Sample records for iter design fluence

  1. Low-temperature tensile strength of the ITER-TF model coil insulation system after reactor irradiation

    NASA Astrophysics Data System (ADS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.

    The windings of the superconducting magnet coils for the ITER-FEAT fusion device are affected by high mechanical stresses at cryogenic temperatures and by a radiation environment, which impose certain constraints especially on the insulating materials. A glass fiber reinforced plastic (GFRP) laminate, which consists of Kapton/R-glass-fiber reinforcement tapes, vacuum-impregnated in a DGEBA epoxy system, was used for the European toroidal field model coil turn insulation of ITER. In order to assess its mechanical properties under the actual operating conditions of ITER-FEAT, cryogenic (77 K) static tensile tests and tension-tension fatigue measurements were done before and after irradiation to a fast neutron fluence of 1×10 22 m -2 ( E>0.1 MeV), i.e. the ITER-FEAT design fluence level. We find that the mechanical strength and the fracture behavior of this GFRP are strongly influenced by the winding direction of the tape and by the radiation induced delamination process. In addition, the composite swells by 3%, forming bubbles inside the laminate, and loses weight (1.4%) at the design fluence.

  2. ITER structural design criteria and their extension to advanced reactor blankets*1

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Kalinin, G.

    2000-12-01

    Applications of the recent ITER structural design criteria (ISDC) are illustrated by two components. First, the low-temperature-design rules are applied to copper alloys that are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures. Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. Next, the high-temperature-design rules of ISDC are applied to evaporation of lithium and vapor extraction (EVOLVE), a blanket design concept currently being investigated under the US Advanced Power Extraction (APEX) program. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method.

  3. Physics and Engineering Design of the ITER Electron Cyclotron Emission Diagnostic

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Austin, M. E.; Houshmandyar, S.; Phillips, P. E.; Beno, J. H.; Ouroua, A.; Weeks, D. A.; Hubbard, A. E.; Stillerman, J. A.; Feder, R. E.; Khodak, A.; Taylor, G.; Pandya, H. K.; Danani, S.; Kumar, R.

    2015-11-01

    Electron temperature (Te) measurements and consequent electron thermal transport inferences will be critical to the non-active phases of ITER operation and will take on added importance during the alpha heating phase. Here, we describe our design for the diagnostic that will measure spatial and temporal profiles of Te using electron cyclotron emission (ECE). Other measurement capability includes high frequency instabilities (e.g. ELMs, NTMs, and TAEs). Since results from TFTR and JET suggest that Thomson Scattering and ECE differ at high Te due to driven non-Maxwellian distributions, non-thermal features of the ITER electron distribution must be documented. The ITER environment presents other challenges including space limitations, vacuum requirements, and very high-neutron-fluence. Plasma control in ITER will require real-time Te. The diagnosic design that evolved from these sometimes-conflicting needs and requirements will be described component by component with special emphasis on the integration to form a single effective diagnostic system. Supported by PPPL/US-DA via subcontract S013464-C to UT Austin.

  4. Qualification of a cyanate ester epoxy blend supplied by Japanese industry for the ITER TF coil insulation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.; Knaster, J.; Savary, F.

    2012-06-01

    During the last years, two cyanate ester epoxy blends supplied by European and US industry have been successfully qualified for the ITER TF coil insulation. The results of the qualification of a third CE blend supplied by Industrial Summit Technology (IST, Japan) will be presented in this paper. Sets of test samples were fabricated exactly under the same conditions as used before. The reinforcement of the composite consists of wrapped R-glass / polyimide tapes, which are vacuum pressure impregnated with the resin. The mechanical properties of this material were characterized prior to and after reactor irradiation to a fast neutron fluence of 2×1022m-2 (E>0.1 MeV), i.e. twice the ITER design fluence. Static and dynamic tensile as well as static short beam shear tests were carried out at 77 K. In addition, stress strain relations were recorded to determine the Young's modulus at room temperature and at 77 K. The results are compared in detail with the previously qualified materials from other suppliers.

  5. An overview of ITER diagnostics (invited)

    NASA Astrophysics Data System (ADS)

    Young, Kenneth M.; Costley, A. E.; ITER-JCT Home Team; ITER Diagnostics Expert Group

    1997-01-01

    The requirements for plasma measurements for operating and controlling the ITER device have now been determined. Initial criteria for the measurement quality have been set, and the diagnostics that might be expected to achieve these criteria have been chosen. The design of the first set of diagnostics to achieve these goals is now well under way. The design effort is concentrating on the components that interact most strongly with the other ITER systems, particularly the vacuum vessel, blankets, divertor modules, cryostat, and shield wall. The relevant details of the ITER device and facility design and specific examples of diagnostic design to provide the necessary measurements are described. These designs have to take account of the issues associated with very high 14 MeV neutron fluxes and fluences, nuclear heating, high heat loads, and high mechanical forces that can arise during disruptions. The design work is supported by an extensive research and development program, which to date has concentrated on the effects these levels of radiation might cause on diagnostic components. A brief outline of the organization of the diagnostic development program is given.

  6. Fast determination of the spatially distributed photon fluence for light dose evaluation of PDT

    NASA Astrophysics Data System (ADS)

    Zhao, Kuanxin; Chen, Weiting; Li, Tongxin; Yan, Panpan; Qin, Zhuanping; Zhao, Huijuan

    2018-02-01

    Photodynamic therapy (PDT) has shown superiorities of noninvasiveness and high-efficiency in the treatment of early-stage skin cancer. Rapid and accurate determination of spatially distributed photon fluence in turbid tissue is essential for the dosimetry evaluation of PDT. It is generally known that photon fluence can be accurately obtained by Monte Carlo (MC) methods, while too much time would be consumed especially for complex light source mode or online real-time dosimetry evaluation of PDT. In this work, a method to rapidly calculate spatially distributed photon fluence in turbid medium is proposed implementing a classical perturbation and iteration theory on mesh Monte Carlo (MMC). In the proposed method, photon fluence can be obtained by superposing a perturbed and iterative solution caused by the defects in turbid medium to an unperturbed solution for the background medium and therefore repetitive MMC simulations can be avoided. To validate the method, a non-melanoma skin cancer model is carried out. The simulation results show the solution of photon fluence can be obtained quickly and correctly by perturbation algorithm.

  7. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    PubMed

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.

  8. Progress in extrapolating divertor heat fluxes towards large fusion devices

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.

  9. ITER-FEAT operation

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.

  10. Development of the prototype pneumatic transfer system for ITER neutron activation system.

    PubMed

    Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  11. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  12. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGES

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He + at 1173 K to fluences between 3 × 10 21 and 6 × 10 22 He/m 2. The morphologies that developedmore » after low-fluence bombardment were different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  13. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    PubMed

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  14. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  15. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  16. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    NASA Astrophysics Data System (ADS)

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  17. Synchronized fusion development considering physics, materials and heat transfer

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.

    2017-12-01

    Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q  =  10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.

  18. Scientific and technical challenges on the road towards fusion electricity

    NASA Astrophysics Data System (ADS)

    Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.

    2017-10-01

    The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.

  19. Magnet Design Considerations for Fusion Nuclear Science Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Kessel, C.; El-Guebaly, L.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  20. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  1. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  2. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  3. SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seliger, T; Engenhart-Cabillic, R; Czarnecki, D

    2016-06-15

    Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry andmore » its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun; Bannister, Mark E.; Meyer, Fred W.

    Here, in a magnetic fusion energy (MFE) device, the plasma-facing materials (PFMs) will be subjected to tremendous fluxes of ions, heat, and neutrons. The response of PFMs to the fusion environment is still not well defined. Tungsten metal is the present candidate of choice for PFM applications such as the divertor in ITER. However, tungsten's microstructure will evolve in service, possibly to include recrystallization. How tungsten's response to plasma exposure evolves with changes in microstructure is presently unknown. In this work, we have exposed hot-worked and recrystallized tungsten to an 80 eV helium ion beam at a temperature of 900more » °C to fluences of 2 × 10 23 or 20 × 10 23 He/m 2. This resulted in a faceted surface structure at the lower fluence or short but well-developed nanofuzz structure at the higher fluence. There was little difference in the hot-rolled or recrystallized material's near-surface (≤50 nm) bubbles at either fluence. At higher fluence and deeper depth, the bubble populations of the hot-rolled and recrystallized were different, the recrystallized being larger and deeper. This may explain previous high-fluence results showing pronounced differences in recrystallized material. The deeper penetration in recrystallized material also implies that grain boundaries are traps, rather than high-diffusivity paths.« less

  5. Dielectric strength, swelling and weight loss of the ITER Toroidal Field Model Coil insulation after low temperature reactor irradiation

    NASA Astrophysics Data System (ADS)

    Humer, K.; Weber, H. W.; Hastik, R.; Hauser, H.; Gerstenberg, H.

    2000-04-01

    The insulation system for the Toroidal Field Model Coil of ITER is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk shaped laminates, FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m-2 and by 9% at 1×10 22 m-2. The weight loss of the FRP is 2% at 1×10 22 m-2. The dielectric strength remained unchanged over the whole dose range.

  6. Addressing Research and Development Gaps for Plasma-Material Interactions with Linear Plasma Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen

    Plasma-material interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma-facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma-facing components that allow for steadystate operation in a reactor to reach the neutron fluence required; the tritium inventory (storage) in the plasma-facing components, which can lead to potential safety concerns and reduction in the fuel efficiency; and it is relatedmore » to the technology of the plasma-facing components itself, which should demonstrate structural integrity under the high temperatures and high neutron fluence. While the dissipation of power exhaust can and should be addressed in high power toroidal devices, the interaction of the plasma with the materials can be best addressed in dedicated linear devices due to their cost effectiveness and ability to address urgent research and development gaps more timely. However, new linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma-facing components. Existing linear devices are limited either in their flux, their reactor-relevant plasma transport regimes in front of the target, their fluence, or their ability to test material samples a priori exposed to high neutron fluence. The proposed Material Plasma Exposure eXperiment (MPEX) is meant to address those deficiencies and will be designed to fulfill the fusion reactor-relevant plasma parameters as well as the ability to expose a priori neutron activated materials to plasmas.« less

  7. Effect of starting microstructure on helium plasma-materials interaction in tungsten

    DOE PAGES

    Wang, Kun; Bannister, Mark E.; Meyer, Fred W.; ...

    2016-11-24

    Here, in a magnetic fusion energy (MFE) device, the plasma-facing materials (PFMs) will be subjected to tremendous fluxes of ions, heat, and neutrons. The response of PFMs to the fusion environment is still not well defined. Tungsten metal is the present candidate of choice for PFM applications such as the divertor in ITER. However, tungsten's microstructure will evolve in service, possibly to include recrystallization. How tungsten's response to plasma exposure evolves with changes in microstructure is presently unknown. In this work, we have exposed hot-worked and recrystallized tungsten to an 80 eV helium ion beam at a temperature of 900more » °C to fluences of 2 × 10 23 or 20 × 10 23 He/m 2. This resulted in a faceted surface structure at the lower fluence or short but well-developed nanofuzz structure at the higher fluence. There was little difference in the hot-rolled or recrystallized material's near-surface (≤50 nm) bubbles at either fluence. At higher fluence and deeper depth, the bubble populations of the hot-rolled and recrystallized were different, the recrystallized being larger and deeper. This may explain previous high-fluence results showing pronounced differences in recrystallized material. The deeper penetration in recrystallized material also implies that grain boundaries are traps, rather than high-diffusivity paths.« less

  8. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  9. TU-G-BRB-03: Iterative Optimization of Normalized Transmission Maps for IMRT Using Arbitrary Beam Profiles.

    PubMed

    Choi, K; Suh, T; Xing, L

    2012-06-01

    Newly available flattening filter free (FFF) beam increases the dose rate by 3∼6 times at the central axis. In reality, even flattening filtered beam is not perfectly flat. In addition, the beam profiles across different fields may not have the same amplitude. The existing inverse planning formalism based on the total-variation of intensity (or fluence) map cannot consider these properties of beam profiles. The purpose of this work is to develop a novel dose optimization scheme with incorporation of the inherent beam profiles to maximally utilize the efficacy of arbitrary beam profiles while preserving the convexity of the optimization problem. To increase the accuracy of the problem formalism, we decompose the fluence map as an elementwise multiplication of the inherent beam profile and a normalized transmission map (NTM). Instead of attempting to optimize the fluence maps directly, we optimize the NTMs and beam profiles separately. A least-squares problem constrained by total-variation of NTMs is developed to derive the optimal fluence maps that balances the dose conformality and FFF beam delivery efficiency. With the resultant NTMs, we find beam profiles to renormalized NTMs. The proposed method iteratively optimizes and renormalizes NTMs in a closed loop manner. The advantage of the proposed method is demonstrated by using a head-neck case with flat beam profiles and a prostate case with non-flat beam profiles. The obtained NTMs achieve more conformal dose distribution while preserving piecewise constancy compared to the existing solution. The proposed formalism has two major advantages over the conventional inverse planning schemes: (1) it provides a unified framework for inverse planning with beams of arbitrary fluence profiles, including treatment with beams of mixed fluence profiles; (2) the use of total-variation constraints on NTMs allows us to optimally balance the dose confromality and deliverability for a given beam configuration. This project was supported in part by grants from the National Science Foundation (0854492), National Cancer Institute (1R01 CA104205), and Leading Foreign Research Institute Recruitment Program by the Korean Ministry of Education, Science and Technology (K20901000001-09E0100-00110). To the authors' best knowledgement, there is no conflict interest. © 2012 American Association of Physicists in Medicine.

  10. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  11. Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy; McCowan, Peter M.

    2015-12-15

    Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.« less

  12. European DEMO design strategy and consequences for materials

    NASA Astrophysics Data System (ADS)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  13. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hojin; Becker, Stephen; Lee, Rena

    2013-07-15

    Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of themore » objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments by 10-15 and 30-35, relative to TV min. and quadratic min. based plans, while MIs decreases by about 20%-30% and 40%-60% over the plans by two existing techniques, respectively. With such conditions, the total treatment time of the plans obtained from our proposed method can be reduced by 12-30 s and 30-80 s mainly due to greatly shorter multileaf collimator (MLC) traveling time in IMRT step-and-shoot delivery.Conclusions: The reweighted L1-minimization technique provides a promising solution to simplify the fluence-map variations in IMRT inverse planning. It improves the delivery efficiency by reducing the entire segments and treatment time, while maintaining the plan quality in terms of target conformity and critical structure sparing.« less

  14. EU Development of High Heat Flux Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Lorenzetto, P.; Majerus, P.

    2005-04-15

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm{sup -2}, off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scalemore » of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads.« less

  15. Probalistic Models for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Xapsos, Michael

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to describe the radiation environment that can be expected at a specified confidence level. The task of the designer is then to choose a design that will operate in the model radiation environment. Probabilistic models have already been developed for solar proton events that describe the peak flux, event-integrated fluence and missionintegrated fluence. In addition a probabilistic model has been developed that describes the mission-integrated fluence for the Z>2 elemental spectra. This talk will focus on completing this suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 element

  16. Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Gang, Grace J.; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2017-06-01

    Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) reconstruction to satisfy simple image quality requirements based on noise. This work investigates TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging performance as determined by a task-based image quality metric. Additionally, regularization is an important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization strength that controls overall smoothness as well as directional weights that permits control of the isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a known imaging task at a single location in the image volume. The framework adopts Fourier and analytical approximations for fast estimation of the local noise power spectrum (NPS) and modulation transfer function (MTF)—each carrying dependencies on TCM and regularization. For the single location optimization, the local detectability index (d‧) of the specific task was directly adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) algorithm was employed to identify the optimal combination of imaging parameters. Evaluations of both conventional and task-driven approaches were performed in an abdomen phantom for a mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM pattern optimal for FBP using a minimum variance criterion yielded a worse task-based performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven TCM designs for MBIR were found to have the opposite behavior from conventional designs for FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the MTF and NPS as a result of the data weighting in MBIR. Directional penalty design was found to reinforce the same trend. The task-driven approaches outperform conventional approaches, with the maximum improvement in d‧ of 13% given by the joint optimization of TCM and regularization. This work demonstrates that the TCM optimal for MBIR is distinct from conventional strategies proposed for FBP reconstruction and strategies optimal for FBP are suboptimal and may even reduce performance when applied to MBIR. The task-driven imaging framework offers a promising approach for optimizing acquisition and reconstruction for MBIR that can improve imaging performance and/or dose utilization beyond conventional imaging strategies.

  17. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.

    2018-01-01

    Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.

  18. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    DOE PAGES

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...

    2017-11-09

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  19. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Hirai, T.; Pitts, R. A.

    2018-04-01

    The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i.e. the time the divertor material can be operated at a given temperature before a significant fraction of the material is recrystallized. In general, while it is clear that significant surface damage can occur during ITER operations, the tolerable level of damage in terms of plasma operations currently remains unknown.

  20. Assessing material properties for fusion applications by ion beams

    NASA Astrophysics Data System (ADS)

    Catarino, N.; Dias, M.; Jepu, I.; Alves, E.

    2017-10-01

    The plasma-facing materials in the ITER divertor area must withstand unusual events, such as the edge-localized modes (ELMS). At the point when an ELM occurs, up to 30% of the energy can be deposited on the plasma-facing boundary in the form of the heat and particle load causing material loss due to sublimation. Tungsten is a promising candidate as a plasma-facing material in the ITER divertor area since it has a high melting point, good thermal conductivity and low sputtering yield, which minimizes the plasma contamination. However their brittleness at low temperatures which is worsened by irradiation is an issue. One strategy to modulate the properties of tungsten is alloying this element with other refractory metals, such as tantalum that shows higher toughness, lower activation and higher radiation resistance. In the present study tungsten-tantalum alloys (W-Ta) were produced by Ta implantation. The fundamental mechanisms which govern the behaviour of defect dynamics in W-Ta materials under reactor conditions, were simulated by the implantation of He and D. The microstructure observations of the W plates that after single Ta implantation revealed crater-like cavities and a more severe effect after D implantation. The effect increase with the increasing of D fluence. However at fluences higher than 1021D/m the effect is reduced. In addition, blistering was observed in W-Ta plates implanted with He. The D retention in the W-Ta alloys increases with the implanted fluence with tendency for saturation for high fluences. Moreover the results show that D retention is higher after sequential He and D implantation than for single D implantation. The diffractogram of W-Ta alloys implanted with He evidenced the presence of broadened W peaks associated with stress induced by irradiation, which may cause internal stress field resulting in a distortion of the crystal lattice. These irradiation defects can be observed in the D release spectra where three peaks are associated with three types of defects in W and W-Ta implanted with He and D.

  1. Design of dual multiple aperture devices for dynamical fluence field modulated CT.

    PubMed

    Mathews, Aswin John; Tilley, Steven; Gang, Grace; Kawamoto, Satomi; Zbijewski, Wojciech; Siewerdsen, Jeffrey H; Levinson, Reuven; Webster Stayman, J

    2016-07-01

    A Multiple Aperture Device (MAD) is a novel x-ray beam modulator that uses binary filtration on a fine scale to spatially modulate an x-ray beam. Using two MADs in series enables a large variety of fluence profiles by shifting the MADS relative to each other. This work details the design and control of dual MADs for a specific class of desired fluence patterns. Specifically, models of MAD operation are integrated into a best fit objective followed by CMA-ES optimization. To illustrate this framework we demonstrate the design process for an abdominal phantom with the goal of uniform detected signal. Achievable fluence profiles show good agreement with target fluence profiles, and the ability to flatten projections when a phantom is scanned is demonstrated. Simulated data reconstruction using traditional tube current modulation (TCM) and MAD filtering with TCM are investigated with the dual MAD system demonstrating more uniformity in noise and illustrating the potential for dose reduction under a maximum noise level constraint.

  2. Sputtering effects on mirrors made of different tungsten grades

    NASA Astrophysics Data System (ADS)

    Voitsenya, V. S.; Ogorodnikova, O. V.; Bardamid, A. F.; Bondarenko, V. N.; Konovalov, V. G.; Lytvyn, P. M.; Marot, L.; Ryzhkov, I. V.; Shtan', A. F.; Skoryk, O. O.; Solodovchenko, S. I.

    2018-03-01

    Because tungsten (W) is used in present fusion devices and it is a reference material for ITER divertor and possible plasma-facing material for DEMO, we strive to understand the response of different W grades to ion bombardment. In this study, we investigated the behavior of mirrors made of four polycrystalline W grades under long-term ion sputtering. Argon (Ar) and deuterium (D) ions extracted from a plasma were used to investigate the effect of projectile mass on surface modification. Depending on the ion fluence, the reflectance measured at normal incidence was very different for different W grades. The lowest degradation rate of the reflectance was measured for the mirror made of recrystallized W. The highest degradation rate was found for one of the ITER-grade W samples. Pre-irradiation of a mirror with 20-MeV W6+ ions, as simulation of neutron irradiation in ITER, had no noticeable influence on reflectance degradation under sputtering with either Ar or D ions.

  3. Investigation into the optimum beam shape and fluence for selective ablation of dental calculus at lambda = 400 nm.

    PubMed

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2010-01-01

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (< or =50-microm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences < or =3 J/cm(2). Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.

  4. Investigation Into the Optimum Beam Shape and Fluence for Selective Ablation of Dental Calculus at lambda = 400 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenly, J.E.; Seka. W.; Rechmann, P.

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180more » iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a morehomogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (<=50-mm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (>= 2 J/cm^2); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences <=3 J/cm^2. Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm^2 are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.« less

  5. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smyth, G; Bamber, JC; Bedford, JL

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstemmore » (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.« less

  6. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  7. Diagnostics and control for the steady state and pulsed tokamak DEMO

    NASA Astrophysics Data System (ADS)

    Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.

    2016-02-01

    The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.

  8. SNL-SAND-IV v. 0.9 (beta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Patrick J.

    2016-10-05

    The code is used to provide an unfolded/adjusted energy-dependent fission reactor neutron spectrum based upon an input trial spectrum and a set of measured activities. This is part of a neutron environment characterization that supports doing testing in a given reactor environment. An iterative perturbation method is used to obtain a "best fit" neutron flux spectrum for a given input set of infinitely dilute foil activities. The calculational procedure consists of the selection of a trial flux spectrum to serve as the initial approximation to the solution, and subsequent iteration to a form acceptable as an appropriate solution. The solutionmore » is specified either as time-integrated flux (fluence) for a pulsed environment or as a flux for a steady-state neutron environment.« less

  9. Control algorithms for dynamic attenuators.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.

  10. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  11. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter: EC wave physics and applications, M. Thumm: Source and transmission line development, and S. Cirant: ITER specific system designs). These summaries are included in this issue to give a more complete view of the technical meeting. Finally, it is appropriate to mention the future of this meeting series. With the ratification of the ITER agreement and the formation of the ITER International Organization, it was recognized that meetings conducted by outside agencies with an exclusive focus on ITER would be somewhat unusual. However, the participants at this meeting felt that the gathering of international experts with diverse specialities within EC wave physics and technology to focus on using EC waves in future fusion devices like ITER was extremely valuable. It was therefore recommended that this series of meetings continue, but with the broader focus on the application of EC waves to steady-state and burning plasma experiments including demonstration power plants. As the papers in this special issue show, the EC community is already taking seriously the challenges of applying EC waves to fusion devices with high neutron fluence and continuous operation at high reliability.

  12. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  13. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions

    NASA Astrophysics Data System (ADS)

    Litunovsky, N.; Gervash, A.; Lorenzetto, P.; Mazul, I.; Melder, R.

    2009-04-01

    The paper describes the experimental technique and preliminary results of thermal fatigue testing of ITER first wall (FW) water-cooled mock-ups inside the core of the RBT-6 experimental fission reactor (RIAR, Dimitrovgrad, Russia). This experiment has provided simultaneous effect of neutron fluence and thermal cycling damages on the mock-ups. A PC-controlled high-temperature graphite ohmic heater was applied to provide cyclic thermal load onto the mock-ups surface. This experiment lasted for 309 effective irradiation days with a final damage level (CuCrZr) of 1 dpa in the mock-ups. About 3700 thermal cycles with a heat flux of 0.4-0.5 MW/m 2 onto the mock-ups were realized before the heater fails. Then, irradiation was continued in a non-cycling mode.

  14. A study on the application of Fourier series in IMRT treatment planning.

    PubMed

    Almeida-Trinidad, R; Garnica-Garza, H M

    2007-12-01

    In intensity-modulated radiotherapy, a set of x-ray fluence profiles is iteratively adjusted until a desired absorbed dose distribution is obtained. The purpose of this article is to present a method that allows the optimization of fluence profiles based on the Fourier series decomposition of an initial approximation to the profile. The method has the advantage that a new fluence profile can be obtained in a precise and controlled way with the tuning of only two parameters, namely the phase of the sine and cosine terms of one of the Fourier components, in contrast to the point-by-point tuning of the profile. Also, because the method uses analytical functions, the resultant profiles do not exhibit numerical artifacts. A test case consisting of a mathematical phantom with a target wrapped around a critical structure is discussed to illustrate the algorithm. It is shown that the degree of conformality of the absorbed dose distribution can be tailored by varying the number of Fourier terms made available to the optimization algorithm. For the test case discussed here, it is shown that the number of Fourier terms to be modified depends on the number of radiation beams incident on the target but it is in general in the order of 10 terms.

  15. A parametric study of helium retention in beryllium and its effect on deuterium retention

    NASA Astrophysics Data System (ADS)

    Alegre, D.; Baldwin, M. J.; Simmonds, M.; Nishijima, D.; Hollmann, E. M.; Brezinsek, S.; Doerner, R. P.

    2017-12-01

    Beryllium samples have been exposed in the PISCES-B linear plasma device to conditions relevant to the International Thermonuclear Experimental Reactor (ITER) in pure He, D, and D/He mixed plasmas. Except at intermediate sample exposure temperatures (573-673 K) He addition to a D plasma is found to have a beneficial effect as it reduces the D retention in Be (up to ˜55%), although the mechanism is unclear. Retention of He is typically around 1020-1021 He m-2, and is affected primarily by the Be surface temperature during exposition, by the ion fluence at <500 K exposure, but not by the ion impact energy at 573 K. Contamination of the Be surface with high-Z elements from the mask of the sample holder in pure He plasmas is also observed under certain conditions, and leads to unexpectedly large He retention values, as well as changes in the surface morphology. An estimation of the tritium retention in the Be first wall of ITER is provided, being sufficiently low to allow a safe operation of ITER.

  16. Static and Dynamic Performance of Newly Developed ITER Relevant Insulation Systems after Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2006-03-01

    Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.

  17. Metal Hall sensors for the new generation fusion reactors of DEMO scale

    NASA Astrophysics Data System (ADS)

    Bolshakova, I.; Bulavin, M.; Kargin, N.; Kost, Ya.; Kuech, T.; Kulikov, S.; Radishevskiy, M.; Shurygin, F.; Strikhanov, M.; Vasil'evskii, I.; Vasyliev, A.

    2017-11-01

    For the first time, the results of on-line testing of metal Hall sensors based on nano-thickness (50-70) nm gold films, which was conducted under irradiation by high-energy neutrons up to the high fluences of 1 · 1024 n · m-2, are presented. The testing has been carried out in the IBR-2 fast pulsed reactor in the neutron flux with the intensity of 1.5 · 1017 n · m-2 · s-1 at the Joint Institute for Nuclear Research. The energy spectrum of neutron flux was very close to that expected for the ex-vessel sensors locations in the ITER experimental reactor. The magnetic field sensitivity of the gold sensors was stable within the whole fluence range under research. Also, sensitivity values at the start and at the end of irradiation session were equal within the measurement error (<1%). The results obtained make it possible to recommend gold sensors for magnetic diagnostics in the new generation fusion reactors of DEMO scale.

  18. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  19. SU-E-T-250: New IMRT Sequencing Strategy: Towards Intra-Fraction Plan Adaptation for the MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontaxis, C; Bol, G; Lagendijk, J

    2014-06-01

    Purpose: To develop a new sequencer for IMRT planning that during treatment makes the inclusion of external factors possible and by doing so accounts for intra-fraction anatomy changes. Given a real-time imaging modality that will provide the updated patient anatomy during delivery, this sequencer is able to take these changes into account during the calculation of subsequent segments. Methods: Pencil beams are generated for each beam angle of the treatment and a fluence optimization is performed. The pencil beams, together with the patient anatomy and the above optimal fluence form the input of our algorithm. During each iteration the followingmore » steps are performed: A fluence optimization is done and each beam's fluence is then split to discrete intensity levels. Deliverable segments are calculated for each one of these. Each segment's area multiplied by its intensity describes its efficiency. The most efficient segment among all beams is then chosen to deliver a part of the calculated fluence and the dose that will be delivered by this segment is calculated. This delivered dose is then subtracted from the remaining dose. This loop is repeated until 90% of the dose has been delivered and a final segment weight optimization is performed to reach full convergence. Results: This algorithm was tested in several prostate cases yielding results that meet all clinical constraints. Quality assurance was performed on Delta4 and film phantoms for one of these prostate cases and received clinical acceptance after passing both gamma analyses with the 3%/3mm criteria. Conclusion: A new sequencing algorithm was developed to facilitate the needs of intensity modulated treatment. The first results on static anatomy confirm that it can calculate clinical plans equivalent to those of the commercially available planning systems. We are now working towards 100% dose convergence which will allow us to handle anatomy deformations. This work is financially supported by Elekta AB, Stockholm, Sweden.« less

  20. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    NASA Astrophysics Data System (ADS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  1. The Effect of Iteration on the Design Performance of Primary School Children

    ERIC Educational Resources Information Center

    Looijenga, Annemarie; Klapwijk, Remke; de Vries, Marc J.

    2015-01-01

    Iteration during the design process is an essential element. Engineers optimize their design by iteration. Research on iteration in Primary Design Education is however scarce; possibly teachers believe they do not have enough time for iteration in daily classroom practices. Spontaneous playing behavior of children indicates that iteration fits in…

  2. Previous design restraints and radiation damage effects of low energy particles

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Spacecraft design fluences and damage by low energy electrons and protons are summarized. For electron energies 5 MeV, the design fluence is 10 to the 11th power electrons/sq cm; for energies 5 MeV, the integral spectrum is assumed to go as 1/E sq. The design fluences for proton energies 30 MeV is 1.5 x 10 to the 9th power protons/sq cm; for energies 100 MeV, it is 5 x 10 to the 14th power protons/sq cm. The radioisotope thermoelectric generator gamma and neutron radiation constraints are listed. Damage due to electron energies 0.5 MeV and proton energies 10 MeV are summarized for effects on spacecraft thermal surfaces, reflective surfaces, and refractive materials. The high frequency noise figure for field effect transistors may increase markedly, and another effect is the buildup of charge on insulating surfaces, resulting in large electric fields.

  3. Derivative-free generation and interpolation of convex Pareto optimal IMRT plans

    NASA Astrophysics Data System (ADS)

    Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk

    2006-12-01

    In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.

  4. Control algorithms for dynamic attenuators

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods. PMID:24877818

  5. A model of primary and scattered photon fluence for mammographic x-ray image quantification

    NASA Astrophysics Data System (ADS)

    Tromans, Christopher E.; Cocker, Mary R.; Brady, Michael, Sir

    2012-10-01

    We present an efficient method to calculate the primary and scattered x-ray photon fluence component of a mammographic image. This can be used for a range of clinically important purposes, including estimation of breast density, personalized image display, and quantitative mammogram analysis. The method is based on models of: the x-ray tube; the digital detector; and a novel ray tracer which models the diverging beam emanating from the focal spot. The tube model includes consideration of the anode heel effect, and empirical corrections for wear and manufacturing tolerances. The detector model is empirical, being based on a family of transfer functions that cover the range of beam qualities and compressed breast thicknesses which are encountered clinically. The scatter estimation utilizes optimal information sampling and interpolation (to yield a clinical usable computation time) of scatter calculated using fundamental physics relations. A scatter kernel arising around each primary ray is calculated, and these are summed by superposition to form the scatter image. Beam quality, spatial position in the field (in particular that arising at the air-boundary due to the depletion of scatter contribution from the surroundings), and the possible presence of a grid, are considered, as is tissue composition using an iterative refinement procedure. We present numerous validation results that use a purpose designed tissue equivalent step wedge phantom. The average differences between actual acquisitions and modelled pixel intensities observed across the adipose to fibroglandular attenuation range vary between 5% and 7%, depending on beam quality and, for a single beam quality are 2.09% and 3.36% respectively with and without a grid.

  6. Model-based optimization of near-field binary-pixelated beam shapers

    DOE PAGES

    Dorrer, C.; Hassett, J.

    2017-01-23

    The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by amore » factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beamshaping performance. Furthermore, this is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.« less

  7. Space Environment Effects: Model for Emission of Solar Protons (ESP): Cumulative and Worst Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  8. Space Environment Effects: Model for Emission of Solar Protons (ESP)--Cumulative and Worst-Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, Edward A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  9. Mechanical Characterization of the Iter Mock-Up Insulation after Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    The ITER mock-up project was launched in order to demonstrate the feasibility of an industrial impregnation process using the new cyanate ester/epoxy blend. The mock-up simulates the TF winding pack cross section by a stainless steel structure with the same dimensions as the TF winding pack at a length of 1 m. It consists of 7 plates simulating the double pancakes, each of them is wrapped with glass fiber/Kapton sandwich tapes. After stacking the 7 plates, additional insulation layers are wrapped to simulate the ground insulation. This paper presents the results of the mechanical quality tests on the mock-up pancake insulation. Tensile and short beam shear specimens were cut from the plates extracted from the mock-up and tested at 77 K using a servo-hydraulic material testing device. All tests were repeated after reactor irradiation to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. Initial results show a high mechanical strength as expected from the high number of thin glass fiber layers, and an excellent homogeneity of the material.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatiblemore » with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.« less

  11. The Roles and Developments needed for Diagnostics in the ITER Fusion Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Michael

    2015-07-01

    Harnessing the power from Fusion on earth is an important and challenging task. Excellent work has been carried out in this area over the years with several demonstrations of the ability to produce power. Now, a new large device is being constructed in the south of France. This is called ITER. ITER is a large-scale scientific experiment that aims to demonstrate a possibility to produce commercial energy from fusion. This project is now well underway with the many teams working on the construction and completing various aspects of the design. This device will carry up to 15 MA of plasmamore » current and produce about 500 MW of power, 400 MW approximately in high energy neutrons. The typical temperatures of the electrons inside this device are in the region of a few hundred million Kelvin. It is maintained using a magnetic field. This device is pushing several boundaries from those currently existing. As a result of this, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device. A diagnostic set will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include amongst others, measurements of the plasma shape, temperature, density, impurity concentration, and particle and energy confinement times. The system will comprise about 45 individual measuring systems drawn from the full range of modern plasma diagnostic techniques, including magnetics, lasers, X-rays, neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pressure and gas analysis, and optical fibres. These devices will have to be made to work in the new and challenging environment inside the vacuum vessel. These systems will have to cope with a range of phenomena that extend the current knowledge in the Fusion field. One amongst them is the parasitic effect of the neutrons on the while all the performing with great accuracy and precision. The levels of neutral particle flux, neutron flux and neutron fluence will be respectively about 5, 10 and 10,000 times higher than the harshest experienced in today's machines. The pulse length of the fusion reaction-or the amount of time the reaction is sustained-will be about 100 times longer. (authors)« less

  12. Accelerated iterative beam angle selection in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bangert, Mark, E-mail: m.bangert@dkfz.de; Unkelbach, Jan

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based onmore » surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam ensembles using only a few noncoplanar beam orientations often approach the plan quality of fully noncoplanar ensembles. Conclusions: We conclude that iterative BAS in combination with objective function surrogates can be a viable option to implement automated BAS at clinically acceptable computation times.« less

  13. Accelerated iterative beam angle selection in IMRT.

    PubMed

    Bangert, Mark; Unkelbach, Jan

    2016-03-01

    Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n - 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam ensembles using only a few noncoplanar beam orientations often approach the plan quality of fully noncoplanar ensembles. We conclude that iterative BAS in combination with objective function surrogates can be a viable option to implement automated BAS at clinically acceptable computation times.

  14. Atomic oxygen durability of solar concentrator materials for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.

    1990-01-01

    The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.

  15. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  16. Visualizing and quantifying dose distribution in a UV reactor using three-dimensional laser-induced fluorescence.

    PubMed

    Gandhi, Varun N; Roberts, Philip J W; Kim, Jae-Hong

    2012-12-18

    Evaluating the performance of typical water treatment UV reactors is challenging due to the complexity in assessing spatial and temporal variation of UV fluence, resulting from highly unsteady, turbulent nature of flow and variation in UV intensity. In this study, three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. Mapping the spatial and temporal fluence delivery and MS2 inactivation revealed the highest local fluence in the wake zone due to longer residence time and higher UV exposure, while the lowest local fluence occurred in a region near the walls due to short-circuiting flow and lower UV fluence rate. Comparing the tracer based decomposition between hydrodynamics and IT revealed similar coherent structures showing the dependency of fluence delivery on the reactor flow. The location of tracer injection, varying the height and upstream distance from the lamp center, was found to significantly affect the UV fluence received by the tracer. A Lagrangian-based analysis was also employed to predict the fluence along specific paths of travel, which agreed with the experiments. The 3DLIF technique developed in this study provides new insight on dose delivery that fluctuates both spatially and temporally and is expected to aid design and optimization of UV reactors as well as validate computational fluid dynamics models that are widely used to simulate UV reactor performances.

  17. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis, L; Landry, G; Dedes, G

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBsmore » was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)« less

  18. Commissioning and Plans for the NSTX-U Facility

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; NSTX-U Team

    2016-10-01

    The National Spherical Torus Experiment - Upgrade (NSTX-U) has started its first year of plasma operations after the successful completion of the CD-4 milestones. The unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. The major mission of NSTX-U is also to develop the physics and technology basis for an ST-based Fusion Nuclear Science Facility (FNSF). The new center stack will provide toroidal field of 1 Tesla at a major radius of 0.93 m which should enable a plasma current of up to 2 mega-Amp for 5 sec. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed. NSTX-U is designed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers of 14 MW, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the trend in transport towards the low collisionality FNSF regime. If the favorable trends observed on NSTX holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices.

  19. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.

  20. Fluence-field modulated x-ray CT using multiple aperture devices

    NASA Astrophysics Data System (ADS)

    Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven

    2016-03-01

    We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.

  1. The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions

    DOE PAGES

    Rapp, J.

    2017-07-12

    Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less

  2. The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, J.

    Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less

  3. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  4. Two solar proton fluence models based on ground level enhancement observations

    NASA Astrophysics Data System (ADS)

    Raukunen, Osku; Vainio, Rami; Tylka, Allan J.; Dietrich, William F.; Jiggens, Piers; Heynderickx, Daniel; Dierckxsens, Mark; Crosby, Norma; Ganse, Urs; Siipola, Robert

    2018-01-01

    Solar energetic particles (SEPs) constitute an important component of the radiation environment in interplanetary space. Accurate modeling of SEP events is crucial for the mitigation of radiation hazards in spacecraft design. In this study we present two new statistical models of high energy solar proton fluences based on ground level enhancement (GLE) observations during solar cycles 19-24. As the basis of our modeling, we utilize a four parameter double power law function (known as the Band function) fits to integral GLE fluence spectra in rigidity. In the first model, the integral and differential fluences for protons with energies between 10 MeV and 1 GeV are calculated using the fits, and the distributions of the fluences at certain energies are modeled with an exponentially cut-off power law function. In the second model, we use a more advanced methodology: by investigating the distributions and relationships of the spectral fit parameters we find that they can be modeled as two independent and two dependent variables. Therefore, instead of modeling the fluences separately at different energies, we can model the shape of the fluence spectrum. We present examples of modeling results and show that the two methodologies agree well except for a short mission duration (1 year) at low confidence level. We also show that there is a reasonable agreement between our models and three well-known solar proton models (JPL, ESP and SEPEM), despite the differences in both the modeling methodologies and the data used to construct the models.

  5. Theory of retrieving orientation-resolved molecular information using time-domain rotational coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Le, Anh-Thu; Zhou, Zhaoyan; Wei, Hui; Lin, C. D.

    2017-08-01

    We provide a unified theoretical framework for recently emerging experiments that retrieve fixed-in-space molecular information through time-domain rotational coherence spectroscopy. Unlike a previous approach by Makhija et al. (V. Makhija et al., arXiv:1611.06476), our method can be applied to the retrieval of both real-valued (e.g., ionization yield) and complex-valued (e.g., induced dipole moment) molecular response information. It is also a direct retrieval method without using iterations. We also demonstrate that experimental parameters, such as the fluence of the aligning laser pulse and the rotational temperature of the molecular ensemble, can be quite accurately determined using a statistical method.

  6. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  7. New thermal neutron calibration channel at LNMRI/IRD

    NASA Astrophysics Data System (ADS)

    Astuto, A.; Patrão, K. C. S.; Fonseca, E. S.; Pereira, W. W.; Lopes, R. T.

    2016-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241Am-Be sources with 0.6 TBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence in the central chamber and H*(10) at 50 cm from the front face with the polyethylene filter.

  8. Toward a descriptive model of solar particles in the heliosphere

    NASA Technical Reports Server (NTRS)

    Shea, M. A.; Smart, D. F.; Adams, James H., Jr.; Chenette, D.; Feynman, Joan; Hamilton, Douglas C.; Heckman, G. R.; Konradi, A.; Lee, Martin A.; Nachtwey, D. S.

    1988-01-01

    During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made.

  9. A temporal forecast of radiation environments for future space exploration missions.

    PubMed

    Kim, Myung-Hee Y; Cucinotta, Francis A; Wilson, John W

    2007-06-01

    The understanding of future space radiation environments is an important goal for space mission operations, design, and risk assessment. We have developed a solar cycle statistical model in which sunspot number is coupled to space-related quantities, such as the galactic cosmic radiation (GCR) deceleration potential (phi) and the mean occurrence frequency of solar particle events (SPEs). Future GCR fluxes were derived from a predictive model, in which the temporal dependence represented by phi was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. These results showed that the point dose equivalent inside a typical spacecraft in interplanetary space was influenced by solar modulation by up to a factor of three. It also has been shown that a strong relationship exists between large SPE occurrences and phi. For future space exploration missions, cumulative probabilities of SPEs at various integral fluence levels during short-period missions were defined using a database of proton fluences of past SPEs. Analytic energy spectra of SPEs at different ranks of the integral fluences for energies greater than 30 MeV were constructed over broad energy ranges extending out to GeV for the analysis of representative exposure levels at those fluences. Results will guide the design of protection systems for astronauts during future space exploration missions.

  10. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Sperduti, A.; Pietropaolo, A.; Pillon, M.; Pola, A.; Gómez-Ros, J. M.

    2017-01-01

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a 241Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm-2 s-1 to 1000 cm-2 s-1 can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  11. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  12. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Giruzzi, G.; Ide, S.; Kessel, C.; Luce, T. C.; Snipes, J. A.; Stober, J. K.

    2015-02-01

    The development of operating scenarios is one of the key issues in the research for ITER which aims to achieve a fusion gain (Q) of ˜10, while producing 500 MW of fusion power for ≥300 s. The ITER Research plan proposes a success oriented schedule starting in hydrogen and helium, to be followed by a nuclear operation phase with a rapid development towards Q ˜ 10 in deuterium/tritium. The Integrated Operation Scenarios Topical Group of the International Tokamak Physics Activity initiates joint activities among worldwide institutions and experiments to prepare ITER operation. Plasma formation studies report robust plasma breakdown in devices with metal walls over a wide range of conditions, while other experiments use an inclined EC launch angle at plasma formation to mimic the conditions in ITER. Simulations of the plasma burn-through predict that at least 4 MW of Electron Cyclotron heating (EC) assist would be required in ITER. For H-modes at q95 ˜ 3, many experiments have demonstrated operation with scaled parameters for the ITER baseline scenario at ne/nGW ˜ 0.85. Most experiments, however, obtain stable discharges at H98(y,2) ˜ 1.0 only for βN = 2.0-2.2. For the rampup in ITER, early X-point formation is recommended, allowing auxiliary heating to reduce the flux consumption. A range of plasma inductance (li(3)) can be obtained from 0.65 to 1.0, with the lowest values obtained in H-mode operation. For the rampdown, the plasma should stay diverted maintaining H-mode together with a reduction of the elongation from 1.85 to 1.4. Simulations show that the proposed rampup and rampdown schemes developed since 2007 are compatible with the present ITER design for the poloidal field coils. At 13-15 MA and densities down to ne/nGW ˜ 0.5, long pulse operation (>1000 s) in ITER is possible at Q ˜ 5, useful to provide neutron fluence for Test Blanket Module assessments. ITER scenario preparation in hydrogen and helium requires high input power (>50 MW). H-mode operation in helium may be possible at input powers above 35 MW at a toroidal field of 2.65 T, for studying H-modes and ELM mitigation. In hydrogen, H-mode operation is expected to be marginal, even at 2.65 T with 60 MW of input power. Simulation code benchmark studies using hybrid and steady state scenario parameters have proved to be a very challenging and lengthy task of testing suites of codes, consisting of tens of sophisticated modules. Nevertheless, the general basis of the modelling appears sound, with substantial consistency among codes developed by different groups. For a hybrid scenario at 12 MA, the code simulations give a range for Q = 6.5-8.3, using 30 MW neutral beam injection and 20 MW ICRH. For non-inductive operation at 7-9 MA, the simulation results show more variation. At high edge pedestal pressure (Tped ˜ 7 keV), the codes predict Q = 3.3-3.8 using 33 MW NB, 20 MW EC, and 20 MW ion cyclotron to demonstrate the feasibility of steady-state operation with the day-1 heating systems in ITER. Simulations using a lower edge pedestal temperature (˜3 keV) but improved core confinement obtain Q = 5-6.5, when ECCD is concentrated at mid-radius and ˜20 MW off-axis current drive (ECCD or LHCD) is added. Several issues remain to be studied, including plasmas with dominant electron heating, mitigation of transient heat loads integrated in scenario demonstrations and (burn) control simulations in ITER scenarios.

  13. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  14. Tungsten as a plasma-facing material in fusion devices: impact of helium high-temperature irradiation on hydrogen retention and damages in the material

    NASA Astrophysics Data System (ADS)

    Bernard, E.; Sakamoto, R.; Kreter, A.; Barthe, M. F.; Autissier, E.; Desgardin, P.; Yamada, H.; Garcia-Argote, S.; Pieters, G.; Chêne, J.; Rousseau, B.; Grisolia, C.

    2017-12-01

    Plasma-facing materials for next generation fusion devices, like ITER and DEMO, have to withstand intense fluxes of light elements (notably helium and hydrogen isotopes). For tungsten (W), helium (He) irradiation leads to major changes in the material morphology, rising concerns about properties such as material structure conservation and hydrogen (H) retention. The impact of preceeding He irradiation conditions (temperature, flux and fluence) on H trapping were investigated on a set of W samples exposed to the linear plasma device PSI-2. Positron annihilation spectroscopy (PAS) was carried out to probe the free volume of defects created by the He exposure in the W structure at the atomic scale. In parallel, tritium (T) inventory after exposure was evaluated through T gas loading and desorption at the Saclay Tritium Lab. First, we observed that the material preparation prior to He irradiation was crucial, with a major reduction of the T trapping when W was annealed at 1773 K for 2 h compared to the as-received material. PAS study confirms the presence of He in the bubbles created in the material surface layer, whose dimensions were previously characterized by transmission electron microscopy and grazing-incidence small-angle x-ray scattering, and demonstrates that even below the minimal energy for displacement of He in W, defects are created in almost all He irradiation conditions. The T loading study highlights that increasing the He fluence leads to higher T inventory. Also, for a given fluence, increasing the He flux reduces the T trapping. The very first steps of a parametric study were set to understand the mechanisms at stake in those observed material modifications, confirming the need to pursue the study with a more complete set of surface and irradiation conditions.

  15. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Loesser, G.; Smith, M.

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses weremore » performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.« less

  16. X-Ray Fluence and Transmission and Prompt Radiation Fluence or Dose

    DTIC Science & Technology

    1981-03-01

    Application of Gamma Ray Build-up Data to Shield Design. Report Number WAPD -RM-217. Westinghouse Electric Corporation, Atomic Power Division: January 1954. 14...263 91 R/- 459 05 c05 194 21 2𔃻 229 00 0 264 42 STO 160 85. + 195 00 .. 230 00 ,. 265 20 20 i61 43 RC:L 196 05 5 231 "-:" 0 266 02 2 162 06 06 1

  17. MO-FG-CAMPUS-TeP1-05: Rapid and Efficient 3D Dosimetry for End-To-End Patient-Specific QA of Rotational SBRT Deliveries Using a High-Resolution EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y M; Han, B; Xing, L

    2016-06-15

    Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less

  18. TH-EF-BRB-05: 4pi Non-Coplanar IMRT Beam Angle Selection by Convex Optimization with Group Sparsity Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, D; Nguyen, D; Voronenko, Y

    Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less

  19. A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images

    NASA Astrophysics Data System (ADS)

    Sperling, Nicholas Niven

    The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through the entire patient volume. The method requires patient specific information, including a CT for deconvolution/dose reconstruction. With the large-scale adoption of Cone Beam CT (CBCT) systems on modern linear accelerators, a treatment time CT is readily available for use in this deconvolution and in dose representation.

  20. TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, S; Shi, L; Karellas, A

    2015-06-15

    Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can accommodate breasts of varying dimensions and chest-wall inclusion. Supported in part by NIH R01 CA128906 and R21 CA134128. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less

  1. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  2. Effects of high thermal and high fast fluences on the mechanical properties of type 6061 aluminum in the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, J.R.; Czajkowski, C.J.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is an epithermal, externally moderated (by D/sub 2/O) facility designed to produce neutron beams for research. Type 6061 T-6 aluminum was used for the beam tubes, pressure vessel, fuel cladding, and most other components in the high flux area. The HFBR has operated since 1965. The epithermal, external moderation of the HFBR means that materials irradiated in different areas of the facility receive widely different flux spectra. Thus, specimens from a control rod drive follower tube (CRDF) have received 1.5 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV)more » and 3.2 /times/ 10/sup 23/ n/cm/sup 2/ thermal fluence, while those from a vertical thimble flow shroud received 1.9 /times/ 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV) and 1.0 /times/ 10/sup 23/ n/cm/sup 2/ thermal. These numbers correspond to fast to thermal fluence ratios ranging from 0.05 to 1.9. Irradiations are occurring at approximately 333/degree/K. The data indicate that the increase in tensile strength and decrease in ductility result primarily from the thermal fluence, i.e., the transmutation of aluminum to silicon. These effects appear to be saturating at fluences above approximately 1.8 /times/ 10/sup 23/ n/cm/sup 2/ thermal at values of 90,000 psi (6700 Kg/mm/sup 2/) and 9%, respectively. The specimens receiving the highest fluence ratios appear to have less increase in tensile strength and less decrease in ductility than specimens with a lower fast to thermal fluence ratio and the same thermal fluence, suggesting a possible beneficial effect of the high energy neutrons in preventing formation of silicon crystallites. 7 refs., 11 figs., 3 tabs.« less

  3. Space Radiation Risk Assessment for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Ponomarev, Artem; Atwell, Bill; Cucinotta, Francis A.

    2007-01-01

    For lunar exploration mission design, radiation risk assessments require the understanding of future space radiation environments in support of resource management decisions, operational planning, and a go/no-go decision. The future GCR flux was estimated as a function of interplanetary deceleration potential, which was coupled with the estimated neutron monitor rate from the Climax monitor using a statistical model. A probability distribution function for solar particle event (SPE) occurrence was formed from proton fluence measurements of SPEs occurred during the past 5 solar cycles (19-23). Large proton SPEs identified from impulsive nitrate enhancements in polar ice for which the fluences are greater than 2 10(exp 9) protons/sq cm for energies greater than 30 MeV, were also combined to extend the probability calculation for high level of proton fluences. The probability with which any given proton fluence level of a SPE will be exceeded during a space mission of defined duration was then calculated. Analytic energy spectra of SPEs at different ranks of the integral fluences were constructed over broad energy ranges extending out to GeV, and representative exposure levels were analyzed at those fluences. For the development of an integrated strategy for radiation protection on lunar exploration missions, effective doses at various points inside a spacecraft were calculated with detailed geometry models representing proposed transfer vehicle and habitat concepts. Preliminary radiation risk assessments from SPE and GCR were compared for various configuration concepts of radiation shelter in exploratory-class spacecrafts.

  4. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  5. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  6. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.

    PubMed

    Natto, S A; Lewis, D G; Ryde, S J

    1998-01-01

    The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  8. Activation Inventories after Exposure to DD/DT Neutrons in Safety Analysis of Nuclear Fusion Installations.

    PubMed

    Stankunas, Gediminas; Cufar, Aljaz; Tidikas, Andrius; Batistoni, Paola

    2017-11-23

    Irradiations with 14 MeV fusion neutrons are planned at Joint European Torus (JET) in DT operations with the objective to validate the calculation of the activation of structural materials in functional materials expected in ITER and fusion plants. This study describes the activation and dose rate calculations performed for materials irradiated throughout the DT plasma operation during which the samples of real fusion materials are exposed to 14 MeV neutrons inside the JET vacuum vessel. Preparatory activities are in progress during the current DD operations with dosimetry foils to measure the local neutron fluence and spectrum at the sample irradiation position. The materials included those used in the manufacturing of the main in-vessel components, such as ITER-grade W, Be, CuCrZr, 316 L(N) and the functional materials used in diagnostics and heating systems. The neutron-induced activities and dose rates at shutdown were calculated by the FISPACT code, using the neutron fluxes and spectra that were provided by the preceding MCNP neutron transport calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules,more » electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.« less

  10. Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.; hide

    2001-01-01

    A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.

  11. Inertial confinement fusion method producing line source radiation fluence

    DOEpatents

    Rose, Ronald P.

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  12. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and representmore » the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.« less

  13. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  14. The Iterative Design Process in Research and Development: A Work Experience Paper

    NASA Technical Reports Server (NTRS)

    Sullivan, George F. III

    2013-01-01

    The iterative design process is one of many strategies used in new product development. Top-down development strategies, like waterfall development, place a heavy emphasis on planning and simulation. The iterative process, on the other hand, is better suited to the management of small to medium scale projects. Over the past four months, I have worked with engineers at Johnson Space Center on a multitude of electronics projects. By describing the work I have done these last few months, analyzing the factors that have driven design decisions, and examining the testing and verification process, I will demonstrate that iterative design is the obvious choice for research and development projects.

  15. Modeling design iteration in product design and development and its solution by a novel artificial bee colony algorithm.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.

  16. A TLD-based few-channel spectrometer for mixed photon, electron, and ion fields with high fluence rates.

    PubMed

    Behrens, R; Ambrosi, P

    2002-01-01

    A few-channel spectrometer for mixed photon, electron and ion radiation fields has been developed. It consists of a front layer of an etched-track detector foil for detecting protons and ions, a stack of PMMA with thermoluminescent detectors at different depths for gaining spectral information about electrons, and a stack of metallic filters with increasing cut-off photon energies, interspersed with thermoluminescent detectors for gaining spectral information about photons. From the reading of the TL detectors the spectral fluence of the electrons (400 keV to 9 MeV) and photons (20 keV to 2 MeV) can be determined by an unfolding procedure. The spectrometer can be used in pulsed radiation fields with extremely high momentary values of the fluence rate. Design and calibration of the spectrometer are described.

  17. On the linearity of fast atomic oxygen effects

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1993-01-01

    The effect of bombardment of 8 km per second atomic oxygen (AO) experienced by exposed surfaces of satellites in low Earth orbit must be considered in the selection of materials to be used in instruments and functional systems on these satellites. The degree of importance of the effects varies widely depending on the material, the application, and the exposure (fluence of atoms) to which it is to be subjected. Some highly erodible thin polymer film materials might be considered unacceptable on a long-lived space station, but may be perfectly serviceable on a normal shuttle flight. In order to determine the acceptability of a material for a particular environment, a designer must know the relationship between the magnitude of the effect (for example, mass-loss) and the magnitude of the fluence. To determine this relationship, we need data over a useful range of fluence. Until the return of the Long Duration Exposure Facility (LDEF), the bulk of the data on materials effects was obtained from a few shuttle flights, and the bulk of that data from the flight of experiment Evaluation of Oxygen Interaction with Materials (EOIM-2) on STS-8 in 1983. EOIM-2 obtained a fluence of 3.5 x 10(exp 20) atoms cm(exp -2), while the LDEF fluence approached 10(exp 22) atoms cm(exp -2), or about 30 times greater. Although other flight exposures had been obtained with lower fluences, considerable uncertainty was attached to these results because of the possibility of large relative systematic errors and of other factors such as sweeping angle of attack. In the future, it is hoped that simulation facilities in the laboratory will allow testing of materials without the necessity of flying them in space. In addition, if the relationship of effect with oxygen fluence is well determined, it should not be necessary to expose a material for an entire mission fluence. In this paper, we shall avoid a comparison of flight data with results from simulators, though that comparison is important for the materials community. The present discussion is limited to flight data only.

  18. ITER Construction—Plant System Integration

    NASA Astrophysics Data System (ADS)

    Tada, E.; Matsuda, S.

    2009-02-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  19. Development of the ITER magnetic diagnostic set and specification.

    PubMed

    Vayakis, G; Arshad, S; Delhom, D; Encheva, A; Giacomin, T; Jones, L; Patel, K M; Pérez-Lasala, M; Portales, M; Prieto, D; Sartori, F; Simrock, S; Snipes, J A; Udintsev, V S; Watts, C; Winter, A; Zabeo, L

    2012-10-01

    ITER magnetic diagnostics are now in their detailed design and R&D phase. They have passed their conceptual design reviews and a working diagnostic specification has been prepared aimed at the ITER project requirements. This paper highlights specific design progress, in particular, for the in-vessel coils, steady state sensors, saddle loops and divertor sensors. Key changes in the measurement specifications, and a working concept of software and electronics are also outlined.

  20. Front-end antenna system design for the ITER low-field-side reflectometer system using GENRAY ray tracing.

    PubMed

    Wang, G; Doyle, E J; Peebles, W A

    2016-11-01

    A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.

  1. Investigation of ITER candidate beryllium grades irradiated at high temperature

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Gorokhov, V. A.; Melder, R. R.; Ostrovsky, Z. E.; Gervash, A. A.

    1998-10-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why the investigation of beryllium behaviour under the typical for fusion reactor loading, in particular under the neutron irradiation, is of a great importance. This paper presents some results of investigation of five beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia, and one (S-65) fabricated by Brush Wellman, USA. The average grain size of the investigated beryllium grades varied from 8 to 40 μm, beryllium oxide content was 0.7-3.2 wt.%, initial tensile strength 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor of 650-700°C up to the fast neutron fluence (5.5-6.2) × 10 21 cm -2 (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV. Irradiation swelling of the materials was revealed to be in the range of 0.3-1.7%. Beryllium grades TR-30 and TRR having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which did not exceed 0.3% at 700°C and fluence 5.5 × 10 21 cm -2. Mechanical properties and microstructure parameters measured before and after irradiation are also presented.

  2. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  3. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    NASA Technical Reports Server (NTRS)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  4. Multidisciplinary systems optimization by linear decomposition

    NASA Technical Reports Server (NTRS)

    Sobieski, J.

    1984-01-01

    In a typical design process major decisions are made sequentially. An illustrated example is given for an aircraft design in which the aerodynamic shape is usually decided first, then the airframe is sized for strength and so forth. An analogous sequence could be laid out for any other major industrial product, for instance, a ship. The loops in the discipline boxes symbolize iterative design improvements carried out within the confines of a single engineering discipline, or subsystem. The loops spanning several boxes depict multidisciplinary design improvement iterations. Omitted for graphical simplicity is parallelism of the disciplinary subtasks. The parallelism is important in order to develop a broad workfront necessary to shorten the design time. If all the intradisciplinary and interdisciplinary iterations were carried out to convergence, the process could yield a numerically optimal design. However, it usually stops short of that because of time and money limitations. This is especially true for the interdisciplinary iterations.

  5. A stochastic framework for spot-scanning particle therapy.

    PubMed

    Robini, Marc; Yuemin Zhu; Wanyu Liu; Magnin, Isabelle

    2016-08-01

    In spot-scanning particle therapy, inverse treatment planning is usually limited to finding the optimal beam fluences given the beam trajectories and energies. We address the much more challenging problem of jointly optimizing the beam fluences, trajectories and energies. For this purpose, we design a simulated annealing algorithm with an exploration mechanism that balances the conflicting demands of a small mixing time at high temperatures and a reasonable acceptance rate at low temperatures. Numerical experiments substantiate the relevance of our approach and open new horizons to spot-scanning particle therapy.

  6. An iterative analytical technique for the design of interplanetary direct transfer trajectories including perturbations

    NASA Astrophysics Data System (ADS)

    Parvathi, S. P.; Ramanan, R. V.

    2018-06-01

    An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.

  7. Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Geng, Steven M.; Niedra, Janis M.; Sayir, Ali; Shin, Eugene E.; Sutter, James K.; Thieme, Lanny G.

    2007-01-01

    A fission reactor combined with a free-piston Stirling convertor is one of many credible approaches for producing electrical power in space applications. This study assumes dual-opposed free-piston Stirling engines/linear alternators that will operate nominally at 825 K hot-end and 425 K cold-end temperatures. The baseline design options, temperature profiles, and materials of construction discussed here are based on historical designs as well as modern convertors operating at lower power levels. This notional design indicates convertors primarily made of metallic components that experience minimal change in mechanical properties for fast neutron fluences less than 10(sup 20) neutrons per square centimeter. However, these radiation effects can impact the magnetic and electrical properties of metals at much lower fluences than are crucial for mechanical property integrity. Moreover, a variety of polymeric materials are also used in common free-piston Stirling designs for bonding, seals, lubrication, insulation and others. Polymers can be affected adversely by radiation doses as low as 10(sup 5) - 10(sup 10) rad. Additionally, the absorbing dose rate, radiation hardness, and the resulting effect (either hardening or softening) varies depending on the nature of the particular polymer. The classes of polymers currently used in convertor fabrication are discussed along possible substitution options. Thus, the materials of construction of prototypic Stirling convertor engines have been considered and the component materials susceptible to damage at the lowest neutron fluences have been identified.

  8. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    NASA Astrophysics Data System (ADS)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  9. Design Optimization Programmable Calculators versus Campus Computers.

    ERIC Educational Resources Information Center

    Savage, Michael

    1982-01-01

    A hypothetical design optimization problem and technical information on the three design parameters are presented. Although this nested iteration problem can be solved on a computer (flow diagram provided), this article suggests that several hand held calculators can be used to perform the same design iteration. (SK)

  10. Modeling Design Iteration in Product Design and Development and Its Solution by a Novel Artificial Bee Colony Algorithm

    PubMed Central

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness. PMID:25431584

  11. Iteration in Early-Elementary Engineering Design

    NASA Astrophysics Data System (ADS)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  12. The Design Implementation Framework: Iterative Design from the Lab to the Classroom

    ERIC Educational Resources Information Center

    Stone, Melissa L.; Kent, Kevin M.; Roscoe, Rod D.; Corley, Kathleen M.; Allen, Laura K.; McNamara, Danielle S.

    2017-01-01

    This chapter explores three broad principles of user-centered design methodologies: participatory design, iteration, and usability considerations. The authors highlight the importance of considering teachers as a prominent type of ITS end user, by describing the barriers teachers face as users and their role in educational technology design. To…

  13. Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team

    2015-11-01

    The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.

  14. Performance trade studies of a solar electric orbit transfer mission

    NASA Astrophysics Data System (ADS)

    Sutton, D. M.; McLain, M. G.; Kechichian, J. A.

    An analysis of several electric orbit transfer trade studies investigating the performance of a solar-powered electric orbit transfer vehicle (EOTV) is presented. One trade illustrates how the greatest payload capability for time-of-flight constrained transfers can be obtained by optimizing specific impulse. Various methods of reducing the accumulated fluence of charged particles during transit are evaluated in a second trade study. The reduction in fluence obtained by shaping the trajectory to avoid high radiation flux density regions is compared with reductions obtained by using a hybrid chemical/electric vehicle, by additional radiation-protective coverslide material added to the solar array, and by increasing the power of the vehicle. It is shown that a trajectory shaped to minimize fluence may be an advantage to the complete EOTV design. A final trade study shows how park orbit altitude influences the initial thrust-to-drag ratio of an EOTV.

  15. ITER ECE Diagnostic: Design Progress of IN-DA and the diagnostic role for Physics

    NASA Astrophysics Data System (ADS)

    Pandya, H. K. B.; Kumar, Ravinder; Danani, S.; Shrishail, P.; Thomas, Sajal; Kumar, Vinay; Taylor, G.; Khodak, A.; Rowan, W. L.; Houshmandyar, S.; Udintsev, V. S.; Casal, N.; Walsh, M. J.

    2017-04-01

    The ECE Diagnostic system in ITER will be used for measuring the electron temperature profile evolution, electron temperature fluctuations, the runaway electron spectrum, and the radiated power in the electron cyclotron frequency range (70-1000 GHz), These measurements will be used for advanced real time plasma control (e.g. steering the electron cyclotron heating beams), and physics studies. The scope of the Indian Domestic Agency (IN-DA) is to design and develop the polarizer splitter units; the broadband (70 to 1000 GHz) transmission lines; a high temperature calibration source in the Diagnostics Hall; two Michelson Interferometers (70 to 1000 GHz) and a 122-230 GHz radiometer. The remainder of the ITER ECE diagnostic system is the responsibility of the US domestic agency and the ITER Organization (IO). The design needs to conform to the ITER Organization’s strict requirements for reliability, availability, maintainability and inspect-ability. Progress in the design and development of various subsystems and components considering various engineering challenges and solutions will be discussed in this paper. This paper will also highlight how various ECE measurements can enhance understanding of plasma physics in ITER.

  16. Improving Access to Care for Warfighters: Virtual Worlds Technology to Enhance Primary Care Training in Post-Traumatic Stress and Motivational Interviewing

    DTIC Science & Technology

    2017-10-01

    chronic mental and physical health problems. Therefore, the project aims to: (1) iteratively design a new web-based PTS and Motivational Interviewing...result in missed opportunities to intervene to prevent chronic mental and physical health problems. The project aims are to: (1) iteratively design a new...intervene to prevent chronic mental and physical health problems. We propose to: (1) Iteratively design a new web-based PTS and Motivational

  17. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

  18. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    NASA Astrophysics Data System (ADS)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  19. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER.

  20. On the safety of ITER accelerators

    PubMed Central

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  1. Gaussian beam and physical optics iteration technique for wideband beam waveguide feed design

    NASA Technical Reports Server (NTRS)

    Veruttipong, W.; Chen, J. C.; Bathker, D. A.

    1991-01-01

    The Gaussian beam technique has become increasingly popular for wideband beam waveguide (BWG) design. However, it is observed that the Gaussian solution is less accurate for smaller mirrors (approximately less than 30 lambda in diameter). Therefore, a high-performance wideband BWG design cannot be achieved by using the Gaussian beam technique alone. This article demonstrates a new design approach by iterating Gaussian beam and BWG parameters simultaneously at various frequencies to obtain a wideband BWG. The result is further improved by comparing it with physical optics results and repeating the iteration.

  2. Development and Evaluation of an Intuitive Operations Planning Process

    DTIC Science & Technology

    2006-03-01

    designed to be iterative and also prescribes the way in which iterations should occur. On the other hand, participants’ perceived level of trust and...16 4. DESIGN AND METHOD OF THE EXPERIMENTAL EVALUATION OF THE INTUITIVE PLANNING PROCESS...20 4.1.3 Design

  3. Iterative optimization method for design of quantitative magnetization transfer imaging experiments.

    PubMed

    Levesque, Ives R; Sled, John G; Pike, G Bruce

    2011-09-01

    Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.

  4. Stretchable multilayer self-aligned interconnects fabricated using excimer laser photoablation and in situ masking

    NASA Astrophysics Data System (ADS)

    Lin, Kevin L.; Jain, Kanti

    2009-02-01

    Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.

  5. Real-time simulator for designing electron dual scattering foil systems.

    PubMed

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV). 

  6. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first ITER module is in progress. The seven modules will be individually shipped to Cadarache, France upon their completion. This paper describes the processes and status of the fabrication of the CS Modules for ITER.« less

  7. Iteration in Early-Elementary Engineering Design

    ERIC Educational Resources Information Center

    McFarland Kendall, Amber Leigh

    2017-01-01

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…

  8. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible∕infrared wide angle viewing system optical design.

    PubMed

    Joanny, M; Salasca, S; Dapena, M; Cantone, B; Travère, J M; Thellier, C; Fermé, J J; Marot, L; Buravand, O; Perrollaz, G; Zeile, C

    2012-10-01

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible∕infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  9. Performance assessment of the antenna setup for the ITER plasma position reflectometry in-vessel systems.

    PubMed

    Varela, P; Belo, J H; Quental, P B

    2016-11-01

    The design of the in-vessel antennas for the ITER plasma position reflectometry diagnostic is very challenging due to the need to cope both with the space restrictions inside the vacuum vessel and with the high mechanical and thermal loads during ITER operation. Here, we present the work carried out to assess and optimise the design of the antenna. We show that the blanket modules surrounding the antenna strongly modify its characteristics and need to be considered from the early phases of the design. We also show that it is possible to optimise the antenna performance, within the design restrictions.

  10. Novel aspects of plasma control in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, D.; Jackson, G.; Walker, M.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  11. Novel aspects of plasma control in ITER

    DOE PAGES

    Humphreys, David; Ambrosino, G.; de Vries, Peter; ...

    2015-02-12

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  12. Prospects for Advanced Tokamak Operation of ITER

    NASA Astrophysics Data System (ADS)

    Neilson, George H.

    1996-11-01

    Previous studies have identified steady-state (or "advanced") modes for ITER, based on reverse-shear profiles and significant bootstrap current. A typical example has 12 MA of plasma current, 1,500 MW of fusion power, and 100 MW of heating and current-drive power. The implementation of these and other steady-state operating scenarios in the ITER device is examined in order to identify key design modifications that can enhance the prospects for successfully achieving advanced tokamak operating modes in ITER compatible with a single null divertor design. In particular, we examine plasma configurations that can be achieved by the ITER poloidal field system with either a monolithic central solenoid (as in the ITER Interim Design), or an alternate "hybrid" central solenoid design which provides for greater flexibility in the plasma shape. The increased control capability and expanded operating space provided by the hybrid central solenoid allows operation at high triangularity (beneficial for improving divertor performance through control of edge-localized modes and for increasing beta limits), and will make it much easier for ITER operators to establish an optimum startup trajectory leading to a high-performance, steady-state scenario. Vertical position control is examined because plasmas made accessible by the hybrid central solenoid can be more elongated and/or less well coupled to the conducting structure. Control of vertical-displacements using the external PF coils remains feasible over much of the expanded operating space. Further work is required to define the full spectrum of axisymmetric plasma disturbances requiring active control In addition to active axisymmetric control, advanced tokamak modes in ITER may require active control of kink modes on the resistive time scale of the conducting structure. This might be accomplished in ITER through the use of active control coils external to the vacuum vessel which are actuated by magnetic sensors near the first wall. The enhanced shaping and positioning flexibility provides a range of options for reducing the ripple-induced losses of fast alpha particles--a major limitation on ITER steady-state modes. An alternate approach that we are pursuing in parallel is the inclusion of ferromagnetic inserts to reduce the toroidal field ripple within the plasma chamber. The inclusion of modest design changes such as the hybrid central solenoid, active control coils for kink modes, and ferromagnetic inserts for TF ripple reduction show can greatly increase the flexibility to accommodate advance tokamak operation in ITER. Increased flexibility is important because the optimum operating scenario for ITER cannot be predicted with certainty. While low-inductance, reverse shear modes appear attractive for steady-state operation, high-inductance, high-beta modes are also viable candidates, and it is important that ITER have the flexibility to explore both these, and other, operating regimes.

  13. Two-dimensional over-all neutronics analysis of the ITER device

    NASA Astrophysics Data System (ADS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  14. A common fluence threshold for first positive and second positive phototropism in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Janoudi, A.; Poff, K. L.

    1990-01-01

    The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 x 10(-5) to 6.5 x 10(-3) micromoles per square meter per second. The threshold values in the fluence rate-response curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system.

  15. Long Duration Exposure Facility post-flight data as it influences the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Straka, Sharon A.

    1995-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.

  16. Multiple scattering theory for total skin electron beam design.

    PubMed

    Antolak, J A; Hogstrom, K R

    1998-06-01

    The purpose of this manuscript is to describe a method for designing a broad beam of electrons suitable for total skin electron irradiation (TSEI). A theoretical model of a TSEI beam from a linear accelerator with a dual scattering system has been developed. The model uses Fermi-Eyges theory to predict the planar fluence of the electron beam after it has passed through various materials between the source and the treatment plane, which includes scattering foils, monitor chamber, air, and a plastic diffusing plate. Unique to this model is its accounting for removal of the tails of the electron beam profile as it passes through the primary x-ray jaws. A method for calculating the planar fluence profile for an obliquely incident beam is also described. Off-axis beam profiles and percentage depth doses are measured with ion chambers, film, and thermoluminescent dosimeters (TLD). The measured data show that the theoretical model can accurately predict beam energy and planar fluence of the electron beam at normal and oblique incidence. The agreement at oblique angles is not quite as good but is sufficiently accurate to be of predictive value when deciding on the optimal angles for the clinical TSEI beams. The advantage of our calculational approach for designing a TSEI beam is that many different beam configurations can be tested without having to perform time-consuming measurements. Suboptimal configurations can be quickly dismissed, and the predicted optimal solution should be very close to satisfying the clinical specifications.

  17. Experiments on water detritiation and cryogenic distillation at TLK; Impact on ITER fuel cycle subsystems interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristescu, I.; Cristescu, I. R.; Doerr, L.

    2008-07-15

    The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less

  18. Improvements in surface singularity analysis and design methods. [applicable to airfoils

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1979-01-01

    The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.

  19. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  20. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Efficacy of Intense Pulsed Light Therapy in the Treatment of Facial Acne Vulgaris: Comparison of Two Different Fluences

    PubMed Central

    Patidar, Monika V; Deshmukh, Ashish Ramchandra; Khedkar, Maruti Yadav

    2016-01-01

    Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL) therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1) to study efficacy of IPL therapy in facial acne vulgaris. (2) To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used). Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%), moderate (26-50%), good (51-75%) and excellent (76-100%). Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%), good in 22(49%) and moderate in 13(29%) patients. On left side excellent were results achieved in 7(15%), good in 19(42%) and moderate in 16(43%) patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin. PMID:27688446

  2. Efficacy of Intense Pulsed Light Therapy in the Treatment of Facial Acne Vulgaris: Comparison of Two Different Fluences.

    PubMed

    Patidar, Monika V; Deshmukh, Ashish Ramchandra; Khedkar, Maruti Yadav

    2016-01-01

    Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL) therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. (1) to study efficacy of IPL therapy in facial acne vulgaris. (2) To compare two fluences - one normal and other subnormal on right and left side of face respectively. (Including settings and design and statistical analysis used). Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm(2) on right and 20J/cm(2) on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%), moderate (26-50%), good (51-75%) and excellent (76-100%). Side effects were noted. The results were analysed using Mann-Whitney Test. On right side, excellent results were achieved in 10(22%), good in 22(49%) and moderate in 13(29%) patients. On left side excellent were results achieved in 7(15%), good in 19(42%) and moderate in 16(43%) patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  3. Refractive and relativistic effects on ITER low field side reflectometer design.

    PubMed

    Wang, G; Rhodes, T L; Peebles, W A; Harvey, R W; Budny, R V

    2010-10-01

    The ITER low field side reflectometer faces some unique design challenges, among which are included the effect of relativistic electron temperatures and refraction of probing waves. This paper utilizes GENRAY, a 3D ray tracing code, to investigate these effects. Using a simulated ITER operating scenario, characteristics of the reflected millimeter waves after return to the launch plane are quantified as a function of a range of design parameters, including antenna height, antenna diameter, and antenna radial position. Results for edge/SOL measurement with both O- and X-mode polarizations using proposed antennas are reported.

  4. The role of simulation in the design of a neural network chip

    NASA Technical Reports Server (NTRS)

    Desai, Utpal; Roppel, Thaddeus A.; Padgett, Mary L.

    1993-01-01

    An iterative, simulation-based design procedure for a neural network chip is introduced. For this design procedure, the goal is to produce a chip layout for a neural network in which the weights are determined by transistor gate width-to-length ratios. In a given iteration, the current layout is simulated using the circuit simulator SPICE, and layout adjustments are made based on conventional gradient-decent methods. After the iteration converges, the chip is fabricated. Monte Carlo analysis is used to predict the effect of statistical fabrication process variations on the overall performance of the neural network chip.

  5. A Common Fluence Threshold for First Positive and Second Positive Phototropism in Arabidopsis thaliana1

    PubMed Central

    Janoudi, Abdul; Poff, Kenneth L.

    1990-01-01

    The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 × 10−5 to 6.5 × 10−3 micromoles per square meter per second. The threshold values in the fluence rateresponse curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system. PMID:11537470

  6. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams.

    PubMed

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-07-01

    The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the fluka code [A. Ferrari et al., "fluka: A multi-particle transport code," in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., "The fluka Code: Developments and challenges for high energy and medical applications," Nucl. Data Sheets 120, 211-214 (2014)], to partial fluence corrections measured experimentally. A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary particle fluence. A correction factor, F(d), has been established to relate fluence corrections defined theoretically to partial fluence corrections derived experimentally. The findings presented here are also relevant to water and tissue-equivalent-plastic materials given their carbon content.

  7. Pseudo-time methods for constrained optimization problems governed by PDE

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1995-01-01

    In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.

  8. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    NASA Astrophysics Data System (ADS)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  9. Not All Wizards Are from Oz: Iterative Design of Intelligent Learning Environments by Communication Capacity Tapering

    ERIC Educational Resources Information Center

    Mavrikis, Manolis; Gutierrez-Santos, Sergio

    2010-01-01

    This paper presents a methodology for the design of intelligent learning environments. We recognise that in the educational technology field, theory development and system-design should be integrated and rely on an iterative process that addresses: (a) the difficulty to elicit precise, concise, and operationalized knowledge from "experts" and (b)…

  10. From Amorphous to Defined: Balancing the Risks of Spiral Development

    DTIC Science & Technology

    2007-04-30

    630 675 720 765 810 855 900 Time (Week) Work started and active PhIt [Requirements,Iter1] : JavelinCalibration work packages1 1 1 Work started and...active PhIt [Technology,Iter1] : JavelinCalibration work packages2 2 2 Work started and active PhIt [Design,Iter1] : JavelinCalibration work packages3 3 3 3...Work started and active PhIt [Manufacturing,Iter1] : JavelinCalibration work packages4 4 Work started and active PhIt [Use,Iter1] : JavelinCalibration

  11. Deep nets vs expert designed features in medical physics: An IMRT QA case study.

    PubMed

    Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer

    2018-03-30

    The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.

  12. Mechanical properties of irradiated beryllium

    NASA Astrophysics Data System (ADS)

    Beeston, J. M.; Longhurst, G. R.; Wallace, R. S.; Abeln, S. P.

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 × 10 25 n/m 2 ( E > 1 MeV) at an irradiation temperature of 75°C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium.

  13. Progress on ion cyclotron range of frequencies heating physics and technology in support of the International Tokamak Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bonoli, P. T.

    2015-02-01

    Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored.

  14. Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Rogak, Steven; Snelling, David R.; Saffaripour, Meghdad; Thomson, Kevin A.; Smallwood, Gregory J.

    2016-11-01

    Multimode pulsed Nd:YAG lasers are commonly used in auto-compensating laser-induced incandescence (AC-LII) measurements of soot in flames and engine exhaust as well as black carbon in the atmosphere. Such lasers possess a certain degree of fluence non-uniformity across the laser beam even with the use of beam shaping optics. Recent research showed that the measured volume fraction of ambient-temperature soot using AC-LII increases significantly, by about a factor of 5-8, with increasing the laser fluence in the low-fluence regime from a very low fluence to a relatively high fluence of near sublimation. The causes of this so-called soot volume fraction anomaly are currently not understood. The effects of laser fluence non-uniformity on the measured soot volume fraction using AC-LII were investigated. Three sets of LII experiments were conducted in the exhaust of a MiniCAST soot generator under conditions of high elemental carbon using Nd:YAG lasers operated at 1064 nm. The laser beams were shaped and relay imaged to achieve a relatively uniform fluence distribution in the measurement volume. To further homogenize the laser fluence, one set of LII experiments was conducted by using a diffractive optical element. The measured soot volume fractions in all three sets of LII experiments increase strongly with increasing the laser fluence before a peak value is reached and then start to decrease at higher fluences. Numerical calculations were conducted using the experimental laser fluence histograms. Laser fluence non-uniformity is found partially responsible for the soot volume fraction anomaly, but is insufficient to explain the degree of soot volume fraction anomaly observed experimentally. Representing the laser fluence variations by a histogram derived from high-resolution images of the laser beam energy profile gives a more accurate definition of inhomogeneity than a simple averaged linear profile across the laser beam.

  15. Conceptual Design of the ITER ECE Diagnostic - An Update

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  16. The effect of fluence on the magnetic properties of superparamagnetic iron-nickel nanoparticles in SiO2 made by dual Ni and Fe low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Williams, G. V. M.; Prakash, T.; Kennedy, J.

    2017-10-01

    Superparamagnetic Ni1-yFey nanoparticles were made in a SiO2 film by 10 keV ion beam implantation of Ni followed by Fe with a Ni fluence of 4 × 1016 at.cm-2 and a Fe fluence fraction of 0.47. Nearly all of the moments magnetically ordered, which was not reported for an implanted film made with a Fe fluence fraction of 0.56 and half the Ni fluence. The temperature dependence of the saturation moment is remarkably similar for low and high Ni fluences where there is also the presence of very thin spin-disordered shells. The higher Ni fluence leads to a significant enhancement of the susceptibility by a factor of 9 when compared with the lower fluence sample. This enhancement is likely to be due to a larger magnetically ordered volume fraction.

  17. A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Clowdsley, M. S.

    1998-01-01

    Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

  18. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  19. Description of the prototype diagnostic residual gas analyzer for ITER.

    PubMed

    Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C

    2014-11-01

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  20. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  1. A non-stochastic iterative computational method to model light propagation in turbid media

    NASA Astrophysics Data System (ADS)

    McIntyre, Thomas J.; Zemp, Roger J.

    2015-03-01

    Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.

  2. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  3. From Intent to Action: An Iterative Engineering Process

    ERIC Educational Resources Information Center

    Mouton, Patrice; Rodet, Jacques; Vacaresse, Sylvain

    2015-01-01

    Quite by chance, and over the course of a few haphazard meetings, a Master's degree in "E-learning Design" gradually developed in a Faculty of Economics. Its original and evolving design was the result of an iterative process carried out, not by a single Instructional Designer (ID), but by a full ID team. Over the last 10 years it has…

  4. Loads specification and embedded plate definition for the ITER cryoline system

    NASA Astrophysics Data System (ADS)

    Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.

    2015-12-01

    ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.

  5. A superlinear interior points algorithm for engineering design optimization

    NASA Technical Reports Server (NTRS)

    Herskovits, J.; Asquier, J.

    1990-01-01

    We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.

  6. Integrating Low-Cost Rapid Usability Testing into Agile System Development of Healthcare IT: A Methodological Perspective.

    PubMed

    Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    The development of more usable and effective healthcare information systems has become a critical issue. In the software industry methodologies such as agile and iterative development processes have emerged to lead to more effective and usable systems. These approaches highlight focusing on user needs and promoting iterative and flexible development practices. Evaluation and testing of iterative agile development cycles is considered an important part of the agile methodology and iterative processes for system design and re-design. However, the issue of how to effectively integrate usability testing methods into rapid and flexible agile design cycles has remained to be fully explored. In this paper we describe our application of an approach known as low-cost rapid usability testing as it has been applied within agile system development in healthcare. The advantages of the integrative approach are described, along with current methodological considerations.

  7. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaudon, X; Bernard, J. M.; Colas, L.

    2013-01-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Toremore » Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.« less

  8. Seismic Design of ITER Component Cooling Water System-1 Piping

    NASA Astrophysics Data System (ADS)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  9. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). Inmore » each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method.« less

  10. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    PubMed

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method.

  11. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method. PMID:23464329

  12. Treatment of Melasma with the Photoacoustic Twin Pulse Mode of Low-Fluence 1,064 nm Q-Switched Nd:YAG Laser.

    PubMed

    Kim, Jee Young; Choi, Misoo; Nam, Chan Hee; Kim, Ji Seok; Kim, Myung Hwa; Park, Byung Cheol; Hong, Seung Phil

    2016-06-01

    Low-fluence 1,064 nm Q-switched Nd:YAG laser has been widely used for the treatment of melasma. Although new Q-switched Nd:YAG lasers with photoacoustic twin pulse (PTP) mode have been recently developed for high-efficiency, there is limited information available for the new technique. This study was designed to investigate the efficacy and adverse effects after few sessions of repeated low fluence 1,064 nm Q-switched Nd:YAG laser treatment with PTP mode in Asian women with melasma. Twenty-two Korean women were treated with a total of five sessions of low-fluence PTP mode Nd:YAG laser treatment (Pastelle®) at 2 weeks interval. Responses to treatments were evaluated by using Melasma Area and Severity Index (MASI) scoring, colorimeter measurement, and the investigators' and patients' overall assessments. Adverse events were recorded at each visit. Investigators' and patients' overall assessment showed that 'significantly improved' was assessed by 13 (59.1%) and 19 of 22 patients (86.4%), respectively. MASI scores were significantly reduced by 20.4%. The lightness, measured by using a colorimeter, was significantly increased by 1.3 point. Notable adverse events were not observed. After 5 sessions of laser therapy alone, about 60% of the subjects showed significant improvement. Few sessions of repeated laser toning treatment using the PTP mode is a safe and effective way to treat facial melasma.

  13. Finding the Optimal Guidance for Enhancing Anchored Instruction

    ERIC Educational Resources Information Center

    Zydney, Janet Mannheimer; Bathke, Arne; Hasselbring, Ted S.

    2014-01-01

    This study investigated the effect of different methods of guidance with anchored instruction on students' mathematical problem-solving performance. The purpose of this research was to iteratively design a learning environment to find the optimal level of guidance. Two iterations of the software were compared. The first iteration used explicit…

  14. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies.

    PubMed

    Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela

    2016-11-01

    We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber's low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm 2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm 2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe's energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF 2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.

  15. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-03-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.

  16. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunke, B.; Bora, D.; Hemsworth, R.

    2009-03-12

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D{sup -} and capable of delivering 16.5 MW of D{sup 0} to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H{sup -} to 100 keV will inject {approx_equal}15 A equivalent of H{sup 0} for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion sourcemore » as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D{sup -} and H{sup -} current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.« less

  17. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  18. Integrated Collaborative Model in Research and Education with Emphasis on Small Satellite Technology

    DTIC Science & Technology

    1996-01-01

    feedback; the number of iterations in a complete iteration is referred to as loop depth or iteration depth, g (i). A data packet or packet is data...loop depth, g (i)) is either a finite (constant or variable) or an infinite value. 1) Finite loop depth, variable number of iterations Some problems...design time. The time needed for the first packet to leave and a new initial data to be introduced to the iteration is min(R * ( g (k) * (N+I) + k-1

  19. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    PubMed

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  20. ITER EDA Newsletter. Volume 3, no. 2

    NASA Astrophysics Data System (ADS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, January 27-28, 1994, a visit (January 28, 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (January 28, 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report.

  1. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jan; Ferrada, Juan J; Curd, Warren

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predictedmore » to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.« less

  2. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  3. Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Dux, R.; Casali, L.; Eich, T.; Giannone, L.; Herrmann, A.; McDermott, R.; Mlynek, A.; Müller, H. W.; Reimold, F.; Schweinzer, J.; Sertoli, M.; Tardini, G.; Treutterer, W.; Viezzer, E.; Wenninger, R.; Wischmeier, M.; the ASDEX Upgrade Team

    2013-12-01

    A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L-H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.

  4. Reducing Design Cycle Time and Cost Through Process Resequencing

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.

  5. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  6. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  7. Observer-based distributed adaptive iterative learning control for linear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Liu, Sanyang; Li, Junmin

    2017-10-01

    This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.

  8. Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner

    NASA Astrophysics Data System (ADS)

    Prates, Renato A.; da Silva, Eriques G.; Yamada, Aécio M.; Suzuki, Luis C.; Paula, Claudete R.; Ribeiro, Martha S.

    2009-05-01

    The aim of this study was to investigate the influence of light parameters on yeast cells. It has been proposed for many years that photodynamic therapy (PDT) can inactivate microbial cells. A number of photosensitizer and light sources were reported in different light parameters and in a range of dye concentrations. However, much more knowledge concerning the importance of fluence, fluence rate and exposure time are required for a better understanding of the photodynamic efficiency. Suspensions (106 CFU/mL) of Candida albicans, Candida krusei, and Cryptococcus neoformans var. grubii were used. Two fluence rates, 100 and 300 mW/cm2 were compared at 3, 6, and 9 min of irradiation, resulting fluences from 18 to 162 J/cm2. The light source was a laser emitting at λ = 660 nm with output power adjusted at 30 and 90 mW. As photosensitizer, one hundred-μM methylene blue was used. Temperature was monitored to verify possible heat effect and reactive oxygen species (ROS) formation was evaluated. The same fluence in different fluence rates showed dissimilar levels of inactivation on yeast cells as well as in ROS formation. In addition, the increase of the fluence rate showed an improvement on cell photoinactivation. PDT was efficient against yeast cells (6 log reduction), and no significant temperature increase was observed. Fluence per se should not be used as an isolate parameter to compare photoinactivation effects on yeast cells. The higher fluence rate was more effective than the lower one. Furthermore, an adequate duration of light exposure cannot be discarded.

  9. Ultra-fast fluence optimization for beam angle selection algorithms

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Ziegenhein, P.; Oelfke, U.

    2014-03-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  10. Plans for a measurement of the neutron lifetime to better than 0.3s using a Penning trap and absolute measurement of neutron fluence

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; NBL3 Collaboration

    2014-09-01

    The decay of the free neutron is the prototypical charged current semi-leptonic weak process. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial He4 abundance from the theory of Big Bang Nucleosynthesis. Plans are being made for an in-beam measurement of the neutron lifetime with an anticipated 0.3s of uncertainty or better. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Advances in neutron fluence measurement, used in to provide the best existing in-beam determination of the neutron lifetime, as well as new silicon detector technology, in use now at LANSCE, address the two largest contributors to the uncertainty of in-beam measurements-the statistical uncertainty associated with proton counting and the systematic uncertainty in the neutron fluence measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  11. Transurethral illumination probe design for deep photoacoustic imaging of prostate

    NASA Astrophysics Data System (ADS)

    Ai, Min; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo

    2018-02-01

    Photoacoustic (PA) imaging with internal light illumination through optical fiber could enable imaging of internal organs at deep penetration. We have developed a transurethral probe with a multimode fiber inserted in a rigid cystoscope sheath for illuminating the prostate. At the distal end, the fiber tip is processed to diffuse light circumferentially over 2 cm length. A parabolic cylinder mirror then reflects the light to form a rectangular-shaped parallel beam which has at least 1 cm2 at the probe surface. The relatively large rectangular beam size can reduce the laser fluence rate on the urethral wall and thus reduce the potential of tissue damage. A 3 cm optical penetration in chicken tissue is achieved at a fluence rate around 7 mJ/cm2 . For further validation, a prostate phantom was built with similar optical properties of the human prostate. A 1.5 cm penetration depth is achieved in the prostate mimicking phantom at 10 mJ/cm2 fluence rate. PA imaging of prostate can potentially be carried out in the future by combining a transrectal ultrasound transducer and the transurethral illumination.

  12. Laser induced mortality of Anopheles stephensi mosquitoes

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  13. Irradiation effects on antibody performance in the frame of biochip-based instruments development for space exploration

    NASA Astrophysics Data System (ADS)

    Baqué, M.; Dobrijevic, M.; Le Postollec, A.; Moreau, T.; Faye, C.; Vigier, F.; Incerti, S.; Coussot, G.; Caron, J.; Vandenabeele-Trambouze, O.

    2017-01-01

    Several instruments based on immunoassay techniques have been proposed for life-detection experiments in the framework of planetary exploration but few experiments have been conducted so far to test the resistance of antibodies against cosmic ray particles. We present several irradiation experiments carried out on both grafted and free antibodies for different types of incident particles (protons, neutrons, electrons and 12C) at different energies (between 9 MeV and 50 MeV) and different fluences. No loss of antibodies activity was detected for the whole set of experiments except when considering protons with energy between 20 and 30 MeV (on free and grafted antibodies) and fluences much greater than expected for a typical planetary mission to Mars for instance. Our results on grafted antibodies suggest that biochip-based instruments must be carefully designed according to the expected radiation environment for a given mission. In particular, a surface density of antibodies much larger than the expected proton fluence would prevent significant loss of antibodies activity and thus assuring a successful detection.

  14. Development of the ITER ICH Transmission Line and Matching System

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. A.; Goulding, R. H.; Pesavento, P. V.; Peters, B.; Swain, D. W.; Fredd, E. H.; Hosea, J.; Greenough, N.

    2011-10-01

    The ITER Ion Cyclotron Heating (ICH) System is designed to couple 20 MW of heating power for ion and electron heating. Prototype components for the ITER Ion Cyclotron Heating (ICH) transmission line and matching system are being designed and tested. The ICH transmission lines are pressurized 300 mm diameter coaxial lines with water-cooled aluminum outer conductor and gas-cooled and water-cooled copper inner conductor. Each ICH transmission line is designed to handle 40-55 MHz power at up to 6 MW/line. A total of 8 lines split to 16 antenna inputs on two ICH antennas. Industrial suppliers have designed coaxial transmission line and matching components and prototypes will be manufactured. The prototype components will be qualified on a test stand operating at the full power and pulse length needed for ITER. The matching system must accommodated dynamic changes in the plasma loading due to ELMS and the L to H-mode transition. Passive ELM tolerance will be performed using hybrid couplers and loads, which can absorb the transient reflected power. The system is also designed to compensate for the mutual inductances of the antenna current straps to limit the peak voltages on the antenna array elements.

  15. Conjecture Mapping to Optimize the Educational Design Research Process

    ERIC Educational Resources Information Center

    Wozniak, Helen

    2015-01-01

    While educational design research promotes closer links between practice and theory, reporting its outcomes from iterations across multiple contexts is often constrained by the volumes of data generated, and the context bound nature of the research outcomes. Reports tend to focus on a single iteration of implementation without further research to…

  16. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    PubMed

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    NASA Astrophysics Data System (ADS)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  18. In-vessel tritium retention and removal in ITER

    NASA Astrophysics Data System (ADS)

    Federici, G.; Anderl, R. A.; Andrew, P.; Brooks, J. N.; Causey, R. A.; Coad, J. P.; Cowgill, D.; Doerner, R. P.; Haasz, A. A.; Janeschitz, G.; Jacob, W.; Longhurst, G. R.; Nygren, R.; Peacock, A.; Pick, M. A.; Philipps, V.; Roth, J.; Skinner, C. H.; Wampler, W. R.

    Tritium retention inside the vacuum vessel has emerged as a potentially serious constraint in the operation of the International Thermonuclear Experimental Reactor (ITER). In this paper we review recent tokamak and laboratory data on hydrogen, deuterium and tritium retention for materials and conditions which are of direct relevance to the design of ITER. These data, together with significant advances in understanding the underlying physics, provide the basis for modelling predictions of the tritium inventory in ITER. We present the derivation, and discuss the results, of current predictions both in terms of implantation and codeposition rates, and critically discuss their uncertainties and sensitivity to important design and operation parameters such as the plasma edge conditions, the surface temperature, the presence of mixed-materials, etc. These analyses are consistent with recent tokamak findings and show that codeposition of tritium occurs on the divertor surfaces primarily with carbon eroded from a limited area of the divertor near the strike zones. This issue remains an area of serious concern for ITER. The calculated codeposition rates for ITER are relatively high and the in-vessel tritium inventory limit could be reached, under worst assumptions, in approximately a week of continuous operation. We discuss the implications of these estimates on the design, operation and safety of ITER and present a strategy for resolving the issues. We conclude that as long as carbon is used in ITER - and more generically in any other next-step experimental fusion facility fuelled with tritium - the efficient control and removal of the codeposited tritium is essential. There is a critical need to develop and test in situ cleaning techniques and procedures that are beyond the current experience of present-day tokamaks. We review some of the principal methods that are being investigated and tested, in conjunction with the R&D work still required to extrapolate their applicability to ITER. Finally, unresolved issues are identified and recommendations are made on potential R&D avenues for their resolution.

  19. Status of the ITER Electron Cyclotron Heating and Current Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio

    2015-10-07

    We present that the electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasmamore » start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.The development of the EC system is facing significant challenges, which includes not only an advanced microwave system but also compliance with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Finally, since the conceptual design of the EC system was established in 2007, the EC system has progressed to a preliminary design stage in 2012 and is now moving forward toward a final design.« less

  20. Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R

    2015-01-01

    Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supplymore » have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.« less

  1. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebreton, Lena; Bachaalany, Mario; Husson, Daniel

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that usemore » CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with its new geometry will increase the telescopes efficiency by a factor of 1.5. It will also cover some of the most important points in metrology; repeatability, reproducibility and sustainability. (authors)« less

  2. Changing the Way We Build Games: A Design-Based Research Study Examining the Implementation of Homemade PowerPoint Games in the Classroom

    ERIC Educational Resources Information Center

    Siko, Jason Paul

    2012-01-01

    This design-based research study examined the effects of a game design project on student test performance, with refinements made to the implementation after each of the three iterations of the study. The changes to the implementation over the three iterations were based on the literature for the three justifications for the use of homemade…

  3. Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.

    1996-01-01

    The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.

  4. Final Report on ITER Task Agreement 81-08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard L. Moore

    As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of themore » ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.« less

  5. Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konjevic, R.; Steinitz, B.; Poff, K.L.

    1989-12-01

    In the phototropic response of Arabidopsis thaliana seedlings, the shape of the fluence-response relation depends on fluence rate and wavelength. At low fluence rates, the response to 450-nm light is characterized by a single maximum at about 0.3 {mu}mol{center dot}m{sup {minus}2}. At higher fluence rates, the response shows two distinct maxima, I and II, at 0.3 and 3.5 {mu}mol{center dot}m{sup {minus}2}, respectively. The response to 500-nm light shows a single maximum at 2 {mu}mol{center dot}m{sup {minus}2}, and the response to 510-nm light shows a single maximum at 4.5 {mu}mol{center dot}m{sup {minus}2}, independent of fluence rate. The response to 490-nm lightmore » shows a maximal at 4.5 {mu}mol{center dot}m{sup {minus}2} and a shoulder at about 0.6 {mu}mol{center dot}m{sup {minus}2}. Preirradiation with high-fluence 510-nm light from above, immediately followed by unilateral 450-nm light, eliminates maximum II but not maximum I. Preirradiation with high-fluence 450-nm light from above eliminates the response to subsequent unilateral irradiation with either 450-nm or 510-nm light. The recovery of the response following high-fluence 450-nm light is considerably slower than the recovery following high-fluence 510-nm light. Unilateral irradiation with low-fluence 510-nm light followed by 450-nm light results in curvature that is approximately the sum of those produced by either irradiation alone. Based on these results, it is proposed that phototropism in A. thaliana seedlings is mediated by at least two blue-light photoreceptor pigments.« less

  6. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER Heating and Current Drive systems, with a power capability of 20 MW coupled to the plasma using a PAM launcher. An R&D programme is being conducted at CEA/IRFM to develop a BeO vacuum window which is a safety critical component of the transmission line. In addition, a mock-up of a TE10-TE30 mode converter at 5 GHz, designed for a rectangular transmission line, has been manufactured and successfully tested on Tore Supra at low RF power.

  7. Comprehensive studies of ultrashort laser pulse ablation of tin target at terawatt power

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-01-01

    The fundamental properties of ultrashort laser interactions with metals using up to terawatt power were comprehensively studied, i.e., specifically mass ablation, nanoparticle formation, and ion dynamics using multitude of diagnostic techniques. Results of this study can be useful in many fields of research including spectroscopy, micromachining, thin film fabrication, particle acceleration, physics of warm dense matter, and equation-of-state determination. A Ti:Sapphire femtosecond laser system (110 mJ maximum energy, 40 fs, 800 nm, P-polarized, single pulse mode) was used, which delivered up to 3 terawatt laser power to ablate 1 mm tin film in vacuum. The experimental analysis includes the effect of the incident laser fluence on the ablated mass, size of the ablated area, and depth of ablation using white light profilometer. Atomic force microscope was used to measure the emitted particles size distribution at different laser fluence. Faraday cup (FC) detector was used to analyze the emitted ions flux by measuring the velocity, and the total charge of the emitted ions. The study shows that the size of emitted particles follows log-normal distribution with peak shifts depending on incident laser fluence. The size of the ablated particles ranges from 20 to 80 nm. The nanoparticles deposited on the wafer tend to aggregate and to be denser as the incident laser fluence increases as shown by AFM images. Laser ablation depth was found to increase logarithmically with laser fluence then leveling off at laser fluence > 400 J/cm2. The total ablated mass tends to increase logarithmically with laser fluence up to 60 J/cm2 while, increases gradually at higher fluence due to the increase in the ablated area. The measured ion emitted flux shows a linear dependence on laser fluence with two distinct regimes. Strong dependence on laser fluence was observed at fluences < 350 J/cm2. Also, a slight enhancement in ion velocity was observed with increasing laser fluence up to 350 J/cm2.

  8. Studies on Flat Sandwich-type Self-Powered Detectors for Flux Measurements in ITER Test Blanket Modules

    NASA Astrophysics Data System (ADS)

    Raj, Prasoon; Angelone, Maurizio; Döring, Toralf; Eberhardt, Klaus; Fischer, Ulrich; Klix, Axel; Schwengner, Ronald

    2018-01-01

    Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM) of ITER will be important tasks during ITER's campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD) are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.

  9. Design of a -1 MV dc UHV power supply for ITER NBI

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  10. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  11. Iterative design of one- and two-dimensional FIR digital filters. [Finite duration Impulse Response

    NASA Technical Reports Server (NTRS)

    Suk, M.; Choi, K.; Algazi, V. R.

    1976-01-01

    The paper describes a new iterative technique for designing FIR (finite duration impulse response) digital filters using a frequency weighted least squares approximation. The technique is as easy to implement (via FFT) and as effective in two dimensions as in one dimension, and there are virtually no limitations on the class of filter frequency spectra approximated. An adaptive adjustment of the frequency weight to achieve other types of design approximation such as Chebyshev type design is discussed.

  12. Proton Particle Test Fluence: What's the Right Number?

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Raymond

    2015-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  13. Particle Test Fluence: What's the Right Number?

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2014-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  14. The ITER bolometer diagnostic: Status and plansa)

    NASA Astrophysics Data System (ADS)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  15. SUMMARY REPORT-FY2006 ITER WORK ACCOMPLISHED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martovetsky, N N

    2006-04-11

    Six parties (EU, Japan, Russia, US, Korea, China) will build ITER. The US proposed to deliver at least 4 out of 7 modules of the Central Solenoid. Phillip Michael (MIT) and I were tasked by DoE to assist ITER in development of the ITER CS and other magnet systems. We work to help Magnets and Structure division headed by Neil Mitchell. During this visit I worked on the selected items of the CS design and carried out other small tasks, like PF temperature margin assessment.

  16. SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.

    PubMed

    Carver, R; Hogstrom, K; Price, M; Leblanc, J; Harris, G

    2012-06-01

    To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time. The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars. A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students. © 2012 American Association of Physicists in Medicine.

  17. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  18. Treatment of Melasma with the Photoacoustic Twin Pulse Mode of Low-Fluence 1,064 nm Q-Switched Nd:YAG Laser

    PubMed Central

    Kim, Jee Young; Choi, Misoo; Nam, Chan Hee; Kim, Ji Seok; Kim, Myung Hwa; Park, Byung Cheol

    2016-01-01

    Background Low-fluence 1,064 nm Q-switched Nd:YAG laser has been widely used for the treatment of melasma. Although new Q-switched Nd:YAG lasers with photoacoustic twin pulse (PTP) mode have been recently developed for high-efficiency, there is limited information available for the new technique. Objective This study was designed to investigate the efficacy and adverse effects after few sessions of repeated low fluence 1,064 nm Q-switched Nd:YAG laser treatment with PTP mode in Asian women with melasma. Methods Twenty-two Korean women were treated with a total of five sessions of low-fluence PTP mode Nd:YAG laser treatment (Pastelle®) at 2 weeks interval. Responses to treatments were evaluated by using Melasma Area and Severity Index (MASI) scoring, colorimeter measurement, and the investigators' and patients' overall assessments. Adverse events were recorded at each visit. Results Investigators' and patients' overall assessment showed that 'significantly improved' was assessed by 13 (59.1%) and 19 of 22 patients (86.4%), respectively. MASI scores were significantly reduced by 20.4%. The lightness, measured by using a colorimeter, was significantly increased by 1.3 point. Notable adverse events were not observed. Conclusion After 5 sessions of laser therapy alone, about 60% of the subjects showed significant improvement. Few sessions of repeated laser toning treatment using the PTP mode is a safe and effective way to treat facial melasma. PMID:27274626

  19. Iterative Design and Classroom Evaluation of Automated Formative Feedback for Improving Peer Feedback Localization

    ERIC Educational Resources Information Center

    Nguyen, Huy; Xiong, Wenting; Litman, Diane

    2017-01-01

    A peer-review system that automatically evaluates and provides formative feedback on free-text feedback comments of students was iteratively designed and evaluated in college and high-school classrooms. Classroom assignments required students to write paper drafts and submit them to a peer-review system. When student peers later submitted feedback…

  20. Using an Iterative Mixed-Methods Research Design to Investigate Schools Facing Exceptionally Challenging Circumstances within Trinidad and Tobago

    ERIC Educational Resources Information Center

    De Lisle, Jerome; Seunarinesingh, Krishna; Mohammed, Rhoda; Lee-Piggott, Rinnelle

    2017-01-01

    In this study, methodology and theory were linked to explicate the nature of education practice within schools facing exceptionally challenging circumstances (SFECC) in Trinidad and Tobago. The research design was an iterative quan>QUAL-quan>qual multi-method research programme, consisting of 3 independent projects linked together by overall…

  1. Simulated workplace neutron fields

    NASA Astrophysics Data System (ADS)

    Lacoste, V.; Taylor, G.; Röttger, S.

    2011-12-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields.

  2. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    PubMed

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies

    PubMed Central

    Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela

    2016-01-01

    We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber’s low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe’s energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation. PMID:27896003

  4. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  5. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  6. Final Report on ITER Task Agreement 81-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brad J. Merrill

    An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quenchmore » event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.« less

  7. Experimental Evidence on Iterated Reasoning in Games

    PubMed Central

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486

  8. Evaluation of GaAs low noise and power MMIC technologies to neutron, ionizing dose and dose rate effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derewonko, H.; Bosella, A.; Pataut, G.

    1996-06-01

    An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less

  9. Experimental evaluation of dual multiple aperture devices for fluence field modulated x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Mathews, A. J.; Gang, G.; Levinson, R.; Zbijewski, W.; Kawamoto, S.; Siewerdsen, J. H.; Stayman, J. W.

    2017-03-01

    Acquisition of CT images with comparable diagnostic power can potentially be achieved with lower radiation exposure than the current standard of care through the adoption of hardware-based fluence-field modulation (e.g. dynamic bowtie filters). While modern CT scanners employ elements such as static bowtie filters and tube-current modulation, such solutions are limited in the fluence patterns that they can achieve, and thus are limited in their ability to adapt to broad classes of patient morphology. Fluence-field modulation also enables new applications such as region-of-interest imaging, task specific imaging, reducing measurement noise or improving image quality. The work presented in this paper leverages a novel fluence modulation strategy that uses "Multiple Aperture Devices" (MADs) which are, in essence, binary filters, blocking or passing x-rays on a fine scale. Utilizing two MAD devices in series provides the capability of generating a large number of fluence patterns via small relative motions between the MAD filters. We present the first experimental evaluation of fluence-field modulation using a dual-MAD system, and demonstrate the efficacy of this technique with a characterization of achievable fluence patterns and an investigation of experimental projection data.

  10. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Janoudi, A. K.; Poff, K. L.

    1993-01-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.

  11. ITER activities and fusion technology

    NASA Astrophysics Data System (ADS)

    Seki, M.

    2007-10-01

    At the 21st IAEA Fusion Energy Conference, 68 and 67 papers were presented in the categories of ITER activities and fusion technology, respectively. ITER performance prediction, results of technology R&D and the construction preparation provide good confidence in ITER realization. The superconducting tokamak EAST achieved the first plasma just before the conference. The construction of other new experimental machines has also shown steady progress. Future reactor studies stress the importance of down sizing and a steady-state approach. Reactor technology in the field of blanket including the ITER TBM programme and materials for the demonstration power plant showed sound progress in both R&D and design activities.

  12. Detailed studies of full-size ATLAS12 sensors

    NASA Astrophysics Data System (ADS)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  13. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  14. Hydrogen isotope retention in beryllium for tokamak plasma-facing applications

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Causey, R. A.; Davis, J. W.; Doerner, R. P.; Federici, G.; Haasz, A. A.; Longhurst, G. R.; Wampler, W. R.; Wilson, K. L.

    Beryllium has been used as a plasma-facing material to effect substantial improvements in plasma performance in the Joint European Torus (JET), and it is planned as a plasma-facing material for the first wall (FW) and other components of the International Thermonuclear Experimental Reactor (ITER). The interaction of hydrogenic ions, and charge-exchange neutral atoms from plasmas, with beryllium has been studied in recent years with widely varying interpretations of results. In this paper we review experimental data regarding hydrogenic atom inventories in experiments pertinent to tokamak applications and show that with some very plausible assumptions, the experimental data appear to exhibit rather predictable trends. A phenomenon observed in high ion-flux experiments is the saturation of the beryllium surface such that inventories of implanted particles become insensitive to increased flux and to continued implantation fluence. Methods for modeling retention and release of implanted hydrogen in beryllium are reviewed and an adaptation is suggested for modeling the saturation effects. The TMAP4 code used with these modifications has succeeded in simulating experimental data taken under saturation conditions where codes without this feature have not. That implementation also works well under more routine conditions where the conventional recombination-limited release model is applicable. Calculations of tritium inventory and permeation in the ITER FW during the basic performance phase (BPP) using both the conventional recombination model and the saturation effects assumptions show a difference of several orders of magnitude in both inventory and permeation rate to the coolant.

  15. Architectural Specialization for Inter-Iteration Loop Dependence Patterns

    DTIC Science & Technology

    2015-10-01

    Architectural Specialization for Inter-Iteration Loop Dependence Patterns Christopher Batten Computer Systems Laboratory School of Electrical and...Trends in Computer Architecture Transistors (Thousands) Frequency (MHz) Typical Power (W) MIPS R2K Intel P4 DEC Alpha 21264 Data collected by M...T as ks p er Jo ule ) Simple Processor Design Power Constraint High-Performance Architectures Embedded Architectures Design Performance

  16. VIMOS Instrument Control Software Design: an Object Oriented Approach

    NASA Astrophysics Data System (ADS)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  17. Layout compliance for triple patterning lithography: an iterative approach

    NASA Astrophysics Data System (ADS)

    Yu, Bei; Garreton, Gilda; Pan, David Z.

    2014-10-01

    As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.

  18. Conceptual design of data acquisition and control system for two Rf driver based negative ion source for fusion R&D

    NASA Astrophysics Data System (ADS)

    Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.

    2013-02-01

    Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.

  19. Photodynamic Therapy Using Intra-Articular Photofrin for Murine MRSA Arthritis: Biphasic Light Dose Response for Neutrophil-Mediated Antibacterial Effect

    PubMed Central

    Tanaka, Masamitsu; Kinoshita, Manabu; Yoshihara, Yasuo; Shinomiya, Nariyoshi; Seki, Shuhji; Nemoto, Koichi; Hamblin, Michael R.; Morimoto, Yuji

    2011-01-01

    Background and Objective Bacterial arthritis does not respond well to antibiotics and moreover multidrug resistance is spreading. We previously tested photodynamic therapy (PDT) mediated by systemic Photofrin® in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) arthritis, but found that neutrophils were killed by PDT and therefore the infection was potentiated. Study Design/Materials and Methods The present study used an intra-articular injection of Photofrin® and optimized the light dosimetry in order to maximize bacterial killing and minimize killing of host neutrophils. MRSA (5 × 107 CFU) was injected into the mouse knee followed 3 days later by 1 μg of Photofrin® and 635-nm diode laser illumination with a range of fluences within 5 minutes. Synovial fluid was sampled 6 hours or 1–3, 5, and 7 days after PDT to determine MRSA colony-forming units (CFU), neutrophil numbers, and levels of cytokines. Results A biphasic light dose response was observed with the greatest reduction of MRSA CFU seen with a fluence of 20 J cm−2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. Consistent with these results, a significantly higher concentration of macrophage inflammatory protein-2, a CXC chemokine, and greater accumulation of neutrophils were seen in the infected knee joint after PDT with a fluence of 20 J cm−2 compared to fluences of 5 or 70 J cm−2. Conclusion PDT for murine MRSA arthritis requires appropriate light dosimetry to simultaneously maximize bacterial killing and neutrophil accumulation into the infected site, while too little light does not kill sufficient bacteria and too much light kills neutrophils and damages host tissue as well as bacteria and allows bacteria to grow unimpeded by host defense. PMID:21412806

  20. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    PubMed

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  1. The fluence effects of low-level laser therapy on inflammation, fibroblast-like synoviocytes, and synovial apoptosis in rats with adjuvant-induced arthritis.

    PubMed

    Hsieh, Yueh-Ling; Cheng, Yu-Jung; Huang, Fang-Chuen; Yang, Chen-Chia

    2014-12-01

    The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) operating at low and high fluences on joint inflammation, fibroblast-like synoviocytes (FLS), and synovial apoptosis in rats with adjuvant-induced arthritis. Rheumatoid arthritis (RA) is characterized by pronounced inflammation and FLS proliferation within affected joints. Certain data indicate that LLLT is effective in patients with inflammation caused by RA; however, the fluence effects of LLLT on synovium are unclear. Monoarthritis was induced in adult male Sprague-Dawley rats (250-300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Animals were irradiated 72 h after CFA administration with a 780 nm GaAlAs laser at 4.5 J/cm2 (30 mW, 30 sec/spot) and 72 J/cm2 (80 mW, 180 sec/spot) daily for 10 days. After LLLT, the animals were euthanized and their arthritic ankles were collected for histopathological analysis, immunoassays of tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)3 and 5B5, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. LLLT at a fluence of 4.5 J/cm2 significantly reduced infiltration of inflammatory cells and expressions of TNF-α-, MMP3- and 5B5-like immunoreactivities, as well as resulting in more TUNEL-positive apoptotic cells in the synovium. No significant changes were observed in these biochemicals and inflammation in arthritic animals treated with 72 J/cm2. LLLT with low fluence is highly effective in reducing inflammation to sites of injury by decreasing the numbers of FLS, inflammatory cells, and mediators in the CFA-induced arthritic model. These data will be of value in designing clinical trials of LLLT for RA.

  2. The Fluence Effects of Low-Level Laser Therapy on Inflammation, Fibroblast-Like Synoviocytes, and Synovial Apoptosis in Rats with Adjuvant-Induced Arthritis

    PubMed Central

    Hsieh, Yueh-Ling; Cheng, Yu-Jung; Huang, Fang-Chuen

    2014-01-01

    Abstract Objective: The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) operating at low and high fluences on joint inflammation, fibroblast-like synoviocytes (FLS), and synovial apoptosis in rats with adjuvant-induced arthritis. Background data: Rheumatoid arthritis (RA) is characterized by pronounced inflammation and FLS proliferation within affected joints. Certain data indicate that LLLT is effective in patients with inflammation caused by RA; however, the fluence effects of LLLT on synovium are unclear. Methods: Monoarthritis was induced in adult male Sprague–Dawley rats (250–300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Animals were irradiated 72 h after CFA administration with a 780 nm GaAlAs laser at 4.5 J/cm2 (30 mW, 30 sec/spot) and 72 J/cm2 (80 mW, 180 sec/spot) daily for 10 days. After LLLT, the animals were euthanized and their arthritic ankles were collected for histopathological analysis, immunoassays of tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)3 and 5B5, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. Results: LLLT at a fluence of 4.5 J/cm2 significantly reduced infiltration of inflammatory cells and expressions of TNF-α-, MMP3- and 5B5-like immunoreactivities, as well as resulting in more TUNEL-positive apoptotic cells in the synovium. No significant changes were observed in these biochemicals and inflammation in arthritic animals treated with 72 J/cm2. Conclusions: LLLT with low fluence is highly effective in reducing inflammation to sites of injury by decreasing the numbers of FLS, inflammatory cells, and mediators in the CFA-induced arthritic model. These data will be of value in designing clinical trials of LLLT for RA. PMID:25394331

  3. Revealing ionization-induced dynamic recovery in ion-irradiated SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Wendler, Elke; Xue, Haizhou

    The lack of fundamental understanding on the coupled effects of energy deposition to electrons and atomic nuclei on defect processes and irradiation response poses a significant roadblock for the design and control of material properties. In this work, SrTiO 3 has been irradiated with various ion species over a wide range of ion fluences at room temperature with a goal to deposit different amounts of energy to target electrons and atomic nuclei by varying the ratio of electronic to nuclear energy loss. Here, the results unambiguously show a dramatic difference in behavior of SrTiO 3 irradiated with light ions (Ne,more » O) compared to heavy ions (Ar). While the damage accumulation and amorphization under Ar ion irradiation are consistent with previous observations and existing models, the damage accumulation under Ne irradiation reveals a quasi-saturation state at a fractional disorder of 0.54 at the damage peak for an ion fluence corresponding to a dose of 0.5 dpa; this is followed by further increases in disorder with increasing ion fluence. In the case of O ion irradiation, the damage accumulation at the damage peak closely follows that for Ne ion irradiation up to a fluence corresponding to a dose of 0.5 dpa, where a quasi-saturation of fractional disorder level occurs at about 0.48; however, in this case, the disorder at the damage peak decreases slightly with further increases in fluence. This behavior is associated with changes in kinetics due to irradiation-enhanced diffusional processes that are dependent on electronic energy loss and the ratio of electronic to nuclear energy dissipation. Lastly, these findings are critical for advancing the fundamental understanding of ion-solid interactions and for a large number of applications in oxide electronics where SrTiO 3 is a foundational material.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, G; Siewerdsen, J; Stayman, J

    Purpose: There has been increasing interest in integrating fluence field modulation (FFM) devices with diagnostic CT scanners for dose reduction purposes. Conventional FFM strategies, however, are often either based on heuristics or the analysis of filtered-backprojection (FBP) performance. This work investigates a prospective task-driven optimization of FFM for model-based iterative reconstruction (MBIR) in order to improve imaging performance at the same total dose as conventional strategies. Methods: The task-driven optimization framework utilizes an ultra-low dose 3D scout as a patient-specific anatomical model and a mathematical formation of the imaging task. The MBIR method investigated is quadratically penalized-likelihood reconstruction. The FFMmore » objective function uses detectability index, d’, computed as a function of the predicted spatial resolution and noise in the image. To optimize performance throughout the object, a maxi-min objective was adopted where the minimum d’ over multiple locations is maximized. To reduce the dimensionality of the problem, FFM is parameterized as a linear combination of 2D Gaussian basis functions over horizontal detector pixels and projection angles. The coefficients of these bases are found using the covariance matrix adaptation evolution strategy (CMA-ES) algorithm. The task-driven design was compared with three other strategies proposed for FBP reconstruction for a calcification cluster discrimination task in an abdomen phantom. Results: The task-driven optimization yielded FFM that was significantly different from those designed for FBP. Comparing all four strategies, the task-based design achieved the highest minimum d’ with an 8–48% improvement, consistent with the maxi-min objective. In addition, d’ was improved to a greater extent over a larger area within the entire phantom. Conclusion: Results from this investigation suggests the need to re-evaluate conventional FFM strategies for MBIR. The task-based optimization framework provides a promising approach that maximizes imaging performance under the same total dose constraint.« less

  5. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs.

    PubMed

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-21

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using our in-house optimization engine.

  6. Gaussian-Beam/Physical-Optics Design Of Beam Waveguide

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Chen, Jacqueline C.; Bathker, Dan A.

    1993-01-01

    In iterative method of designing wideband beam-waveguide feed for paraboloidal-reflector antenna, Gaussian-beam approximation alternated with more nearly exact physical-optics analysis of diffraction. Includes curved and straight reflectors guiding radiation from feed horn to subreflector. For iterative design calculations, curved mirrors mathematically modeled as thin lenses. Each distance Li is combined length of two straight-line segments intersecting at one of flat mirrors. Method useful for designing beam-waveguide reflectors or mirrors required to have diameters approximately less than 30 wavelengths at one or more intended operating frequencies.

  7. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  8. Too Little Too Soon? Modeling the Risks of Spiral Development

    DTIC Science & Technology

    2007-04-30

    270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 Time (Week) Work started and active PhIt [Requirements,Iter1] : JavelinCalibration work...packages1 1 1 Work started and active PhIt [Technology,Iter1] : JavelinCalibration work packages2 2 2 Work started and active PhIt [Design,Iter1...JavelinCalibration work packages3 3 3 3 Work started and active PhIt [Manufacturing,Iter1] : JavelinCalibration work packages4 4 Work started and active PhIt

  9. Application of a repetitive process setting to design of monotonically convergent iterative learning control

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2015-11-01

    This paper deals with the problem of designing an iterative learning control algorithm for discrete linear systems using repetitive process stability theory. The resulting design produces a stabilizing output feedback controller in the time domain and a feedforward controller that guarantees monotonic convergence in the trial-to-trial domain. The results are also extended to limited frequency range design specification. New design procedure is introduced in terms of linear matrix inequality (LMI) representations, which guarantee the prescribed performances of ILC scheme. A simulation example is given to illustrate the theoretical developments.

  10. T-Opt: A 3D Monte Carlo simulation for light delivery design in photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2017-02-01

    The interstitial photodynamic therapy (iPDT) with 5-aminolevulinic acid (5-ALA) is a safe and feasible treatment modality of malignant glioblastoma. In order to cover the tumour volume, the exact position of the light diffusers within the lesion is needed to decide precisely. The aim of this study is the development of evaluation method of treatment volume with 3D Monte Carlo simulation for iPDT using 5-ALA. Monte Carlo simulations of fluence rate were performed using the optical properties of the brain tissue infiltrated by tumor cells and normal tissue. 3-D Monte Carlo simulation was used to calculate the position of the light diffusers within the lesion and light transport. The fluence rate near the diffuser was maximum and decreased exponentially with distance. The simulation can calculate the amount of singlet oxygen generated by PDT. In order to increase the accuracy of simulation results, the parameter for simulation includes the quantum yield of singlet oxygen generation, the accumulated concentration of photosensitizer within tissue, fluence rate, molar extinction coefficient at the wavelength of excitation light. The simulation is useful for evaluation of treatment region of iPDT with 5-ALA.

  11. Performance of a nonlaser light source for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Whitehurst, Colin; Byrne, Karen T.; Morton, Colin; Moore, James V.

    1995-03-01

    Advances in short arc technology and optical filter coatings led to the design and construction of a table-top light source in 1989; the first viable and cost-effective alternative to a laser. The device can deliver over 3 W within a 30 nm band centered at any wavelength from 200 nm to 1200 nm at fluence rates of over 1 W cm-2. Its relative biological effectiveness (RBE) in vitro has been proven alongside an argon pumped dye laser and a copper vapor pumped dye laser. These in vitro tests showed an efficiency of hematoporphyrin derivative (HPD) induced cellular photoinactivation close to that of the argon/dye laser (RBE 100%), with a mean RBE for the lamp of 87 +/- 3% (p < 0.05). The lamp proved to be superior to that of the copper/dye laser system with an RBE of up to 150% at fluence rates above 50 mWcm-2. In vivo tests show that the extent and depth of tumor necrosis are comparable to that of an argon/dye laser. An in situ bioassay using tumor regrowth delay is currently underway. Early clinical trials show clearance of Bowen's disease and actinic keratosis using the same light fluences as costly PDT lasers.

  12. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber.

    PubMed

    Endo, Satoru; Sato, Hitoshi; Shimazaki, Takuto; Nakajima, Erika; Kotani, Kei; Suda, Mitsuru; Hamano, Tsuyoshi; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Hoshi, Masaharu

    2017-08-01

    An LBO (Li 2 B 4 O 7 ) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9 Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm 2 , i.e., from the chamber response divided by neutron fluence (cm -2 ). The measured LBO chamber sensitivities were 2.23 × 10 -7  ± 0.34 × 10 -7 (pC cm 2 ) for thermal neutrons and 2.00 × 10 -5  ± 0.12 × 10 -5 (pC cm 2 ) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.

  13. Single-Walled Carbon Nanotubes, Carbon Nanofibers and Laser-Induced Incandescence

    NASA Technical Reports Server (NTRS)

    Schubert, Kathy (Technical Monitor); VanderWal, Randy L.; Ticich, Thomas M.; Berger, Gordon M.; Patel, Premal D.

    2004-01-01

    Laser induced incandescence applied to a heterogeneous, multi-element reacting flows is characterized by a) temporally resolved emission spectra, time-resolved emission at selected detection wavelengths and fluence dependence. Laser fluences above 0.6 Joules per square centimeter at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence beyond this value lead to a super-heated plasma, well above the vaporization of temperature of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solid-like structures.

  14. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  15. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Morgan, T. W.; van Eden, G. G.; de Kruif, T.; Wirtz, M.; Matejicek, J.; Chraska, T.; Pitts, R. A.; Wright, G. M.

    2015-08-01

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (FHF) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate FHF = 19 MJ m-2 s-1/2, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  16. Modeling of Steady-state Scenarios for the Fusion Nuclear Science Facility, Advanced Tokamak Approach

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.

    2013-10-01

    A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.

  17. Grid2: A Program for Rapid Estimation of the Jovian Radiation Environment

    NASA Technical Reports Server (NTRS)

    Evans, R. W.; Brinza, D. E.

    2014-01-01

    Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model, the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the execution of the model-minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050 and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

  18. Temperature, illumination, and fluence dependence of current and voltage in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.; Obenschain, A. F.

    1974-01-01

    Empirical equations have been derived from measurements of solar cell photovoltaic characteristics relating light-generated current and open circuit voltage to cell temperature, intensity of illumination and 1-MeV electron fluence. Both 2-ohm-cm and 10-ohm-cm cells were tested over the temperature range from 120 to 470 K, the illumination intensity range from 5 to 1830 mW/sq cm, and the electron fluence range from 1 x 10 to the 13th to 1 x 10 to the 16th electrons/sq cm. The normalized temperature coefficient of the light generated current varies as the 0.18 power of the fluence for temperatures above approximately 273 K and is independent of fluence at lower temperatures. At 140 mW/sq cm, a power law expression was derived which shows that the light-generated current decreases at a rate proportional to the 0.153 power of the fluence for both resistivities. The coefficient of the expression is larger for 2-ohm-cm cells; consequently, the advantage for 10-ohm-cm cells increased with increasing fluence.

  19. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Fei; Zhang, Bei; Liu, Huixian; Jia, Guangyi; Liu, Changlong

    2012-11-01

    Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm-2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm-2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm-2.

  20. Surface modifications of ultra-thin gold films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Mallick, P.; Rath, H.; Dash, B. N.; Tripathi, A.; Prakash, Jai; Avasthi, D. K.; Satyam, P. V.; Mishra, N. C.

    2010-10-01

    Gold films of thickness 10 and 20 nm grown on float glass substrate by thermal evaporation technique were irradiated with 107 MeV Ag8+ and 58 MeV Ni5+ ions at different fluences and characterized by Grazing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). The pristine films were continuous and no island structures were found even at these small thicknesses. The surface roughness estimated from AFM data did not show either monotonic increase or decrease with ion fluences. Instead, it increased at low fluences and decreased at high fluences for 20 nm thick film. In the 10 nm film roughness first increased with ion fluence, then decreased and again increased at higher fluences. The pattern of variation, however, was identical for Ni and Ag beams. Both the beams led to the formation of cracks on the film surface at intermediate fluences. The observed ion-irradiation induced thickness dependent topographic modification is explained by the spatial confinement of the energy deposited by ions in the reduced dimension of the films.

  1. On the Implementation of Iterative Detection in Real-World MIMO Wireless Systems

    DTIC Science & Technology

    2003-12-01

    multientr~es et multisorties (MIMO) permettent une exploitation remarquable du spectre comparativement aux syst~mes traditionnels A antenne unique...vecteurs symboliques pilotes connus cause une perte de rendement n~gligeable comparativement au cas hypothdtique des connaissances des voies parfaites...useful design guidelines for iterative systems. it does not provide any fundamental understanding as to how the design of the detector can improve the

  2. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  3. Status of the ITER Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  4. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Larry Don; Miller, David Torbet

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots ofmore » both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.« less

  5. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  6. Solar particle induced upsets in the TDRS-1 attitude control system RAM during the October 1989 solar particle events

    NASA Astrophysics Data System (ADS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard, T. L.

    1995-10-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAR I unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEUs calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEUs by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEUs.

  7. Reduction of damage initiation density in fused silica optics via UV laser conditioning

    DOEpatents

    Peterson, John E.; Maricle, Stephen M.; Brusasco, Raymond M.; Penetrante, Bernardino M.

    2004-03-16

    The present invention provides a method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects and are better capable of resisting optical deterioration upon exposure for a long period of time to a high-power laser beam having a wavelength of about 360 nm or less. The initiation of laser-induced damage is reduced by conditioning the optic at low fluences below levels that normally lead to catastrophic growth of damage. When the optic is then irradiated at its high fluence design limit, the concentration of catastrophic damage sites that form on the surface of the optic is greatly reduced.

  8. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John Dennis; Rice, Francine Joyce; Harp, Jason Michael

    2016-03-01

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of themore » rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite rings and fuel compacts). This equipment performed well for separating each capsule in the test train and extracting the capsule components. Only a few problems were encountered. In one case, the outermost ring (the sink ring) was cracked during removal of the capsule through tubes. Although the sink ring will be analyzed in order to obtain a mass balance of fission products in the experiment, these cracks do not pose a major concern because the sink ring will not be analyzed in detail to obtain the spatial distribution of fission products. In Capsules 4 and 5, the compacts could not be removed from the inner rings. Strategies for removing the compacts are being evaluated. Sampling the inner rings with the compacts in-place is also an option. Dimensional measurements were made on the compacts, inner rings, outer rings, and sink rings. The diameters of all compacts decreased by 0.5 to 2.0 %. Generally, the extent of diametric shrinkage increased linearly with increasing neutron fluence. Most compact lengths also decreased. Compact lengths decreased with increasing fluence, reaching maximum shrinkage of about 0.9 % at a fast fluence of 4.0x10 25 n/m 2 E > 0.18 MeV. Above this fluence, the extent of length shrinkage appeared to decrease with fluence, and two compacts from Capsule 7 were found to have slightly increased in length (< 0.1 %) after a fluence of 5.2x10 25 n/m 2.« less

  9. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John Dennis; Rice, Francine Joyce; Harp, Jason Michael

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of themore » rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite rings and fuel compacts). This equipment performed well for separating each capsule in the test train and extracting the capsule components. Only a few problems were encountered. In one case, the outermost ring (the sink ring) was cracked during removal of the capsule through tubes. Although the sink ring will be analyzed in order to obtain a mass balance of fission products in the experiment, these cracks do not pose a major concern because the sink ring will not be analyzed in detail to obtain the spatial distribution of fission products. In Capsules 4 and 5, the compacts could not be removed from the inner rings. Strategies for removing the compacts are being evaluated. Sampling the inner rings with the compacts in-place is also an option. Dimensional measurements were made on the compacts, inner rings, outer rings, and sink rings. The diameters of all compacts decreased by 0.5 to 2.0 %. Generally, the extent of diametric shrinkage increased linearly with increasing neutron fluence. Most compact lengths also decreased. Compact lengths decreased with increasing fluence, reaching maximum shrinkage of about 0.9 % at a fast fluence of 4.0x1025 n/m2 E > 0.18 MeV. Above this fluence, the extent of length shrinkage appeared to decrease with fluence, and two compacts from Capsule 7 were found to have slightly increased in length (< 0.1 %) after a fluence of 5.2x1025 n/m2.« less

  10. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited).

    PubMed

    Huber, A; Brezinsek, S; Mertens, Ph; Schweer, B; Sergienko, G; Terra, A; Arnoux, G; Balshaw, N; Clever, M; Edlingdon, T; Egner, S; Farthing, J; Hartl, M; Horton, L; Kampf, D; Klammer, J; Lambertz, H T; Matthews, G F; Morlock, C; Murari, A; Reindl, M; Riccardo, V; Samm, U; Sanders, S; Stamp, M; Williams, J; Zastrow, K D; Zauner, C

    2012-10-01

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  11. Numerical analysis of modified Central Solenoid insert design

    DOE PAGES

    Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; ...

    2015-06-21

    The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagneticmore » simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.« less

  12. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, A.; Brezinsek, S.; Mertens, Ph.

    2012-10-15

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II,more » C I, C II, C III) with high optical transmittance ({>=}30% in the designed wavelength range) as well as high spatial resolution that is {<=}2 mm at the object plane and {<=}3 mm for the full depth of field ({+-}0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the {lambda} > 0.95 {mu}m range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.« less

  13. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, D.; Lebreton, L.; Querre, Ph.

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gasmore » is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work shows the first direct reconstruction of neutron energy and fluence, simultaneously, at 27.2 keV in a continuous irradiation mode. (authors)« less

  14. On the predictive potential of Pc5 ULF waves to forecast relativistic electrons based on their relationships over two solar cycles

    NASA Astrophysics Data System (ADS)

    Lam, Hing-Lan

    2017-01-01

    A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.

  15. Optimizing fluence and debridement effects on cutaneous resurfacing carbon dioxide laser surgery.

    PubMed

    Weisberg, N K; Kuo, T; Torkian, B; Reinisch, L; Ellis, D L

    1998-10-01

    To develop methods to compare carbon dioxide (CO2) resurfacing lasers, fluence, and debridement effects on tissue shrinkage and histological thermal denaturation. In vitro human or in vivo porcine skin samples received up to 5 passes with scanner or short-pulsed CO2 resurfacing lasers. Fluences ranging from 2.19 to 17.58 J/cm2 (scanner) and 1.11 to 5.56 J/cm2 (short pulsed) were used to determine each laser's threshold energy for clinical effect. Variable amounts of debridement were also studied. Tissue shrinkage was evaluated by using digital photography to measure linear distance change of the treated tissue. Tissue histological studies were evaluated using quantitative computer image analysis. Fluence-independent in vitro tissue shrinkage was seen with the scanned and short-pulsed lasers above threshold fluence levels of 5.9 and 2.5 J/cm2, respectively. Histologically, fluence-independent thermal depths of damage of 77 microns (scanner) and 25 microns (pulsed) were observed. Aggressive debridement of the tissue increased the shrinkage per pass of the laser, and decreased the fluence required for the threshold effect. In vivo experiments confirmed the in vitro results, although the in vivo threshold fluence level was slightly higher and the shrinkage obtained was slightly lower per pass. Our methods allow comparison of different resurfacing lasers' acute effects. We found equivalent laser tissue effects using lower fluences than those currently accepted clinically. This suggests that the morbidity associated with CO2 laser resurfacing may be minimized by lowering levels of tissue input energy and controlling for tissue debridement.

  16. Status of the 1 MeV Accelerator Design for ITER NBI

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  17. Iterative Neighbour-Information Gathering for Ranking Nodes in Complex Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Wang, Pei; Lü, Jinhu

    2017-01-01

    Designing node influence ranking algorithms can provide insights into network dynamics, functions and structures. Increasingly evidences reveal that node’s spreading ability largely depends on its neighbours. We introduce an iterative neighbourinformation gathering (Ing) process with three parameters, including a transformation matrix, a priori information and an iteration time. The Ing process iteratively combines priori information from neighbours via the transformation matrix, and iteratively assigns an Ing score to each node to evaluate its influence. The algorithm appropriates for any types of networks, and includes some traditional centralities as special cases, such as degree, semi-local, LeaderRank. The Ing process converges in strongly connected networks with speed relying on the first two largest eigenvalues of the transformation matrix. Interestingly, the eigenvector centrality corresponds to a limit case of the algorithm. By comparing with eight renowned centralities, simulations of susceptible-infected-removed (SIR) model on real-world networks reveal that the Ing can offer more exact rankings, even without a priori information. We also observe that an optimal iteration time is always in existence to realize best characterizing of node influence. The proposed algorithms bridge the gaps among some existing measures, and may have potential applications in infectious disease control, designing of optimal information spreading strategies.

  18. Practical new method of measuring thermal-neutron fluence

    NASA Technical Reports Server (NTRS)

    Siebold, J. R.; Warman, E. A.

    1967-01-01

    Thermoluminescence dosimeter technique measures thermal-neutron fluence by encapsulating lithium flouride phosphor powder and exposing it to a neutron environment. The capsule is heated in a dosimeter reader, which results in light emission proportional to the neutron fluence.

  19. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    PubMed

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.

  20. Radiofrequency pulse design using nonlinear gradient magnetic fields.

    PubMed

    Kopanoglu, Emre; Constable, R Todd

    2015-09-01

    An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.

  1. Long-pulse stability limits of the ITER baseline scenario

    DOE PAGES

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; ...

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and I p/aB T, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, B N≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, f GW 0.42 – 0.70 (the ITER design is f GW ≈ 0.8).more » The evolution of the current profile, using internal inductance (l i) as an indicator, is found to produce a smaller fraction of stable pulses when l i is increased above ≈ 1.1 at the beginning of β N flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, C.

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.

  3. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  4. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janoudi, A.K.; Poff, K.L.

    1993-04-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of densensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 [mu]mol m[sup [minus]2] s[sup [minus]1]. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 [mu]mol m[sup [minus]2] s[sup [minus]1] than at 0.3 [mu]mol m[sup [minus]2] s[sup [minus]1]. In addition, seedlings irradiated withmore » blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. 11 refs., 6 figs.« less

  5. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity

    PubMed Central

    Grossman, Craig E.; Carter, Shirron L.; Czupryna, Julie; Wang, Le; Putt, Mary E.; Busch, Theresa M.

    2016-01-01

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm. PMID:26784170

  6. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity.

    PubMed

    Grossman, Craig E; Carter, Shirron L; Czupryna, Julie; Wang, Le; Putt, Mary E; Busch, Theresa M

    2016-01-14

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor(®))-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.

  7. Surface morphology correlated with field emission properties of laser irradiated nickel

    NASA Astrophysics Data System (ADS)

    Jalil, S. A.; Bashir, S.; Akram, M.; Ahmed, Q. S.; Haq, F. U.

    2017-08-01

    The effect of laser fluence on the surface morphology and field emission properties of nickel (Ni) has been investigated. Circular shaped Ni targets are irradiated with Nd:YAG laser (1064 nm, 10 Hz, 10 ns) at various fluences ranging from 5.2 to 26 J/cm2 in air. For low fluence ranging from 5.2 to 10.4 J/cm2, SEM analysis reveals the growth of unorganized channels, grains, droplets, and ridges. Whereas, at moderate fluence of 15.6 J/cm2, the formation of ridges and cones along with few number of holes are observed. However, at high fluence regime ranging from 20 to 26 J/cm2, a sharp transition in morphology from ridges to holes has been observed. The laser structured Ni targets are also investigated for field emission properties by recording their I-V characteristics and Fowler-Nordheim (F-N) plots. The enhancement in field emission factor (β) and the reduction in turn on field are found to be dependent upon the laser fluence and morphology of the grown structures. For samples treated at low and moderate fluences, the growth of cones, channels and ridges is responsible for enhancement of β factor ranging from 121 to 178. Whereas, for samples treated at high fluence region, the formation of pores and holes is responsible for significant field convergence and consequently resulting in substantial enhancement in β factor to 276.

  8. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2017-02-11

    This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  9. Status of the ITER Cryodistribution

    NASA Astrophysics Data System (ADS)

    Chang, H.-S.; Vaghela, H.; Patel, P.; Rizzato, A.; Cursan, M.; Henry, D.; Forgeas, A.; Grillot, D.; Sarkar, B.; Muralidhara, S.; Das, J.; Shukla, V.; Adler, E.

    2017-12-01

    Since the conceptual design of the ITER Cryodistribution many modifications have been applied due to both system optimization and improved knowledge of the clients’ requirements. Process optimizations in the Cryoplant resulted in component simplifications whereas increased heat load in some of the superconducting magnet systems required more complicated process configuration but also the removal of a cold box was possible due to component arrangement standardization. Another cold box, planned for redundancy, has been removed due to the Tokamak in-Cryostat piping layout modification. In this proceeding we will summarize the present design status and component configuration of the ITER Cryodistribution with all changes implemented which aim at process optimization and simplification as well as operational reliability, stability and flexibility.

  10. Summary of ECE presentations at EC-18

    DOE PAGES

    Taylor, G.

    2015-03-12

    There were nine ECE and one EBE presentation at EC-18. Four of the presentations were on various aspects of ECE on ITER. The ITER ECE diagnostic has entered an important detailed preliminary design phase and faces several design challenges in the next 2-3 years. Most of the other ECE presentations at the workshop were focused on applications of ECE diagnostics to plasma measurements, rather than improvements in technology, although it was apparent that heterodyne receiver technology continues to improve. CECE, ECE imaging and EBE imaging are increasingly providing valuable insights into plasma behavior that is important to understand if futuremore » burning plasma devices, such as ITER, FNSF and DEMO, are to be successful.« less

  11. Conceptual design of ACB-CP for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang

    2012-06-01

    ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.

  12. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    NASA Technical Reports Server (NTRS)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  13. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    NASA Astrophysics Data System (ADS)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds. Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed. Testing with 14 MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of ⩾30 dpa (steels) 14 MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements.

  14. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Rafique, Muhammad Shahid; Nathala, Chandra Sekher; Ajami, Ali Asghar; Husinsky, Wolfgang

    2017-05-01

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm-2 was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  15. Progress in Development of the ITER Plasma Control System Simulation Platform

    NASA Astrophysics Data System (ADS)

    Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel

    2017-10-01

    We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  16. Iterative inversion of deformation vector fields with feedback control.

    PubMed

    Dubey, Abhishek; Iliopoulos, Alexandros-Stavros; Sun, Xiaobai; Yin, Fang-Fang; Ren, Lei

    2018-05-14

    Often, the inverse deformation vector field (DVF) is needed together with the corresponding forward DVF in four-dimesional (4D) reconstruction and dose calculation, adaptive radiation therapy, and simultaneous deformable registration. This study aims at improving both accuracy and efficiency of iterative algorithms for DVF inversion, and advancing our understanding of divergence and latency conditions. We introduce a framework of fixed-point iteration algorithms with active feedback control for DVF inversion. Based on rigorous convergence analysis, we design control mechanisms for modulating the inverse consistency (IC) residual of the current iterate, to be used as feedback into the next iterate. The control is designed adaptively to the input DVF with the objective to enlarge the convergence area and expedite convergence. Three particular settings of feedback control are introduced: constant value over the domain throughout the iteration; alternating values between iteration steps; and spatially variant values. We also introduce three spectral measures of the displacement Jacobian for characterizing a DVF. These measures reveal the critical role of what we term the nontranslational displacement component (NTDC) of the DVF. We carry out inversion experiments with an analytical DVF pair, and with DVFs associated with thoracic CT images of six patients at end of expiration and end of inspiration. The NTDC-adaptive iterations are shown to attain a larger convergence region at a faster pace compared to previous nonadaptive DVF inversion iteration algorithms. By our numerical experiments, alternating control yields smaller IC residuals and inversion errors than constant control. Spatially variant control renders smaller residuals and errors by at least an order of magnitude, compared to other schemes, in no more than 10 steps. Inversion results also show remarkable quantitative agreement with analysis-based predictions. Our analysis captures properties of DVF data associated with clinical CT images, and provides new understanding of iterative DVF inversion algorithms with a simple residual feedback control. Adaptive control is necessary and highly effective in the presence of nonsmall NTDCs. The adaptive iterations or the spectral measures, or both, may potentially be incorporated into deformable image registration methods. © 2018 American Association of Physicists in Medicine.

  17. Analysis and Design of ITER 1 MV Core Snubber

    NASA Astrophysics Data System (ADS)

    Wang, Haitian; Li, Ge

    2012-11-01

    The core snubber, as a passive protection device, can suppress arc current and absorb stored energy in stray capacitance during the electrical breakdown in accelerating electrodes of ITER NBI. In order to design the core snubber of ITER, the control parameters of the arc peak current have been firstly analyzed by the Fink-Baker-Owren (FBO) method, which are used for designing the DIIID 100 kV snubber. The B-H curve can be derived from the measured voltage and current waveforms, and the hysteresis loss of the core snubber can be derived using the revised parallelogram method. The core snubber can be a simplified representation as an equivalent parallel resistance and inductance, which has been neglected by the FBO method. A simulation code including the parallel equivalent resistance and inductance has been set up. The simulation and experiments result in dramatically large arc shorting currents due to the parallel inductance effect. The case shows that the core snubber utilizing the FBO method gives more compact design.

  18. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Khurana, J. P.; Poff, K. L.

    1992-01-01

    The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.

  19. Temperature, illumination and fluence dependence of current and voltage in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Obenschain, A. F.; Faith, T. J.

    1973-01-01

    Emperical equations have been derived from measurements of solar cell photovoltaic characteristics relating light generated current, IL, and open circuit voltage, VO, to cell temperature, T, intensity of illumination, W, and 1 Mev electron fluence, phi both 2 ohm-cm and 10 ohm-cm cells were tested. The temperature dependency of IL is similar for both resistivities at 140mw/sq cm; at high temperature the coefficient varies with fluence as phi 0.18, while at low temperatures the coefficient is relatively independent of fluence. Fluence dependent degration causes a decrease in IL at a rate proportional to phi 0.153 for both resistivities. At all intensities other than 560 mw/sq cm, a linear dependence of IL on illumination was found. The temperature coefficient of voltage was, to a good approximation, independent of both temperature and illumination for both resistivities. Illumination dependence of VOC was logarithmic, while the decrease with fluence of VOC varied as phi 0.25 for both resistivities.

  20. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  1. Equivalent electron fluence for solar proton damage in GaAs shallow junction cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.

    1984-01-01

    The short-circuit current reduction in GaAs shallow junction heteroface solar cells was calculated according to a simplified solar cell damage model in which the nonuniformity of the damage as a function of penetration depth is treated explicitly. Although the equivalent electron fluence was not uniquely defined for low-energy monoenergetic proton exposure, an equivalent electron fluence is found for proton spectra characteristic of the space environment. The equivalent electron fluence ratio was calculated for a typical large solar flare event for which the proton spectrum is PHI(sub p)(E) = A/E(p/sq. cm) where E is in MeV. The equivalent fluence ratio is a function of the cover glass shield thickness or the corresponding cutoff energy E(sub c). In terms of the cutoff energy, the equivalent 1 MeV electron fluence ratio is r(sub p)(E sub c) = 10(9)/E(sub c)(1.8) where E(sub c) is in units of KeV.

  2. DEM Calibration Approach: design of experiment

    NASA Astrophysics Data System (ADS)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  3. Iterative User-Centered Design of a Next Generation Patient Monitoring System for Emergency Medical Response

    PubMed Central

    Gao, Tia; Kim, Matthew I.; White, David; Alm, Alexander M.

    2006-01-01

    We have developed a system for real-time patient monitoring during large-scale disasters. Our system is designed with scalable algorithms to monitor large numbers of patients, an intuitive interface to support the overwhelmed responders, and ad-hoc mesh networking capabilities to maintain connectivity to patients in the chaotic settings. This paper describes an iterative approach to user-centered design adopted to guide development of our system. This system is a part of the Advanced Health and Disaster Aid Network (AID-N) architecture. PMID:17238348

  4. Preliminary consideration of CFETR ITER-like case diagnostic system.

    PubMed

    Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  5. Preliminary consideration of CFETR ITER-like case diagnostic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. S.; Liu, Y. K.; Gao, X.

    2016-11-15

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basicmore » control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unneberg, L.

    The main features of the 16 core grids (top guides) designed by ABB ATOM AB are briefly described and the evolution of the design is discussed. One important characteristic of the first nine grids is the existence of bolts securing guide bars to the core grid plates. These bolts are made of precipitation hardened or solution annealed stainless steel. During operation, bolts in all none grids have cracked. The failure analyses indicate that intergranular stress corrosion cracking (IGSCC), possibly accelerated by crevice conditions and/or irradiation, was the cause of failure. Fast neutron fluences approaching or exceeding the levels considered asmore » critical for irradiation assisted stress corrosion cracking (IASCC) will be reached in a few cases only. Temporary measures were taken immediately after the discovery of the cracking. For five of the nine reactors affected, it was decided to replace the complete grids. Two of these replacements have been successfully carried out to date. IASCC as a potential future problem is discussed and it is pointed out that, during their life times, the ABB ATOM core grids will be exposed to sufficiently high fast neutron fluences to cause some concern.« less

  7. Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janoudi, A.K.; Gordon, W.R.; Poff, K.L.

    1997-03-01

    The amplitude of phototropic curvature to blue light is enhanced by a prior exposure of seedlings to red light. This enhancement is mediated by phytochrome. Fluence-response relationships have been constructed for red-light-induced enhancement in the phytochrome A (phyA) null mutant, the phytochrome B- (phyB) deficient mutant, and in two transgenic lines of Arabidopsis thaliana that overexpress either phyA or phyB. These fluence-response relationships demonstrate the existence of two responses in enhancement, a response in the very-low-to-low-fluence range, and a response in the high-fluence range. Only the response in the high-fluence range is present in the phyA null mutant. In contrast,more » the phyB-deficient mutant is indistinguishable from the wild-type parent in red-light responsiveness. These data indicate that phyA is necessary for the very-low-to-low but not the high-fluence response, and that phyB is not necessary for either response range. Based on these results, the high-fluence response, if controlled by a single phytochrome, must be controlled by a phytochrome other than phyA or phyB. Overexpression of phyA has a negative effect and overexpression of phyB has an enhancing effect in the high fluence range. These results suggest that overexpression of either phytochrome perturbs the function of the endogenous photoreceptor system in unpreditable fashion. 25 refs., 3 figs.« less

  8. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    PubMed

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  9. An 808-nm Diode Laser with a Flat-Top Handpiece Positively Photobiomodulates Mitochondria Activities.

    PubMed

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2016-11-01

    Photobiomodulation is proposed as a non-linear process. Only the action of light at a low intensity and fluence is assumed to have stimulation on cells; whereas a higher light intensity and fluence generates negative effects, exhausting the cell's energy reserve as a consequence of a too strong stimulation. In our work, we detected the photobiomodulatory effect of an 808-nm higher-fluence diode laser [64 J/cm 2 -1 W, continuous wave (CW)] irradiated by a flat-top handpiece on mitochondria activities, such as oxygen consumption, activity of mitochondria complexes I, II, III, and IV, and cytochrome c as well as ATP synthesis. The experiments are performed by standard procedure on mitochondria purified from bovine liver. Our higher-fluence diode laser positively photobiomodulates the mitochondria oxygen consumption, the activity of the complexes III and IV, and the ATP production, with a P/O = 2.6. The other activities are not influenced. Our data show for the first time that even the higher fluences (64 J/cm 2 -1 W), similar to the low fluences, can photobiostimulate the mitochondria respiratory chain without uncoupling them and can induce an increment in the ATP production. These results suggest that the negative effects of higher fluences observed to date are not unequivocally due to higher fluence per se but might be a consequence of the irradiation carried by handpieces with a Gaussian profile.

  10. Iterative simulated quenching for designing irregular-spot-array generators.

    PubMed

    Gillet, J N; Sheng, Y

    2000-07-10

    We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.

  11. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  12. Pulse fluence dependent nanograting inscription on the surface of fused silica

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Vallée, Réal; Leang Chin, See

    2012-06-01

    Pulse fluence dependent nanograting inscription on the surface of fused silica is investigated. The nanograting period is found to decrease with the increase of the incident pulse fluence. Local intensity distribution and incubation effect are responsible for the change of the nanograting period.

  13. Evaluating the iterative development of VR/AR human factors tools for manual work.

    PubMed

    Liston, Paul M; Kay, Alison; Cromie, Sam; Leva, Chiara; D'Cruz, Mirabelle; Patel, Harshada; Langley, Alyson; Sharples, Sarah; Aromaa, Susanna

    2012-01-01

    This paper outlines the approach taken to iteratively evaluate a set of VR/AR (virtual reality / augmented reality) applications for five different manual-work applications - terrestrial spacecraft assembly, assembly-line design, remote maintenance of trains, maintenance of nuclear reactors, and large-machine assembly process design - and examines the evaluation data for evidence of the effectiveness of the evaluation framework as well as the benefits to the development process of feedback from iterative evaluation. ManuVAR is an EU-funded research project that is working to develop an innovative technology platform and a framework to support high-value, high-knowledge manual work throughout the product lifecycle. The results of this study demonstrate the iterative improvements reached throughout the design cycles, observable through the trending of the quantitative results from three successive trials of the applications and the investigation of the qualitative interview findings. The paper discusses the limitations of evaluation in complex, multi-disciplinary development projects and finds evidence of the effectiveness of the use of the particular set of complementary evaluation methods incorporating a common inquiry structure used for the evaluation - particularly in facilitating triangulation of the data.

  14. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were fundamental to its completion. I am pleased to witness the extensive collaborations, the excellent working relationships and the free exchange of views that have been developed among scientists working on magnetic fusion, and I would particularly like to acknowledge the importance which they assign to ITER in their research. This close collaboration and the spirit of free discussion will be essential to the success of ITER. Finally, the PIPB identifies issues which remain in the projection of burning plasma performance to the ITER scale and in the control of burning plasmas. Continued R&D is therefore called for to reduce the uncertainties associated with these issues and to ensure the efficient operation and exploitation of ITER. It is important that the international fusion community maintains a high level of collaboration in the future to address these issues and to prepare the physics basis for ITER operation. ITPA Coordination Committee R. Stambaugh (Chair of ITPA CC, General Atomics, USA) D.J. Campbell (Previous Chair of ITPA CC, European Fusion Development Agreement—Close Support Unit, ITER Organization) M. Shimada (Co-Chair of ITPA CC, ITER Organization) R. Aymar (ITER International Team, CERN) V. Chuyanov (ITER Organization) J.H. Han (Korea Basic Science Institute, Korea) Y. Huo (Zengzhou University, China) Y.S. Hwang (Seoul National University, Korea) N. Ivanov (Kurchatov Institute, Russia) Y. Kamada (Japan Atomic Energy Agency, Naka, Japan) P.K. Kaw (Institute for Plasma Research, India) S. Konovalov (Kurchatov Institute, Russia) M. Kwon (National Fusion Research Center, Korea) J. Li (Academy of Science, Institute of Plasma Physics, China) S. Mirnov (TRINITI, Russia) Y. Nakamura (National Institute for Fusion Studies, Japan) H. Ninomiya (Japan Atomic Energy Agency, Naka, Japan) E. Oktay (Department of Energy, USA) J. Pamela (European Fusion Development Agreement—Close Support Unit) C. Pan (Southwestern Institute of Physics, China) F. Romanelli (Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Italy and European Fusion Development Agreement—Close Support Unit) N. Sauthoff (Princeton Plasma Physics Laboratory, USA and Oak Ridge National Laboratories, USA) Y. Saxena (Institute for Plasma Research, India) Y. Shimomura (ITER Organization) R. Singh (Institute for Plasma Research, India) S. Takamura (Nagoya University, Japan) K. Toi (National Institute for Fusion Studies, Japan) M. Wakatani (Kyoto University, Japan (deceased)) H. Zohm (Max-Planck-Institut für Plasmaphysik, Garching, Germany)

  15. Advanced Data Acquisition System Implementation for the ITER Neutron Diagnostic Use Case Using EPICS and FlexRIO Technology on a PXIe Platform

    NASA Astrophysics Data System (ADS)

    Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.

    2016-04-01

    To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.

  16. Measurement of trapped proton fluences in main stack of P0006 experiment

    NASA Technical Reports Server (NTRS)

    Nefedov, N.; Csige, I.; Benton, E. V.; Henke, R. P.; Benton, E. R.; Frigo, L. A.

    1995-01-01

    We have measured directional distribution and Eastward directed mission fluence of trapped protons at two different energies with plastic nuclear track detectors (CR-39 with DOP) in the main stack of the P0006 experiment on LDEF. Results show arriving directions of trapped protons have very high anisotropy with most protons arriving from the West direction. Selecting these particles we have determined the mission fluence of Eastward directed trapped protons. We found experimental fluences are slightly higher than results of the model calculations of Armstrong and Colborn.

  17. Individual Members of the Cab Gene Family Differ Widely in Fluence Response.

    PubMed Central

    White, M. J.; Kaufman, L. S.; Horwitz, B. A.; Briggs, W. R.; Thompson, W. F.

    1995-01-01

    Chlorophyll a/b-binding protein genes (Cab genes) can be extremely sensitive to light. Transcript accumulation following a red light pulse increases with fluence over 8 orders of magnitude (L.S. Kaufman, W.F. Thompson, W.R. Briggs [1984] Science 226: 1447-1449). We have constructed fluence-response curves for individual Cab genes. At least two Cab genes (Cab-8 and AB96) show a very low fluence response to a single red light pulse. In contrast, two other Cab genes (AB80 and AB66) fail to produce detectable transcript following a single pulse of either red or blue light but are expressed in continuous red light. Thus, very low fluence responses and high irradiance responses occur in the same gene family. PMID:12228352

  18. In-vacuum sensors for the beamline components of the ITER neutral beam test facility.

    PubMed

    Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  19. Low versus High Fluence Parameters in the Treatment of Facial Laceration Scars with a 1,550 nm Fractional Erbium-Glass Laser

    PubMed Central

    Shim, Hyung-Sup; Jun, Dai-Won; Kim, Sang-Wha; Jung, Sung-No; Kwon, Ho

    2015-01-01

    Purpose. Early postoperative fractional laser treatment has been used to reduce scarring in many institutions, but the most effective energy parameters have not yet been established. This study sought to determine effective parameters in the treatment of facial laceration scars. Methods. From September 2012 to September 2013, 57 patients were enrolled according to the study. To compare the low and high fluence parameters of 1,550 nm fractional erbium-glass laser treatment, we virtually divided the scar of each individual patient in half, and each half was treated with a high and low fluence setting, respectively. A total of four treatment sessions were performed at one-month intervals and clinical photographs were taken at every visit. Results. Results were assessed using the Vancouver Scar Scale (VSS) and global assessment of the two portions of each individual scar. Final evaluation revealed that the portions treated with high fluence parameter showed greater difference compared to pretreatment VSS scores and global assessment values, indicating favorable cosmetic results. Conclusion. We compared the effects of high fluence and low fluence 1,550 nm fractional erbium-glass laser treatment for facial scarring in the early postoperative period and revealed that the high fluence parameter was more effective for scar management. PMID:26236738

  20. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection.

    PubMed

    Kontson, Kimberly; Jennings, Robert J

    2015-09-01

    For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the penelope Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using penelope and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from penelope show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.

  1. Stokes-Doppler coherence imaging for ITER boundary tomography.

    PubMed

    Howard, J; Kocan, M; Lisgo, S; Reichle, R

    2016-11-01

    An optical coherence imaging system is presently being designed for impurity transport studies and other applications on ITER. The wide variation in magnetic field strength and pitch angle (assumed known) across the field of view generates additional Zeeman-polarization-weighting information that can improve the reliability of tomographic reconstructions. Because background reflected light will be somewhat depolarized analysis of only the polarized fraction may be enough to provide a level of background suppression. We present the principles behind these ideas and some simulations that demonstrate how the approach might work on ITER. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  2. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2011-01-01

    Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647

  3. Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade

    NASA Astrophysics Data System (ADS)

    Centis Vignali, M.

    2015-02-01

    The high-luminosity upgrade of the Large Hadron Collider foreseen for 2023 resulted on the decision to replace the tracker system of the CMS experiment. The innermost layer of the new pixel detector will experience fluences in the order of phieq ≈ 1016 cm-2 and a dose of ≈ 5 MGy after an integrated luminosity of 3000 fb-1. Several materials and designs are under investigation in order to build a detector that can withstand such high fluences. Thin planar silicon sensors are good candidates to achieve this goal since the degradation of the signal produced by traversing particles is less severe than for thicker devices. A study has been carried out in order to characterize highly irradiated planar epitaxial silicon sensors with an active thickness of 100 μm. The investigation includes pad diodes and strip detectors irradiated up to a fluence of phieq = 1.3 × 1016 cm-2, and 3 × 1015 cm-2, respectively. The electrical properties of diodes have been characterized using laboratory measurements, while measurements have been carried out at the DESY II test beam facility to characterize the charge collection of the strip detectors. A beam telescope has been used to determine precisely the impact position of beam particles on the sensor. This allows the unbiased extraction of the charge deposited in the strip sensor and good identification of the noise. In this paper, the results obtained for p-bulk sensors are shown. The charge collection efficiency of the strip sensors is 90% at 1000 V after a fluence of phieq = 3 × 1015 cm-2. The irradiated diodes show charge multiplication effects. The impact of the threshold applied to a detector on its efficiency is also discussed.

  4. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE PAGES

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; ...

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  5. Characterization of the graphite pile as a source of thermal neutrons

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Králík, Miloslav; Jančář, Aleš; Kopecký, Zdeněk; Dressler, Jan; Veškrna, Martin

    2015-11-01

    A new graphite pile designed to serve as a standard source of thermal neutrons has been built at the Czech Metrology Institute. Actual dimensions of the pile are 1.95 m (W)×1.95 m (L)×2.0 m (H). At its center, there is a measurement channel whose dimensions are 0.4 m×0.4 m×1.25 m (depth). The channel is equipped with a calibration bench, which allows reproducible placement of the tested/calibrated device. At a distance of 80 cm from the channel axis, six holes are symmetrically located allowing the placement of radionuclide neutron sources of Pu-Be and/or Am-Be type. Spatial distribution of thermal neutron fluence in the cavity was calculated in detail with the MCNP neutron transport code. Experimentally, it was measured with two active detectors: a small 3He proportional detector by the French company LMT, type 0.5 NH 1/1 KF, and a silicon pixel detector Timepix with 10B converter foil. The relative values of thermal neutron fluence rate obtained with active detectors were converted to absolute ones using thermal neutron fluence rates measured by means of gold foil activation. The quality of thermal neutron field was characterized by the cadmium ratio.

  6. Development of a domain-specific genetic language to design Chlamydomonas reinhardtii expression vectors.

    PubMed

    Wilson, Mandy L; Okumoto, Sakiko; Adam, Laura; Peccoud, Jean

    2014-01-15

    Expression vectors used in different biotechnology applications are designed with domain-specific rules. For instance, promoters, origins of replication or homologous recombination sites are host-specific. Similarly, chromosomal integration or viral delivery of an expression cassette imposes specific structural constraints. As de novo gene synthesis and synthetic biology methods permeate many biotechnology specialties, the design of application-specific expression vectors becomes the new norm. In this context, it is desirable to formalize vector design strategies applicable in different domains. Using the design of constructs to express genes in the chloroplast of Chlamydomonas reinhardtii as an example, we show that a vector design strategy can be formalized as a domain-specific language. We have developed a graphical editor of context-free grammars usable by biologists without prior exposure to language theory. This environment makes it possible for biologists to iteratively improve their design strategies throughout the course of a project. It is also possible to ensure that vectors designed with early iterations of the language are consistent with the latest iteration of the language. The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.

  7. Design of an Ultra-wide Band Waveguide Transition for the Ex-vessel Transmission Line of ITER Plasma Position Reflectometry

    NASA Astrophysics Data System (ADS)

    Simonetto, A.; Platania, P.; Garavaglia, S.; Gittini, G.; Granucci, G.; Pallotta, F.

    2018-02-01

    Plasma position reflectometry for ITER requires interfaces between in-vessel and ex-vessel waveguides. An ultra broadband interface (15-75 GHz) was designed between moderately oversized rectangular waveguide (20 × 12 mm), operated in TE01 (i.e., tall waveguide mode), and circular corrugated waveguide, with 88.9-mm internal diameter, propagating HE11. The interface was designed both as a sequence of waveguide components and as a quasi-optical confocal telescope. The design and the simulated performance are described for both concepts. The latter one requires more space but has better performance, and shall be prototyped.

  8. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering

    PubMed Central

    Heinsch, Stephen C.; Das, Siba R.; Smanski, Michael J.

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems. PMID:29535690

  9. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontson, Kimberly, E-mail: Kimberly.Kontson@fda.hhs.gov; Jennings, Robert J.

    Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designsmore » were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. Results: Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from PENELOPE show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. Conclusions: With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.« less

  10. Design requirements for plasma facing materials in ITER

    NASA Astrophysics Data System (ADS)

    Matera, R.; Federici, G.; ITER Joint Central Team

    1996-10-01

    After the official approval of the Interim Design Report, the ITER project enters the final phase of the EDA. With the definition of the design requirements of the high heat flux components, the structural and armor materials' working domain is better specified, allowing to focus the R & D program on the most critical issues and to orient the design of divertor and first wall components towards those concepts which potentially have a better chance to withstand normal and off-normal operating conditions. Among the latter, slow, high-power, high recycling transient are at present driving the design of high heat flux components. Examples of possible design solution under experimental validation in the R & D program are presented and discussed in this paper.

  11. Radiation damage study of thin YAG:Ce scintillator using low-energy protons

    NASA Astrophysics Data System (ADS)

    Novotný, P.; Linhart, V.

    2017-07-01

    Radiation hardness of a 50 μ m thin YAG:Ce scintillator in a form of dependence of a signal efficiency on 3.1 MeV proton fluence was measured and analysed using X-ray beam. The signal efficiency is a ratio of signals given by a CCD chip after and before radiation damage. The CCD chip was placed outside the primary beam because of its protection from damage which could be caused by radiation. Using simplified assumptions, the 3.1 MeV proton fluences were recalculated to: ṡ 150 MeV proton fluences with intention to estimate radiation damage of this sample under conditions at proton therapy centres during medical treatment, ṡ 150 MeV proton doses with intention to give a chance to compare radiation hardness of the studied sample with radiation hardness of other detectors used in medical physics, ṡ 1 MeV neutron equivalent fluences with intention to compare radiation hardness of the studied sample with properties of position sensitive silicon and diamond detectors used in nuclear and particle physics. The following results of our research were obtained. The signal efficiency of the studied sample varies slightly (± 3%) up to 3.1 MeV proton fluence of c. (4 - 8) × 1014 cm-2. This limit is equivalent to 150 MeV proton fluence of (5 - 9) × 1016 cm-2, 150 MeV proton dose of (350 - 600) kGy and 1 MeV neutron fluence of (1 - 2) × 1016 cm-2. Beyond the limit, the signal efficiency goes gradually down. Fifty percent decrease in the signal efficiency is reached around 3.1 MeV fluence of (1 - 2) × 1016 cm-2 which is equivalent to 150 MeV proton fluence of around 2 × 1018 cm-2, 150 MeV proton dose of around 15 MGy and 1 MeV neutron equivalent fluence of (4 - 8) × 1017 cm-2. In contrast with position sensitive silicon and diamond radiation detectors, the studied sample has at least two order of magnitude greater radiation resistance. Therefore, YAG:Ce scintillator is a suitable material for monitoring of primary beams of particles of ionizing radiation.

  12. SU-F-T-258: Efficacy of Exit Fluence-Based Dose Calculation for Prostate Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, J; Gardner, J; Neal, B

    Purpose: To investigate the efficacy of exit-fluence-based dose computation for prostate radiotherapy by determining if it estimates true dose more accurately than the original planning dose. Methods: Virtual exit-fluencebased dose computation was performed for 19 patients, each with 9–12 repeat CT images. For each patient, a 78 Gy treatment plan was created utilizing 5 mm CTV-to-PTV and OAR-to-PRV margins. A Monte Carlo framework was used to compute dose and exit-fluence images for the planning image and for each repeat CT image based on boney-anatomyaligned and prostate-centroid-aligned CTs. Identical source particles were used for the MC dose-computations on the planning andmore » repeat CTs to maximize correlation. The exit-fluence-based dose and image were computed by multiplying source particle weights by FC(x,y)=FP(x,y)/FT(x,y), where (x,y) are the source particle coordinates projected to the exit-fluence plane and we denote the dose/fluence from the plan by (DP,FP), from the repeat-CT as (DT,FT), and the exit-fluence computation by (DFC,FFC). DFC mimics exit-fluence backprojection through the planning image as FT=FFC. Dose estimates were intercompared to judge the efficacy of exit-fluence-based dose computation. Results: Boney- and prostate-centroid aligned results are combined as there is no statistical difference between them, yielding 420 dose comparisons per dose-volume metric. DFC is more accurate than DP for 46%, 33%, and 44% of cases in estimating CTV D98, D50, and D2 respectively. DFC improved rectum D50 and D2 estimates 54% and 49% respectively and bladder D50 and D2 47 and 49% respectively. While averaged over all patients and images DFC and DP were within 3.1% of DT, they differed from DT by as much as 22% for GTV D98, 71% for the Bladder D50, 17% for Bladder D2, 19% for Rectum D2. Conclusion: Exit-fluence based dose computations infrequently improve CTV or OAR dose estimates and should be used with caution. Research supported in part by Varian Medical Systems.« less

  13. Production of clinically useful positron emitter beams during carbon ion deceleration.

    PubMed

    Lazzeroni, M; Brahme, A

    2011-03-21

    In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy (11)C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary (12)C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The (11)C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary (11)C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum (11)C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C(2)H(4)). The purpose of the first section is to achieve a fast initial (11)C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated (11)C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary (12)C beam can be increased by an order of magnitude, a sufficient intensity of the secondary (11)C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an increase in the intensity might be easily achieved with a superconducting cyclotron.

  14. Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard,T. L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU'S. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU'S, very dose to the 243 observed SEU'S. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU's during the October 1989 solar particle events.

  15. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and archiving.

  16. Light dosimetry and dose verification for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Sharikova, Anna V.; Meo, Julia L.; Simone, Charles B.; Friedberg, Joseph S.; Zhu, Timothy C.

    2013-03-01

    In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is critical for predicting PDT outcome. Patients in this study are enrolled in a Phase I clinical trial of HPPH-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. They are administered 4mg per kg body weight HPPH 48 hours before the surgery and receive light therapy with a fluence of 15-45 J/cm2 at 661 and 665nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) are monitored at 7 sites during the light treatment delivery using isotropic detectors. Light fluence (rate) delivered to patients is examined as a function of treatment time, volume and surface area. In a previous study, a correlation between the treatment time and the treatment volume and surface area was established. However, we did not include the direct light and the effect of the shape of the pleural surface on the scattered light. A real-time infrared (IR) navigation system was used to separate the contribution from the direct light. An improved expression that accurately calculates the total fluence at the cavity wall as a function of light source location, cavity geometry and optical properties is determined based on theoretical and phantom studies. The theoretical study includes an expression for light fluence rate in an elliptical geometry instead of the spheroid geometry used previously. The calculated light fluence is compared to the measured fluence in patients of different cavity geometries and optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  17. Safety and efficacy of low fluence, high repetition rate versus high fluence, low repetition rate 810-nm diode laser for axillary hair removal in Chinese women.

    PubMed

    Li, Wenhai; Liu, Chengyi; Chen, Zhou; Cai, Lin; Zhou, Cheng; Xu, Qianxi; Li, Houmin; Zhang, Jianzhong

    2016-11-01

    High-fluence diode lasers with contact cooling have emerged as the gold standard to remove unwanted hair. Lowering the energy should result in less pain and could theoretically affect the efficacy of the therapy. To compare the safety and efficacy of a low fluence high repetition rate 810-nm diode laser to those of a high fluence, low repetition rate diode laser for permanent axillary hair removal in Chinese women. Ninety-two Chinese women received four axillae laser hair removal treatments at 4-week intervals using the low fluence, high repetition rate 810-nm diode laser in super hair removal (SHR) mode on one side and the high fluence, low repetition rate diode laser in hair removal (HR) mode on the other side. Hair counts were done at each follow-up visit and 6-month follow-up after the final laser treatment using a "Hi Quality Hair Analysis Program System"; the immediate pain score after each treatment session was recorded by a visual analog scale. The overall median reduction of hair was 90.2% with the 810-nm diode laser in SHR mode and 87% with the same laser in HR mode at 6-month follow-up. The median pain scores in SHR mode and in HR mode were 2.75 and 6.75, respectively. Low fluence, high repetition rate diode laser can efficiently remove unwanted hair but also significantly improve tolerability and reduce adverse events during the course of treatment.

  18. A quality assurance program for clinical PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.

    2018-02-01

    Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.

  19. Evaluation of ITER MSE Viewing Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S; Lerner, S; Morris, K

    2007-03-26

    The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on themore » design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate image that then was relayed out of the port plug with more ideal (dielectric) mirrors. Engineering models of the optics, port plug, and neutral beam geometry were also created, using the CATIA ITER models. Two video conference calls with the USIPO provided valuable design guidelines, such as the minimum distance of the first optic from the plasma. A second focus of the project was the calibration of the system. Several different techniques are proposed, both before and during plasma operation. Fixed and rotatable polarizers would be used to characterize the system in the no-plasma case. Obtaining the full modulation spectrum from the polarization analyzer allows measurement of polarization effects and also MHD plasma phenomena. Light from neutral beam interaction with deuterium gas (no plasma) has been found useful to determine the wavelength of each spatial channel. The status of the optical design for the edge (upper) and core (lower) systems is included in the following figure. Several issues should be addressed by a follow-on study, including whether the optical labyrinth has sufficient neutron shielding and a detailed polarization characterization of actual mirrors.« less

  20. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  1. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    NASA Technical Reports Server (NTRS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  2. Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN

    NASA Astrophysics Data System (ADS)

    Tsuge, Hirofumi; Ikeda, Kiyoji; Kato, Shigeki; Nishimura, Tomoaki; Nakamura, Tohru; Kuriyama, Kazuo; Mishima, Tomoyoshi

    2017-10-01

    Optical characteristics of Mg-ion implanted GaN layers with various fluence ranges were evaluated. Mg ion implantation was performed twice at energies of 30 and 60 keV on n-GaN layers. The first implantation at 30 keV was performed with three different fluence ranges of 1.0 × 1014, 1.0 × 1015 and 5.0 × 1015 cm-2. The second implantation at an energy of 60 keV was performed with a fluence of 6.5 × 1013 cm-2. After implantation, samples were annealed at 1250 °C for 1 min under N2 atmosphere. Photoluminescence (PL) spectrum of the GaN layer with the Mg ion implantation at the fluence range of 1.0 × 1014 cm-2 at 30 keV was similar to the one of Mg-doped p-GaN layers grown by MOVPE (Metal-Organic Vapor Phase Epitaxy) on free-standing GaN substrates and those at the fluence ranges over 1.0 × 1015 cm-2 were largely degraded.

  3. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma

    DOE PAGES

    Anoop, K. K.; Harilal, S. S.; Philip, Reji; ...

    2016-11-14

    The characteristic emission features of a laser-produced plasma strongly depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in femtosecond laser (800 nm, ≈ 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging methods over a wide fluence range of 0.5 J/cm 2-77.5 J/cm 2. 2D fast gated monochromatic images showed distinct plume splitting between the neutral and ions especially at moderate to higher fluence ranges. OES studies at low to moderate laser fluence regime confirm intense neutral line emission overmore » the ion emission whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in femtosecond laser matter interaction at high input laser intensity. The obtained ion dynamics resulting from the OES, and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe and results showed good correlation.« less

  4. Genetic Constructor: An Online DNA Design Platform.

    PubMed

    Bates, Maxwell; Lachoff, Joe; Meech, Duncan; Zulkower, Valentin; Moisy, Anaïs; Luo, Yisha; Tekotte, Hille; Franziska Scheitz, Cornelia Johanna; Khilari, Rupal; Mazzoldi, Florencio; Chandran, Deepak; Groban, Eli

    2017-12-15

    Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.

  5. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  6. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography

    PubMed Central

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-01-01

    Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290

  7. Joint optimization of fluence field modulation and regularization in task-driven computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-03-01

    Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  8. Study of the effects of neutron irradiation on silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Guibellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H. J.; Ferguson, P.; Sommer, W. F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Lesloe, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadoziski, H. F.-W.; Seiden, A.; Spencer, E.

    1992-05-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to Φ = 6.1 × 10 14 n/cm 2, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ˜ 2.0 × 10 13 n/cm 2, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.

    A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 10 25 n/m 2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additionalmore » increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less

  10. Anisotropy of the neutron fluence from a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Kim, K. H.

    1972-01-01

    The fluence of neutrons from a plasma focus was measured by gamma spectrometry of an activated silver target. This method results in a significant increase in accuracy over the beta-counting method. Multiple detectors were used in order to measure the anisotropy of the fluence of neutrons. The fluence was found to be concentrated in a cone with a half-angle of 30 deg about the axis, and to drop off rapidly outside of this cone; the anisotropy was found to depend upon the total yield of neutrons. This dependence was strongest on the axis. Neither the axial concentration of the fluence of neutrons nor its dependence on the total yield of neutrons is explained by any of the currently proposed models. Some other explanations, including the possibility of an axially distributed source, are considered.

  11. System and Method for Determining Fluence of a Substance

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2016-01-01

    A system and method for measuring a fluence of gas are disclosed. The system has a first light detector capable of outputting an electrical signal based on an amount of light received. A barrier is positionable adjacent the first light detector and is susceptible to a change in dimension from the fluence of the gas. The barrier permits a portion of light from being received by the first light detector. The change in the dimension of the barrier changes the electrical signal output from the first light detector. A second light detector is positionable to receive light representative of the first light detector without the barrier. The system and method have broad application to detect fluence of gas that may cause erosion chemical reaction causing erosive deterioration. One application is in low orbit Earth for detecting the fluence of atomic oxygen.

  12. SWIMRT: A graphical user interface using the sliding window algorithm to construct a fluence map machine file

    PubMed Central

    Chow, James C.L.; Grigorov, Grigor N.; Yazdani, Nuri

    2006-01-01

    A custom‐made computer program, SWIMRT, to construct “multileaf collimator (MLC) machine” file for intensity‐modulated radiotherapy (IMRT) fluence maps was developed using MATLAB® and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment‐planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image‐processing tools such as field resizing and edge trimming to modify the imported map. When the processed fluence map is suitable, a “MLC machine” file is generated for our Varian 21 EX linear accelerator with a 120‐leaf Millennium MLC. This machine file is transferred to the MLC console of the LINAC to control the continuous motions of the leaves during beam irradiation. An IMRT field is then irradiated with the 2D intensity profiles, and the irradiated profiles are compared to the imported or modified fluence map. This program was verified and tested using film dosimetry to address the following uncertainties: (1) the mechanical limitation due to the leaf width and maximum traveling speed, and (2) the dosimetric limitation due to the leaf leakage/transmission and penumbra effect. Because the fluence map can be edited, resized, and processed according to the requirement of a study, SWIMRT is essential in studying and investigating the IMRT technique using the sliding window algorithm. Using this program, future work on the algorithm may include redistributing the time space between segmental fields to enhance the fluence resolution, and readjusting the timing of each leaf during delivery to avoid small fields. Possible clinical utilities and examples for SWIMRT are given in this paper. PACS numbers: 87.53.Kn, 87.53.St, 87.53.Uv PMID:17533330

  13. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Balvert, M

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that themore » original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.« less

  14. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  15. Equivalent electron fluence for space qualification of shallow junction heteroface GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.

    1984-01-01

    It is desirable to perform qualification tests prior to deployment of solar cells in space power applications. Such test procedures are complicated by the complex mixture of differing radiation components in space which are difficult to simulate in ground test facilities. Although it has been shown that an equivalent electron fluence ratio cannot be uniquely defined for monoenergetic proton exposure of GaAs shallow junction cells, an equivalent electron fluence test can be defined for common spectral components of protons found in space. Equivalent electron fluence levels for the geosynchronous environment are presented.

  16. The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets

    NASA Astrophysics Data System (ADS)

    Mishra, Mukesh; Alwarappan, Subbiah; Kanjilal, Dinakar; Mohanty, Tanuja

    2018-03-01

    Herein, we report the effect 50 keV nitrogen ion implantation at varying fluence on the optical properties of graphene nanosheets (number of layers < 5). Initially, graphene nanosheets synthesized by the direct liquid exfoliation of graphite layers were deposited on a cleaned Si-substrate by drop cast method. These graphene nanosheets are implanted with 50 keV nitrogen-ion beam at six different fluences. Raman spectroscopic results show that the D, D' and G peak get broadened up to the nitrogen ion fluence of 1 × 1015 ions/cm2, while 2D peak of graphene nanosheets disappeared for nitrogen-ions have fluence more than 1014 ions/cm2. However, further increase of fluence causes the indistinguishable superimposition of D, D' and G peaks. Surface contact potential value analysis for ion implanted graphene nanosheets shows the increase in defect concentration from 1.15 × 1012 to 1.98 × 1014 defects/cm2 with increasing the nitrogen ion fluence, which resembles the Fermi level shift towards conduction band. XRD spectra confirmed that the crystallinity of graphene nanosheets was found to tamper with increasing fluence. These results revealed that the limit of nitrogen ion implantation resistant on the vibrational behaviors for graphene nanosheets was 1015 ions/cm2 that opens up the scope of application of graphene nanosheets in device fabrication for ion-active environment and space applications.

  17. Adaptive treatment-length optimization in spatiobiologically integrated radiotherapy

    NASA Astrophysics Data System (ADS)

    Ajdari, Ali; Ghate, Archis; Kim, Minsun

    2018-04-01

    Recent theoretical research on spatiobiologically integrated radiotherapy has focused on optimization models that adapt fluence-maps to the evolution of tumor state, for example, cell densities, as observed in quantitative functional images acquired over the treatment course. We propose an optimization model that adapts the length of the treatment course as well as the fluence-maps to such imaged tumor state. Specifically, after observing the tumor cell densities at the beginning of a session, the treatment planner solves a group of convex optimization problems to determine an optimal number of remaining treatment sessions, and a corresponding optimal fluence-map for each of these sessions. The objective is to minimize the total number of tumor cells remaining (TNTCR) at the end of this proposed treatment course, subject to upper limits on the biologically effective dose delivered to the organs-at-risk. This fluence-map is administered in future sessions until the next image is available, and then the number of sessions and the fluence-map are re-optimized based on the latest cell density information. We demonstrate via computer simulations on five head-and-neck test cases that such adaptive treatment-length and fluence-map planning reduces the TNTCR and increases the biological effect on the tumor while employing shorter treatment courses, as compared to only adapting fluence-maps and using a pre-determined treatment course length based on one-size-fits-all guidelines.

  18. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  19. Virus Sensitivity Index of UV disinfection.

    PubMed

    Tang, Walter Z; Sillanpää, Mika

    2015-01-01

    A new concept of Virus Sensitivity Index (VSI) is defined as the ratio between the first-order inactivation rate constant of a virus, ki, and that of MS2-phage during UV disinfection, kr. MS2-phage is chosen as the reference virus because it is recommended as a virus indicator during UV reactor design and validation by the US Environmental Protection Agency. VSI has wide applications in research, design, and validation of UV disinfection systems. For example, it can be used to rank the UV disinfection sensitivity of viruses in reference to MS2-phage. There are four major steps in deriving the equation between Hi/Hr and 1/VSI. First, the first-order inactivation rate constants are determined by regression analysis between Log I and fluence required. Second, the inactivation rate constants of MS2-phage are statistically analysed at 3, 4, 5, and 6 Log I levels. Third, different VSI values are obtained from the ki of different viruses dividing by the kr of MS2-phage. Fourth, correlation between Hi/Hr and 1/VSI is analysed by using linear, quadratic, and cubic models. As expected from the theoretical analysis, a linear relationship adequately correlates Hi/Hr and 1/VSI without an intercept. VSI is used to quantitatively predict the UV fluence required for any virus at any log inactivation (Log I). Four equations were developed at 3, 4, 5, and 6 Log I. These equations have been validated using external data which are not used for the virus development. At Log I less than 3, the equation tends to under-predict the required fluence at both low Log I such as 1 and 2 Log I. At Log I greater than 3 Log I, the equation tends to over-predict the fluence required. The reasons for these may very likely be due to the shoulder at the beginning and the tailing at the end of the collimated beam test experiments. At 3 Log I, the error percentage is less than 6%. The VSI is also used to predict inactivation rate constants under two different UV disinfection scenarios such as under sunlight and different virus aggregates. The correlation analysis shows that viruses will be about 40% more sensitive to sunlight than to UV254. On the other hand, virus size of 500 nm will reduce their VSI by 10%. This is the first attempt to use VSI to predict the required fluence at any given Log I. The equation can be used to quantitatively evaluate other parameters influencing UV disinfection. These factors include environmental species, antibiotic-resistant bacteria or genes, photo and dark repair, water quality such as suspended solids, and UV transmittance.

  20. Conceptual design of the ITER fast-ion loss detector.

    PubMed

    Garcia-Munoz, M; Kocan, M; Ayllon-Guerola, J; Bertalot, L; Bonnet, Y; Casal, N; Galdon, J; Garcia Lopez, J; Giacomin, T; Gonzalez-Martin, J; Gunn, J P; Jimenez-Ramos, M C; Kiptily, V; Pinches, S D; Rodriguez-Ramos, M; Reichle, R; Rivero-Rodriguez, J F; Sanchis-Sanchez, L; Snicker, A; Vayakis, G; Veshchev, E; Vorpahl, Ch; Walsh, M; Walton, R

    2016-11-01

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  1. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less

  2. Fixed-point Design of the Lattice-reduction-aided Iterative Detection and Decoding Receiver for Coded MIMO Systems

    DTIC Science & Technology

    2011-01-01

    reliability, e.g., Turbo Codes [2] and Low Density Parity Check ( LDPC ) codes [3]. The challenge to apply both MIMO and ECC into wireless systems is on...REPORT Fixed-point Design of theLattice-reduction-aided Iterative Detection andDecoding Receiver for Coded MIMO Systems 14. ABSTRACT 16. SECURITY...illustrates the performance of coded LR aided detectors. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions

  3. Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures

    NASA Astrophysics Data System (ADS)

    Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan

    2016-10-01

    We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.

  4. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    PubMed

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by photoabsorption in the high-Z shielding material. For the ionization chambers and the diamond detector, the electron fluence spectra were found to be similar to that in water, for both field sizes. In contrast, electron spectra in the silicon diodes were much higher than that in water for both field sizes. The estimated perturbations of the fluence spectra for the silicon diodes were 11-21% for the large fields and 14-27% for the small fields. These perturbations are related to the atomic number, density and mean excitation energy (I-value) of silicon, as well as to the influence of the "extracameral"' components surrounding the detector sensitive volume. For most detectors the fluence perturbation was also found to increase when the field size was decreased, in consistency with the increased small-field effects observed for the smallest field sizes. The present work improves the understanding of small-field effects by relating output correction factors to spectral fluence perturbations in small field detectors. It is shown that the main reasons for the well-known small-field effects in silicon diodes are the high-Z and density of the "extracameral" detector components and the high I-value of silicon relative to that of water and diamond. Compared to these parameters, the density and atomic number of the radiation sensitive volume material play a less significant role. © 2016 American Association of Physicists in Medicine.

  5. Structural and magnetic fluence dependence in cobalt titanate thin films synthesized by pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon Thomas

    Knowledge of the fundamental structure and magnetic characteristics of dilute magnetic semiconductors (DMSs) is an essential step towards the development of spin-polarized electronics (spintronics). Recently (2001), the report of ferromagnetism in cobalt-doped anatase titania films synthesized by pulse laser deposition (PLD) elicited interest as a possible DMS oxide. Other investigations of the CoxTi1-xO2-delta material system, utilizing a myriad of deposition techniques, yielded conflicting results as to the source of magnetism and the local environment of the deposited cobalt. No complete characterization of PLD synthesized films has been reported. This dissertation quantifies the effect of laser fluence on film morphology, structure, and magnetic properties by fully characterizing CoxTi1-x O2-delta films grown under optimal PLD deposition conditions that were identified separately in prior published work. The construction of a custom PLD system that provided repeatable laser/target interaction via a combination of fluence and target movement is addressed. A brief outline of magnetism and its relation to structure is also given. The remainder of the dissertation details the effect of laser fluence on Co0.049Ti0.951O2-delta and Co 0.038Ti0.962O2-delta films. Film structure, morphology, and magnetic properties were determined for illumination conditions corresponding to laser fluences varying from 0.57 to 1.37 J/cm2. The local cobalt environment is strongly correlated with laser fluence. Cobalt in 4.9% concentration films grown with a laser fluence between 0.7 and 0.93 J/cm2 were octahedrally coordinated, as were 3.8% films grown with a fluence less than 0.93 J/cm2. Departure of the laser fluence from these ranges results in a multitude of cobalt environments in the films. The film magnetization is observed to be a function of laser fluence with a maximum moment of ˜3.19 muB per cobalt atom occurring at 0.93 J/cm2 in the 4.9% films and ˜1.9 muB per cobalt atom at 0.57 J/cm2 in the 3.8% films. There is no evidence of cobalt segregation and subsequent formation of metallic cobalt in the high moment films. A departure in laser fluence from the maximum moment conditions results in a drop in moment to ˜1 muB. An appendix detailing previous work that investigated iridium as an oxidation resistant capping layer is also included.

  6. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  7. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.

    2017-08-01

    The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.

  8. Design Approaches to Support Preservice Teachers in Scientific Modeling

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa; Davis, Elizabeth A.; Hug, Barbara

    2011-02-01

    Engaging children in scientific practices is hard for beginning teachers. One such scientific practice with which beginning teachers may have limited experience is scientific modeling. We have iteratively designed preservice teacher learning experiences and materials intended to help teachers achieve learning goals associated with scientific modeling. Our work has taken place across multiple years at three university sites, with preservice teachers focused on early childhood, elementary, and middle school teaching. Based on results from our empirical studies supporting these design decisions, we discuss design features of our modeling instruction in each iteration. Our results suggest some successes in supporting preservice teachers in engaging students in modeling practice. We propose design principles that can guide science teacher educators in incorporating modeling in teacher education.

  9. N+ ion-target interactions in PPO polymer: A structural characterization

    NASA Astrophysics Data System (ADS)

    Das, A.; Dhara, S.; Patnaik, A.

    1999-01-01

    N + ion beam induced effects on the spin coated amorphous poly(2,6-dimethyl phenylene oxide) (PPO) films in terms of chemical structure and electronic and vibrational properties were investigated using Fourier Transform Infrared spectroscopy (FTIR) and Ultraviolet-Visible (UV-VIS) spectroscopy. Both techniques revealed that the stability of PPO was very weak towards 100 keV N + ions revealing the threshold fluence to be 10 14 ions/cm 2 for fragmentation of the polymer. FTIR analysis showed disappearance of all characteristic IR bands at a total fluence of 10 14 ions/cm 2 except for the band CC at 1608 cm -1 which was found to shift to a lower wave number along with an enhancement in the full width half maximum (FWHM) value with increasing fluence. A new bond appeared due to oxidation as a shoulder at 1680 cm -1 in FTIR spectra indicating the presence of CO type bond as a result of N + implantation on PPO films. The optical band gap ( Eg) deduced from absorption spectra, was observed to decrease from 4.4 to 0.5 eV with fluence. The implantation induced carbonaceous clusters, determined using Robertson's formula for the optical band gap, were found to consist of ˜160 fused hexagonal aromatic rings at the maximum energy fluence. An enhanced absorption coefficient as a function of fluence indicated incorporation of either much larger concentration of charge carriers or their mobility than that of the pristine sample. Calculated band tail width from Urbach band tail region for the implanted samples pointed the band edge sharpness to be strongly dependent on fluence indicating an increased disorder with increasing fluence.

  10. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  11. SU-E-J-174: Adaptive PET-Based Dose Painting with Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darwish, N; Mackie, T; Thomadsen, B

    2014-06-01

    Purpose: PET imaging can be converted into dose prescription directly. Due to the variability of the intensity of PET the image, PET prescription maybe superior over uniform dose prescription. Furthermore, unlike the case in image reconstruction of not knowing the image solution in advance, the prescribed dose is known from a PET image a priori. Therefore, optimum beam orientations are derivable. Methods: We can assume the PET image to be the prescribed dose and invert it to determine the energy fluence. The same method used to reconstruct tissue images from projections could be used to solve the inverse problem ofmore » determining beam orientations and modulation patterns from a dose prescription [10]. Unlike standard tomographic reconstruction of images from measured projection profiles, the inversion of the prescribed dose results in photon fluence which may be negative and therefore unphysical. Two-dimensional modulated beams can be modelled in terms of the attenuated or exponential radon transform of the prescribed dose function (assumed to be the PET image in this case), an application of a Ram-Lak filter, and inversion by backprojection. Unlike the case in PET processing, however, the filtered beam obtained from the inversion represents a physical photon fluence. Therefore, a positivity constraint for the fluence (setting negative fluence to zero) must be applied (Brahme et al 1982, Bortfeld et al 1990) Results: Truncating the negative profiles from the PET data results in an approximation of the derivable energy fluence. Backprojection of the deliverable fluence is an approximation of the dose delivered. The deliverable dose is comparable to the original PET image and is similar to the PET image. Conclusion: It is possible to use the PET data or image as a direct indicator of deliverable fluence for cylindrical radiotherapy systems such as TomoTherapy.« less

  12. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  13. Re-crystallization of ITO films after carbon irradiation

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 1013 to 1 × 1015 ions/cm2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 1013 ions/cm2 fluence of carbon ions. Further increase in ion fluence to 1 × 1014 ions/cm2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  14. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  15. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  16. Epoxy-paint stripping using TEA CO2 laser: Determination of threshold fluence and the process parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Bhargava, P.; Biswas, A. K.; Sahu, Shasikiran; Mandloi, V.; Ittoop, M. O.; Khattak, B. Q.; Tiwari, M. K.; Kukreja, L. M.

    2013-03-01

    It is shown that the threshold fluence for laser paint stripping can be accurately estimated from the heat of gasification and the absorption coefficient of the epoxy-paint. The threshold fluence determined experimentally by stripping of the epoxy-paint on a substrate using a TEA CO2 laser matches closely with the calculated value. The calculated threshold fluence and the measured absorption coefficient of the paint allowed us to determine the epoxy paint thickness that would be removed per pulse at a given laser fluence even without experimental trials. This was used to predict the optimum scan speed required to strip the epoxy-paint of a given thickness using a high average power TEA CO2 laser. Energy Dispersive X-Ray Fluorescence (EDXRF) studies were also carried out on laser paint-stripped concrete substrate to show high efficacy of this modality.

  17. Property changes of G347A graphite due to neutron irradiation

    DOE PAGES

    Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.; ...

    2016-08-18

    A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 10 25 n/m 2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additionalmore » increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12}more » n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.« less

  19. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    NASA Astrophysics Data System (ADS)

    Tyler, M.; Vial, P.; Metcalfe, P.; Downes, S.

    2013-06-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  20. Measurement and analysis of the conversion gain degradation of the CIS detectors in harsh radiation environments

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Xue, Yuanyuan; Guo, Xiaoqiang; Bian, Jingying; Yao, Zhibin; He, Baoping; Ma, Wuying; Sheng, Jiangkun; Dong, Guantao; Liu, Yan

    2018-07-01

    The conversion gain of the CMOS image sensor (CIS) is one of the most important key parameters to the CIS detector. The conversion gain degradation induced by radiation damage will seriously affect the performances of the CIS detector. The experiments of the CISs irradiated by protons, neutrons, and gamma rays are presented. The CISs have 4 Megapixels and pinned photodiode (PPD) pixel architecture with a standard 0.18 μm CMOS technology. The conversion gains versus the proton fluence (including the proton ionizing dose), neutron fluence and gamma total ionizing dose are presented, respectively. The mechanisms of the conversion gain degradation induced by radiation damage are analyzed in details. The investigations will help to improve the PPD CIS detector design, reliability and applicability for applications in the harsh radiation environments such as space and nuclear environments.

  1. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, A.; Zhai, Y.; Wang, W.

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  2. Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module

    DOE PAGES

    Khodak, A.; Zhai, Y.; Wang, W.; ...

    2017-06-19

    As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less

  3. Effects of Discovery, Iteration, and Collaboration in Laboratory Courses on Undergraduates' Research Career Intentions Fully Mediated by Student Ownership.

    PubMed

    Corwin, Lisa A; Runyon, Christopher R; Ghanem, Eman; Sandy, Moriah; Clark, Greg; Palmer, Gregory C; Reichler, Stuart; Rodenbusch, Stacia E; Dolan, Erin L

    2018-06-01

    Course-based undergraduate research experiences (CUREs) provide a promising avenue to attract a larger and more diverse group of students into research careers. CUREs are thought to be distinctive in offering students opportunities to make discoveries, collaborate, engage in iterative work, and develop a sense of ownership of their lab course work. Yet how these elements affect students' intentions to pursue research-related careers remain unexplored. To address this knowledge gap, we collected data on three design features thought to be distinctive of CUREs (discovery, iteration, collaboration) and on students' levels of ownership and career intentions from ∼800 undergraduates who had completed CURE or inquiry courses, including courses from the Freshman Research Initiative (FRI), which has a demonstrated positive effect on student retention in college and in science, technology, engineering, and mathematics. We used structural equation modeling to test relationships among the design features and student ownership and career intentions. We found that discovery, iteration, and collaboration had small but significant effects on students' intentions; these effects were fully mediated by student ownership. Students in FRI courses reported significantly higher levels of discovery, iteration, and ownership than students in other CUREs. FRI research courses alone had a significant effect on students' career intentions.

  4. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2015-11-01

    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, <~50MW for an ITER scale tokamak. It is unlikely, considering ``conservative design rules'' that tokamaks can ever be economical pure fusion power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  5. Design of the ITER Electron Cyclotron Heating and Current Drive Waveguide Transmission Line

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Rasmussen, D. A.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.; Grunloh, H.; Koliner, J.

    2007-11-01

    The ITER ECH transmission line system is designed to deliver the power, from twenty-four 1 MW 170 GHz gyrotrons and three 1 MW 127.5 GHz gyrotrons, to the equatorial and upper launchers. The performance requirements, initial design of components and layout between the gyrotrons and the launchers is underway. Similar 63.5 mm ID corrugated waveguide systems have been built and installed on several fusion experiments; however, none have operated at the high frequency and long-pulse required for ITER. Prototype components are being tested at low power to estimate ohmic and mode conversion losses. In order to develop and qualify the ITER components prior to procurement of the full set of 24 transmission lines, a 170 GHz high power test of a complete prototype transmission line is planned. Testing of the transmission line at 1-2 MW can be performed with a modest power (˜0.5 MW) tube with a low loss (10-20%) resonant ring configuration. A 140 GHz long pulse, 400 kW gyrotron will be used in the initial tests and a 170 GHz gyrotron will be used when it becomes available. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  6. Iterative learning-based decentralized adaptive tracker for large-scale systems: a digital redesign approach.

    PubMed

    Tsai, Jason Sheng-Hong; Du, Yan-Yi; Huang, Pei-Hsiang; Guo, Shu-Mei; Shieh, Leang-San; Chen, Yuhua

    2011-07-01

    In this paper, a digital redesign methodology of the iterative learning-based decentralized adaptive tracker is proposed to improve the dynamic performance of sampled-data linear large-scale control systems consisting of N interconnected multi-input multi-output subsystems, so that the system output will follow any trajectory which may not be presented by the analytic reference model initially. To overcome the interference of each sub-system and simplify the controller design, the proposed model reference decentralized adaptive control scheme constructs a decoupled well-designed reference model first. Then, according to the well-designed model, this paper develops a digital decentralized adaptive tracker based on the optimal analog control and prediction-based digital redesign technique for the sampled-data large-scale coupling system. In order to enhance the tracking performance of the digital tracker at specified sampling instants, we apply the iterative learning control (ILC) to train the control input via continual learning. As a result, the proposed iterative learning-based decentralized adaptive tracker not only has robust closed-loop decoupled property but also possesses good tracking performance at both transient and steady state. Besides, evolutionary programming is applied to search for a good learning gain to speed up the learning process of ILC. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Cold Test and Performance Evaluation of Prototype Cryoline-X

    NASA Astrophysics Data System (ADS)

    Shah, N.; Choukekar, K.; Kapoor, H.; Muralidhara, S.; Garg, A.; Kumar, U.; Jadon, M.; Dash, B.; Bhattachrya, R.; Badgujar, S.; Billot, V.; Bravais, P.; Cadeau, P.

    2017-12-01

    The multi-process pipe vacuum jacketed cryolines for the ITER project are probably world’s most complex cryolines in terms of layout, load cases, quality, safety and regulatory requirements. As a risk mitigation plan, design, manufacturing and testing of prototype cryoline (PTCL) was planned before the approval of final design of ITER cryolines. The 29 meter long PTCL consist of 6 process pipes encased by thermal shield inside Outer Vacuum Jacket of DN 600 size and carries cold helium at 4.5 K and 80 K. The global heat load limit was defined as 1.2 W/m at 4.5 K and 4.5 W/m at 80 K. The PTCL-X (PTCL for Group-X cryolines) was specified in detail by ITER-India and designed as well as manufactured by Air Liquide. PTCL-X was installed and tested at cryogenic temperature at ITER-India Cryogenic Laboratory in 2016. The heat load at 4.5 K and 80 K, estimated using enthalpy difference method, was found to be approximately 0.8 W/m at 4.5 K, 4.2 W/m at 80 K, which is well within the defined limits. Thermal shield temperature profile was also found to be satisfactory. Paper summarizes the cold test results of PTCL-X

  8. Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.

    2017-05-01

    The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.

  9. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  10. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility.

    PubMed

    Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A

    2016-11-01

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  11. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  12. Formation of porous networks on polymeric surfaces by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Kietzig, Anne-Marie

    2017-02-01

    In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.

  13. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).

    PubMed

    Laurence, Ted A; Bude, Jeff D; Ly, Sonny; Shen, Nan; Feit, Michael D

    2012-05-07

    Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors.

  14. Lithography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions

    NASA Astrophysics Data System (ADS)

    Puttaraksa, Nitipon; Norarat, Rattanaporn; Laitinen, Mikko; Sajavaara, Timo; Singkarat, Somsorn; Whitlow, Harry J.

    2012-02-01

    Poly(methyl methacrylate) is a common polymer used as a lithographic resist for all forms of particle (photon, ion and electron) beam writing. Faithful lithographic reproduction requires that the exposure dose, Θ, lies in the window Θ0⩽Θ<Θ, where Θ0 and Θ represent the clearing and cross-linking onset doses, respectively. In this work we have used the programmable proximity aperture ion beam lithography systems in Chiang Mai and Jyväskylä to determine the exposure characteristics in terms of fluence for 2 MeV protons, 3 MeV 4He and 6 MeV 12C ions, respectively. After exposure the samples were developed in 7:3 by volume propan-2-ol:de-ionised water mixture. At low fluences, where the fluence is below the clearing fluence, the exposed regions were characterised by rough regions, particularly for He with holes around the ion tracks. As the fluence (dose) increases so that the dose exceeds the clearing dose, the PMMA is uniformly removed with sharp vertical walls. When Θ exceeds the cross-linking onset fluence, the bottom of the exposed regions show undissolved PMMA.

  15. Fast approximate delivery of fluence maps for IMRT and VMAT

    NASA Astrophysics Data System (ADS)

    Balvert, Marleen; Craft, David

    2017-02-01

    In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for dynamically delivered fluence maps. At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. We begin with the single fluence map case and then generalize the model and the solution technique to the delivery of sequential fluence maps. The resulting large-scale, non-convex optimization problem was solved using a heuristic approach. We test our method using a prostate case and a head and neck case, and present the resulting trade-off curves. Analysis of the leaf trajectories reveals that short time plans have larger leaf openings in general than longer delivery time plans. Our method allows one to explore the continuum of possibilities between coarse, large segment plans characteristic of direct aperture approaches and narrow field plans produced by sliding window approaches. Exposing this trade-off will allow for an informed choice between plan quality and solution time. Further research is required to speed up the optimization process to make this method clinically implementable.

  16. A Burning Plasma Experiment: the role of international collaboration

    NASA Astrophysics Data System (ADS)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  17. Design advances of the Core Plasma Thomson Scattering diagnostic for ITER

    NASA Astrophysics Data System (ADS)

    Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.

    2017-11-01

    The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.

  18. Blade design and analysis using a modified Euler solver

    NASA Technical Reports Server (NTRS)

    Leonard, O.; Vandenbraembussche, R. A.

    1991-01-01

    An iterative method for blade design based on Euler solver and described in an earlier paper is used to design compressor and turbine blades providing shock free transonic flows. The method shows a rapid convergence, and indicates how much the flow is sensitive to small modifications of the blade geometry, that the classical iterative use of analysis methods might not be able to define. The relationship between the required Mach number distribution and the resulting geometry is discussed. Examples show how geometrical constraints imposed upon the blade shape can be respected by using free geometrical parameters or by relaxing the required Mach number distribution. The same code is used both for the design of the required geometry and for the off-design calculations. Examples illustrate the difficulty of designing blade shapes with optimal performance also outside of the design point.

  19. Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak

    NASA Astrophysics Data System (ADS)

    Petrov, S. Ya.; Afanasyev, V. I.; Melnik, A. D.; Mironov, M. I.; Navolotsky, A. S.; Nesenevich, V. G.; Petrov, M. P.; Chernyshev, F. V.; Kedrov, I. V.; Kuzmin, E. G.; Lyublin, B. V.; Kozlovski, S. S.; Mokeev, A. N.

    2017-12-01

    The control of the deuterium-tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10-200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1-4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.

  20. Grid2: A Program for Rapid Estimation of the Jovian Radiation Environment: A Numeric Implementation of the GIRE2 Jovian Radiation Model for Estimating Trapped Radiation for Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Evans, R. W.; Brinza, D. E.

    2014-01-01

    Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model, the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the execution of the model--minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

  1. Adaptive iterative learning control of a class of nonlinear time-delay systems with unknown backlash-like hysteresis input and control direction.

    PubMed

    Wei, Jianming; Zhang, Youan; Sun, Meimei; Geng, Baoliang

    2017-09-01

    This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Jiang Graves, Yan; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using our in-house optimization engine. This work was originally presented at the 54th AAPM annual meeting in Charlotte, NC, July 29-August 2, 2012.

  3. Evaluation of the cryogenic mechanical properties of the insulation material for ITER Feeder superconducting joint

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Huang, Rongjin; Huang, ChuanJun; Yang, Yanfang; Huang, Xiongyi; Li, Laifeng

    2017-12-01

    The Glass-fiber reinforced plastic (GFRP) fabricated by the vacuum bag process was selected as the high voltage electrical insulation and mechanical support for the superconducting joints and the current leads for the ITER Feeder system. To evaluate the cryogenic mechanical properties of the GFRP, the mechanical properties such as the short beam strength (SBS), the tensile strength and the fatigue fracture strength after 30,000 cycles, were measured at 77K in this study. The results demonstrated that the GFRP met the design requirements of ITER.

  4. Characterization of the ITER model negative ion source during long pulse operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsworth, R.S.; Boilson, D.; Crowley, B.

    2006-03-15

    It is foreseen to operate the neutral beam system of the International Thermonuclear Experimental Reactor (ITER) for pulse lengths extending up to 1 h. The performance of the KAMABOKO III negative ion source, which is a model of the source designed for ITER, is being studied on the MANTIS test bed at Cadarache. This article reports the latest results from the characterization of the ion source, in particular electron energy distribution measurements and the comparison between positive ion and negative ion extraction from the source.

  5. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    PubMed

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  6. Sensing circuits for multiwire proportional chambers

    NASA Technical Reports Server (NTRS)

    Peterson, H. T.; Worley, E. R.

    1977-01-01

    Integrated sensing circuits were designed, fabricated, and packaged for use in determining the direction and fluence of ionizing radiation passing through a multiwire proportional chamber. CMOS on sapphire was selected because of its high speed and low power capabilities. The design of the proposed circuits is described and the results of computer simulations are presented. The fabrication processes for the CMOS on sapphire sensing circuits and hybrid substrates are outlined. Several design options are described and the cost implications of each discussed. To be most effective, each chip should handle not more than 32 inputs, and should be mounted on its own hybrid substrate.

  7. Large area, low cost solar cell development and production readiness

    NASA Technical Reports Server (NTRS)

    Michaels, D.

    1982-01-01

    A process sequence for a large area ( or = 25 sq. cm) silicon solar cell was investigated. Generic cell choice was guided by the expected electron fluence, by the packing factors of various cell envelope designs onto each panel to provide needed voltage as well as current, by the weight constraints on the system, and by the cost goals of the contract.

  8. Design of robust iterative learning control schemes for systems with polytopic uncertainties and sector-bounded nonlinearities

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2017-01-01

    This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.

  9. An Approach to the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.

    1997-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  10. An approach to the constrained design of natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford Earl

    1995-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  11. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    NASA Astrophysics Data System (ADS)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  12. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a uniformly thick sheet of semitransparent polymer such as Kapton H polyimide, then as atomic oxygen erodes the polymer, the short-circuit current from the photodiode will increase in an exponential manner with fluence. This nonlinear response with fluence results in a lack of sensitivity for measuring low atomic oxygen fluences. However, if one uses a variable-thickness polymer or carbon sample, which is configured as shown in the preceding figure, then a linear response can be achieved for opaque materials using a parabolic well for a circular geometry detector or a V-shaped well for a rectangular-geometry detector. Variable-thickness samples can be fabricated using many thin polymer layers. For semitransparent polymers such as Kapton H polyimide, there is an initial short-circuit current that is greater than zero. This current has a slightly nonlinear dependence on atomic oxygen fluence in comparison to opaque materials such as black Kapton as shown in the graph. For this graph figure, the total thickness of Kapton H was assumed to be 0.03 cm. The photodiode short-circuit current shown in the graph was generated on the basis of preliminary measurements-a total reflectance rho of 0.0424 and an optical absorption coefficient a of 146.5 cm(sup -1). In addition to obtaining on-orbit data, the advantage of this active erosion and erosion yield measurement technique is its simplicity and reliance upon well-characterized fluence witness materials as well as a nearly linear photodiode short-circuit current dependence upon atomic oxygen fluence. The optical technique is useful for measuring either atomic oxygen fluence or erosion, depending on the information desired. To measure the atomic oxygen erosion yield of a test material, one would need to have two photodiode sensors, one for the test material and one that uses a known erosion yield material (such as Kapton) to measure the atomic oxygen fluence.

  13. Excitonic lasing in solution-processed subwavelength nanosphere assemblies

    DOE PAGES

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; ...

    2016-02-03

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order ofmore » magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm 2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.« less

  14. Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods.

    PubMed

    Tice, Daniel B; Li, Shi-Qiang; Tagliazucchi, Mario; Buchholz, D Bruce; Weiss, Emily A; Chang, Robert P H

    2014-03-12

    Light-matter interaction at the nanoscale is of particular interest for future photonic integrated circuits and devices with applications ranging from communication to sensing and imaging. In this Letter a combination of transient absorption (TA) and the use of third harmonic generation as a probe (THG-probe) has been adopted to investigate the response of the localized surface plasmon resonances (LSPRs) of vertically aligned indium tin oxide rods (ITORs) upon ultraviolet light (UV) excitation. TA experiments, which are sensitive to the extinction of the LSPR, show a fluence-dependent increase in the frequency and intensity of the LSPR. The THG-probe experiments show a fluence-dependent decrease of the LSPR-enhanced local electric field intensity within the rod, consistent with a shift of the LSPR to higher frequency. The kinetics from both TA and THG-probe experiments are found to be independent of the fluence of the pump. These results indicate that UV excitation modulates the plasma frequency of ITO on the ultrafast time scale by the injection of electrons into, and their subsequent decay from, the conduction band of the rods. Increases to the electron concentration in the conduction band of ∼13% were achieved in these experiments. Computer simulation and modeling have been used throughout the investigation to guide the design of the experiments and to map the electric field distribution around the rods for interpreting far-field measurement results.

  15. Radiation-induced swelling of stainless steel.

    PubMed

    Shewmon, P G

    1971-09-10

    Significant swelling (1 to 10 percent due to small voids have been found in stainless steel when it is exposed to fast neutron doses less than expected in commercial fast breeder reactors. The main features of this new effect are: (i) the voids are formed by the precipitation of a small fraction of the radiation-produced vacancies; (ii) the voids form primarily in the temperature range 400 degrees to 600 degrees C (750 degrees to 1100 degrees F); and (iii) the volume increases with dose (fluence) at a rate between linear and parabolic. The limited temperature range of void formation can be explained, but the effects of fluence, microstructure, and composition are determined by a competition between several kinetic processes that are not well understood. This swelling does not affect the feasibility or safety of the breeder reactor,but will have a significant impact on the core design and economics of the breeder.Preliminary results indicate that one cannot eliminate the effect,but cold-working,heat treatment, or small changes in composition can reduce the swelling by a factor of 2 or more. Testing is hampered by the fact that several years in EBR-II are required to accumulate the fluence expected in demonstration plants. Heavyion accelerators,which allow damage rates corresponding to much higher fluxes than those found in EBR-II,hold great promise for short-term tests that will indicate the relative effect of the important variables.

  16. Application of p-i-n photodiodes to charged particle fluence measurements beyond 1015 1-MeV-neutron-equivalent/cm2

    NASA Astrophysics Data System (ADS)

    Hoeferkamp, M. R.; Grummer, A.; Rajen, I.; Seidel, S.

    2018-05-01

    Methods are developed for the application of forward biased p-i-n photodiodes to measurements of charged particle fluence beyond 1015 1-MeV-neutron-equivalent/cm2. An order of magnitude extension of the regime where forward voltage can be used to infer fluence is achieved for OSRAM BPW34F devices.

  17. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  18. Conceptual design of the ITER fast-ion loss detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Munoz, M., E-mail: mgm@us.es; Ayllon-Guerola, J.; Galdon, J.

    2016-11-15

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cmmore » outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.« less

  19. Applicability of Kerker preconditioning scheme to the self-consistent density functional theory calculations of inhomogeneous systems

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Wang, Han; Liu, Yu; Gao, Xingyu; Song, Haifeng

    2018-03-01

    The Kerker preconditioner, based on the dielectric function of homogeneous electron gas, is designed to accelerate the self-consistent field (SCF) iteration in the density functional theory calculations. However, a question still remains regarding its applicability to the inhomogeneous systems. We develop a modified Kerker preconditioning scheme which captures the long-range screening behavior of inhomogeneous systems and thus improves the SCF convergence. The effectiveness and efficiency is shown by the tests on long-z slabs of metals, insulators, and metal-insulator contacts. For situations without a priori knowledge of the system, we design the a posteriori indicator to monitor if the preconditioner has suppressed charge sloshing during the iterations. Based on the a posteriori indicator, we demonstrate two schemes of the self-adaptive configuration for the SCF iteration.

  20. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by amore » 100×100um{sup 2} 6 MV beam resulted in fluence of less than 1 nJ/cm{sup 2}/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm{sup 2} for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments. Experimental validation in tissue phantoms and cell studies are ongoing to clarify this discrepancy. Funding from NIH grant R01CA109558.« less

  1. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO 2 , fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO 2 also means that the UV surface fluence is insensitive to plausible levels of CH 4 , O 2 , and O 3 . At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO 2 levels. However, if SO 2 and/or H 2 S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H 2 O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H 2 O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H 2 O and CO 2 levels. Key Words: Radiative transfer-Origin of life-Planetary environments-UV radiation-Prebiotic chemistry. Astrobiology 17, 169-204.

  2. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Sasselov, Dimitar D.

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of NCO2, meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels.

  3. Modeling of defect-tolerant thin multi-junction solar cells for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2012-02-01

    Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.

  4. Formulation for Simultaneous Aerodynamic Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, G. W.; Taylor, A. C., III; Mani, S. V.; Newman, P. A.

    1993-01-01

    An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.

  5. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  6. Computational methods of robust controller design for aerodynamic flutter suppression

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1981-01-01

    The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

  7. Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2015-12-01

    Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F22+ centers kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).

  8. 308-nm excimer laser ablation of human cartilage

    NASA Astrophysics Data System (ADS)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  9. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  10. Lattice disorder produced in GaN by He-ion implantation

    NASA Astrophysics Data System (ADS)

    Han, Yi; Peng, Jinxin; Li, Bingsheng; Wang, Zhiguang; Wei, Kongfang; Shen, Tielong; Sun, Jianrong; Zhang, Limin; Yao, Cunfeng; Gao, Ning; Gao, Xing; Pang, Lilong; Zhu, Yabin; Chang, Hailong; Cui, Minghuan; Luo, Peng; Sheng, Yanbin; Zhang, Hongpeng; Zhang, Li; Fang, Xuesong; Zhao, Sixiang; Jin, Jin; Huang, Yuxuan; Liu, Chao; Tai, Pengfei; Wang, Dong; He, Wenhao

    2017-09-01

    The lattice disorders induced by He-ion implantation in GaN epitaxial films to fluences of 2 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) have been investigated by a combination of Raman spectroscopy, high-resolution X-ray diffraction (HRXRD), nano-indentation, and transmission electron microscopy (TEM). The experimental results present that Raman intensity decreases with increasing fluence. Raman frequency "red shift" occurs after He-ion implantation. Strain increases with increasing fluence. The hardness of the highly damaged layer increases monotonically with increasing fluence. Microstructural results demonstrate that the width of the damage band and the number density of observed dislocation loops increases with increasing fluence. High-resolution TEM images exhibit that He-ion implantation lead to the formation of planar defects and most of the lattice defects are of interstitial-type basal loops. The relationships of Raman intensity, lattice strain, swelling and hardness with He-implantation-induced lattice disorders are discussed.

  11. Synthesis of sponge-like hydrophobic NiBi3 surface by 200 keV Ar ion implantation

    NASA Astrophysics Data System (ADS)

    Siva, Vantari; Datta, D. P.; Chatterjee, S.; Varma, S.; Kanjilal, D.; Sahoo, Pratap K.

    2017-07-01

    Sponge-like nanostructures develop under Ar-ion implantation of a Ni-Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi3 phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.

  12. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böcklin, Christoph, E-mail: boecklic@ethz.ch; Baumann, Dirk; Fröhlich, Jürg

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithmmore » works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.« less

  13. New method for estimation of fluence complexity in IMRT fields and correlation with gamma analysis

    NASA Astrophysics Data System (ADS)

    Hanušová, T.; Vondráček, V.; Badraoui-Čuprová, K.; Horáková, I.; Koniarová, I.

    2015-01-01

    A new method for estimation of fluence complexity in Intensity Modulated Radiation Therapy (IMRT) fields is proposed. Unlike other previously published works, it is based on portal images calculated by the Portal Dose Calculation algorithm in Eclipse (version 8.6, Varian Medical Systems) in the plane of the EPID aS500 detector (Varian Medical Systems). Fluence complexity is given by the number and the amplitudes of dose gradients in these matrices. Our method is validated using a set of clinical plans where fluence has been smoothed manually so that each plan has a different level of complexity. Fluence complexity calculated with our tool is in accordance with the different levels of smoothing as well as results of gamma analysis, when calculated and measured dose matrices are compared. Thus, it is possible to estimate plan complexity before carrying out the measurement. If appropriate thresholds are determined which would distinguish between acceptably and overly modulated plans, this might save time in the re-planning and re-measuring process.

  14. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    NASA Astrophysics Data System (ADS)

    Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.

    2013-05-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem.

  15. Analog Design for Digital Deployment of a Serious Leadership Game

    NASA Technical Reports Server (NTRS)

    Maxwell, Nicholas; Lang, Tristan; Herman, Jeffrey L.; Phares, Richard

    2012-01-01

    This paper presents the design, development, and user testing of a leadership development simulation. The authors share lessons learned from using a design process for a board game to allow for quick and inexpensive revision cycles during the development of a serious leadership development game. The goal of this leadership simulation is to accelerate the development of leadership capacity in high-potential mid-level managers (GS-15 level) in a federal government agency. Simulation design included a mixed-method needs analysis, using both quantitative and qualitative approaches to determine organizational leadership needs. Eight design iterations were conducted, including three user testing phases. Three re-design iterations followed initial development, enabling game testing as part of comprehensive instructional events. Subsequent design, development and testing processes targeted digital application to a computer- and tablet-based environment. Recommendations include pros and cons of development and learner testing of an initial analog simulation prior to full digital simulation development.

  16. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; ...

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×10 6 cm -2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  17. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy.

    PubMed

    Angell-Petersen, Even; Hirschberg, Henry; Madsen, Steen J

    2007-01-01

    Light and heat distributions are measured in a rat glioma model used in photodynamic therapy. A fiber delivering 632-nm light is fixed in the brain of anesthetized BDIX rats. Fluence rates are measured using calibrated isotropic probes that are positioned stereotactically. Mathematical models are then used to derive tissue optical properties, enabling calculation of fluence rate distributions for general tumor and light application geometries. The fluence rates in tumor-free brains agree well with the models based on diffusion theory and Monte Carlo simulation. In both cases, the best fit is found for absorption and reduced scattering coefficients of 0.57 and 28 cm(-1), respectively. In brains with implanted BT(4)C tumors, a discrepancy between diffusion and Monte Carlo-derived two-layer models is noted. Both models suggest that tumor tissue has higher absorption and less scattering than normal brain. Temperatures are measured by inserting thermocouples directly into tumor-free brains. A model based on diffusion theory and the bioheat equation is found to be in good agreement with the experimental data and predict a thermal penetration depth of 0.60 cm in normal rat brain. The predicted parameters can be used to estimate the fluences, fluence rates, and temperatures achieved during photodynamic therapy.

  18. Effect of spot size and fluence on Q-switched alexandrite laser treatment for pigmentation in Asians: a randomized, double-blinded, split-face comparative trial.

    PubMed

    Wang, Chia-Chen; Chen, Chih-Kang

    2012-10-01

    Q-switched laser treatment for pigment disorders commonly leads to postinflammatory hyperpigmentation (PIH) in Asians. To evaluate the effect of spot size and fluence on Q-switched alexandrite laser (QSAL) treatment for pigmentation in Asians. Ten patients with freckles, 18 with lentigines, and 8 with acquired bilateral nevus of Ota-like macules (ABNOM) received 1 session of QSAL treatment for a 3-mm spot on one cheek and a 4-mm spot on the other cheek. The lowest fluences to achieve a visible biologic effect were chosen. The patients with freckles experienced the highest improvement rate (83-84%), followed by those with lentigines (52%) and ABNOM (35%). Similar efficacy was observed for both cheeks (p > 0.05). PIH developed in 10% (1/10), 44% (8/18), and 75% (6/8) of the patients with freckles, lentigines, and ABNOM, respectively. The severity of PIH was lower in the 4-mm spot with a lower fluence than in the 3-mm spot with a higher fluence in patients with lentigines (p = 0.03), but not in those with freckles or ABNOM. Using a larger spot to achieve the same biologic effect at a lower fluence is associated with equal efficacy and less-severe PIH in patients with lentigines.

  19. Incorporating Prototyping and Iteration into Intervention Development: A Case Study of a Dining Hall-Based Intervention

    ERIC Educational Resources Information Center

    McClain, Arianna D.; Hekler, Eric B.; Gardner, Christopher D.

    2013-01-01

    Background: Previous research from the fields of computer science and engineering highlight the importance of an iterative design process (IDP) to create more creative and effective solutions. Objective: This study describes IDP as a new method for developing health behavior interventions and evaluates the effectiveness of a dining hall--based…

  20. Beneficial Effect of Low Fluence 1,064 nm Q-Switched Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Senile Lentigo

    PubMed Central

    Nam, Jae-Hui; Kim, Han-Saem; Lee, Ga-Young

    2017-01-01

    Background Low fluence 1,064 nm Q-switched (QS) Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser treatment, also known as laser toning, is widely used for pigmentary disorders. There has been no reliable evaluation of the effect of low fluence 1,064 nm QS Nd:YAG laser for senile lentigo. Objective To investigate the beneficial effect of low fluence 1,064 nm QS Nd:YAG laser in the treatment of senile lentigo on the face. Methods A retrospective review was conducted on patients treated only with repetitive low fluence 1,064 nm QS Nd:YAG laser. Among them, 12 patients with multiple senile lentigines before treatment were included. All side effects were recorded to assess the safety of the modality. Results Mean age was 56.1±7.8 years old and male-to-female ratio was 1:11. Mean treatment fluence was 1.62±0.16 J/cm2 and mean total treatment session was 8.8±2.6. Mean interval period between each session was 28.0±11.4 days and mean treatment session to reach marked and near total improvement was 8.7±2.8. At the final visit, seven of 12 (58.3%) patients reached marked and near total improvement, and three of 12 (25.0%) reached moderate improvement. No side effects occurred. Conclusion Repetitive low fluence 1,064 nm QS Nd:YAG laser treatment may be an effective and safe optional modality for senile lentigo. PMID:28761290

  1. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    NASA Astrophysics Data System (ADS)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  2. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrada, Juan J; Reiersen, Wayne T

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C andmore » 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment with no field experience and lowers specific costs while providing higher reliability. This paper presents a brief description of the TCWS conceptual design and the application of RAMI tools to optimize the design at different stages during the project.« less

  3. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Imai, T.; Kobayashi, N.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less

  4. Methodology for Sensitivity Analysis, Approximate Analysis, and Design Optimization in CFD for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1996-01-01

    An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.

  5. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  6. The child's perspective as a guiding principle: Young children as co-designers in the design of an interactive application meant to facilitate participation in healthcare situations.

    PubMed

    Stålberg, Anna; Sandberg, Anette; Söderbäck, Maja; Larsson, Thomas

    2016-06-01

    During the last decade, interactive technology has entered mainstream society. Its many users also include children, even the youngest ones, who use the technology in different situations for both fun and learning. When designing technology for children, it is crucial to involve children in the process in order to arrive at an age-appropriate end product. In this study we describe the specific iterative process by which an interactive application was developed. This application is intended to facilitate young children's, three-to five years old, participation in healthcare situations. We also describe the specific contributions of the children, who tested the prototypes in a preschool, a primary health care clinic and an outpatient unit at a hospital, during the development process. The iterative phases enabled the children to be involved at different stages of the process and to evaluate modifications and improvements made after each prior iteration. The children contributed their own perspectives (the child's perspective) on the usability, content and graphic design of the application, substantially improving the software and resulting in an age-appropriate product. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Simulation-based optimization of lattice support structures for offshore wind energy converters with the simultaneous perturbation algorithm

    NASA Astrophysics Data System (ADS)

    Molde, H.; Zwick, D.; Muskulus, M.

    2014-12-01

    Support structures for offshore wind turbines are contributing a large part to the total project cost, and a cost saving of a few percent would have considerable impact. At present support structures are designed with simplified methods, e.g., spreadsheet analysis, before more detailed load calculations are performed. Due to the large number of loadcases only a few semimanual design iterations are typically executed. Computer-assisted optimization algorithms could help to further explore design limits and avoid unnecessary conservatism. In this study the simultaneous perturbation stochastic approximation method developed by Spall in the 1990s was assessed with respect to its suitability for support structure optimization. The method depends on a few parameters and an objective function that need to be chosen carefully. In each iteration the structure is evaluated by time-domain analyses, and joint fatigue lifetimes and ultimate strength utilization are computed from stress concentration factors. A pseudo-gradient is determined from only two analysis runs and the design is adjusted in the direction that improves it the most. The algorithm is able to generate considerably improved designs, compared to other methods, in a few hundred iterations, which is demonstrated for the NOWITECH 10 MW reference turbine.

  8. Update on the status of the ITER ECE diagnostic design

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Austin, M. E.; Basile, A.; Beno, J. H.; Danani, S.; Feder, R.; Houshmandyar, S.; Hubbard, A. E.; Johnson, D. W.; Khodak, A.; Kumar, R.; Kumar, S.; Ouroua, A.; Padasalagi, S. B.; Pandya, H. K. B.; Phillips, P. E.; Rowan, W. L.; Stillerman, J.; Thomas, S.; Udintsev, V. S.; Vayakis, G.; Walsh, M.; Weeks, D.

    2017-07-01

    Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE) diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM) in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70-1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200-300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.

  9. SU-E-T-458: Determining Threshold-Of-Failure for Dead Pixel Rows in EPID-Based Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Wiant, D

    Purpose: A pixel correction map is applied to all EPID-based applications on the TrueBeam (Varian Medical Systems, Palo Alto, CA). When dead pixels are detected, an interpolative smoothing algorithm is applied using neighboring-pixel information to supplement missing-pixel information. The vendor suggests that when the number of dead pixels exceeds 70,000, the panel should be replaced. It is common for entire detector rows to be dead, as well as their neighboring rows. Approximately 70 rows can be dead before the panel reaches this threshold. This study determines the number of neighboring dead-pixel rows that would create a large enough deviation inmore » measured fluence to cause failures in portal dosimetry (PD). Methods: Four clinical two-arc VMAT plans were generated using Eclipse's AXB algorithm and PD plans were created using the PDIP algorithm. These plans were chosen to represent those commonly encountered in the clinic: prostate, lung, abdomen, and neck treatments. During each iteration of this study, an increasing number of dead-pixel rows are artificially applied to the correction map and a fluence QA is performed using the EPID (corrected with this map). To provide a worst-case-scenario, the dead-pixel rows are chosen so that they present artifacts in the highfluence region of the field. Results: For all eight arc-fields deemed acceptable via a 3%/3mm gamma analysis (pass rate greater than 99%), VMAT QA yielded identical results with a 5 pixel-width dead zone. When 10 dead lines were present, half of the fields had pass rates below the 99% pass rate. With increasing dead rows, the pass rates were reduced substantially. Conclusion: While the vendor still suggests to request service at the point where 70,000 dead rows are measured (as recommended by the vendor), the authors suggest that service should be requested when there are greater than 5 consecutive dead rows.« less

  10. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices.

    PubMed

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-05-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.

  11. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter, denser and hotter plasma is always observed in argon than in air as with lower ablation laser fluences. The observed different influences of the ambient gas on the plasma expansion behavior for different laser fluences are related to the different modes of laser-supported absorption waves, namely laser-supported combustion (LSC) wave and laser-supported detonation (LSD) wave.

  12. Space nuclear power system and the design of the nuclear electric propulsion OTV

    NASA Technical Reports Server (NTRS)

    Buden, D.; Garrison, P. W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kWe to 1 MWe output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  13. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  14. A new proton fluence model for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1988-01-01

    Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event.

  15. Temperature and intensity dependence of the performance of an electron-irradiated (AlGa)As/GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Swartz, C. K.; Hart, R. E., Jr.

    1979-01-01

    The performance of a Hughes, liquid-phase epitaxial 2 centimeter-by-2 centimeter, (AlGa)As/GaAs solar cell was measured before and after irradiations with 1 MeV electrons to fluences of 1 x 10 to the 16th power electrons/sq cm. The temperature dependence of performance was measured over the temperature range 135 to 415 K at each fluence level. In addition, temperature dependences were measured at five intensity levels from 137 to 2.57 mW/sq cm before irradiation and after a fluence of 1 x 10 to the 16th power electrons/sq cm. For the intermediate fluences, performance was measured as a function of intensity at 298 K only.

  16. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  17. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  18. Bragg x-ray survey spectrometer for ITER.

    PubMed

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  19. Diagnostics of the ITER neutral beam test facility.

    PubMed

    Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B

    2012-02-01

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  20. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    NASA Astrophysics Data System (ADS)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  1. Engineering and manufacturing of ITER first mirror mock-ups.

    PubMed

    Joanny, M; Travère, J M; Salasca, S; Corre, Y; Marot, L; Thellier, C; Gallay, G; Cammarata, C; Passier, B; Fermé, J J

    2010-10-01

    Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

  2. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer.

    PubMed

    Seon, C R; Hong, J H; Song, I; Jang, J; Lee, H Y; An, Y H; Kim, B S; Jeon, T M; Park, J S; Choe, W; Lee, H G; Pak, S; Cheon, M S; Choi, J H; Kim, H S; Biel, W; Bernascolle, P; Barnsley, R

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 10 13 -10 15 photons/cm 2 s.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less

  4. Subsonic panel method for designing wing surfaces from pressure distribution

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Hawk, J. D.

    1983-01-01

    An iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical distribution of pressure. The calculations are initialized by using a surface panel method to analyze a baseline wing or wing-fuselage configuration. A first-order expansion to the baseline panel method equations is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter. In every iteration cycle, the matrix is used both to calculate the geometry perturbation and to analyze the perturbed geometry. The distribution of potential on the perturbed geometry is established by simple linear extrapolation from the baseline solution. The extrapolated potential is converted to pressure by Bernoulli's equation. Not only is the accuracy of the approach good for very large perturbations, but the computing cost of each complete iteration cycle is substantially less than one analysis solution by a conventional panel method.

  5. Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Sirinelli, A.; Watts, C.; Shigin, P.; Vayakis, G.; Walsh, M.

    2016-11-01

    A dispersion interferometer is a reliable density measurement system and is being designed as a complementary density diagnostic on ITER. The dispersion interferometer is inherently insensitive to mechanical vibrations, and a combined polarimeter with the same line of sight can correct fringe jump errors. A proof of the principle of the CO2 laser dispersion interferometer combined with the PEM polarimeter was recently conducted, where the phase shift and the polarization angle were successfully measured simultaneously. Standard deviations of the line-average density and the polarization angle measurements over 1 s are 9 × 1016 m-2 and 0.19°, respectively, with a time constant of 100 μs. Drifts of the zero point, which determine the resolution in steady-state operation, correspond to 0.25% and 1% of the phase shift and the Faraday rotation angle expected on ITER.

  6. Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER.

    PubMed

    Akiyama, T; Sirinelli, A; Watts, C; Shigin, P; Vayakis, G; Walsh, M

    2016-11-01

    A dispersion interferometer is a reliable density measurement system and is being designed as a complementary density diagnostic on ITER. The dispersion interferometer is inherently insensitive to mechanical vibrations, and a combined polarimeter with the same line of sight can correct fringe jump errors. A proof of the principle of the CO 2 laser dispersion interferometer combined with the PEM polarimeter was recently conducted, where the phase shift and the polarization angle were successfully measured simultaneously. Standard deviations of the line-average density and the polarization angle measurements over 1 s are 9 × 10 16 m -2 and 0.19°, respectively, with a time constant of 100 μs. Drifts of the zero point, which determine the resolution in steady-state operation, correspond to 0.25% and 1% of the phase shift and the Faraday rotation angle expected on ITER.

  7. Design and first plasma measurements of the ITER-ECE prototype radiometer.

    PubMed

    Austin, M E; Brookman, M W; Rowan, W L; Danani, S; Bryerton, E W; Dougherty, P

    2016-11-01

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T e ). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T e plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.

  8. Experiment of low resistance joints for the ITER correction coil.

    PubMed

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  9. Design or "Design"--Envisioning a Future Design Education

    ERIC Educational Resources Information Center

    Sless, David

    2012-01-01

    Challenging the common grand vision of Design, this article considers "design" as a humble re-forming process based on evidence to substantiate its results. The designer is likened to a tinker who respects previous iterations of a design and seeks to retain what is useful while improving its performance. A design process is offered,…

  10. Robust lateral blended-wing-body aircraft feedback control design using a parameterized LFR model and DGK-iteration

    NASA Astrophysics Data System (ADS)

    Schirrer, A.; Westermayer, C.; Hemedi, M.; Kozek, M.

    2013-12-01

    This paper shows control design results, performance, and limitations of robust lateral control law designs based on the DGK-iteration mixed-μ-synthesis procedure for a large, flexible blended wing body (BWB) passenger aircraft. The aircraft dynamics is preshaped by a low-complexity inner loop control law providing stabilization, basic response shaping, and flexible mode damping. The μ controllers are designed to further improve vibration damping of the main flexible modes by exploiting the structure of the arising significant parameter-dependent plant variations. This is achieved by utilizing parameterized Linear Fractional Representations (LFR) of the aircraft rigid and flexible dynamics. Designs with various levels of LFR complexity are carried out and discussed, showing the achieved performance improvement over the initial controller and their robustness and complexity properties.

  11. Real time flight simulation methodology

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Cook, G.; Mcvey, E. S.

    1977-01-01

    Substitutional methods for digitization, input signal-dependent integrator approximations, and digital autopilot design were developed. The software framework of a simulator design package is described. Included are subroutines for iterative designs of simulation models and a rudimentary graphics package.

  12. September 2006 Monthly Report- ITER Visible/IRTV Optical Design Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C

    LLNL received a request from the US ITER organization to perform a scoping study of optical design for visible/IR camera systems for the 6 upper ports of ITER. A contract was put in place and the LLNL account number was opened July 19, 2006. A kickoff meeting was held at LLNL July 26. The principal work under the contract is being performed by Lynn Seppala (optical designer), Kevin Morris (mechanical designer), Max Fenstermacher (visible cameras), Mathias Groth (assisting with visible cameras), and Charles Lasnier (IR cameras and Principal Investigator), all LLNL employees. Kevin Morris has imported ITER CAD files andmore » developed a simplified 3D view of the ITER tokamak with upper ports, which he used to determine the optimum viewing angle from an upper port to see the outer target. He also determined the minimum angular field of view needed to see the largest possible coverage of the outer target. We examined the CEA-Cadarache report on their optical design for ITER visible/IRTV equatorial ports. We found that the resolution was diffraction-limited by the 5-mm aperture through the tile. Lynn Seppala developed a similar front-end design for an upper port but with a larger 6-inch-diameter beam. This allows the beam to pass through the port plug and port interspace without further focusing optics until outside the bioshield. This simplifies the design as well as eliminating a requirement for complex relay lenses in the port interspace. The focusing optics are all mirrors, which allows the system to handle light from 0.4 {micro}m to 5 {micro}m wavelength without chromatic aberration. The window material chosen is sapphire, as in the CEA design. Sapphire has good transmission in the desired wavelengths up to 4.8 {micro}m, as well as good mechanical strength. We have verified that sapphire windows of the needed size are commercially available. The diffraction-limited resolution permitted by the 5 mm aperture falls short of the ITER specification value but is well-matched to the resolution of current detectors. A large increase in resolution would require a similar increase in the linear pixel count on a detector. However, we cannot increase the aperture much without affecting the image quality. Lynn Seppala is writing a memo detailing the resolution trade-offs. Charles Lasnier is calculating the radiated power, which will fall on the detector in order to estimate signal-to-noise ratio and maximum frame rate. The signal will be reduced by the fact that the outer target plates are tungsten, which radiates less than carbon at the same temperature. The tungsten will also reflect radiation from the carbon tiles private flux dome, which will radiate efficiently although at a lower temperature than the target plates. The analysis will include estimates of these effects. Max Fenstermacher is investigating the intensity of line emission that will be emitted in the visible band, in order to predict signal-to-noise ratio and maximum frame rate for the visible camera. Andre Kukushkin has modeling results that will give local emission of deuterium and carbon lines. Line integrals of the emission must be done to produce the emitted intensity. The model is not able to handle tungsten and beryllium so we will only be able to estimate deuterium and carbon emission. Total costs as of September 30, 2006 are $87,834.43. Manpower was 0.58 FTE's in August, 1.48 in August, and 1.56 in September.« less

  13. Progress toward commissioning and plasma operation in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team

    2015-07-01

    The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.

  14. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  15. Design and FPGA Implementation of a Universal Chaotic Signal Generator Based on the Verilog HDL Fixed-Point Algorithm and State Machine Control

    NASA Astrophysics Data System (ADS)

    Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng

    In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.

  16. Learner Centred Design for a Hybrid Interaction Application

    ERIC Educational Resources Information Center

    Wood, Simon; Romero, Pablo

    2010-01-01

    Learner centred design methods highlight the importance of involving the stakeholders of the learning process (learners, teachers, educational researchers) at all stages of the design of educational applications and of refining the design through an iterative prototyping process. These methods have been used successfully when designing systems…

  17. RELATIVE DISTRIBUTIONS OF FLUENCES OF {sup 3}He AND {sup 4}He IN SOLAR ENERGETIC PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosian, Vahe; Jiang Yanwei; Liu Siming

    2009-08-10

    Solar energetic particles show a rich variety of spectra and relative abundances of many ionic species and their isotopes. A long-standing puzzle has been the extreme enrichments of {sup 3}He ions. The most extreme enrichments are observed in low-fluence, the so-called impulsive, events which are believed to be produced at the flare site in the solar corona with little scattering and acceleration during transport to the Earth. In such events, {sup 3}He ions show a characteristic concave curved spectra in a log-log plot. In two earlier papers of Liu et al., we showed how such extreme enrichments and spectra canmore » result in the model developed by Petrosian and Liu, where ions are accelerated stochastically by plasma waves or turbulence. In this paper, we address the relative distributions of the fluences of {sup 3}He and {sup 4}He ions presented by Ho et al., which show that while the distribution of {sup 4}He fluence (which we believe is a good measure of the flare strength) like many other extensive characteristics of solar flare is fairly broad, the {sup 3}He fluence is limited to a narrow range. These characteristics introduce a strong anticorrelation between the ratio of the fluences and the {sup 4}He fluence. One of the predictions of our model presented in the 2006 paper was the presence of steep variation of the fluence ratio with the level of turbulence or the rate of acceleration. We show here that this feature of the model can reproduce the observed distribution of the fluences with very few free parameters. The primary reason for the success of the model in both fronts is because fully ionized {sup 3}He ion, with its unique charge-to-mass ratio, can resonantly interact with plasma modes not accessible to {sup 4}He and be accelerated more readily than {sup 4}He. Essentially in most flares, all background {sup 3}He ions are accelerated to few MeV/nucleon range, while this happens for {sup 4}He ions only in very strong events. A much smaller fraction of {sup 4}He ions reach such energies in weaker events.« less

  18. SU-F-T-315: Comparative Studies of Planar Dose with Different Spatial Resolution for Head and Neck IMRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, T; Koo, T

    Purpose: To quantitatively investigate the planar dose difference and the γ value between the reference fluence map with the 1 mm detector-to-detector distance and the other fluence maps with less spatial resolution for head and neck intensity modulated radiation (IMRT) therapy. Methods: For ten head and neck cancer patients, the IMRT quality assurance (QA) beams were generated using by the commercial radiation treatment planning system, Pinnacle3 (ver. 8.0.d Philips Medical System, Madison, WI). For each beam, ten fluence maps (detector-to-detector distance: 1 mm to 10 mm by 1 mm) were generated. The fluence maps with larger than 1 mm detector-todetectormore » distance were interpolated using MATLAB (R2014a, the Math Works,Natick, MA) by four different interpolation Methods: for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. These interpolated fluence maps were compared with the reference one using the γ value (criteria: 3%, 3 mm) and the relative dose difference. Results: As the detector-to-detector distance increases, the dose difference between the two maps increases. For the fluence map with the same resolution, the cubic spline interpolation and the bicubic interpolation are almost equally best interpolation methods while the nearest neighbor interpolation is the worst.For example, for 5 mm distance fluence maps, γ≤1 are 98.12±2.28%, 99.48±0.66%, 99.45±0.65% and 82.23±0.48% for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. For 7 mm distance fluence maps, γ≤1 are 90.87±5.91%, 90.22±6.95%, 91.79±5.97% and 71.93±4.92 for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. Conclusion: We recommend that the 2-dimensional detector array with high spatial resolution should be used as an IMRT QA tool and that the measured fluence maps should be interpolated using by the cubic spline interpolation or the bicubic interpolation for head and neck IMRT delivery. This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less

  19. Fluence inhomogeneities due to a ripple filter induced Moiré effect.

    PubMed

    Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli

    2015-02-07

    At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in fluence inhomogeneity at the isocenter. In the normal clinical application, such a setting should generally be avoided.

  20. Hidden Connections between Regression Models of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    2013-01-01

    Hidden connections between regression models of wind tunnel strain-gage balance calibration data are investigated. These connections become visible whenever balance calibration data is supplied in its design format and both the Iterative and Non-Iterative Method are used to process the data. First, it is shown how the regression coefficients of the fitted balance loads of a force balance can be approximated by using the corresponding regression coefficients of the fitted strain-gage outputs. Then, data from the manual calibration of the Ames MK40 six-component force balance is chosen to illustrate how estimates of the regression coefficients of the fitted balance loads can be obtained from the regression coefficients of the fitted strain-gage outputs. The study illustrates that load predictions obtained by applying the Iterative or the Non-Iterative Method originate from two related regression solutions of the balance calibration data as long as balance loads are given in the design format of the balance, gage outputs behave highly linear, strict statistical quality metrics are used to assess regression models of the data, and regression model term combinations of the fitted loads and gage outputs can be obtained by a simple variable exchange.

Top