABOVE SPILLWAY LOOKING WESTERLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW FROM TOP OF DAM ABOVE SPILLWAY LOOKING WESTERLY TO NORTHWESTERLY ACROSS RESERVOIR. TWO WATER INTAKE STRUCTURES AND FOOT BRIDGES IN FOREGROUND - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  2. 11. VIEW NORTH ALONG DOWNSTREAM BANK OF DAM FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW NORTH ALONG DOWNSTREAM BANK OF DAM FROM SOUTH SIDE OF CHANNEL ON DOWNSTREAM SIDE OF RESERVOIR - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  3. New flow depth relationships for embankment dam stepped spillway design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common deficiency for embankment dams changing from a low hazard to a high hazard dam is inadequate spillway capacity. Roller compacted concrete (RCC) stepped spillways are a popular method to address this issue. Stepped spillway research has gained momentum in recent years due to the need for d...

  4. Molecular architecture of the Dam1 complex–microtubule interaction

    PubMed Central

    Legal, Thibault; Zou, Juan; Sochaj, Alicja; Rappsilber, Juri

    2016-01-01

    Mitosis is a highly regulated process that allows the equal distribution of the genetic material to the daughter cells. Chromosome segregation requires the formation of a bipolar mitotic spindle and assembly of a multi-protein structure termed the kinetochore to mediate attachments between condensed chromosomes and spindle microtubules. In budding yeast, a single microtubule attaches to each kinetochore, necessitating robustness and processivity of this kinetochore–microtubule attachment. The yeast kinetochore-localized Dam1 complex forms a direct interaction with the spindle microtubule. In vitro, the Dam1 complex assembles as a ring around microtubules and couples microtubule depolymerization with cargo movement. However, the subunit organization within the Dam1 complex, its higher-order oligomerization and how it interacts with microtubules remain under debate. Here, we used chemical cross-linking and mass spectrometry to define the architecture and subunit organization of the Dam1 complex. This work reveals that both the C termini of Duo1 and Dam1 subunits interact with the microtubule and are critical for microtubule binding of the Dam1 complex, placing Duo1 and Dam1 on the inside of the ring structure. Integrating this information with available structural data, we provide a coherent model for how the Dam1 complex self-assembles around microtubules. PMID:26962051

  5. 4. DETAIL VIEW OF ROCKFILL SECTION OF LOWWATER DAM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF ROCKFILL SECTION OF LOW-WATER DAM, LOOKING NORTHEAST (UPSTREAM). CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKES IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  6. 2. Photocopied June 1978 'THE IRON DAM.' VIEW OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied June 1978 'THE IRON DAM.' VIEW OF THE IRON DAM, THE OUTCROPPING OF THE ORE FOUND IN 1826 BY HENDERSON. FURNISHED WATER TO SAWMILL. SOURCE: BENSON LOSSING, THE HUDSON, FROM THE WILDERNESS TO THE SEA, TROY, NEW YORK, 1866, p. 25 - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  7. 23. The Salt River, downstream, from atop Mormon Flat Dam. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. The Salt River, downstream, from atop Mormon Flat Dam. HEFU generator deck is at center bottom. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  8. 3. CREST OF THE SOUTH CHANNEL DAM, SHOWING BLOCK HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CREST OF THE SOUTH CHANNEL DAM, SHOWING BLOCK HOUSE (NOT ORIGINAL) COVERING THE ELECTRICALLY POWERED GATE-LIFTING MECHANISM THAT REPLACED THE ORIGINAL HAND-OPERATED LIFTING DEVICE, LOOKING NORTH. - Washington Water Power Company Post Falls Power Plant, South Channel Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  9. 63. Upstream face of Waddell Dam as viewed from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Upstream face of Waddell Dam as viewed from the west abutment. Crane at center is used to service the penstock intake. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  10. 59. Downstream view of Waddell Dam showing buttress ties, crane, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Downstream view of Waddell Dam showing buttress ties, crane, housing over penstock outlet (left) and storage building (right). Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. 53. Humbug Creek looking downstream from Humbug Diversion Dam. Retaining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Humbug Creek looking downstream from Humbug Diversion Dam. Retaining wall for canal is visible beginning at left center. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  12. 4. William Beardsley standing atop diversion dam. East cableway tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. William Beardsley standing atop diversion dam. East cableway tower and construction camp, Camp Dyer are visible in the foreground. Photographer James Dix Schuyler, 1903 Source: Schuyler report. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  13. 52. Humbug Creek Diversion Dam showing original masonry structure at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Humbug Creek Diversion Dam showing original masonry structure at right and concrete weir at left added later. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  14. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  15. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  16. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  17. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  18. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  19. View of upstream face of Grand Coulee Dam, looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast. This image features a partially cloudy sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  20. 5. LOOKING WEST ALONG THE AXIS OF THE DAM TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING WEST ALONG THE AXIS OF THE DAM TOWARD THE OUTLET STRUCTURE. HAND OPERATED MECHANICAL TAMPERS ARE COMPACTING THE FILL ALONG THE STEEL SHEET PILING CUTOFF WALL IN THE FOREGROUND. Volume XIX, No. 6, April 12, 1940. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  1. VIEW OF WARRIOR RIVER, OLIVER LOCK AND DAM LOOKING NORTHEAST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WARRIOR RIVER, OLIVER LOCK AND DAM LOOKING NORTHEAST, LURLEEN WALLACE BRIDGE IN BACKGROUND, GULF MOBILE & OHIO RAILROAD BRIDGE IN FRONT OF LURLEEN WALLACE BRIDGE, NORTHPORT LEFT SIDE, TUSCALOOSA RIGHT SIDE, UNIVERSITY OF ALABAMA IN RIGHT BACKGROUND. - William Baker Oliver Lock & Dam, Spans Warrior River between Tuscaloosa & Northport, Tuscaloosa, Tuscaloosa County, AL

  2. 2. Rear view of upper dam with Millstone Creek flowing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Rear view of upper dam with Millstone Creek flowing over overspill. Photograph taken from west bank of Millstone Creek. VIEW SOUTHEAST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  3. 16. AERIAL VIEW OF BIG DALTON DAM TAKEN ON 2161962 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. AERIAL VIEW OF BIG DALTON DAM TAKEN ON 2-16-1962 BY L.A. COUNTY PUBLIC WORKS PHOTOGRAPHER SINGER. PHOTO SHOWS THE RESERVOIR NEAR FULL CAPACITY AND WATER BEING RELEASED ON THE DOWNSTREAM SIDE. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  4. 15. UPSTREAM VIEW (PHOTOGRAPHER UNKNOWN) SHOWING BIG DALTON DAM NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. UPSTREAM VIEW (PHOTOGRAPHER UNKNOWN) SHOWING BIG DALTON DAM NEAR FULL CAPACITY AFTER CONSTRUCTION. PICTURE WAS DEVELOPED FROM COPY NEGATIVES WHICH WERE TAKEN ON 2-15-1973 BY PHOTOGRAPHER D. MEIER OF L.A. COUNTY PUBLIC WORKS. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  5. 15. AERIAL VIEW OF BIG TUJUNGA DAM TAKEN ON FEBRUARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. AERIAL VIEW OF BIG TUJUNGA DAM TAKEN ON FEBRUARY 17, 1962, BY L.A. COUNTY PUBLIC WORKS PHOTOGRAPHER WEBB. PHOTO SHOWS THE RESERVOIR NEAR FULL CAPACITY AND WATER BEING RELEASED ON THE DOWNSTREAM SIDE. - Big Tujunga Dam, 809 West Big Tujunga Road, Sunland, Los Angeles County, CA

  6. View of Lake Sabrina Dam showing wooden planks along the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam showing wooden planks along the upstream face and concrete base added in 1916/1917 and showing the iron grating covering upstream side of outlet structure is visible at lower photo center, view northeast - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  7. View of Lake Sabrina Dam and dry Lake Sabrina Basin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and dry Lake Sabrina Basin with the upstream side of the outlet structure visible at photo center, view to north-northwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  8. 54. AVALON DAM (Photographic copy of photo in Reservoirs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. AVALON DAM - (Photographic copy of photo in Reservoirs for Irrigation, Water-Power, and Domestic Water Supply. New York: John Wiley & Sons, 1902.) 'ROCK-FILL IN PROCESS OF CONSTRUCTION' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  9. 21. Mormon Flat Dam and reservoir. HEFU penstock and unit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Mormon Flat Dam and reservoir. HEFU penstock and unit are at center. The original power house is located behind the HEFU penstock. Transformer equipment is located at center right. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  10. 22. Close up view of Mormon Flat Dam, original power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Close up view of Mormon Flat Dam, original power house and HEFU upgrades. Spillway lip, at center, is part of the approach road. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  11. 18. Cross section of Mormon Flat Dam completed. Structure on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Cross section of Mormon Flat Dam completed. Structure on parapet contains the operating mechanisms for the penstock gates. Power house is not yet under construction. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  12. 129. Julian Price Memorial Park. Price Lake Dam. A concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. Julian Price Memorial Park. Price Lake Dam. A concrete slab bridge crosses the top of the dam impounding a forty-seven acre lake. Looking west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  13. Comparison of two process based earthen dam failure computation models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dams are an important part of this nation's infrastructure providing flood control, water supply, irrigation, hydropower, navigation, and recreation. Despite their many beneficial uses, dams present a risk to property and life due to their potential to fail. They are also a part of the nation's ag...

  14. 5. VIEW SHOWING HORSE MESA DAM UNDER CONSTRUCTION. THREE PENSTOCKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING HORSE MESA DAM UNDER CONSTRUCTION. THREE PENSTOCKS ARE AT CENTER AND CONCRETE TOWER LINES. AGGREGATE OPERATION IS VISIBLE ABOVE CONSTRUCTION SITE July 22, 1926 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  15. "No. 146. Looking west along dam. East side abutment." Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "No. 146. Looking west along dam. East side abutment." Note sluiceway and headgates at center rear of photograph; cofferdam at center right; and the screening and mixing plant at lower right. Rail cars are on the railroad grade in background - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  16. DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING DOWNSTREAM; AFTER COMPLETION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING DOWNSTREAM; AFTER COMPLETION OF MONTAG & SONS CONTRACT. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, November 24, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  17. Geophysical methods for the assessment of earthen dams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dams and levees are an integral part of the fluvial system in watersheds. Their stability is of utmost concern to the Nation and to those directly impacted should failure occur. There are some 88,000 dams and 110,000 miles of levees in the USA. Many of those are earthen embankments and structures su...

  18. Melioidosis, Northeastern Brazil

    PubMed Central

    Rolim, Dionne Bezerra; Vilar, Dina Cortez Feitosa Lima; Sousa, Anastacio Queiroz; Miralles, Iracema Sampaio; Almeida de Oliveira, Diana Carmen; Harnett, Gerry; O'Reilly, Lyn; Howard, Kay; Sampson, Ian

    2005-01-01

    Melioidosis was first recognized in northeastern Brazil in 2003. Confirmation of additional cases from the 2003 cluster in Ceará, more recent cases in other districts, environmental isolation of Burkholderia pseudomallei, molecular confirmation and typing results, and positive serosurveillance specimens indicate that melioidosis is more widespread in northeastern Brazil than previously thought. PMID:16229782

  19. The Three Gorges Dam Affects Regional Precipitation

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Zhang, Qiang; Jiang, Zhihong

    2006-01-01

    Issues regarding building large-scale dams as a solution to power generation and flood control problems have been widely discussed by both natural and social scientists from various disciplines, as well as the policy-makers and public. Since the Chinese government officially approved the Three Gorges Dam (TGD) projects, this largest hydroelectric project in the world has drawn a lot of debates ranging from its social and economic to climatic impacts. The TGD has been partially in use since June 2003. The impact of the TGD is examined through analysis of the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) rainfall rate and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and high-resolution simulation using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). The independent satellite data sets and numerical simulation clearly indicate that the land use change associated with the TGD construction has increased the precipitation in the region between Daba and Qinling mountains and reduced the precipitation in the vicinity of the TGD after the TGD water level abruptly rose from 66 to 135 m in June 2003. This study suggests that the climatic effect of the TGD is on the regional scale (approx.100 km) rather than on the local scale (approx.10 km) as projected in previous studies.

  20. Channel evolution on the dammed Elwha River, Washington, USA

    USGS Publications Warehouse

    Draut, A.E.; Logan, J.B.; Mastin, M.C.

    2011-01-01

    Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.

  1. Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations

    USGS Publications Warehouse

    Minsley, Burke J.; Ikard, Scott

    2010-01-01

    Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and

  2. Japanese experiences to enhance the World Commission on Dams guidelines

    NASA Astrophysics Data System (ADS)

    Nakayama, Mikiyasu; Fujikura, Ryo; Yoshida, Tsuneaki

    2002-08-01

    The impact of large dam construction projects on the human environment, and particularly on resettlers, is often the main reason for opposition toward large dam construction projects. The World Commission on Dams (WCD) published its only and final report Dams and Development in November 2000. The report contains a set of 26 guidelines. The WCD itself mentioned that the guidelines are not intended as a blueprint, and that these should be used as a starting point for discussion. Despite the clarification by the WCD, some non-governmental organizations argue that these guidelines must be immediately adopted for all future large dam projects. The authors assume that only several of these guidelines are operational and many of these are either too experimental or theoretical to be put into use. Furthermore, some seemingly ready for operation guidelines still need to be enhanced to be really operational in the real world. About 2000 large dams were constructed in Japan after World War II. Various principles and mechanisms were then developed to better address the issues related to involuntary resettlement. The knowledge accumulated through large dam construction projects in Japan may be applied to other countries. The aim of this paper is to identify the lessons, out of the experiences gained in Japan through large dam construction projects in the past, which could be applicable for future large dam construction projects in other nations. The socio-economic setting, as well as the legal framework, in Japan differs much from those in the developing world. Nevertheless, the following aspects of the experiences gained in Japan are found to be both applicable and useful for future large dam construction projects abroad: (a) integrity of community in the negotiation process, (b) provision of alternative occupations, (c) funding mechanism in the post-project period, (d) measures needed during planning process; and (e) making resettlers shareholders. These lessons may prove

  3. A Vulnerability Assessment Approach for Dams of Mississippi

    NASA Astrophysics Data System (ADS)

    Kuszmaul, J. S.; Gunter, B.; McGregor, G.; Holt, R. M.; Pickens, J.; Holtz, T.; Jones, T.; Phillips, P.

    2007-12-01

    As part of a state-wide effort to characterize the vulnerability of Mississippi's dams, we are developing a new set of vulnerability assessment tools. Our vulnerability assessment methods will consider earlier attempts to develop risk indexing methods for dams, but will be designed to be applied to Mississippi's entire database of over 3,700 dams. Unlike earlier efforts to dams, which emphasized hazards posed by the dams, our methods will be designed to consider intrinsic and extrinsic vulnerability, and consider consequences as well. Intrinsic sources of vulnerability consider such factors as the potential for unstable slopes, piping, and spillway inadequacy. Extrinsic sources of vulnerability will include features such as the potential for intentional or unintentional human acts. Other factors that will be included will be the potential for neglect of maintenance of the dam and susceptibility to interference from wildlife. Consequences will be assessed by considering the downstream population and economic resources that may be at risk due to an uncontrolled release of the reservoir. The analysis of these vulnerabilities and consequences is being calculated using a GIS-based database of all of Mississippi's dams along with population distribution, terrain, and economic resources across the state. Conventional methods of analysis of a dam breach or other uncontrolled release will still be necessary, but the extent to which downstream features and population are affected can be more readily identified. This approach facilitates assessment and decision making on a large dam inventory to permit resources within the state to be directed efficiently to dams that merit attention.

  4. Check dam and polyacrylamide performance under simulated stormwater runoff.

    PubMed

    Kang, Jihoon; McCaleb, Melanie M; McLaughlin, Richard A

    2013-11-15

    High levels of turbidity and fine suspended sediments are often found in stormwater discharges from construction sites even when best management practices (BMPs) for sediment control are in place. This study evaluated turbidity reduction by three check dam types: 1) rock check dam representing a standard BMP, 2) excelsior wattle representing a fiber check dam (FCD), and 3) rock check dam wrapped with excelsior erosion control blanket (rock + excelsior ECB) representing an alternative FCD. Three check dams (all same type) were installed in a lined, 24-m ditch on a 5-7% slope and three consecutive simulated stormwater flows were run in the ditch. Additional tests were performed by adding granular polyacrylamide (PAM) on the check dams in the same manner using two sediment sources differing in clay content. Without PAM treatment, significantly higher effluent turbidity (>900 nephelometric turbidity units (NTU)) exited the ditch with rock check dams than with excelsior wattles or rock + excelsior ECBs (<440 NTU). The extent of sediment deposition between the check dam types was in the order of excelsior wattle > rock + excelsior ECB > rock check dam, indicating better water pooling behind the wattle. The PAM treatment reduced turbidity substantially (>75% relative to no PAM treatment) for all check dam types and it was very effective in excelsior wattles (<57 NTU) and rock + excelsior ECBs (<90 NTU) even during the third storm event. This study demonstrates that the passive treatment of runoff with PAM on FCDs (or rock + excelsior ECB) in construction site ditches can be very effective for sediment retention and turbidity reduction.

  5. 76 FR 34799 - Permanent Dam Safety Modification at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... possible during a very low-risk probable maximum flood event. The downstream integrity of the dam... an environmental review (in the form of an environmental assessment or an environmental impact... structural integrity of TVA dams and the safety of the public. Periodic updates regarding maximum...

  6. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  7. Factors influencing movement of two migratory fishes within the tailrace of a large neotropical dam and their implications for hydropower impacts

    USGS Publications Warehouse

    Suzuki, F. M.; Dunham, Jason; Silva, L. G. M.; Alves, C. B. M.; Pompeu, P.S.

    2016-01-01

    Fish attempting to move upstream through hydroelectric dams can be trapped and killed in turbines. Understanding fish movement patterns can provide useful insights for how to manage dam operations to minimize fish kill in turbines. We evaluated the movements of two migratory fish (Curimba—Prochilodus argenteus and Mandi—Pimelodus maculatus) using acoustic telemetry in the tailrace of Três Marias Dam (São Francisco River, Brazil) from 31 October 2011 to 16 February 2012. The majority of tagged fish left the tailrace in less than one week; however, some individuals returned, performing several visits to the tailrace. Mandi remained longer in the tailrace than Curimba. The number of visits was influenced by diel period, turbine and spillway discharge. Although the diel period was the only important contributor to the visits performed by Curimba, the movements of Mandi were significantly influenced by three factors. We found that whereas Curimba was predominantly diurnal, Mandi showed nocturnal habits. Additionally, visits of Mandi were significantly greater during higher turbine and spillway discharge. We discuss the implications of these results for understanding fish movements in the Três Marias Dam tailrace and their potential implications for adapting hydroelectric operations to minimize fish kills.

  8. Natural Dams as Tipping Points in Himalayan Erosion (Invited)

    NASA Astrophysics Data System (ADS)

    Korup, O.

    2010-12-01

    Natural dams result from hillslope, glacial, volcanic, and other sediment inputs that temporarily overwhelm the transport capacity along a given river reach. Such blockages are tipping points in which fluvial erosion and sediment transport rapidly switch to aggradation and vice versa even in the most powerful of rivers, thus eventually modulating both rates and duration of river incision into bedrock. Conspicuous clusters of hundreds of large natural dams occur in several major watersheds draining the Himalayan syntaxes and the southern Himalayan front, including the Indus, Yarlung Tsangpo, Sutlej, Kali Gandaki, and Arun. The Indus features the largest concentration of giant landslide dams known worldwide, whereas the Yarlung Tsangpo seems largely devoid of comparable landslide dams. Glacial dams such as river-blocking moraines are limited to headwaters where topography intersects the regional snowline. By forming dams and protective alluvial fill, glaciers and landslides help retard headward fluvial bedrock incision into parts of the Tibetan Plateau interior, limiting its dissection in addition to effects of upstream aridity and localized rock uplift. A growing number of radiometric age constraints on widely exposed lake sediments and backwater terraces support the notion that large tracts of these rivers had been repeatedly ponded for as long as several tens of thousands of years during the Late Quaternary. High local topographic relief in buffers along these rivers characterizes conspicuous knickzones, and helps pinpoint first-order differences in the type and potential longevity of these natural dams. Patterns of low-temperature thermochronometric data corroborate that peaks in mean local relief, spatially coinciding with peaks in long-term exhumation rates, act as a regionally consistent downstream limit to the preservation potential of natural dams. If indeed glacier and landslide dams act as a negative feedback in response to fluvial dissection of parts of

  9. Uranium deposits of Brazil

    SciTech Connect

    1991-09-01

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  10. Characterization of colostrum from dams of BLV endemic dairy herds.

    PubMed

    Gutiérrez, Gerónimo; Lomonaco, Marina; Alvarez, Irene; Fernandez, Fernando; Trono, Karina

    2015-06-12

    Bovine Leukemia Virus (BLV) is endemic in Argentina, where the individual prevalence is higher than 80% in dairy farms. The aim of this work was to find preliminary evidence to know if the high level of infection of the dam would implicate a higher challenge to her own offspring. We collected 65 sets of samples consisting of dam's blood and colostrum from two heavily infected dairy farms, and investigated the correlation between the dam's blood proviral load and the presence of provirus in colostrum. We also described the dual antibody/provirus profile in the colostrum. Provirus was detected in 69.23% of the colostrum samples, mostly from dams with a high proviral load, 36/45 (80%). Colostrum proviral load was significantly higher in dams with high blood proviral load (p<0.0001). Provirus was detected in colostrum samples all along the antibody distribution, even in those with a low amount of antibodies. These results show that even when high blood proviral load dams offer higher levels of infected cells to their offspring through colostrum they also offer higher levels of protection of antibodies. On the contrary, low blood proviral load dams also offer infected cells but a poor content of antibodies, suggesting that these animals could play an important role in the epidemiological cycle of transmission.

  11. Responses of riparian reptile communities to damming and urbanization

    USGS Publications Warehouse

    Hunt, Stephanie D.; Guzy, Jacquelyn C.; Price, Steven J.; Halstead, Brian J.; Eskew, Evan A.; Dorcas, Michael E.

    2013-01-01

    Various anthropogenic pressures, including habitat loss, threaten reptile populations worldwide. Riparian zones are critical habitat for many reptile species, but these habitats are also frequently modified by anthropogenic activities. Our study investigated the effects of two riparian habitat modifications-damming and urbanization-on overall and species-specific reptile occupancy patterns. We used time-constrained search techniques to compile encounter histories for 28 reptile species at 21 different sites along the Broad and Pacolet Rivers of South Carolina. Using a hierarchical Bayesian analysis, we modeled reptile occupancy responses to a site's distance upstream from dam, distance downstream from dam, and percent urban land use. The mean occupancy response by the reptile community indicated that reptile occupancy and species richness were maximized when sites were farther upstream from dams. Species-specific occupancy estimates showed a similar trend of lower occupancy immediately upstream from dams. Although the mean occupancy response of the reptile community was positively related to distance downstream from dams, the occupancy response to distance downstream varied among species. Percent urban land use had little effect on the occupancy response of the reptile community or individual species. Our results indicate that the conditions of impoundments and subsequent degradation of the riparian zones upstream from dams may not provide suitable habitat for a number of reptile species.

  12. Documented historical landslide dams from around the world

    USGS Publications Warehouse

    Costa, John E.; Schuster, Robert L.

    1991-01-01

    This data compilation consists of dBase IV1 data files of the location, date, triggering mechanism, kind, size, failure time and mechanism, breach dimensions, subsequent controls, materials, and references for 463 historical landslide dams and associated natural reservoirs that have been recorded throughout the World. The data base presented in this report is a compilation of information on the characteristics of 463 landslide dams from around the World. It forms a basis on which to assess potential threats from existing landslide dams, or newly-formed landslide dams. The data base includes only landslide dams that have formed in historical times - that is, those formed during times when humans were able to record their occurrence, and the information transferred through various means of written and/or oral documentation. There have been far more prehistoric landslide dams about which relatively little is known. None of these is included in this data base. The focus on historical landslide dams allows insights into this natural process that will aid in understanding their role as a significant geologic process in recent Earth history.

  13. The collapse of the Sella Zerbino gravity dam.

    PubMed

    Petaccia, G; Lai, C G; Milazzo, C; Natale, L

    2016-08-23

    When a severe flood wave completely filled the Ortiglieto reservoir on August 13, 1935, the 14 m high "Sella Zerbino" secondary dam failed catastrophically causing > 100 casualties. Both of the dams, Sella Zerbino-Zerbino Saddle and Bric Zerbino-Zerbino Peak (Fig. 1) were overtopped but only the Sella Zerbino failed whereas the main barrage did not suffer any damage. The lawsuit that followed this tragic event ended with a full acquittal of the dam's designers since the plaintiff experts succeeded in demonstrating that the collapse was due to an extreme rainfall storm of unpredictable intensity. The case was then officially closed and still today the failure of the Sella Zerbino dam is attributed to the unpredictable hydrological event. Recently, Natale and Petaccia (2013) re-examined the case assessing the capacity of the flood spillways which equipped the Bric Zerbino dam. This paper thoroughly reviews the mechanics of the collapse of the Sella Zerbino dam focusing on the stability of the structure. The water pressure underneath the dam and the poor quality of the foundation rock is believed to have played a major role in the sequence of events that ended in the collapse of the barrage.

  14. Sediment Archives and the Reconstruction of Landslide Dams

    NASA Astrophysics Data System (ADS)

    Higgitt, David

    2015-04-01

    River-blocking landslides create transient lakes which act as impoundments accumulating sediment until the landslide dam is breached. Seismic events, such as the Wenchuan Earthquake in Sichuan, China (2008) trigger multiple landslides resulting in widespread dam formation which poses a considerable hazard. Though there are many descriptions of contemporary and historic landslide dams in the literature, the influence of dam formation on the development of the fluvial landscape has not been fully explored. The sediment accumulation can act as a buffer to arrest rates of bedrock incision and control the distribution on knick points in the river system. The remnant sediment deposited in landslide dam lakes can act as an archive retaining information about sediment source areas, sedimentation processes and accumulation rates as well as providing field evidence to infer the locations of the landslide dam and the extent and dimensions of the lakes. However, in mountainous terrain preservation and exposure of palaeo-lake sediments is limited and may have been overlooked. The recent discovery of a giant palaeo-lake on the main branch of the Yangtze River in Yunnan, China illustrates this point and suggests that the significance of the landslide dam process may have been under-estimated

  15. Initial Fluvial Response to the Removal of Oregon's Marmot Dam

    NASA Astrophysics Data System (ADS)

    Major, Jon J.; O'Connor, Jim E.; Grant, Gordon E.; Spicer, Kurt R.; Bragg, Heather M.; Rhode, Abagail; Tanner, Dwight Q.; Anderson, Chauncey W.; Wallick, J. Rose

    2008-07-01

    A temporary, 14-meter-high earthen cofferdam standing in place of Marmot Dam was breached on 19 October 2007, allowing the 80-kilometer-long Sandy River to flow freely from Mount Hood, Oreg., to the Columbia River for the first time in nearly 100 years. Marmot Dam is one of the largest dams in the western United States (in terms of height and volume of stored sediment) to have been removed in the past 40 years, and its removal exposed approximately 730,000 cubic meters of stored sand and gravel to erosion and transport by the newly energetic mountain river. At the time, its breach represented the greatest release of sediment from any U.S. dam removal. (The March 2008 breaching of Montana's Milltown Dam exposed about 5-10 times as much sediment to potential erosion.) Ongoing, intensive monitoring of erosion, transport, and deposition of that sediment is providing the first detailed data from such a voluminous dam-removal sediment release, which will provide a basis for evaluating physical and numerical modeling of the effects of future dam removals from mountain rivers.

  16. Verifying Pressure of Water on Dams, a Case Study

    PubMed Central

    Bayrak, Temel

    2008-01-01

    Sensing and monitoring deformation pattern of dams is often one of the most effective ways to understand their safety status. The main objective of the present study is to find the extent to which rising reservoir level affects the mechanism of deformation of the Yamula dam under certain changes in the reservoir level conditions during the first filling period. A new dynamic deformation analysis technique was developed to analyze four geodetic monitoring records consisting of vertical and horizontal displacements of nine object points established on the dam and six reference points surrounding it, to see whether the rising reservoir level is responsible for the vertical and horizontal deformations during the first filling period. The largest displacements were determined in the middle points of the dam construction. There is an apparent linear relationship between the dam subsidence and the reservoir level. The dynamic deformation model was developed to model this situation. The model infers a causative relationship between the reservoir level and the dam deformations. The analysis of the results determines the degree of the correlation between the change in the reservoir level and the observed structural deformation of the dam. PMID:27873819

  17. Landscape change and hydrologic alteration associated with dam construction

    NASA Astrophysics Data System (ADS)

    Zhao, Qinghe; Liu, Shiliang; Deng, Li; Dong, Shikui; Cong; Wang; Yang, Zhifeng; Yang, Juejie

    2012-06-01

    Characterizing the landscape changes and hydrologic alterations associated with dam construction is very important for watershed management. This paper presents a case study of the Lancang River in Yunnan Province following dam construction. The landscape patterns and dynamics indicate the fragmentation, shape, and diversity of the river in 1980, 1990, and 2000. The Range of Variability Approach (RVA) is used to evaluate the degree of hydrologic alteration (DHA) using 44 years (1957-2000) of hydrologic data. The results indicate that the midstream and downstream landscapes were affected by dam construction, becoming more complex and fragmented during the 1980-2000 period; the upstream area was not influenced by dam construction and the reservoir impoundment exhibited less change. The variability in maximum runoff occurrence in the post-dam period was less than that in the pre-dam period. The integrated DHAs of the Jiuzhou (upstream), Gajiu (midstream), and Yunjinghong (downstream) stations were relatively low, reaching 26.28%, 33.40%, and 37.14%, respectively. However, the alteration became obvious in the midstream area, and the situation worsened when the river was simultaneously influenced by dam construction and other human activities (downstream). The results of the regression analysis show strong relationships of landscape metric changes with DHA, and the forestland and water areas with DHA. The DHA increased along with the aggravation of landscape fragmentation, the complexity of the landscape shape, and the diversification of the landscape.

  18. Brazil: A Country Study.

    DTIC Science & Technology

    1982-04-19

    7 AOAB B89 ARMY WAR COLL CARLISLE BARRACKS PA F/G 5/5 BRAZIL : A COUNTRY STUOY.(Ul UNLSIID APR 82 W L STEININSER I U LASIEEEEEEEE S E C U R I T Y...COVERED Brazil ; A Country Study Student Essay G. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(&) a. CONTRACT OR GRANT NUMBER(s) W. L. Steininger Jr. Colonel...reverse aide if necessy and Identify by block number) "Assesses, the political, economic and military factors in Brazil highlighting the Lountry’s drive

  19. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    NASA Astrophysics Data System (ADS)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  20. Minidoka Dam Wildlife Impact Assessment: Final Report.

    SciTech Connect

    Martin, Robert C.; Meuleman, G. Allyn

    1989-03-01

    A wildlife impact assessment has been developed for the US Bureau of Reclamation's Minidoka Dam and Reservoir in south central Idaho. This assessment was conducted to fulfill requirements of the Fish and Wildlife Program. Specific objectives of this study included the following: select target wildlife species, and identify their current status and management goals; estimate the net effects on target wildlife species resulting from hydroelectric development and operation; recommend protection, mitigation, and enhancement goals for target wildlife species affected by hydroelectric development and operation; and consult and coordinate impact assessment activities with the Northwest Power Planning Council, Bonneville Power Administration, US Bureau of Reclamation, Bureau of Land Management, Shoshone-Bannock Tribes, US Fish and Wildlife Service, Pacific Northwest Utilities Conference Committee, and other entities expressing interest in the project. 62 refs., 2 figs., 11 tabs.

  1. First-year dam removal activities in the Elwha River - dam removal, sediment dispersal, and fish relocations

    NASA Astrophysics Data System (ADS)

    Duda, J. J.; McMillan, J. R.; Moses, R.; McHenry, M.; Pess, G. R.; Brenkman, S.; Peters, R.; Zimmerman, M.; Warrick, J. A.; Curran, C. A.; Magirl, C. S.; Beirne, M.; Rubin, S.

    2012-12-01

    After years of anticipation, volumes of Environmental Impact Statements, unprecedented mitigation projects, and the multifaceted collection of pre-dam removal data, the deconstruction phase of the Elwha River restoration project officially began on September 17th, 2011. With their simultaneous decommissioning, the removal of the 64 m tall Glines Canyon Dam and 33 m tall Elwha Dam represents one of the largest such projects of its kind in North America. The nearly 19 million m3 of sediment residing in the dammed reservoirs is being eroded by the river in one of the largest controlled releases of sediment into a river and marine waters in recorded history. The release of sediment and the halting of deconstruction and reservoir draw down activities during "fish windows" are largely determining a deconstruction schedule expected to last about 2 years. High suspended sediment concentrations, modeled to exceed 10,000 mg/L during the highest flows and to exceed 500 mg/L for 39% of the time in year 4 of the project (15% is the recorded background level entering the upper reservoir), could last for up to 3-5 years following dam removal depending on hydrological conditions. Anadromous fish, including three federally listed species (Puget Sound Chinook salmon, steelhead, and bull trout), reside in the river downstream of the Elwha dam for part of their life cycle. All five species of Pacific salmon and steelhead, either locally extirpated (sockeye) or persisting below the impassable Elwha Dam in degraded spawning and rearing habitat, are expected to recolonize the watershed to degrees that will vary spatially and temporally due to life history characteristics and levels of human intervention. During the first year of dam removal, adult coho salmon and steelhead were relocated from areas of high turbidity downstream of the Elwha Dam site to two tributaries upstream, where some of them successfully spawned. Additionally, steelhead were observed to naturally migrate past the

  2. National Program for Inspection of Non-Federal Dams. Northampton Reservoir (Upper Dam) (MA 00521), Connecticut River Basin, Whately, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    Core Wall Earth X Conc. M4asonry X Stone Masonry - * S@ Timber Rockfill Other Stone paverl slope upstream-- Dam Type: Gravity X Straight x Curved...foot long earth embankment dam with a concrete spillway. The dam was designed in the mid 1960’s and Constructed in 1970. The engineering data made...Reservoir Lower Dam . b. Dam and Appurtenances The dam is a 940’ long, 80’ high earth embankment structure having a riprap upstream face sloping at 2:1 and

  3. National Dam Safety Program. Structure Number 1 - Williams Creek Dam (MO 10728), Missouri - Kansas City Basin, Clay County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    The flows over the dam crest were based on the broad - crested weir equation Q = CLH 3/2 , where H is the head on the dam crest ; the coefficient C, which...vegetated with grasses. Rough measurements along the crest of the dam indicate several places where the elevations are lower than the ends of the dam...the phreatic lime or other seepage on the downstream slope or along the toe of the dam. Rough measurements of the profiles of the crest of the dam and

  4. National Dam Inspection Program. Broad Creek Dam (NDI-Number-MD-00017), Susquehana River Basin, Broad Creek, Harford County, Maryland. Phase I Inspection Report.

    DTIC Science & Technology

    1979-08-01

    4 miles upstream from Conowingo Dam . c. Size Classification. The maximum height of the dam is 36.4 feet. The reservoir volume to the top of the dam at...159.0 HYDROMETEOROLOGICAL GAGES: a. Type daily totals b. Location Conowingo Dam c. Records 44 yrs. of record B-1 1 lam CN r-4 -4 .4 1 -4 :3 44 N C~4 q...G7NATIONAL DAM INSPECTION PROGRAM. BROAD CREEK DAM (NDI NUMBER-MD--ETC(U) UNCLASSIFIED mnmmmmmmmu miinihEEEEEiA JIB125 1.4~~~flf~~ MICRO~COPY R[So

  5. National Program for Inspection of Non-Federal Dams. Fitchville Pond Dam (CT 00510), Thames River Basin, Bozrah, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1979-06-01

    AD-A44 698 NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS i/ • FITCHVILLE POND DRN C..(U) CORPS OF ENGINEERS NALTHAM MA NEN ENGLAND DIV JUN 79...BOZRAH, CONNECTICUT * 00 7 FITCHVILLE POND DAM I CT 00510 PHASE 1 INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM DT!C DEPARTMENT OF THE ARMY NEW...Ceoehwe en ,eveeee aide lt noeeasO Md Identlp b, bloci me.) Fitchville Pond Dam is a stone masonry and concrete gravity dam. The dam has a height of

  6. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    SciTech Connect

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at

  7. Earthen embankment overtopping analysis using the WinDAM B software

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 11,000 earthen embankment dams nationwide were constructed with Federal involvement during the last seventy years. Many dams were constructed in rural areas and originally classified as low hazard. With increased development near the dams and changing dam safety criteria the hazard classifica...

  8. The use of seismic tomograms for the identification of internal problems with earthen dams and levees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to the National Inventory of dams (NID, 2009), out of the 84,134 dams in the US, more than 87% (73,423) are earthen dams. The majority of these earthen dams are past or approaching their design life expectancy of 50 years. According to the National committee on Levee Safety (NCLS, 2009),...

  9. TSSGNEO suggestions for refinement of safety criteria for dam at the Sayano-Shushenskaya HPP

    SciTech Connect

    Savich, A. I.; Gaziev, E. G.

    2013-09-15

    Analysis of radial-displacements of the dam, measured by direct and inverted plumb lines, indicates that curves of the variation in radial displacements of the dam at different elevations make it possible to plot diagrams of increases in the radial displacement over the entire height of the dam, i.e., inclines of the axis of the dam to the vertical.

  10. 75 FR 22122 - Gibson Dam Hydroelectric Company, LLC; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Energy Regulatory Commission Gibson Dam Hydroelectric Company, LLC; Notice of Application Accepted for... Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company, LLC. e. Name of Project: Gibson Dam Hydroelectric Project....

  11. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  12. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  13. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  14. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  15. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  16. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  17. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  18. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  19. River turbidity and sediment loads during dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.

    2012-01-01

    Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.

  20. Risk Perception Analysis Related To Existing Dams In Italy

    NASA Astrophysics Data System (ADS)

    Solimene, Pellegrino

    2013-04-01

    In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned